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ABSTRACT
In modern online services, it is of growing importance to process
web-scale graph data and high-dimensional sparse data together
into embeddings for downstream tasks, such as recommendation,
advertisement, prediction, and classification. There exist learning
methods and systems for either high-dimensional sparse data or
graphs, but not both.

There is an urgent need in industry to have a system to efficiently
process both types of data for higher business value, which however,
is challenging. The data in Tencent contains billions of samples
with sparse features in very high dimensions, and graphs are also
with billions of nodes and edges. Moreover, learning models often
perform expensive operations with high computational costs. It
is difficult to store, manage, and retrieve massive sparse data and
graph data together, since they exhibit different characteristics.

We present EmbedX, an industrial distributed learning frame-
work from Tencent, which is versatile and efficient to support em-
bedding on both graphs and high-dimensional sparse data. Em-
bedX consists of distributed server layers for graph and sparse data
management, and optimized parameter and graph operators, to
efficiently support 4 categories of methods, including deep learning
models on high-dimensional sparse data, network embedding meth-
ods, graph neural networks, and in-house developed joint learning
models on both types of data. Extensive experiments on massive
Tencent data and public data demonstrate the superiority of Em-
bedX. For instance, on a Tencent dataset with 1.3 billion nodes, 35
billion edges, and 2.8 billion samples with sparse features in 1.6
billion dimension, EmbedX performs an order of magnitude faster
for training and our joint models achieve superior effectiveness.
EmbedX is deployed in Tencent. A/B test on real use cases further
validates the power of EmbedX. EmbedX is implemented in C++
and open-sourced at https://github.com/Tencent/embedx.
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1 INTRODUCTION
High-dimensional sparse data and graph data are two prominent
types of data in real-world applications. At Wechat, an instant
messaging platform from Tencent, there are billions of users and
items (e.g., images, articles, videos, and addresses) with very high-
dimensional sparse features. Meanwhile, the interactions among
users and items are modeled as graphs. Massive user log data are
continuously generated in Petabytes. It is of paramount importance
to efficiently process such web-scale data in industry.

One classic methodology is to adopt deep learning models on
high-dimensional sparse data (DLS) to learn embeddings of users
and items. For instance, a user can have a sparse feature vector in
high dimension to indicate the places where the user has visited
by one-hot or multi-hot values in the vector, while all the other
values are zero [2]. As another example, a sparse feature vector
could depict the images published by a user. DLS models, partic-
ularly recommendation systems, have been proposed [12, 52] to
learn effective representations of entities to facilitate downstream
applications, such as recommendation, searching, advertisement
and marketing in Tencent.

Meanwhile, another popular way is to build sophisticated graphs
to model the interactions among users and items, where nodes are
the entities and edges are the interactions. For instance, a payment
transaction from a user to another user indicates a transaction
edge between the users. There exist numerous graph representation
learning methods, including network embedding (NE) [10, 11, 41, 42]
and graph neural network (GNN)methods [14, 23, 46, 48, 49], to learn
effective node embeddings. Graph data in Tencent are heteroge-
neous with node and edge types, and are attributed. The graphs
are with billions of nodes and edges, which are massive, valuable,
but also challenging to efficiently process. NE and GNN methods
are useful in industry for various applications, e.g., evaluating the
default rate of loans, measuring the security of user identity, and
recommending music.
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In production, it is preferable to apply learning models on both
graphs and high-dimensional sparse data together for higher busi-
ness value. However, in literature, there exist systems only for graph
data [30, 38, 56, 58, 59] or high-dimensional sparse data [20, 29, 36],
but not both. Also there are general machine learning platforms,
such as TensorFlow [1], PyTorch [40], MxNet [6], and Caffe [19],
which still require significant efforts for customized development
of dedicated models on specific types of data.

To our knowledge, there is a lack of industrial-level scalable
frameworks to seamlessly support models on both graphs and high-
dimensional sparse data. The challenges are threefold.
• How to efficiently process web-scale high-dimensional sparse data

and graph data for offline training and online inference? In in-
dustry, the number of data samples, feature dimensions, and the
number of nodes and edges are all massive. Existing learning
models usually incur immense overheads with expensive oper-
ations, e.g., sampling and gradient updates. Moreover, services
require timely online inference to provide prompt responses to
end users, which is rather challenging for big models.

• How to efficiently store, manage, and retrieve high-dimensional
sparse data and graph data together, which exhibit different char-
acteristics? The underlying system architecture is crucial for the
efficiency and scalability on sparse data and graph data that
cannot be simply handled together, since they usually require
different formats of storage and involve different operations.
For instance, sparse features are often projected to dense em-
beddings by neural networks, while sampling techniques, e.g.,
random walks, are common graph operations.

• How to develop joint models to learn more expressive embeddings
by leveraging the two perspectives from high-dimensional sparse
data and graphs? As explained, while it is with great business
value to generate embeddings by considering the rich semantics
of both sparse and graph data, this is insufficiently explored yet,
especially on system developments. It is challenging to develop
new models since models for sparse data and graph data are with
different design philosophies over radically different data models.

To address these challenges, we present EmbedX, an industrial
distributed learning framework that is versatile to support 4 cat-
egories of methods for both graphs and high-dimensional sparse
data, as listed in Table 1. EmbedX is efficient, scalable and effective
to handle web-scale data for offline training and online inference.
We summarize the contributions of EmbedX as follows.
Server Infrastructure. To support both high-dimensional sparse
data and graph data, in EmbedX, we build a server layer that consists
of (i) graph servers, parameter servers, and training workers for
offline training, and (ii) KV stores and serving workers for online
inference. The server layer is optimized by several techniques for
the efficient processing of massive data, including a bit-level type
encoding scheme to save storage costs, an aggressive asynchronous
communication mechanism, a parallel request processing technique,
as well as online inference optimization.
Operators. EmbedX provides two sets of efficient operators, in-
cluding parameter operators and graph operators. The parameter op-
erators can efficiently retrieve embeddings and support parameter
updates during both online and offline stages. The graph operators

Table 1: Four Categories of Models built in EmbedX
Category Method Sparse Graph In-house

Deep Learning
Models on

High-dimensional
Sparse Data

(DLS)

YouTubeDNN [8] ✓
DSSM [17] ✓
DeepFM [12] ✓

Self-Training DSSM ✓ ✓
Online DSSM ✓ ✓

Submodel-DSSM ✓ ✓

Network
Embedding
Methods
(NE)

DeepWalk [41] ✓
Node2vec [11] ✓
Struct2vec [42] ✓

Metapath2vec [10] ✓
EGES [47] ✓

Graph
Neural

Networks
(GNN)

GraphSAGE [14] ✓
PinSAGE [53] ✓
GAT [46] ✓

StrucGraphSAGE ✓ ✓
MetaGraphSAGE ✓ ✓

Self-Training GraphSAGE ✓ ✓
Joint-Training GraphSAGE ✓ ✓

Joint Learning
Models on

Sparse and Graph
Data
(JLSG)

GraphDeepFM ✓ ✓ ✓
BipartiteGraphDeepFM ✓ ✓ ✓

GerlDeepFM ✓ ✓ ✓
GraphEsmmDFM ✓ ✓ ✓

GraphDTN ✓ ✓ ✓
GraphDSSM ✓ ✓ ✓

are highly efficient with dedicated techniques for efficient random
walk sampling, negative sampling, and neighbor sampling, which
are the key operations in graph learning models.
Algorithms. Built on top of the server and operator layers, EmbedX
is versatile to support 4 categories of learning algorithms, including
deep learning models for sparse data (DLS), network embedding
(NE) methods, graph neural networks (GNNs), and in-house joint
learning models on both sparse and graph data (JLSG). All the new
models developed in-house are ticked in the 3rd column of Table 1.
Particularly, we develop all JLSGmodels, such as GraphDeepFM and
GraphDSSM, while in literature, models on both high-dimensional
sparse data and graph data are under-explored. For DLS, NE, and
GNN models, EmbedX has built-in models either from existing
studies or developed in-house.
Deployment and Evaluation.We conduct extensive experiments
on real-world billion-scale Tencent datasets and public datasets
to demonstrate the superior performance of EmbedX in Section
7. Moreover, EmbedX is deployed in multiple business sectors in
Tencent. We provide A/B test results of use cases in production for
News feed, music recommendation, and malicious account discov-
ery, which further validates the power of EmbedX as an industrial-
level platform.

2 PRELIMINARIES
We introduce the datamodels and the general embeddingworkflows
of high-dimensional sparse data and graph data (Figure 1).
Deep Learning Models on High-Dimensional Sparse Data
(DLS). In online services, there are many types of entities, such
as users, articles, images, etc. These entities have sparse features
and dense features. For instance, in the lower part of Figure 1, a
user 𝑢 has dense features x𝑑 , e.g., age and gender, and has sparse
features x𝑠 depicting his/her online behaviors. The sparse features
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Figure 1: Embedding workflows on graph data (upper) and
high-dimensional sparse data (lower).

are usually in the form of high-dimensional one-hot or multi-hot
vectors, which may indicate the places where 𝑢 has visited and the
articles that 𝑢 has read. The dimension of x𝑠 can be high, e.g., in
billions in production. As show in Figure 1, DLS models usually
adopt embedding tables and pooling techniques to train and convert
sparse vector x𝑠 to dense embedding h𝑠 . Embedding h𝑠 for sparse
features are usually integrated with the embedding h𝑑 of dense
features x𝑑 obtained by neural networks, e.g., Multilayer perceptron
(MLP) in Figure 1, to get the final representation h of an entity. Then
the embeddings of two entities may be then fed into deep neural
networks to train for various tasks, e.g., recommendation.
Network Embedding (NE) and GraphNeural Networks (GNN).
The interactions among different entities can also be modeled as
graphs, in which nodes and edges are with types and attributes,
e.g., the upper part of Figure 1. For instance, two users as nodes
are connected by an friendship edge. NE and GNN methods [11,
14, 23, 41, 46] are popular and important to consider high-order
(multi-hop) relationships between entities, to learn meaningful
node embeddings. The node embedding h𝑔𝑢 of a user 𝑢 and the node
embedding h𝑔

𝑖
of an item 𝑖 in a graph can be used to train models

for link prediction, node classification, fraud detection, etc.

3 EMBEDX OVERVIEW
EmbedX is implemented with the design principles to support a
rich collection of learning models on billion-scale high-dimensional
sparse data and graph data in an efficient and effective manner for
offline training and online inference. In this section, we provide the
whole picture of EmbedX with 4 layers, and explain its offline and
online workflows. We present the technical designs of each layer
in subsequent sections.
Architecture. Figure 2 depicts the architecture of EmbedX with
4 layers, namely server layer, operator layer, algorithm layer and
application layer. In a nutshell, the server layer provides the stor-
age of sparse data and graph data, the management of models
parameters, and the computational workers for offline training and
online inference. Specifically, offline training is supported by a set
of parameter servers, graph servers, and training workers; online in-
ference adopts online KV stores and serving workers. On top of the
server layer, EmbedX provides a rich set of popular and important
operations in the operator layer for both high-dimensional sparse

Servers

Operators

Search Recommendation Advertisement SecurityApplications

Algorithms

Online InferenceOffline Training
Parameter 

Servers
Graph 
Servers
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Parameter Operators

Random Walk Sampling
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Embedding 
Export

Aggregation Batch 
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Figure 2: EmbedX Architecture.
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Figure 3: EmbedX Offline and Online Workflows.

data and graph data. Specifically, the parameter operators include
embedding lookup, aggregation, batch lookup, batch lookup-dot,
and embedding export operations. Representative graph operators
include various types of random walk sampling, negative sampling,
and neighborhood sampling. At the algorithm layer, EmbedX im-
plements 4 categories of methods, including DLS, NE, GNN, and
JLSG methods as listed Table 1. Note that plenty of these methods
are newly developed in-house at Tencent. The application layer of
EmbedX integrates with the wide application domains in Tencent
for search, recommendation, advertisement, security, etc.
The workflow of EmbedX is illustrated in Figure 3.
Offline Training Workflow:
(1) Training workers fetch batches of training samples in the form

of ⟨userID, itemID⟩ pairs from data pipelines (e.g., Kafka and
Hadoop) for batch training.

(2) Training workers then send requests to graph servers to per-
form specific graph operators (e.g., random walk sampling,
negative sampling, and neighbor sampling) for the training
samples. Graph data is distributed in multiple graph servers.

(3) Meanwhile, training workers also send requests to parameter
servers to lookup the related high-dimensional sparse features,
embedding tables, and model parameters of the training sam-
ples in parameter servers via the parameter operators.

(4) Having all the necessary training high-dimensional sparse data
and graph data of the training samples, training workers train
models by performing forward and backward model execution,
and then calculate and send the gradients to parameter servers.

3545



(5) Parameter servers update model parameters, embedding tables,
etc., based on the results received from training workers. The
updated parameters are persisted as checkpoints. Offline pa-
rameter servers also perform incremental updates to online KV
stores periodically to keep online models up to date.

Online InferenceWorkflow. Note that EmbedX supports various
tasks. We use recommendation as an example to explain the online
inference workflow. As shown on the right of Figure 3, when receiv-
ing recommendation requests from end users, serving workers will
retrieve the corresponding model parameters, embeddings of sparse
features, node embeddings of the user, and candidate items from
the online KV stores. Then serving workers invoke the deployed
models for online inference.

In the following, we elaborate the system designs and optimiza-
tions for the server layer in Section 4, present the algorithmic
designs of operators in Section 5, develop the built-in models in
Section 6, and conduct extensive experiments in Section 7. Note that
EmbedX also contains standard configurations in modern systems,
such as caching and backup. In this paper, we focus on explaining
the optimizations specifically designed in EmbedX.

4 SERVER LAYER
The server layer has two parts, one for offline training and the other
for online inference. Offline training is conducted on massive histor-
ical training data and involves expensive iterative model forward
and backward optimizations. Online inference is required to be
performed in near real-time over the up-to-date online data. Hence,
the server-layer designs for offline training and online inference
are quite different. The designs of offline training and optimizations
are presented in Sections 4.1 and 4.2, respectively, while the designs
of online inference are elaborated in Section 4.3.

4.1 Offline Training
The offline part is responsible for the storage and management
of graph data (graph servers) and high-dimensional sparse data
and model parameters (parameter servers), and also provide the
computational workhorses for training (training workers).
Parameter Servers. EmbedX has a group of parameter servers that
store and update model parameters based on the computational
results obtained from training workers during the offline training
stage. Parameter servers also disseminate the updated parameters
to the clients in online server layer for online inference. Remark that
the model parameters include the parameters of learning models
(e.g., GNNs) and embedding tables that convert sparse data into
dense embeddings. The model parameters are stored and retrieved
in key-value storage in a distributed manner, since the embedding
tables for high-dimensional sparse data are in massive volume
in production. We partition embedding tables into shards by row
ids in the tables. Then the embedding shards are stored in the
distributed parameter servers. Moreover, parameter servers consist
of computational graphs and optimizers, e.g., Adam[22] and SGD[4],
for different models, to efficiently perform gradient descent.
Graph Servers. The graph data at Tencent contain billions of
nodes and hundreds of billions of edges, which is far beyond the
capacity of a commodity machine. Thus, EmbedX stores a graph in a
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0 ⋯ 0 1 0 ⋯ 1 1 1
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Figure 4: Bit-level Type Encoding.

distributed way across multiple graph servers and provides efficient
operators on graphs, in order to facilitate the data requests from
training workers. EmbedX provides flexible ways to store various
types of graphs, including homogeneous graphs, heterogeneous
graphs, and attributed graphs [11, 16, 23, 41]. To split massive graph
data into partitions, we implement a series of graph partitioning
methods in EmbedX, including random shuffling by ids, Metis[21],
edge cut and node cut partitions [49]. Clients have the flexibility to
choose a partitioning method to split a graph into several parts for
distributed storage. For instance, a fast way is to decide the graph
server to store a node 𝑣 ’s adjacency list is to modulo the node id of
𝑣 over the number of graph servers. In practice, this way is often
robust to various types of graphs and efficient to handle large-scale
data, with minimum partitioning cost.
Training Workers. The training workers in EmbedX work in
parallel to fetch data from graph servers, embeddings of sparse
data and model parameters from parameter servers, and perform
forward and backward execution over the models under training.
In EmbedX, training workers and parameter servers are designed
to communicate asynchronously, as explained in Section 4.2.

4.2 Optimizations of Offline Training
In EmbedX, we develop novel server-level optimization techniques
to facilitate efficient processing and save storage costs. In partic-
ular, we will introduce three representative server optimizations,
namely bit-level type encoding scheme, aggressive asynchronous
communication, and parallel requests to parameter servers.
Bit-level Type Encoding. We need to store different types of
entities (e.g., users, documents, videos, images, songs, et al.,) and
all kinds of interactions between entities as heterogeneous graphs.
At the scale of billions of nodes with hundreds of node types, it is
space-consuming to solely store the type information of a node’s
adjacent nodes. A common way is to group the neighbors of a node
by types and then maintain the neighbors of the same type into a
type-specific adjacency list. For example, on the left side of Figure 4,
it shows the three type-specific adjacency lists of node 𝑣 . However,
this way may cost hundreds of GB to store the type information on
massive graphs. For instance, given a graph with 1 billion nodes and
100 node types, each node needs to store up to 100 node types of
its neighbors in integers, and assume that an integer takes 4 bytes.
Then the total space required to store the neighboring node type
information of all nodes is about up to 400GB. If the integer takes
8 bytes, the space cost is up to 800GB. Another challenge is how
to efficiently perform neighbor sampling with node types on large
graphs, which is a common procedure required in graph learning
algorithms. To address these challenges, we propose a bit-level type
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encoding scheme to integrate node type into node id integer and
thus save the storage cost for type information. As shown on the
right side of Figure 4, given a 64-bit integer, the encoding scheme
uses the lower 48 bits to store a node id and the upper 16 bits
to encode the corresponding node type. Then given a node 𝑣 , we
store its neighbors represented by the type-encoded integers into a
single adjacency list that is sorted based on the integer values, e.g.,
Figure 4. Naturally, the neighbors are grouped based on their types
in the list, since the upper 16 bits of the integers represent node
type information. The encoding scheme stores node ids and their
types together, and thus can save hundreds of GB. The bit encoding
scheme also enables fast neighbor sampling via bit operations.
Aggressive Asynchronous Communication. In traditional pa-
rameter servers [27], the process of model training typically consists
of 4 steps as shown in Figure 5(a). When a training worker gets a
batch of training data as the current task, it first issues a Pull request
to parameter servers to get the model parameters to be updated
in the current task. Second, the training worker performs forward
and backward executions to compute gradients. Third, the training
worker issues a Push request to push the gradients to parameter
servers. Fourth, the training worker waits for acknowledgement
from parameter servers and will mark the task as completed until
acknowledgement received. If no acknowledgement is received,
the worker will have to issue another Push request to parameter
servers. This traditional synchronous communication process, es-
pecially the fourth step where training worker waits in idle for
acknowledgement, slows down the training process on web-scale
data. In EmbedX, we propose to perform aggressive asynchronous
communication from training workers to parameter servers, such
that the fourth step is skipped as shown in Figure 5(b), in order
to let training workers immediately commit to new training tasks
after Push without waiting for acknowledgement. Compared with
the traditional way, EmbedX experiences higher utilization rate of
training workers. Note that there is a trade-off between training
efficiency and model convergence. The skip of the fourth step may
have the risk of losing gradient updates of certain batches in param-
eter servers. We find that the risk is negligible in practice, especially
when training data are abundant. It is practically infrequent to lose
gradient updates. Thus, it is tolerable to have few gradient losses
happen, which is insignificant on model effectiveness, but improves
the efficiency, as validated in experiments.
Parallel Requests to Parameter Servers. In our application
scenarios, a parameter server needs to handle a huge number of
pull/push requests from training workers. Conventionally, when a
parameter server is handling a request, other requests are in queue,
which is inefficient. Therefore, we configure and enable a parame-
ter server to handle multiple requests simultaneously by multiple
threads in EmbedX. As the key-value store in parameter servers
uses hash-map as low-level data structure, which forbids concur-
rent read and write operations, we modify the key-value store with
read/write locks to support parallel requests to parameter servers.
This optimization makes the parameter servers more efficient than
conventional ones in production.

Batch 1

Time
Pull

Forward& 
backward

Push
Acknowledge

(a)

Batch 2

(b)

Batch 2Pull

Forward& 
backward

Push
Acknowledge

Batch 1

Pull

Forward& 
backward

Push
Pull

Forward& 
backward

Push

Figure 5: (a): Traditional synchronous communication; (b):
Aggressive asynchronous communication.

4.3 Online Inference and Optimization
The server design for online inference is different from that of of-
fline training. Specifically, EmbedX provides KV stores and serving
workers to facilitate efficient online inference.
KV Stores. The online KV stores store parameters of models, em-
bedding tables, and computational graphs. KV stores incrementally
receive latest parameters pushed from offline parameter servers.
Different from offline parameter servers, KV stores do not need to
perform operations to update model parameters. In other words,
KV stores can be regarded as a light-weight version of parameter
servers by discarding training optimizers.
Serving Workers. Servering workers are the main computational
power to perform online inference. As mentioned, serving workers
obtain model parameters, embeddings of the user and item from the
online KV stores. Then servingworkers run the deployedmodels for
online inference tasks, e.g., recommendation, ranking, classification.
Online Inference Optimization. In industry, it is crucial to pro-
vide timely online inference results to users. For instance, inWeChat
messaging platform, it is preferable to handle online recommenda-
tion in 30𝑚𝑠 (milliseconds) per recommendation request. However,
this is challenging since online inference involves feature fetching
of users and candidate items from very large feature databases.
Even worse, new data is generated dynamically online. If the latest
data (e.g., online graphs) are used for online inference, the models
need to perform expensive forward executions on the fly, which
greatly slows down online inference. To mitigate the situation, we
exploit a trade-off between online efficiency and data timeliness,
to match the fast online inference requirements in milliseconds. In
particular, we maintain the graph data in offline storage to be as
latest as possible compared with online data, with negligible differ-
ences, so that the offline representation of a node in offline graphs
does not change a lot compared with its online counterpart. Then
we can safely use the node embeddings obtained from offline graph
data for online inference. In such a way, we avoid the expensive
online execution of graph learning models and improve online effi-
ciency. Specifically, in the parameter servers, we maintain a node
embedding table containing the representations of all nodes, and
the table will be incrementally synchronized to online KV stores for
inference. This optimization can not only reduce the time cost of
online inference, but also relieve EmbedX from maintaining online
graph servers, which saves significant computational resources.
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5 OPERATOR LAYER
As shown in Figure 2, EmbedX provides efficient parameter opera-
tors to manage massive high-dimensional sparse data and model
parameters (Section 5.1). Moreover, EmbedX has dedicated graph
operators to efficiently process graphs (Section 5.2).

5.1 Parameter Operators and Optimizations
The parameter operators aim to efficiently access embedding tables
and support frequent operations on model parameters during both
offline training and online inference stages. In EmbedX, we provide
highly optimized parameter operators implemented in C++.

• Embedding lookup operator is an elementary operation that
retrieves dense embeddings according to IDs from embedding
tables in parameter servers.

• Batch dot operator performs dot product calculation between
two batches of users and items. Dot product is frequently used
in machine learning models, and naive dot product over high-
dimensional vectors can be rather expensive if triggered many
times. The batch dot operator performs in batches to reduce
memory consumption and improve efficiency by parallelism.

• Batch lookup-dot operator combines the operations of embed-
ding lookup and batch dot together in one encapsulated opera-
tion. We observe that usually embedding lookup and dot product
operators often appear one after another. In EmbedX, to avoid
frequent invocations of fine-grained operators that may require
frequent memory allocation, we develop this croase-grained
batch lookup-dot operator for system efficiency.

• Aggregation operator in EmbedX combines multiple embed-
dings into a single embedding vector. The aggregation operator
supports various functions, including mean, sum, and max pool-
ing, and concatenation. Aggregation is commonly utilized in all
types of models.

• Embedding export operator enables saving updated model
parameters as checkpoints efficiently in offline parameter servers,
so that they can be further disseminated to online KV stores
for inference. As model parameters are often in large size, we
optimize the operator to reduce the latency of model saving.

In addition to the operators above, EmbedX includes more op-
erators which are available in its code base. All the operators are
implemented as APIs in EmbedX and can be called independently,
so that clients can build their models in a flexible way.

5.2 Graph Operators and Optimizations
As sampling techniques are fundamental operations in many NE
and GNN models, EmbedX supports a rich collection of graph op-
erations. Specifically, EmbedX supports three categories of graph
sampling operations on large-scale graphs as listed below. Note that
for each category, there are multiple variants supported in EmbedX
for different NE and GNN models. Vanilla implementation of these
operations incur prohibitive costs, especially on billion-scale graphs.
We optimize them in EmbedX for efficiency.

• Random-Walk Sampling simulates stochastic processes on
graph topology to get sequences of nodes. EmbedX supports
various types of random walks, including first-order random
walk, second-order random walk, and meta-path random walks.
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𝒗
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Figure 6: Node2vec and Vanilla Rejection Sampling.
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Figure 7: Dynamic Rejection Sampling (DRJ).

• Negative Sampling generates negative samples with respect
to certain nodes, which can be used to speed up training con-
vergence. The sampling is customized with the consideration of
graph topology, attributes, and heterogeneous information.

• Neighbor Sampling samples subsets of nodes from the neigh-
borhoods of target nodes for training. The neighbor sampling
may consider node and edge types, attributes, etc.
As graph sampling plays a crucial role in NE and GNN methods,

we implement them with dedicated optimizations. First, many NE
methods heavily rely on random walk sampling [11, 41]. Sophisti-
cated random walk sampling strategies on massive graphs incur
immense computational costs and slow down the training process,
e.g., taking up to 98.8% of the total execution time [57]. To boost
efficiency, EmbedX provides a collection of sampling techniques
including Inverse Transform Sampling (ITS) [50], alias method [25],
and rejection sampling [50]. For negative sampling, we implement
it with a hierarchical sampling technique [43] to solve the incon-
sistency between sampling in a single graph server and sampling
in distributed graph servers. We further develop a new dynamic
rejection sampling (DRJ) below to reduce time costs in second-order
random walks for NE methods, e.g., Node2vec [11] and EGES [47].
DynamicRejection Sampling (DRJ). Second-order randomwalks
on graphs depend not only on the current state but also the previous
state [11, 44]. As shown in [50], rejection sampling is preferable
for the second-order random walks, compared with ITS and alias
methods that require high pre-computation costs. In EmbedX, we
further develop the dynamic rejection sampling (DRJ) to enhance
the efficiency of rejection sampling. We use the second-order ran-
dom walks in Node2vec [11] as an example to elaborate DRJ. In
Node2vec, suppose that a random walk just traversed node 𝑡 and
now resides at node 𝑣 . The transition probability of traversing edge
𝑒 = (𝑣, 𝑥) to node 𝑥 as next move is 𝑃 (𝑒) = 𝑃𝑠 (𝑒) ·𝑃𝑑 (𝑡, 𝑣, 𝑥), where
𝑃𝑠 (𝑒) is the static transition probability of edge 𝑒 , e.g., edge weight
of 𝑒 , and 𝑃𝑑 (𝑡, 𝑣, 𝑥) is the dynamic transition probability depend-
ing on the shortest path distance 𝑑𝑡𝑥 between 𝑡 and 𝑥 as defined
below. The computation of 𝑃𝑑 (𝑡, 𝑣, 𝑥) is expensive and cannot be
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pre-computed since it depends on nodes 𝑡 , 𝑣 , and 𝑥 .

𝑃𝑑 (𝑡, 𝑣, 𝑥 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/𝑝 if𝑑𝑡𝑥 = 0,
1 if𝑑𝑡𝑥 = 1,
1/𝑞 if𝑑𝑡𝑥 = 2,

(1)

where 𝑝 is a return parameter and 𝑞 is an in-out-parameter, and 𝑝
and 𝑞 together enable Node2vec to interpolate between Breadth-
first Sampling (BFS) and Depth-first Sampling (DFS) [11].

An illustration for Node2vec is shown in Figure 6 for an un-
weighted graph with 𝑃𝑠 (𝑒) = 1. At node 𝑣 , to decide next edge
𝑒 based on the dynamic transition probability 𝑃𝑑 , rejection sam-
pling first uniformly samples one edge 𝑒𝑖 from 𝑒0, 𝑒1, 𝑒2, 𝑒3, and then
randomly samples a number 𝑦 in range (0, 𝑄 (𝑣)), where 𝑄 (𝑣) =

max( 1𝑞 , 1,
1
𝑝 ). If 𝑦 ≤ 𝑃𝑑 (𝑒𝑖 ), we accept 𝑒𝑖 as a successful sample and

next move is the other end node of 𝑒𝑖 ; otherwise 𝑒𝑖 is rejected, and
we need to start another sampling trial, until an edge is accepted.
This process can be seen as throwing a dart within that rectangle
area consists of bars shown in Figure 6(b). The rectangle area has
width

∑︁
𝑒∈𝐸𝑣

𝑃𝑠 (𝑒) and height 𝑄 (𝑣), where 𝐸𝑣 is the set of edges
with 𝑣 as staring node. Each bar represents an edge 𝑒 with width
𝑃𝑠 (𝑒) and height 𝑃𝑑 (𝑒). The total area of bars is acceptance area and
the area outside the bars in the rectangle is rejection area. When the
coordinate of dart falls in the bar representing edge 𝑒 , we accept 𝑒 ;
otherwise we reject 𝑒 and dart again. The expected number of trials
required to sample an edge is the reverse of the ratio of acceptance
area in the rectangle: 𝑄 (𝑣) ·∑︁𝑒∈𝐸𝑣 𝑃𝑠 (𝑒 )∑︁

𝑒∈𝐸𝑣 𝑃𝑠 (𝑒 ) ·𝑃𝑑 (𝑒 )
.

It is obvious that the efficiency of rejection sampling is highly
dependent on the ratio of acceptance area. If we could increase the
ratio of acceptance area, then the sampling efficiency will be im-
proved. However, in real-world scenarios, the ratio of accept area is
dependent on graph structure and hyper-parameter settings (𝑝 ,𝑞 in
Node2vec). Under undesirable situations with large rejection area,
e.g., the grey area in Figure 6(b), due to the large 1/𝑞, the probability
to reject a sample (e.g., 𝑒0, 𝑒1 and 𝑒4) is quite high, which subse-
quently slows down second-order random walk sampling. Hence,
we propose DRJ to dynamically adjust the areas for acceptance
and rejection, to improve the efficiency. However, the challenge
is that it is infeasible to iterate all edges of a node 𝑣 beforehand
to get the distribution as shown in Figure 6(b) (i.e., Figure 7(a)).
What we know are just the parameters 𝑝 and 𝑞. To address the
challenge, DRJ is carefully designed to only use the samples that
have been inspected to dynamically increase acceptance area and
shrink rejection area, without iterating all edges. DRJ is illustrated
in Figure 7. Suppose that edge 𝑒4 with low acceptance bar in yellow
is randomly sampled and rejected in the first dart (Figure 7(a)). Then
DRJ adjusts the yellow bar of 𝑒4 into a horizontal bar with the same
area, but with width across the whole horizontal range and it is
placed on top of the highest value (i.e., 1/𝑞), as shown in Figure
7(b). In other words, we distribute the acceptance area 𝑒4 on top of
all the remaining vertical bars. Obviously, the grey area of rejection
shrinks compared with the original one in Figure 7(a). Specifically,
assume the width of each vertical bar is 1, i.e., unweighted graphs
(𝑃𝑠 (𝑒) = 1), and the height of the original bar of 𝑒4 is 1/𝑝 . Then
the grey area is reduced by (1/𝑞 − 1/𝑝). The height of the newly
created horizontal bar of 𝑒4 is 1/(𝑝 · (∑︁𝑒∈𝐸𝑣\{𝑒4 } 𝑃𝑠 (𝑒))).

After making dynamic adjustments for multiple rejected sam-
ples (e.g., 𝑒4 and 𝑒0 in Figure 7(c)), we can have a pile of hori-
zontal bars on the top. Let �̂�𝑣 be the set of edges that were re-
jected in previous trials. Then all the horizontal bars are with
the same width

∑︁
𝑒′∈𝐸𝑣\�̂�𝑣

𝑃𝑠 (𝑒′). The height of the horizontal bar
for edge 𝑒 can be obtained based on the fact of its unchanged
acceptance area, i.e., 𝑃𝑠 (𝑒 ) ·𝑃𝑑 (𝑒 )∑︁

𝑒′ ∈𝐸𝑣\�̂�𝑣 𝑃𝑠 (𝑒
′ ) . And the total height of the

pile is
∑︁
𝑒∈�̂�𝑣

𝑃𝑠 (𝑒 ) ·𝑃𝑑 (𝑒 )∑︁
𝑒′ ∈𝐸𝑣\�̂�𝑣 𝑃𝑠 (𝑒

′ ) . Consequently, in DRJ, we virtually
maintain two parts: the lower part consists of the original vertical
bars of edges in 𝐸𝑣 \ �̂�𝑣 ; the upper part contains a pile of hori-
zontal bars that are dynamically created for previously rejected
samples in �̂�𝑣 . Then in the next trial, DRJ samples a 2-dimensional
coordinate in 𝑥-axis range [0,∑︁

𝑒′∈𝐸𝑣\�̂�𝑣
𝑃𝑠 (𝑒′)] and y-axis range

[0, 𝑄 (𝑣) + ∑︁
𝑒∈�̂�𝑣

𝑃𝑠 (𝑒 ) ·𝑃𝑑 (𝑒 )∑︁
𝑒′ ∈𝐸𝑣\�̂�𝑣 𝑃𝑠 (𝑒

′ ) ]. If the coordinate falls into the
lower part (i.e., with 𝑦-axis coordinate ≤ 𝑄 (𝑣)), we follow the
original rejection sampling scheme to decide if the corresponding
sample should be accepted or not. If the sample is rejected, DRJ
performs the dynamic adjustment above. Otherwise, the coordinate
falls into the upper area; in this case, DRJ locates the corresponding
horizontal bar which the coordinate falls into, and then accepts the
corresponding sample edge for next move, e.g., 𝑒0 in Figure 7(c).
Note that the relative size ratio of the bars in colors is unchanged
during the dynamic adjustment of DRJ, and thus, the correctness
of DRJ is guaranteed.

6 ALGORITHMS
EmbedX supports a large collection of algorithms in 4 categories, as
summarized in Table 1. There are plenty of new models developed
in-house, such as all the JLSG models that make full use of sparse
data and graph data for better performance in the applications of
Tencent. In what follows, we elaborate the representative models.

6.1 Support of State-of-the-Art Models
In this section, we provide the technical summary of the state-of-
the-art models built in EmbedX, whichwill be used later to elaborate
the new models developed in-house in Section 6.2.
Deep Learning Models for High-Dimensional Sparse Data
(DLS). Given a target entity (e.g., a user) and a database containing
billions of entities (e.g., items), a typical workflow for many tasks,
such as recommendation, follows a two-step procedure: retrieval
and ranking [8]. In particular, retrieval as the initial step is to quickly
retrieve a small candidate pool containing hundreds of candidate
entities that are highly relevant to the target based on their sparse
and dense features. Then ranking is applied over the small candidate
pool to calculate finer ranking scores of the candidates with respect
to the target. The top-ranked candidates are finally returned for
the target. There exist collections of retrieval models and ranking
models [8, 12, 17, 38, 58]. EmbedX is flexible to support thesemodels,
such as YouTubeDNN [8], DSSM [17], and DeepFM [12] in Table 1.
In the following, we explain the classic DSSM and DeepFM, which
will be used in Section 6.2.

Retrieval model DSSM follows a popular two-tower design with
two encoders, user tower and item tower, which learn the embed-
dings of users and items respectively [52]. Given a user-item pair
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⟨𝑢, 𝑖⟩, the user tower 𝑓𝑢 contains an embedding table that converts
the sparse feature vector x𝑠𝑢 of user 𝑢 to dense embedding h𝑠𝑢 and
MLPs (multi-layer perceptrons) to transform the dense features
x𝑑𝑢 of 𝑢 to dense embedding h𝑑𝑢 . The embedding h𝑢 of user 𝑢 is
obtained by concatenating h𝑠𝑢 and h𝑑𝑢 , h𝑢 = h𝑠𝑢 ∥ h𝑠𝑢 . The item tower
𝑓𝑖 follows a similar structure with its embedding table and MLPs to
obtain the embeddings h𝑠

𝑖
and h𝑑

𝑖
of the sparse and dense features

x𝑠
𝑖
and x𝑑

𝑖
respectively, and the item embedding h𝑖 = h𝑠

𝑖
∥ h𝑑

𝑖
. Then

DSSM adopts cosine similarity between the user embedding and
item embedding, cosine(h𝑢 , h𝑖 ), to measure the relevance between
the user and item. DSSM is trained over a pair-wise loss with nega-
tive sampling. Then in the inference stage for retrieval, candidate
items are efficiently retrieved by nearest search algorithms. Other
retrieval models follow a similar procedure [8, 15, 26].

Meanwhile, a representative ranking model DeepFM [12] adopts
Click-Through-Rate (CTR) as ranking score. Given a user-item pair
⟨𝑢, 𝑖⟩, DeepFM first obtains an embedding h of the pair via embed-
ding layers 𝑓𝑒𝑚𝑏 , which considers the sparse and dense features
of both the user and item, including x𝑠𝑢 , x𝑑𝑢 , x𝑠𝑖 , and x𝑑

𝑖
. Then in

DeepFM, factorization machines 𝑓𝐹𝑀 and MLPs 𝑓𝑀𝐿𝑃 are used to
model low-order and high-order feature interactions respectively
with embedding h as input to predict the CTR score �̂� as follows.
DeepFM is trained by CTR binary cross entropy loss [55].

�̂� = 𝜎 (𝑓𝐹𝑀 (h) + 𝑓𝑀𝐿𝑃 (h)), (2)

where 𝜎 is the sigmoid function, and �̂� is the predicted CTR score
for a user-item pair.
Network Embedding Methods (NE). An important category of
NEmethods employs randomwalk sampling to consider deep graph
topology to learn node embeddings [10, 11, 41, 42, 47]. A typical
procedure is shown in Eq. (3). Given a node 𝑣 , a number of random
walks 𝑅𝑊 (𝑣) are sampled starting from 𝑣 , and every random walk
represents a sequence of nodes in the multi-hop vicinity of 𝑣 . The
sampled random walk sequences are then used in the training of
maximizing NE objectives, such as SkipGram [34] in Eq. (3), to
generate node embeddings h𝑣 of node 𝑣 .

𝑅𝑊 (𝑣) = RandomWalk(𝑣),

max𝑃𝑟 (𝑅𝑊 (𝑣) |𝑣) =
∏︂

𝑢∈𝑅𝑊 (𝑣)
𝑃𝑟 (𝑢 |𝑣) = exp(h𝑢 · h𝑣 )∑︁

𝑘∈V exp(h𝑘 · h𝑣 )
(3)

whereV is node set of a graph 𝐺 .
The objective in (3) aims to maximize the probability of observ-

ing the nodes 𝑢 in node 𝑣 ’s random walks 𝑅𝑊 (𝑣) on conditional
to the embedding h𝑣 . Intuitively, the random walks preserve the
high-order graph topological features, and nodes that frequently
co-occur in the random walk sequences should be structurally close
to each other and thus with similar embeddings. Notice that di-
rectly maximizing Eq. (3) is inefficient [41]. Negative sampling is
often adopted to speed up training convergence. A major difference
among random-walk-based NE methods lies in the random walk
variants employed. DeepWalk [41] uses truncated random walks
which select the next node uniformly from the adjacent nodes of
current node. Node2vec [11] performs second-order random walks
with dynamic transition probability as explained in Section 5.2. To
capture high-order structure similarity, Struc2vec [42] performs
multi-layer random walk sampling. EGES [47] constructs an item

graph from users’ behavior history, and item embeddings can be
learned from the item graph by random walks. Heterogeneous NE
methods [10, 18, 45], such as Metapath2Vec [10], learn embeddings
in heterogeneous graphs via meta-path sampling techniques.

As introduced in Section 5.2, EmbedX provides efficient and
scalable graph operators to meet the needs of different NE models
listed in Table 1. For instance, the dynamic rejection sampling
DRJ in Section 5.2 speeds up Node2vec [11], EGES [47], and other
NE methods relying on high-order random walks. Further, the
parameter updates of NE methods are carried out efficiently using
the parameter operators in EmbedX as presented in Section 5.1.
Graph Neural Networks (GNNs). GNNs [14, 23, 46] can be for-
mulated under a general message passing framework [14], which
typically consists of three major operations: neighbor sampling,
neighbor aggregation, and embedding update, as shown in Eq. (4).
At each ℓ-th layer of GNNs, for a node 𝑣 , GNNs first perform certain
neighborhood sampling to get its neighborhood N𝑠 (𝑣). Then the
embeddings h(ℓ−1)𝑢 of the nodes𝑢 ∈ N𝑠 (𝑣) of the previous (ℓ−1)-th
layer are aggregated to get intermediate embedding a(ℓ ) (𝑣) that is
then together with the previous embedding h(ℓ−1)𝑣 of 𝑣 to get the
updated embedding h(ℓ )𝑣 of the current ℓ-th layer.

N𝑠 (𝑣) = NeighborSample(𝑣),

a(ℓ ) (𝑣) = Aggregate(ℓ ) ({h(ℓ−1)
𝑢 : 𝑢 ∈ N𝑠 (𝑣) } ),

h(ℓ )
𝑣 = Update(ℓ ) (h(ℓ−1)

𝑣 , a(ℓ ) (𝑣) ),

(4)

Different GNNs are usually with different designs of the three op-
erations. EmbedX provides scalable and efficient neighbor sampling,
neighbor aggregation, and update operators for implementing dif-
ferent GNNs, such as GraphSAGE [14], GAT [46], and PinSAGE [53]
in Table 1. In particular, GraphSAGE first adopts uniform random
neighbor sampling to sample a fixed-size subset of neighbors. Then,
mean pooling is adopted as neighbor aggregation function to get in-
termediate a(ℓ ) (𝑣). For the update operation, GraphSAGE performs
concatenation on a(ℓ ) (𝑣) and h(ℓ−1)𝑢 followed by linear projection
and non-linear activation to get the updated embedding h(ℓ )𝑣 . GAT
[46] applies attention-based weighted sum for aggregation, and
a(ℓ ) (𝑣) and h(ℓ−1)𝑢 are projected and summed to get h(ℓ )𝑣 . To adapt
GNNs to web-scale recommendation systems, PinSAGE [53] em-
ploys the aforementioned random walks and regards frequently
visited nodes by random walks as the sampled neighborhood. Then,
PinSAGE adopts weighted-mean as neighbor aggregation with 𝐿1-
normalized visit counts of nodes as the neighbor weights. With the
server-level and operator-level designs in Section 4 and 5, various
GNNs are seamlessly supported in EmbedX.

6.2 New Models Developed In-house
As explained, existing methods are developed either for sparse data
or graph data, but models handling both types of data are under-
explored. On top of the server and operator layers in EmbedX, we
develop new joint learning models (JLSG) that use both types of
data for better performance in real-world scenarios.
GraphDSSM. As introduced in Section 6.1, DSSM is a retrieval
model that utilizes high-dimensional sparse features. Apparently
the multi-hop interactions among entities, which are modeled as
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graphs, are neglected in DSSM. It is promising to further leverage
the embeddings of users and items as nodes in graphs to enhance
performance. Given a user-item pair ⟨𝑢, 𝑖⟩, a straightforward way
is to first get the embeddings of user and item by existing unsuper-
vised NE methods, e.g., [11, 14], and then regard the embeddings
as extra input features of 𝑢 and 𝑖 into DSSM. This trivial way may
yield sub-optimal performance, since embeddings are obtained in
an unsupervised way without considering the training objective.

To fully integrate graph data and sparse data together, we pro-
pose a new joint model GraphDSSM. GraphDSSM consists of four
modules: user tower, item tower, user network embedding module,
and item network embedding module. The user and item towers
are the same as DSSM. The user and item network embedding mod-
ules learn node embeddings of user and item when they are nodes
in a graph. More importantly, the embedding outputs of the four
modules are trained under the same loss function in an end-to-end
manner for effectiveness. Specifically, we adopt GraphSAGE [14]
for the user network embedding module 𝑓 𝑔𝑢 and the item network
embedding module 𝑓 𝑔

𝑖
to generate the node embedding h𝑔𝑢 of user

𝑢 and the node embedding h𝑔
𝑖
of item 𝑖 in the input graph 𝐺 . The

embedding h𝑠𝑢 (resp. h𝑠𝑢 ) of user 𝑢 (resp. item 𝑖) with respect to its
high-dimensional sparse data, as well as their embeddings h𝑑𝑢 and
h𝑑
𝑖
of their dense features, are obtained via a similar way as ex-

plained in Section 6.1. Then the final user embedding concatenates
h𝑔𝑢 , h𝑠𝑢 , and h𝑑𝑢 . The final item embedding concatenates h𝑔

𝑖
, h𝑠

𝑖
, and

h𝑑
𝑖
. The cosine similarity between user 𝑢 and item 𝑖 is calculated as

𝑠𝑖𝑚(𝑢, 𝑖) = 𝑐𝑜𝑠𝑖𝑛𝑒 (h𝑔𝑢 ∥ h𝑠𝑢 ∥ h𝑑𝑢 , h
𝑔

𝑖
∥ h𝑠𝑖 ∥ h

𝑑
𝑖 ) .

Then, GraphDSSM, including the network embedding modules
𝑓
𝑔
𝑢 , 𝑓

𝑔

𝑖
and the two-tower neural networks 𝑓𝑢 , 𝑓𝑖 , is trained under a

binary cross entropy objective to minimize loss

L𝐺𝑟𝑎𝑝ℎ𝐷𝑆𝑆𝑀 = − log
∏︂
(𝑢,𝑖+ )

exp(𝛾𝑠𝑖𝑚 (𝑢, 𝑖+ ) )
𝛾
∑︁

𝑖
′ ∈I exp(𝑠𝑖𝑚 (𝑢, 𝑖 ′ ) )

, (5)

where 𝑖+ indicates a positive item that the user has clicked or pur-
chased, I denotes the set of candidate items, and 𝛾 is a smoothing
factor in the softmax function.
GraphDeepFM. We develop a new ranking model GraphDeepFM
that takes into consideration not only high-dimensional sparse data
but also multi-hop graph features for effectively ranking candidate
items with respect to a user. In a nutshell, GraphDeepFM improves
DeepFM by extending the input feature fields with graph features
extracted from high-order interactions between users and items
in a graph. GraphDeepFM consists of two components: the vanilla
DeepFM and a new network embedding module 𝑓 𝑔 . The network
embedding module 𝑓 𝑔 is responsible to generate the embedding h𝑔

of a user-item pair over the input graph 𝐺 , while the embedding
layer 𝑓𝑒𝑚𝑏 considers the sparse and dense features of the user-item
pair to generate embedding h. Then GraphDeepFM applies factor-
ization machines and MLPs over the concatenated embeddings of
h𝑔 and h to predict the CTR score:

�̂� = 𝜎 (𝑓𝐹𝑀 (h𝑔 ∥ h) + 𝑓𝑀𝐿𝑃 (h𝑔 ∥ h) ) . (6)

Further, GraphDeepFM is trained over a loss function L combin-
ing both a CTR lossL𝐶𝑇𝑅 as well as amulti-hop neighbor-similarity

based loss L𝐺 for extracting correlations between users and items,
L𝐺𝑟𝑎𝑝ℎ𝐷𝑒𝑒𝑝𝐹𝑀 = L𝐶𝑇𝑅 + L𝐺 . (7)

Specifically, the CTR loss is a binary cross entropy loss [55]:
L𝐶𝑇𝑅 = −𝑦 log(𝜎 (�̂�) ) − (1 − 𝑦) log(𝜎 (1 − �̂�) ), (8)

where 𝑦 is the ground-truth score and �̂� is the predicted score, and
𝜎 is sigmoid activation function.

LossL𝐺 assumes that the learned embeddings h𝑔 should be simi-
lar to their 𝑘-hop neighbors in graph𝐺 . We extract 𝑘-hop neighbors
of nodes via DeepWalk-based sampling, and L𝐺 is formalized by

L𝐺 = −
∑︂
𝑝∈𝑃

∑︂
𝑣∈𝑝

(log(𝜎 (h𝑔𝑢
⊤h𝑔𝑣 ) ) ), (9)

where 𝑃 is a set of 𝑘-hop random walk paths, 𝑝 is a path starts from
node 𝑢, and 𝜎 is the sigmoid function.
More New JLSG Models.We further develop more joint models
catered for various settings using both sparse data and graph data.
In particular, BipartiteGraphDeepFM extends GraphDeepFM to
specific bipartite graphs. GerlDeepFM extends GraphDeepFM by
considering node types when aggregating and generating node em-
beddings. In particular, GerlDeepFM aggregates the neighbors of dif-
ferent types separately for a node. Then GerlDeepFM employs self-
attention to learn the weights of different types of neighbors during
the training process. GraphEsmmDFM extends GraphDeepFM
with multi-task learning that co-optimizes CTR rate and post-click
conversion (CVR) rate by replacing the CTR loss with the objective
in ESSM [31]. We also design GraphDTN to improve DTN [58] by
implementing the embedding layer in DTN with GNNs instead of
MLPs so that the multi-hop interactions are considered.
New GNNs.We develop a series of new GNNs over GraphSAGE.
StrucGraphSAGE integrates structural similarity into the neighbor
aggregation of vanilla GraphSage. Specifically, StrucGraphSAGE
constructs a structural similarity graph by [42], and performs ran-
dom walks on the graph.MetaGraphSAGE extends GraphSAGE
to heterogeneous graphs with node types and edge types via meta-
path sampling and aggregation. Self-TrainingGraphSAGE adopts
pseudo labeling techniques [28] to relieve the scarcity of training
labels. Joint-Training GraphSAGE is trained under task-related
objective and structure-preserving objective to encode both task
and structure information into embeddings.
New DLS models. In EmbedX, we develop several new DLS mod-
els on high-dimensional sparse data. Self-training DSSM adopts
pseudo labels and enhanced negative sampling to improve the ef-
fectiveness of DSSM, Online DSSM employs importance sampling
and is trained with real-time online user feedback, to capture online
user interests. In Submodel-DSSM, we enhance the robustness of
the embeddings in DSSM by auxiliary contrastive learning models.

7 EXPERIMENTS
We conduct extensive experiments to evaluate the proposed Em-
bedX. In Section 7.2, we report the system efficiency on real web-
scale graph and high-dimensional sparse data, and evaluate the key
optimizations in EmbedX. In Section 7.3, we evaluate the effective-
ness of the algorithms, e.g., the new JLSG models, on sparse and
graph data. In Section 7.4, we present the A/B test results of real
cases in production, to demonstrate the power of EmbedX.
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Table 2: Data Statistics (M: million. B: billion. K: thousand).
Dataset Feature dimension # Samples # Nodes # Edges Sparse Graph
Tencent-1 320M 240M 205M 6B ✓ ✓
Tencent-2 1.6B 2.8B 1.3B 35B ✓ ✓
Criteo 33M 45M - - ✓
Cora - - 2.7K 10.5K ✓
Wiki - - 10.3K 333.9K ✓

7.1 Experimental Setup
Datasets. We adopt both Tencent datasets and public datasets
to conduct the experiments. Table 2 lists the statistics of the 5
datasets. Tencent-1 and Tencent-2 are two web-scale datasets in
Tencent. Both Tencent-1 and Tencent-2 contain not only graph
data but also high-dimensional sparse data. In particular, Tencent-1
contains 205 million nodes and 6 billion edges in its graph, and
240 million samples with sparse features in 320 million dimension.
The sparse feature dimension only includes the node ID space but
also many other feature dimensions in Tencent to profile users and
items. Tencent-2 is a much larger dataset with 1.3 billion nodes
and 35 billion edges, and 2.8 billion data samples with 1.6 billion
sparse feature dimension. Criteo [9] is a publicly available dataset
containing high-dimensional sparse data for recommendation. The
dataset comprises of 45 million feedback records of ad clicks within
a week for predicting CTR. The features in Criteo are numerical
and categorical features, such as the advertiser ID, the website ID,
the user’s IP address, etc. Cora [51] and Wiki [32] are two public
graph datasets, widely used to evaluate NE and GNN methods.
Setup.We evaluate EmbedX over a cluster of 50 parameter servers,
50 graph servers, and 280 training workers, unless otherwise speci-
fied. A parameter server is equipped with 100GB RAM and a 10-core
CPU. A graph server has 256GB RAM and a 10-core CPU. A training
worker is virtually equipped with 64GB RAM and a 8-core CPU.
Evaluation Metrics. Two metrics are used for evaluating sys-
tem efficiency: training throughput, which measures the number of
training examples processed per second by the system, and running
time. We evaluate effectiveness by various metrics [12, 15]. Specif-
ically, AUC measures the area under the ROC curve. Hit Ratio at
K (HR@K) measures the percentage of users for whom the clicked
item is among the top K items recommended by the model. Reten-
tion time is a business metric which measures the average time per
person spent in an application. Recall measures the ratio of true
positives to the total number of positive instances. For all these
effectiveness metrics, the higher the better.

7.2 System Efficiency
Here we evaluate the system efficiency of EmbedX with server-
level and operator-level optimizations developed in Section 4 and
Section 5 respectively, on Tencent-1 and Tencent-2 datasets that
consist of large-scale high-dimensional sparse data and graph data.
Overall Efficiency.We compare EmbedX with a baseline system
that is previously developed in Tencent without the system opti-
mizations in EmbedX. Both systems are evaluated over the same
hardware specifications and under the same configurations. For
each system, we train a collection of methods in Table 1, and evalu-
ate the training time per epoch. EmbedX is significantly faster than
the baseline system, often by up to orders of magnitude. Specifi-
cally, in Figure 8, we report the average training time per epoch

Figure 8: EmbedX Efficiency.

Table 3: Training throughput of EmbedX with aggressive
asynchronous communication, compared with PS-Lite.

System Training throughput (samples/s) AUC(%)
PS-Lite 38,520 80.52
EmbedX 40,900 80.56
Rel. Imp. +6.18% +0.05%

of GraphDSSM on Tencent-1 and the training time per epoch of
GraphDeepFM on Tencent-2 dataset of EmbedX and the baseline
system. The average training time per epoch of EmbedX is 30 min-
utes on Tencent-1, and EmbedX is about 9 times faster than the
baseline system that takes 280 minutes per training epoch. On
Tencent-2 that is much larger, EmbedX takes 109 minutes per epoch
to train GraphDeepFM, while the baseline system requires 1100
minutes per epoch, which indicates that EmbedX is about 10 times
faster. The results demonstrate the superior efficiency and scal-
ability of EmbedX to handle web-scale high-dimensional sparse
data and large-scale graphs in industry. Note that GraphDSSM and
GraphDeepFM are two new joint models developed in-house in
Tencent to handle both high-dimensional sparse data and graph
data. Their effectiveness improvements are reported in Section 7.3.

The superiority of EmbedX is achieved by the systematic designs
of server-level optimizations in Section 4 and the novel designs of
parameter operators and graph operators developed in Section 5.
In the following, we specifically evaluate these key optimizations.
Aggressive Asynchronous Communication. As presented in
Section 4.2, we propose to let training workers to work asyn-
chronously to handle next training task, rather than waiting in idle
to get the acknowledgement from parameter servers on whether
the parameter updates are successful or not. Here we study the
efficiency improvement by the technique, and its impact on effec-
tiveness. Specifically, we train DeepFM using the parameter servers
in EmbedX, and compare it with the base parameter server config-
uration in PS-Lite [27] that does not have our proposed technique,
while all the other configurations are the same. The experiment is
conducted on Criteo dataset that contains high-dimensional sparse
data as listed in Table 2. In terms of model parameters, we follow
the suggested settings in [12]. For a fair comparison, the num-
ber of threads per parameter server is set as 1. Table 3 reports
the training throughput of EmbedX with aggressive asynchronous
communication and PS-Lite (samples/s), as well as the AUC of the
trained DeepFM model for recommendation. Observe that Em-
bedX achieves higher training throughput than PS-Lite, with an
relative improvement (Rel. Imp.) of 6.18%, due to the proposed
aggressive asynchronous communication. Meanwhile, the effec-
tiveness of the DeepFM model trained by EmbedX is almost the
same as the DeepFM model trained by the baseline, with negligible
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(a) Training throughput (b) Model performance

Figure 9: Training throughput and effectiveness when vary-
ing the number of threads per parameter server in EmbedX.

Table 4: Evaluation on dynamic rejection sampling (DRJ).

Dataset Setting
Time cost (s) Average sampling trials

Vanilla DRJ Speedup Ratio Vanilla DRJ

Cora
𝑞 = 1/1024 3.66 0.90 4.07 1.27 1.12
𝑞 = 1024 7.67 4.82 1.59 4.93 3.45

Wiki
𝑞 = 1/1024 33.22 1.54 21.57 45.74 1.62
𝑞 = 1024 7.90 3.36 2.35 7.98 2.68

improvement of AUC in Table 3. This validates that it is feasible to
tolerate few losses of parameter updates caused by the aggressive
asynchronous communication technique for higher efficiency.
Parallel Requests to Parameter servers.We then evaluate the
throughput of EmbedX when varying the number of threads per
parameter server from 1 to 5, and report the throughput of EmbedX
in Figure 9(a). The training throughput increases as the number of
threads per parameter server increases and reaches its peak when
the number of threads is 4, with an efficiency improvement of
26.89%, compared to single-threaded parameter servers. However,
the throughput drops when the number of threads per parameter
server is 5. We speculate that this is due to the network bandwidth
limitation, since the data volume of Pull and Push requests to pa-
rameter servers from training workers is massive on large datasets.
Figure 9(b) reports the corresponding AUC performance of the
trained DeepFM, which is relatively stable when the number of
threads per parameter server changes. The results demonstrate the
efficiency of the optimization in EmbedX.
Dynamic Rejection Sampling (DRJ). To evaluate the perfor-
mance of the proposed DRJ for high-order random walks, we train
Node2vec [11] with vanilla rejection sampling and our proposed
DRJ respectively on public graph datasets Cora and Wiki, and re-
port the efficiency results in Table 4. Specifically, we train Node2vec
for 50 epochs on each dataset with random walks of fixed length
80. While fixing 𝑝 = 1, we vary 𝑞 parameter in Node2vec with
1024 and 1/1024 to test two extreme cases. In Table 4, the training
time in seconds and the average number of sampling trials required
per acceptance are reported for vanilla Node2vec and Node2vec
with DRJ. Observe that Node2vec with DRJ is significantly faster
than vanilla Node2vec, by up to orders of magnitude. For instance,
on Wiki dataset with 𝑞 = 1/1024, the training time with DRJ is
1.54 seconds, more than 20 times faster than vanilla Node2vec. The
average sampling trials by DRJ is also fewer than vanilla Node2vec,
which explains the efficiency improvement achieved by DRJ.

Table 5: GraphDSSM Evaluation.

Method HR@50(%) HR@100(%)
DSSM 20.84 30.51

GraphDSSM 22.87 33.14
Rel. Imp. +9.74% +8.62%

Table 6: GraphDeepFM Evaluation.

Method AUC(%) Rel. Imp.
DeepFM 78.01 0.00

DeepFM+node embeddings 78.03 +0.025%
GraphDeepFM 78.42 +0.525%

7.3 Algorithm Evaluation
We have built all the models in 4 categories in Table 1 into EmbedX.
In this section, we provide the experimental evaluation on two
representative in-house models GraphDSSM and GraphDeepFM,
which are new JLSGmodels to handle both high-dimensional sparse
data and graph data (Section 6). In experiments, we randomly ex-
tract 90% of the data for training and use the remaining data as test
data. We set the dimension of embedding vectors as 128.
GraphDSSM.We compare the effectiveness of GraphDSSM with
DSSM on Tencent-1 dataset. We use Hit Ratio at K (HR@K) as
the evaluation metrics which measures the percentage of users for
whom the clicked item is among the top K items recommended by
the model. As shown in Table 6, compared with DSSM that only
utilizes high-dimensional sparse data, the relative improvements
achieved by GraphDSSM is 9.74% on HR@50 and 8.62% on HR@100.
By leveraging both graph data and sparse data and trained in an
end-to-end manner, GraphDSSM achieves superior performance in
retrieving, which validates the importance of using both types of
data in production for higher business values.
GraphDeepFM. We compare our proposed GraphDeepFM with
vanilla DeepFM, as well as DeepFM incorporated with pre-trained
node embeddings by GraphSAGE (DeepFM+node embeddings) on
Tencent-2 dataset. The AUC scores of the three methods are re-
ported in Table 6. Observe that GraphDeepFM that holistically
integrates high-dimensional sparse data and graph data achieves
the highest AUC score 78.42%. GraphDeepFM achieves better AUC
than DeepFM by relative improvement 0.525%. DeepFM that sim-
ply appends node embeddings generated from unsupervised GNNs
achieves AUC 78.03% with limited relative improvement. The im-
provement of GraphDeepFM is mainly attributed to the multi-task
learning design of GraphDeepFM which co-trains DeepFM and
network embedding module in Section 6.2.

7.4 Use Cases In Production
We have deployed EmbedX in production for four years. It has
achieved superior performance in multiple business sectors in Ten-
cent. We select 3 representative applications supported by EmbedX
and report the A/B test of EmbedX in Table 7.
(1) News feed continuously updates stream of news that is tailored

to the interests of users. As a ranking task, the evaluationmetric
is AUC in production. EmbedX improves AUC by 3.06% with
the adaptation of our JLSG model GraphDeepFM which makes
use of both sparse data and graph data.
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Table 7: A/B tests on 3 applications in Tencent.
Application Model Metrics Rel. Imp.
News Feed GraphDeepFM AUC +3.06%

Music Recommendation DeepFM Retention Time +6.09%
Malicious accounts GraphSAGE Recall +21.9%

(2) Music recommendation aims at recommending songs that
users are likely to listen. The key business metric is the average
time per person spent on listening (Average Retention Time).
EmbedX improves the metric by 6.09%, while reducing the
percentage of users who skip a song before it finishes playing.

(3) Malicious accounts discovery refers to the identification of
user accounts associatedwith illegal or unethical activities, such
as cybercrime, illegal gambling, or counterfeit goods production
in Tencent. Recall is the key metric to evaluate this service, and
it measures the percentage of true malicious accounts that are
correctly identified by the model. EmbedX improves Recall by
21.9% by leveraging graph data for detection.

8 RELATEDWORK
8.1 High-Dimensional Sparse Data
High-dimensional sparse data is important for many applications,
including recommendation systems, advertisement, CTR predic-
tion, etc. For instance, deep learning based recommendation models
[7, 8, 12, 52] have attracted much research attention [54]. As ex-
plained in Section 2, an entity usually has high-dimensional sparse
features and dense features, both of which are trained to convert to
low-dimensional embedding vectors via deep learning techniques,
to facilitate downstream tasks [20, 29]. YoutubeDNN [8] uses two
sub-modules to extract features from video-related data and user-
related data respectively, and a third module is adopted to combine
the two features for personalized video recommendations. DSSM
[17] is a retrieval model follows two-tower architecture which en-
codes sparse and dense features into user and item embeddings
respectively. Relevant items can be retrieved efficiently using near-
est search algorithms in inference stage. DeepFM [12] combines
factorization machines and MLPs to extract both low-order and
high-order feature interactions between different types of features.

With the ever-increasing data scale and model size in modern
online services, the offline training and online inference of deep
learning models on high-dimensional sparse data (DLS) have be-
come time-consuming. There are existing systems [20, 29, 33, 36] to
handle DLS models via dedicated system designs and optimizations,
in order to efficiently process the industrial billion-scale sparse data
and handle big models with billions of parameters [29, 37]. For in-
stance, XDL [20] is designed to specially handle sparse features and
optimized for communications between different types of servers.
HET [33] adopts an embedding-cache-enabled architecture to ef-
ficiently process frequently updated embeddings, to reduce time
overheads. Perisa [29] consists of optimization algorithms with the
designs to consider the differences in training sparse embedding
layers and dense neural networks, and also includes a distributed
system architecture for scalability. Neo [36] is developed with par-
allelism training for embedding tables and optimized embedding
operators for training. Note that these systems are designed only
for high-dimensional sparse data, but not for graph data.

8.2 Network Embedding and GNNs
Graphs are ubiquitous to model the multi-hop relationships be-
tween entities. It has attracted great attention to develop network
embedding (NE) methods [10, 11, 41, 42, 47] and graph neural net-
works (GNNs) [5, 14, 23, 24, 35, 46, 48, 49]. The objective is to
learn low-dimensional representations capturing the underlying
structure and semantic information in graphs. The learned rep-
resentations can be used for node classification, link prediction,
etc. Popular NE methods are based on random walks [13]. For ex-
ample, DeepWalk [41] and Node2vec [11] perform random walks
on graphs to train SkipGram model to generate node embeddings.
Metapath2vec [10] adopts meta-path-based walks to capture seman-
tics in heterogeneous graphs. EGES [47] and struc2vec [42] first
construct item graph and multi-layer graph respectively, and ran-
dom walk sampling is then performed on the constructed graphs.
In terms of GNNs, GCN [23] performs convolutions using graph
Laplacian matrix. GraphSAGE adopts message passing framework
for aggregate neighborhood representations inductively [14]. GAT
[46] further uses self-attention mechanism to give neighbor nodes
different weights. PinSAGE [53] samples subgraph using random
walk for efficient model training on web-scale graphs. Meanwhile,
as the scale of graphs grows to be with billions, even hundreds
of billions of nodes and edges, graph learning systems have been
developed to scale NE and GNN models on web-scale graphs for
training and inference [3, 30, 39, 59]. To our knowledge, these sys-
tems are developed to handle graphs, while they are non-trivial to
be extended for high-dimensional sparse data.

Summing up, as reviewed in Sections 8.1 and 8.2, there is a lack
of industrial-level frameworks to seamlessly support both high-
dimensional sparse data and graph data. Our proposed EmbedX
fills the gap through thorough architectural developments, system
optimizations, and algorithmic designs. EmbedX also provides the
opportunity for developing joint learning models to learn more
expressive embeddings from the two types of data.

9 CONCLUSION
We present an industrial distributed learning system from Tencent,
EmbedX, which is designed to support a versatile collection of
embedding models on large-scale high-dimensional sparse data and
graph data. EmbedX is able to handle billion-scale online service
data in an efficient and scalable manner. To achieve this, EmbedX
consists of novel system designs and efficient parameter operators
and graph operators. EmbedX is powerful to support 4 categories
of algorithms, namely DLS, NE, GNN, and JLSG methods. Extensive
experiments on massive Tencent data and public data validate the
superiority of EmbedX. EmbedX is currently deployed in Tencent
for various business lines. Real use cases with A/B test results in
production further demonstrate the power of EmbedX.
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