
Krypton: Real-time Serving and Analytical SQL Engine at
ByteDance

Jianjun Chen*, Rui Shi, Heng Chen, Li Zhang*, Ruidong Li, Wei Ding*, Liya Fan, Hao Wang*, Mu
Xiong, Yuxiang Chen*, Benchao Dong, Kuankuan Guo, Yuanjin Lin, Xiao Liu*, Haiyang Shi*, Peipei

Wang*, Zikang Wang, Yemeng Yang, Junda Zhao, Dongyan Zhou, Zhikai Zuo, Yuming Liang
*ByteDance US Infrastructure System Lab, ByteDance, Inc

jianjun.chen@bytedance.com

ABSTRACT

In recent years, at ByteDance, we have started seeing more and
more business scenarios that require performing real-time data
serving besides complex Ad Hoc analysis over large amounts of
freshly imported data. The serving workload requires performing
complex queries over massive newly added data items with minimal
delay. These systems are often used in mission-critical scenarios,
whereas traditional OLAP systems cannot handle such use cases.
To work around the problem, ByteDance products often have to use
multiple systems together in production, forcing the same data to
be ETLed into multiple systems, causing data consistency problems,
wasting resources, and increasing learning and maintenance costs.

To solve the above problem, we built a single Hybrid Serving
and Analytical Processing (HSAP) system to handle both workload
types. HSAP is still in its early stage, and very few systems are yet
on the market. This paper demonstrates how to build Krypton, a
competitive cloud-native HSAP system that provides both excel-
lent elasticity and query performance by utilizing many previously
known query processing techniques, a hierarchical cache with per-
sistent memory, and a native columnar storage format. Krypton
can support high data freshness, high data ingestion rates, and
strong data consistency. We also discuss lessons and best practices
we learned in developing and operating Krypton in production.

PVLDB Reference Format:

Jianjun Chen, Rui Shi, Heng Chen, Li Zhang, Ruidong Li, Wei Ding, Liya
Fan, Hao Wang, Mu Xiong, Yuxiang Chen, Benchao Dong, Kuankuan Guo,
Yuanjin Lin, Xiao Liu, Haiyang Shi, Peipei Wang, Zikang Wang, Yemeng
Yang, Junda Zhao, Dongyan Zhou, Zhikai Zuo, Yuming Liang. Krypton:
Real-time Serving and Analytical SQL Engine at ByteDance. PVLDB, 16(12):
3528 - 3542, 2023.
doi:10.14778/3611540.3611545

1 INTRODUCTION

In recent years, at ByteDance, we have started seeing more and
more business scenarios that require performing real-time data
serving besides complex Ad Hoc analysis over enormous amounts
of freshly imported data. For example, ByteDance’s Ads AB Testing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611545

Dr. Jianjun Chen is the corresponding author, jianjun.chen@bytedance.com.

K af k a

H B a s e El a sti c S e ar c h

Cli c k H o u s e Dr ui d

A p p s

R e c o m m e n
d ati o n s

R e p orti n g

D a s h b o ar d

Hi v e S p ar k

R e di s

M y S Q L

A g gr e g at e/ U p d at e

B at c h A n al y si s

R e al-ti m e

I n g e sti o n

R e al-ti m e

A g gr e g ati o n

P oi nt L o o k u p

R e s ult

C a c hi n g
H S A P

Figure 1: An illustration of a typical Ads Backend architec-

ture with open source solutions.

team maintains a high-dimension dashboard that needs to perform
aggregation and filtering over millions of newly ingested rows per
second in a real-time fashion. Feature serving in ZhuXiaoBang (a
popular mobile App for providing house renovation information in
China [40]) provides a real-time feature extraction service for the
upper-layer recommendation system, which needs to perform real-
time aggregation on user-specified features with millisecond-level
latency over arbitrary time windows.

Typical data serving use cases in ByteDance include:
• Real-time statistics They can be the number of likes or shares

displayed in real-time or statistics of content to a third party
through APIs.

• Real-time user profilingOur systems continuously build short-
term and long-term user profiles. Short-term user profiles can
be top-N clicked items in the last ten refreshes, while long-term
user profiles update in batches on a daily basis.

• Real-timemodel training/learning In support of online learn-
ing and decision-making, we aggregate real-time signals (e.g.,
payments and user clicks) to continuously derive user statistics,
which are heavily used in online and offline training. The derived
metrics are also used in complex interactive analysis to derive
insights for model tuning and marketing.
Traditional OLAP systems perform complex data analytics over

relatively static data, where data freshness is usually measured
by hours or even days. The serving workload, however, requires
performing complex queries over a large amount of newly added
data items with sub-second delays. Such systems are often used
in mission-critical scenarios that traditional OLAP systems can-
not handle. To work around the above problem, ByteDance often
uses multiple systems together in production. Figure 1 shows a
production setup of an Ads backend system, typically including a
streaming ingestion pipeline and a batch analysis system. The for-
mer ingests and aggregates data into systems such as Druid [85] or

3528

https://doi.org/10.14778/3611540.3611545
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611545

ElasticSearch (ES) [30] for online analysis. The latter uses Spark [78]
or Hive [37] to perform batch analysis over large amounts of batch
data, then loads the results into the data warehouse for offline
analysis. To support high QPS and low latency serving workloads,
systems like Redis [71] or MySQL [63] are often used as the front
caching layer.

Such an approach forces the same data to be ETLed into multiple
systems, causes data consistency problems, wastes resources, and
incurs higher learning and maintenance costs. In addition, each sys-
tem has its own strengths and drawbacks. For example, ES performs
well with point lookup queries but needs to improve on complex
query logic. In contrast, ClickHouse [19] performs well on aggrega-
tion queries but has limited data ingestion and query throughput
support. As a result, optimizing these systems requires addressing
their limitations individually, which incurs duplicated efforts and
does not scale well.

To address the above challenges in a unified manner, we aim to
build one single Hybrid Serving and Analytical Processing (HSAP)
system to handle both workloads. In particular, these twoworkloads
are expressible in SQL queries with some extensions. Compared to
the OLAP workload, serving workload queries are usually much
simpler. They are often known with some fixed patterns in advance,
providing great opportunities for performance optimization. How-
ever, the serving workload usually has significantly higher QPS
and lower query latency requirements than the OLAP workload.
Another huge challenge is that data are ingested into the system
continuously at high throughput while performing the analytical
workload above.

Specifically, we have built a large-scale real-time HSAP system
that supports both serving and OLAP workloads with the following
design goals:

• Large scale. Several ByteDance’s popular apps, such as TikTok,
Douyin, and Toutiao, have hundreds of millions of daily active
users. Hence, we want to build a distributed real-time analytic
system that can scale up to hundreds of petabytes of data.

• Low query latency and high QPS. The serving workload has
very different characteristics from the traditional OLAP work-
load. Some of our serving use cases require up to millisecond-
level query latency and millions of QPS.

• Strong data consistency. Our customers want consistent snap-
shot reads and atomic writes when importing data across parti-
tions.

• High data freshness. Some of our customers want to query
newly ingested data under sub-second delays.

• High ingestion rate. Some of our customers want to ingest
millions of rows per second.

• Standard SQL support. It is important to support common SQL
standards so customers can readily migrate their applications to
our HSAP system.

Hybrid Transactional and Analytical Processing (HTAP) sys-
tems [7–10, 17, 38, 46, 47, 52, 56, 57, 60, 65, 70, 74] also provide
real-time data analytics with high data freshness. Unlike HTAP
systems, Krypton focuses on efficiently handling various ingested
data sources and providing millisecond-level low query latency
over many serving queries without strong OLTP capabilities such
as transactions and general DML support in HTAP systems.

HSAP is still in its early stage, and very few systems are yet
on the market. To the best of our knowledge, Procella [15] and
Hologres [42] are the only two systems falling into this category. In
this paper, we will showcase our journey of building the Krypton
system that can support both real-time serving and analytical work-
loads. Even though many of the techniques we used in Krypton
can be found in various database and data processing systems, it is
nevertheless a challenging and exciting exploration to build a new
HSAP system. While some of our techniques such as Lightweight
API and Dirty Read are specifically designed for serving queries,
most of Krypton’s techniques such as caching and pre-computation,
adaptive statistics with dynamic sampling, resource isolation, and
fair scheduling are useful for both serving and analytical queries.
We started the design and development at the beginning of 2021
and released version 1.0 in early 2022. By now, we already have
multiple internal customers using Krypton in production, and we
expect many more customers will adopt it in 2023. After migrating
to Krypton, our customers see great benefits over their original
systems. For example, ByteDance’s Webcast team performs real-
time data analysis that involve joins and aggregations to promote
the interaction between the anchor and the audience. After migra-
tion from Doris (0.14 version) to Krypton, the P99 query latency is
reduced from approximately 5 seconds during the peak business
period to less than 1 second. We have learned tremendously from
this journey and hope that our story can be helpful to readers with
similar needs.

In summary, our key contributions are as follows:

• We demonstrate how to build a competitive cloud-native HSAP
system with disaggregated storage, separate data ingestion and
query processing, and a hierarchical local cache with Persistent
Memory (PMem) at query processing nodes to provide excellent
elasticity and query performance.

• Krypton can provide high data freshness with sub-second delays.
Moreover, during data ingestion, it can perform pre-computations
to generate aggregated tables and materialized views that are
critical for serving workloads.

• Krypton adopts efficient and adaptive query processing tech-
niques for diversified HSAP workloads. It uses incremental sta-
tistics and dynamic sampling to obtain up-to-date lightweight
statistics information for query optimization. In addition, it heav-
ily relies on caching to improve query performance whenever
possible. Lastly, it adopts a vectorized query executor with asyn-
chronous schedulers for efficient query execution over high con-
current query workloads.

• Krypton has its own columnar storage format that provides
efficient storage and fast query processing for HSAP workloads.

• We talk about lessons we have learned and our best practices in
developing and running the Krypton system in production.

The rest of the paper is organized as follows: Section 2 describes
the overall architecture of Krypton and the implementations of
key components. Section 3 focuses on how Krypton performs pre-
aggregations at ingestion time. Section 4 describes the efficient
and adaptive query processing in Krypton. Section 5 shows the
hierarchical cache with PMem, and Section 6 presents the native
data format inside Krypton. Section 7 provides some empirical
measurements of Krypton. Section 8 lists some of the major lessons

3529

Figure 2: Krypton’s Data Model

we have learned in production. Section 9 gives an overview of
related work. Finally, Section 10 concludes our work.

2 DATA MODELS AND SYSTEM

ARCHITECTURE

In this section, we give an overview of Krypton system architecture
after describing its data models.

2.1 Data Models

As Figure 2 shows, Krypton tables support standard two-level data
partitioning: Partitions, and Tablets. Both levels support partitioning
policies of hash, range, and list. Tablets are stored in different direc-
tories in the cloud storage. Each tablet can contain multiple rowsets,
in which rows are sorted by keys defined in the table schema. A
rowset with a committed version is generated when a memtable
flushing happens. Once a rowset is written, it becomes immutable.
In addition, data compaction can merge multiple rowsets into a
single rowset with a contiguous version range that consists of the
minimum and maximum versions of the merged rowsets. A tablet’s
committed version is the greatest version of all rowsets within the
tablet. In the example tablet shown in Figure 2, tablet-2 contains
six rowsets, and its committed version is 21, which is the version
of the rowset 5.

Each query in Krypton carries a version obtained from its Meta-
data Server that defines its read snapshot. Multiple rowsets in a
tablet are merged when a tablet scan happens. The merge algorithm
varies according to the table model. In support of different use cases,
Krypton supports the following table models:
• Duplicate Table: The same row can be inserted multiple times

and saved duplicated with this table model.
• Unique Table: The system needs to define Primary Key (PK) in

DDL with this table model.
• Aggregate Table: Similar to Unique Table, Aggregate Table also

needs a PK. Rows with the same PK are merged according to
aggregate functions defined on their own column. Note that only
aggregated data is stored inside an aggregated table.

2.2 System Architecture

Figure 3 shows the architecture diagram of Krypton. Krypton
adopts a typical cloud system architecture by decoupling compu-
tation from its cloud storage. Both data and metadata are stored
remotely. The Cloud Store uses ByteDance’s HDFS system that
can scale almost infinitely. Compute modules are stateless and can
elastically scale based on workload independently from storage.

Krypton separates data loading from query execution to isolate
reads from writes. For the write path, streaming input data commit

Data Server

Worker

Cache

Client

Cloud Store

Metadata
Store

Batch Data
Source

Stream Data
Source

Coordinator

Compaction
Server

Ingestion
Server

Metadata
Server

Figure 3: Krypton System Architecture

after corresponding Write-Ahead Logs (WALs) are flushed success-
fully by Ingestion Servers (IgSs) to Cloud Store. Each IgS contains
an in-memory delta store, which periodically flushes its data to
Cloud Store in columnar format. It can also serve direct read from
Data Servers (DSs) for improved data freshness. Data tablets are par-
titioned across IgSs to improve write scalability. The Compaction
Servers (CSs) periodically merge column files in Cloud Store and
write the merged files back to Cloud Store. In Krypton, clients send
read-only queries to Coordinators, which generate query plans and
send them to Data Servers for query execution. Krypton’s query
processor adopts a Massive Parallel Processing (MPP) architecture
for easy scale-out. IgSs and DSs can scale independently based on
read and write workloads.

Cache and pre-computations are crucial to achieve great per-
formance and scalability to support stringent serving workload
requirements. In Krypton, we adopt the principle of caching ev-
erything, including data, query results, query plans, and metadata.
Each DS has a local hierarchical cache that utilizes multiple stor-
age media to cache data blocks, including DRAM, PMem, and SSD.
When a DS processes a scan request, if the data is not in the cache,
it will fetch from the remote Cloud Store using RDMA. In order
to process serving workloads, we expect almost all data to be hit
in the cache in Krypton. Krypton also allows users to specify
preload options for their tables that guarantee data in those ta-
bles are loaded into the cache when the system starts. Krypton’s
hierarchical cache provides an excellent performance/price ratio
that fits various business scenarios. In addition, Krypton allows
users to define pre-aggregated tables and materialized views, which
perform pre-computation at data ingestion time, to improve query
performance. Both Data Servers and Ingestion Servers use affinity
partitioning for better cache utilization.

An efficient and adaptive query processor is vital for satisfying
Krypton’s query performance requirements. Krypton’s query op-
timizer (QO) adopts a rule-based approach with some cost-based
extension as needed. It dynamically collects up-to-date statistics
through incremental statistics and dynamic sampling. Plan caching
and query hints are very useful for serving workloads. Krypton’s

3530

query execution engine adopts a vectorized query execution with
two-level asynchronous scheduling using coroutines. In addition, it
provides adaptive parallelism, special lightweight APIs for serving
queries, and resource isolation to support the HSAP workload.

Krypton also has a native storage format for column files to
support efficient encoding for nested data types. It contains sec-
ondary data structures for both fast lookup and scan operations.
In addition, it supports various encoding/decoding and compres-
sion/decompression algorithms and is deeply integrated with query
engine.

Finally, customized configuration is critical to the Krypton’s
design since it enables customers to have trade-offs among data
freshness, query performance, and costs. For example, some cost-
based query optimization rules only apply to OLAP but are disabled
in serving workloads.

3 INGESTION AND PRE-COMPUTATION

Krypton supports user data loading in two ways: streaming mode
and batch mode. For better data freshness, rows are normally in-
serted in streaming mode. A write is considered a success after it
persists in WAL. Meanwhile, WAL is consumed asynchronously
and applied to delta store in memory. The delta store is converted
to column format and flushed to the Cloud Store when its size
reaches the predefined threshold. Versions of newly flushed tablets
are increased in Metadata Server before they become visible to
users. Regarding batch writes, each batch is split into multiple parts
according to the data partition policy defined in the table schema,
then flushed into the Cloud Store. All tablet-committed versions of
this batch are modified atomically in Metadata Server.

In addition, Krypton can import external columnar files in a
bulk-load fashion. Krypton maintains two kinds of indexes during
ingestion: 1) built-in indexes, such as prefix index and ZoneMap
index; 2) user-defined secondary indexes, such as BloomFilter index
and BitMap index. In addition, incremental stats, such as row count
and the number of distinct values, are collected during ingestion
and stored in Metadata Server.

Data preloading can be configured at the table level to preload
data into the cache of Data Servers before being queried. For such
tables, once new data is flushed to Cloud Store successfully, Inges-
tion Server notifies Metadata Server to invoke corresponding Data
Servers to load data into their cache as part of the data registration
step. When the registration request finishes, the data is visible to
users and can be accessed from DS cache module. Enabling cache
preloading on one production cluster has observed the P99 query
latency drops from 19 ms to 2.6 ms and the average latency reduces
from 3.6 ms to 1 ms.

Materialized View (MV) plays an essential role in serving work-
loads. It is like a base table with its own schema, such as distribution
keys and data models. Currently, Krypton supports MVs defined on
single tables and maintains them in real time during data ingestion.

Automatic Data Model Derivation. The data model is important
for MVs as base tables in Krypton. An improper data model could
adversely impact the performance of related queries and may even
lead to wrong query results. Take the following MV as an example:
CREATE MATERIALIZED VIEW test_mv AS

SELECT a, COUNT(DISTINCT b) FROM base_table

Base Table

tablet10

Metadata
Server

MV1

tablet101Plan execution
for MV1

Plan execution
for MV2

MV2

tablet201

MV1
Rowsets

MV2
Rowsets

Base Table
Rowsets

CREATE MATERIALIZED VIEW mv2 AS
 SELECT k1, MAX(v2) AS metric
 FROM base_tbl
 GROUP BY k1

CREATE MATERIALIZED VIEW mv1 AS
 SELECT k2, SUM(v1) AS metric
 FROM base_tbl
 GROUP BY k2

Storage

Figure 4: Materialized View Maintenance

GROUP BY a;

Because the aggregation function used here is count distinct,
Krypton does not yet support pre-aggregation. The query results
will be wrong if an aggregate table is used as the data model of
test_mv. Instead, we should choose a duplicated table model for
test_mv to retain the original data from the base table.

It is challenging for users to manually define the data model
over MVs when they create MVs. To address this, in Krypton, the
optimizer automatically deduces the optimal data model for an MV
based on the base table data model and the aggregation function
(if any) used in the MV query definition. To be specific, we classify
aggregation functions into two types: 1) splittable aggregation func-
tions: for these functions (e.g., sum, min, and max), the final result
is obtained by splitting the data into disjoint partitions, aggregating
each partition separately, and merging partial results to the final
result; 2) un-splittable aggregation functions, for these functions,
we cannot easily obtain the final result from partial results in our
current implementation. Therefore, we can only use duplicate table
as the table model for MVs with un-splittable functions. Due to the
space limit, we omit the detailed rules for the data model derivation
for MVs in this paper.

Materialized View Maintenance. In Krypton, the real-time data
consistency between base tables and related MVs is maintained
by Ingestion Server on the tablet level. An execution plan for
each MV generated by the query optimizer during MV creation
is stored inside Metadata Server. Ingestion Server maintains one
active memtable for each base table tablet. Once a memtable is
ready for flush, the Ingestion Server verifies whether the related
table has any associated MVs. If yes, it retrieves the execution plans
from Metadata Server and executes them over the tablet.

Figure 4 shows the case that a base table has two materialized
views mv1 and mv2. After transformation, the data are written into
two materialized view memtables: memtable of tablet 101 frommv1,
and memtable of tablet 201 from mv2. All three memtables will be
flushed into the Cloud Store as new rowsets without particular
order. If all rowsets persist successfully, the Ingestion Server re-
quests Metadata Server to register the three new rowsets together.
If failure happens during the flush process, no changes will hap-
pen in Metadata Server, and the persisted rowsets will eventually

3531

Data Server
Fragments

 0 & 1

Data Server
Fragment 1

Data Server
Fragment 1

Coordinator

1

1

2

1
3

2

2

fragment exec

data shuffle

fetch result

Join

HashBuild
Pipe

Fragment 1

HashBuild

Join

LocalExchange
Sender

LocalExchange
Sender

LocalExchange
Sender

LocalExchange
Sender

SELECT O_CUSTKEY
FROM LINEITEM, ORDERS
WHERE O_ORDERKEY = L_ORDERKEY

Exchange
Receiver

ResultSink

Fragment 0

Exchange
Sender

Exchange
Sender

 ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

Project
O_CUSTKEY

Project
O_CUSTKEY

LocalExchange
Receiver

LocalExchange
Receiver

LocalExchange
Receiver

LocalExchange
Receiver

Scan
LINEITEM

Scan
LINEITEM

Scan
ORDERS

Scan
ORDERS

Figure 5: Krypton’s Query Execution Workflow

be garbage collected. The metadata of the three tablets will be up-
dated simultaneously in Metadata Server atomically to maintain the
data consistency between the base table and materialized views. To
give readers a glimpse of the overhead in maintaining materialized
views, the impact on data freshness is within 10% in a scenario of
one base table with five materialized views.

4 EFFICIENT AND ADAPTIVE QUERY

PROCESSING

Figure 5 illustrates how Krypton executes a query. The query
optimizer and scheduler colocate at a designated node called Coor-
dinator. After optimization, the query scheduler divides the plan
into a set of fragments in a distributed fashion and sends them to a
set of Data Servers for execution. Whenever a block (i.e., a batch of
rows) is produced by its local fragment executor, it will be shuffled
to its destination DS(s) for future processing. The final result blocks
will be buffered at a dedicated DS and fetched by the Coordinator
in time. In the example shown in Figure 5, the query plan is divided
into two query fragments, fragment 0 and fragment 1, which are
responsible for gathering all the result blocks and performing the
co-located join, respectively. In addition, fragment 1 consists of a
set of pipes, each of which contains a set of operators that can exe-
cute without any stalls [64]. To repartition/shuffle blocks between
different parallel executing pipes of the same type, we introduce a
particular operator called the local exchange. This operator enables
us to exploit parallelism among different pipes with significantly
less overhead than the exchanger operator, which usually brings
extra network and serialization costs.

The Krypton query processor is designed with the HSAP work-
load in mind from the start. We aim to minimize planning time and
generate query plans towards high QPS for serving workloads while
considering more plan alternatives and maximizing parallelism to

reduce latency for OLAP queries. Krypton employs a push-based
and vectorized execution engine with a coroutine-based asynchro-
nous scheduler (i.e. coro-scheduler) as its core to achieve optimal
execution performance for HSAP workloads.

The rest of this section describes several critical techniques Kryp-
ton adopted for efficient and adaptive query processing.

4.1 Query Cache and Adaptive Statistics with

Dynamic Sampling

Krypton uses cache extensively to avoid repetitive query compu-
tation to save planning and execution time. It has a unified cache
framework, defined as a hashmap, for storing query plans, query
fragment selectivity estimation, and query results. We include the
data version into part of the cache key entry to avoid using the stale
cache entry when the data version changes. Regarding cache effi-
ciency, we have a background cache maintenance manager which
periodically compares the data version with Metadata Server and
proactively removes stale cache entries. Many of our production
workloads contain repetitive queries and we observed some work-
loads have benefited from this feature with an average of above
50% plan cache hit ratio in production.

Besides caching query plans which is common in database sys-
tems, Krypton also maintains a stats cache for adaptive selectivity
estimation. For a cache entry of stats cache, the key is a query
fragment with a filter condition, and the value is its selectivity. Ad-
ditionally, we have a query result cache to further reduce execution
time. Note that the query result cache is shared among sessions, so
clients issuing the same query share the same result set. The query
result cache fits comfortably the environments with many identi-
cal queries over the rarely updated tables, a typical situation for
Web servers that generate many dynamic pages based on database
content. Krypton’s query result cache relieves customers from im-
plementing their cache at the application level. We have observed
a 15% QPS increment on average for our ZhuXiaoBang customer
workload.

Krypton dynamically maintains up-to-date statistics, including
table row counts and the number of distinct values (NDV) in a
column (i.e., column NDV), incrementally without any hassle from
the users. As mentioned in Section 3, Krypton Ingestion Server
can pre-process the data during the data ingestion phase, which
Krypton utilizes to maintain our statistics incrementally. The table
row count is trivial to compute by summing the newly ingested
rows with previous row counts stored in our metadata. For column
NDV, we use the HyperLogLog (HLL) algorithm [31, 36] to build
approximate column NDV incrementally during the flush process,
which is much more accurate and efficient than some other DBMSs’
sampling-based NDV estimation algorithms.

Krypton does not rely on static tablet stats to estimate filter
selectivity, which is often hard to be accurate. Instead, it issues a
sample query plan fragment with the actual filter condition during
query planning time to collect the count information. In Krypton,
the sampling granularity is configurable. Testing on the TPC-H 1T
dataset shows that with dynamic sampling our stats estimation is
within 1% difference from the actual runtime stats but the overhead
is less than 2% of the total running time.

Still, the sampling approach has its own limitations. First, for the
skewed dataset, the sampled filter selectivity may not be adequate to

3532

represent thewhole table selectivity. Second, the sampling approach
does incur additional overhead in executing the sampling query,
which may not be negligible in some serving workloads.

We address the issues above by leveraging the lightweight run-
time profile provided by our execution engine and stats cache. Our
query execution engine collects lightweight runtime stats after
query execution and sends this information back to the optimizer
along with query results. The profile includes the actual output
row count with the filter condition, which helps the optimizer to
know the actual table-level filter selectivity afterward. The actual
filter selectivity will be used to evaluate the accuracy of our es-
timated filter selectivity stored in the stats cache. A background
cache maintenance thread continuously monitors the accuracy of
the estimated stats against the runtime selectivity. It updates the
cache if the difference exceeds a pre-defined threshold.

4.2 Query Rewrite with Materialized Views

Besides pre-aggregated tables, Krypton also supports material-
ized views to perform pre-computation in serving workload. As
mentioned in Section 3, the Ingestion Server can synchronously
maintain user-defined materialized views during data ingestion
time. During the query planning, the query optimizer automatically
selects the appropriate materialized views for query rewriting for
query acceleration. Our general query rewriting algorithm follows
the algorithm proposed by Jonathan and Per-Åke [34]. Due to the
space limit, we skip the details in this paper.

Many serving queries involve analyzing data that fall into time
ranges with arbitrary boundaries. For a large time range, the to-
be-processed data volume is also likely to be large. The following
query represents a typical serving query for many of our use cases:
SELECT a, SUM(b) FROM tbl

WHERE t BETWEEN '2022 -05 -01 00:00:00 '

AND '2022 -05 -09 14:12:15 '

GROUP BY a;

In this query, t is a column of timestamp type, and the time range
of the filter condition spans more than eight days. Processing such a
query on the fly can be time-consuming. Materialized view (MV) is
an effective solution to speed up the large time range analysis and to
significantly reduce the amount of data to process. For the example
query above, we define multiple MVs that separately aggregate
data by day and hour. Then the original query can be optimized
by splitting the time range into three non-overlapping parts: 1)
2022-05-01 00:00:00 - 2022-05-09 00:00:00, 2) 2022-05-09 00:00:00 -
2022-05-09 14:00:00, and 3) 2022-05-09 14:00:00 - 2022-05-09 14:12:15.
We can compute the results of each part separately, and merge the
partial results to generate the final result. The first two parts can
utilize the daily MV and hourly MV. The last part cannot make
use of any MV, so it just uses data from the base table. The above
process is performed automatically by our query optimizer at query
planning time.

4.3 Adaptive Parallelism Control

Parallelism control in query execution has been studied extensively
in the past decades [11, 18, 33, 51, 66, 82], which can be either static
or dynamic in general. In static query parallelization, a given query
plan can be divided into multiple sub-plans to exploit parallelism at

the planning stage by utilizing either heuristic rules and/or statisti-
cal information at query compile time [4, 32, 44, 69], or statistical
execution information collected at runtime [20, 43, 73]. On the
other hand, dynamic query parallelization introduces techniques to
parallelize given query work during execution. Leis et al. [48] have
proposed morsel-driven query processing, which divides input data
into small fragments (morsels) to achieve better load balancing
among all the processor cores. The elastic iterator model, proposed
byWang et al. [81] for in-memory database clusters, has introduced
a dynamic scheduler to improve processor utilization efficiency.

Both static and dynamic parallelism control mechanisms have
their pros and cons. Generally speaking, parallelism assignment
at compile time is hard to be optimal, as the workload in each
compute node is affected by numerous factors and can be highly
dynamic during the query execution. On the other hand, although
determining the parallelism at runtime sounds more promising, it
suffers from the overhead of locking/pausing the entire pipeline
execution for changing the query plan structure, such as adding or
updating operators.

In contrast, Krypton’s query processor attempts to benefit from
both approaches by statically deciding the inter-fragment and inter-
pipe parallelisms while dynamically adjusting the intra-pipe paral-
lelism using its coro-scheduler.

• At the planning time, the query optimizer statically determines
the parallelism at both inter-fragment and inter-pipe levels (i.e.,
the number of Data Servers(DSs) a fragment utilizes and the
number of threads used to execute a fragment). Deciding the
parallelism at planning time avoids the overhead of modifying
the plan on-the-fly and provides the opportunity to generate a
more cost-efficient plan which eliminates costly operators such
as local exchange and repartition whenever possible.

• At the execution time, the execution engine utilizes the coro-
scheduler to exploit the intra-pipe parallelism, which dynamically
parallelizes the computation of incoming blocks within each pipe.
Specifically, the execution engine creates an execution task in
a coroutine thread (coro-thread) and hands blocks over to the
underlying coro-scheduler for execution whenever a block is
pushed into the pipe. Because it dispatches execution tasks at
the block granularity, the coro-scheduler reduces the working
coro-threads for these in-flight tasks when queries with higher
priority contest the CPU resources. Furthermore, because the
coro-thread has a low overhead for the context switch (compared
to the thread) and is asynchronous, scheduling the execution
using coro-threads dramatically reduces the CPU idle time and
improves query performance from both throughput and latency
perspectives.

4.4 Resource Isolation and Fair Scheduling

Resource isolation in Krypton is required for serving different
business requirements in a multi-tenant environment. For example,
for paid clients, wemust ensure their resources will not be contested
by others. In addition, we need to ensure that the analytic queries
will not block the latency-sensitive serving queries.

First, Krypton allows users to create dedicated resource groups
at the DS instance level to achieve complete resource isolation. Each
resource group is allocated to a set of dedicated DS instances at

3533

Task Group
(Thread 0)

Task Group
(Thread 1)

Task Queue Task Queue

Task Task

Submit
Task

WorkSteal

TaskTask Task

WorkSteal
Actively

Yield

...

Resource Group A

Resource Group B

Tenant A
Serving Workload

Tenant B
Analytic Workload

Data
Server

Data
Server

Data
Server

Data
Server

Data
Server

Data
Server

Data
Server

Fair Schedule

Long running queries

Short running queries

TimeSlicingQueue

Figure 6: Resource Isolation and Fair Scheduling

execution time. Because Krypton uses a decoupled storage and
compute architecture, the resource group can quickly scale out
without data rebalancing in the underlying storage as traditional
MPP databases. In addition, Krypton can quickly bring up a tempo-
rary resource group for short-term needs, e.g., processing nightly
ETL queries and releasing the resources afterward.

Second, Krypton provides fair scheduling to solve resource
contention within a resource group for the cases where a resource
group is shared bymultiple clients or by a single client withmultiple
applications through its coro-scheduler with a priority-based global
time-slicing queue. As shown in Figure 6, each core/thread bonds to
a different task group, which manages all the coro-threads assigned
to it. During the execution, tasks of computing incoming blocks are
submitted to its local task queue for execution. After a time slice t, a
non-finished local task is pushed (actively yield) to the global time-
slicing queue for future execution.When a local task queue is empty,
the corresponding task group will fetch tasks from the global queue
for execution, whose priority is based on the elapsed CPU time using
some existing fairness-aware scheduling algorithms [42]. Because
tasks are dispatched in a block-at-a-time fashion in Krypton, it
enables us to minimize the scheduling overheads by placing the
yield checkpoints at the time when the task is dispatched, as the
execution time for each task is typically comparable with the time
slice t (typically less than 10 ms).

In summary, Krypton can fully utilize the underlying asyn-
chronous scheduler in a vectorized query engine to achieve both
adaptive parallelism control and fairness schedule.

4.5 Lightweight API for Single Node Serving

Queries

As illustrated in Figure 5, the query execution in Krypton gener-
ally requires two remote calls from the Coordinator, which first
sends the fragments to a set of Data Servers (DSs) for execution,
and then asynchronously fetches the cached query results from a
dedicated DS. For complex queries with extensive query results,
this send-and-fetch style execution is appropriate since the perfor-
mance bottleneck usually comes from the computation instead of
the network. However, for serving queries that only need a single
DS for execution, the network overheads can be dominant, which
prevents us from achieving desired query latencies.

To solve this problem, Krypton explicitly provides a lightweight
API for simple serving queries. When the Coordinator detects that
a single DS is enough for execution and the number of result rows
is within a pre-defined threshold, it will use this API to execute
the query and fetch the query results synchronously. In this way,
these serving queries can be executed with a single remote call, and
therefore the network overheads can be reduced by half.

4.6 Dirty Read for Sub-second Data Freshness

Some customers of Krypton require reading the most recent data
changes that can be under sub-second delay. To meet such require-
ments, Krypton query engine can directly read uncommitted data
(a.k.a. dirty read) from in-memory delta stores of Ingestion Servers
(IgSs). Specifically, we introduce a dedicated dirty read operator
in the query executor. The general workflow is as follows. First,
the Coordinator obtains IgS addresses and the committed_version
numbers corresponding to those tables from the Metadata Server
and sends them to Data Servers as part of the distributed query plan
so that the dirty read operator is constructed prior to the execution.
The query executor will then use this operator to fetch uncommit-
ted rows with versions larger than the committed_version through
remote calls to the IgSs. These uncommitted rows will be merged
with the committed/persisted ones before being returned to the
clients. Delta stores normally hold recently flushed data for a small
period of time to increase the chance of successful dirty reads.

It is worth noting that Data Servers do not cache data returned
by the dirty read. Besides, multiple dirty read requests to the same
IgS from a Data Server can consolidate into one request to reduce
network latencies and overhead.

5 HIERARCHICAL CACHEWITH PMEM

Krypton leverages a caching component at Data Servers to over-
come the performance penalty of decoupled computing and stor-
age and to accelerate computations. This caching layer utilizes
the strengths of different storage media to accommodate the di-
verse requirements of real-time serving and analytical queries cost-
effectively. For real-time serving, Krypton recommends working
sets fitting in DRAM and PMem.

Figure 7 illustrates the modular design of Krypton cache. A
cache instance consists of three modules: cache index, replacement
policy, and storage engine. The replacement policy module is plug-
gable and has several built-in policies. The storage engine module
provides an abstract interface that hides the implementation details
of different storage media from the index and replacement policy
modules. Cache items stored in DRAM and PMem storage engines
can be accessed directly through a zero-copy interface.

In the rest of this section, we describe some of the key techniques
utilized in Krypton hierarchical cache to optimize its performance
by making full use of hardware potentials.

5.1 Replacement Policy

HSAPworkloads exhibit a wide variety of access patterns: analytical
queries may require scanning substantial amounts of data, whereas
serving queries tend to access a much smaller set of data with
much higher frequency. As such, cache replacement policies in

3534

Cache Index
Replacement Policies

Storage Engines
Abstract Storage Interface

DRAM Engine PMem Engine ZonedStore SSD Engine

FIFO SLRU

Cache Instance

Figure 7: Modular Design of Krypton Cache

Table 1: Query Latencies under Different Replacement Poli-

cies

Latency (s) FIFO SLRU
Analytical Serving Analytical Serving

P50 28.088 4.792 28.108 4.141
P99 36.437 7.274 33.523 5.679

NUMA_0PMEM

writer threads

...

write tasks

Dispatcher...

NUMA_1PMEM...

task queue

Figure 8: NUMA-Aware Async PMemWrite

HSAP systems should be scan resistant to ensure a high hit ratio
for serving queries.

We choose Segment LRU (SLRU) [59] as the replacement policy
for the DRAM and PMem tiers. Besides being scan resistant, this
policy also has low concurrency overheads because fetching items
already in the cache never requires waiting for an LRU lock, which
makes it a good candidate for the DRAM and PMem tiers. Unlike
the SLRU used in [59], we use a lock-free concurrent hash table as
the cache index to further reduce concurrency overhead.

We evaluate Krypton hierarchical cache replacement policy
using a workload of mixed serving and analytical queries. We use
TPC-H Q6 as the serving query and Q21 as the analytical query,
with dedicated workers for each. The experiment setup is described
in Section 7. We warm up the cache by running Q6 alone before
starting Q21. As shown in Table 1, the median and P99 latencies of
the serving query (Q6) under Krypton cache replacement policy
are ∼15% and ∼28% lower, respectively, than those under a simple
first-in-first-out (FIFO) cache replacement policy.

5.2 NUMA-Aware Async PMemWrite

Despite its read latency and throughput advantages, the asymmetric
write bandwidth of PMem is a performance bottleneck [83, 86].
Specifically, PMem write bandwidth is only about one-sixth of
DRAM write bandwidth [41], saturates at a concurrent access level
lower than read bandwidth, and deteriorates when accessed from
remote non-uniform memory access (NUMA) node [68].

Krypton uses a NUMA-aware async-write mechanism to op-
timize PMem write performance. As illustrated in Figure 8, each
PMem device is assigned a dedicated writer thread pool, bound to

Table 2: Mixed Random Read/Write Workload

Avg Latency (us) Throughput (MB/s)
R:W Ratio ZonedStore RocksDB ZonedStore RocksDB

20:80 Read 619 1,412 153 20
Write 10,880 27,061 1,515 184

80:20 Read 470 891 1,640 365
Write 632 30,261 485 97

the same NUMA node, and solely responsible for all writes to the
PMem device. Other threads read directly from the PMem device
but write only indirectly by dispatching asynchronous write tasks
to the writer thread pool. The number of threads in each pool is set
through experiments to yield maximum write throughput.

We evaluate the NUMA-aware async-write mechanism on a
machine with two NUMA nodes, each with four 128GB PMem
DIMMs. With three writer threads per pool, Krypton PMem cache
achieves a maximum throughput of 3.7GB/s with this mechanism,
which is about 23% higher than the 3.0GB/s throughput without it.

5.3 ZonedStore Based SSD Cache

SSD bringsKrypton affordable, large cache capacity, and fast warm-
up after the system restarts, but it also raises new challenges. In
particular, most existing cache systems at ByteDance manage con-
tent on SSD using Log-Structured Merge-Tree (LSM Tree) key-value
stores (e.g., RocksDB [28]). These LSM tree-based storage solutions
are not specifically designed for an SSD caching system and suf-
fer from excessive space and read/write amplifications when used
as one. To address these shortcomings, we design and implement
ZonedStore, a low-cost and high-performance SSD storage.

Zone-based Sequential Write. ZonedStore partitions each SSD
into multiple zones of equal size (e.g., 10GB). Only one zone is
writable at a time. Newly inserted cache items always append to
the current writable zone sequentially, which reduces SSD internal
write amplification [61]. Since in ZonedStore, most items have a
size larger than 4KB, it is feasible to keep an in-memory index of all
items cached in ZonedStore, which eliminates read amplification
during lookup. In order to speed up index recovery upon restart, a
summary segment describing all cache items in a zone is written at
the end of it before the writes switch to a new writable zone.

Cache Optimized Garbage Collection (GC). ZonedStore reclaims
storage space at zone granularity. The garbage ratio and access
frequency of each zone are tracked in an in-memory zone metadata
table, and the GC policy always reclaims zones with a high garbage
ratio and a low access frequency. Unlike RocksDB, ZonedStore does
not write tombstones to SSD. Instead, evicted items are marked
as soft-deleted in the in-memory index. Soft-deleted but not yet
reclaimed items can still be used to serve lookups and inserts, ex-
ploiting the fact that all data in Krypton hierarchical cache are
immutable. Furthermore, ZonedStore limits GC-induced write am-
plification by simply discarding valid data in the reclaimed zone
when the write bandwidth is limited.

We evaluate ZonedStore on an Intel P4510 SSD using mixed read-
write workloads issued by 16 concurrent threads with a 50KB item
size. As shown in Table 2, ZonedStore significantly outperforms
RocksDB in both scenarios.

3535

6 EFFICIENT COLUMNAR DATA FORMAT

Krypton implements its own file format to efficiently support
serving and analytical workloads. This format is a typical Partition
Attributes Across (PAX) format [3] that organizes user data in
different regions by columns and encodes and compresses at the
granularity of the data page (usually 1MB). A data page is the unit
of data reading. In regular OLAP query processing, Krypton first
accesses indexes before the actual data pages to filter out the ones
that do not need to be read. Krypton format divides the whole
file into user data region, index region, and metadata footer, where
data and indexes are completely separated and placed in different
regions of the file. To be cache friendly, each region is partitioned
by columns to maximizes the access locality.

Encoding and Index Algorithms. The Krypton format uses light-
weight encoding and rich indexes to achieve efficient scans and
seeks while reducing storage costs. The Krypton format supports
various encodings, such as Run-Length-Encoding and Frame-of-
Reference encoding compression [49]. Krypton format implements
vectorized reads and writes for all encoding methods to provide
efficient scanning and combines various indexes to provide 𝑂 (1)
seek.

In order to support hybrid workloads, Krypton utilizes a set of
index methods to speed up scans and seeks. To quickly locate the
requested data’s physical position in serving scenarios, users can
choose suitable indexes on particular columns in the DDL statement.
A brief description of each index method and its intended usage
scenario is listed as follows:
• Ordinal index: to find the data page with the target ordinal num-

ber.
• Sparse index, min/max index, bloom filter, and ribbon filter [27]:

to skip data pages that do not need reading.
• Short-key index: a particular sparse index that takes the first 36

bytes of the sorted key column as the index key.
• Equality and range bitmap index: to quickly filter for the row

ordinal according to the predicate.
• Skip index: to quickly locate the physical positionwithin the page.

Under some conditions, using a skip index can avoid decoding
the entire data page.

Nested Type Handling. The Krypton format proposes an efficient
algorithm to represent nested and repeated types, which differs
from the popular Google Dremel algorithm [58] implemented in
Parquet [6]. Unlike the layout in Google Dremel which only stores
leaf fields, our approach organizes a type’s schema as a B-tree of
fields and the data of all fields are placed continuously and indepen-
dently. The format saves the occurrence and validity information
of child fields in non-leaf fields and stores the data in leaf fields.
Occurrence represents the prefix sum of the subfield occurrences,
resulting in𝑂 (1) complexity for getting the offset and length of the
repeated data. Hence we can achieve𝑂 (𝑚) seek even on nested and
repeated data, where𝑚 is the depth of the schema tree. In contrast,
Google Dremel must iterate multiple repetition levels to determine
the offsets, slowing down seeking operations. Validity distinguishes
whether the field is empty or null. By not saving any data for a
null field, Krypton format gains high efficiency for storing sparse
data. Comparing to Google Dremel, our algorithm has the following

Table 3: File Format Benchmark on TPC-H and Magnus

Dataset Read Speed (rows / sec) Relative File Size
Parquet Krypton Parquet Krypton

TPC-H 2.54M 3.07M 100.00 113.68
Magnus 0.15M 0.21M 100.00 91.99

advantages: 1) Higher storage efficiency for sparse fields, and 2)
faster seeking for nested and repeated types.

Query Engine Integration. The Krypton format is deeply inte-
grated with the query engine, as late materialization and push-down
computation are used as much as possible to reduce the I/O overhead
during the query process. Predicate filtering and column pruning
are pushed down to the format layer, along with push-down run-
time filter predicates and file indexes. During the read process, it
first reads and uses the file index referenced by the push-down
predicate and the runtime filter predicate to init the ordinal se-
lection vector, which stores all selected ordinal numbers. Second,
we materialize the predicate column data for expression compu-
tation to narrow the range of the ordinal selection vector, then
perform column pruning according to the push-down projection.
Finally, we materialize non-predicate column data according to a
selection vector. In addition to providing APIs to read raw user
data, Krypton format also provides APIs to read encoded data that
allows Query Engine to directly calculate on encoded data (e.g.,
dictionary-encoded data), thereby reducing decoding overhead.

We evaluate the performance of single-threaded reads on the
TPC-H dataset (a typical scalar type dataset) and theMagnus dataset
(a nested and repeated ML training dataset in production). The
testbed is equipped with Intel Xeon Platinum 8260 CPU (2.40GHz,
48 Cores, 96 vCPUs), 128GB DRAM, 512GB PMem, and 2TB NVMe
SSD. Table 3 shows the results. Compared to the Parquet file, the
read performance of Krypton file improves by about 21% on the
TPC-H dataset and about 40% on the Magnus dataset. Compared
to the Parquet file, the size of Krypton file increases by about
13% on the TPC-H dataset. These extra file spaces store additional
indexes not provided in the Parquet file to provide efficient seeking
operations. Note that on the Magnus dataset, the size of Krypton
file decreases by about 8%, because the benefits Krypton format
gained on compressing data of nested and repeated types outweigh
the overhead of keeping additional indexes.

7 PERFORMANCE STUDY

In this section, we conduct experiments to evaluate the performance
of Krypton. We present our experiment results using benchmark
workloads followed by results using ByteDance real production
workloads.

7.1 Workloads and Experiment Setup

Since we cannot find an HSAP benchmark ready to use, we choose
YCSB [24] Workload C [21] to simulate serving workloads and
use TPC-H [80] benchmark with a 1TB dataset to simulate analyt-
ical workloads. All YCSB and TPC-H workload experiments are
conducted with the benchbase benchmarking framework [25, 26].

3536

Table 4: Serving Query Throughputs and Latencies (YCSB

100GB)

Throughput Latency (ms)
(QPS) Avg. P75 P90 P95 P99

Separate 62272.22 3.52 3.63 4.61 5.98 10.49
Resource Group 62183.40 3.55 3.63 4.65 6.08 10.52

Regarding the production workload, we choose ByteDance’s
ZhuXiaoBang workloads. ZhuXiaoBang represents a common fea-
ture engineering use case that requires performing aggregate cal-
culations on specific user features within a time window ranging
from minutes to months. These features are continuously ingested
and queried in real time with high QPS and low query latency.

All our experiments are conducted on a cluster of eight machines
equipped with Intel Xeon Platinum 8260 CPUs (2.40GHz, 48 Cores,
96 vCPUs), 128GB DRAM, 512GB PMem, and 2TB NVMe SSD. The
cluster is interconnected with 25Gbps Ethernet NICs. Unless other-
wise stated, all our experiments are conducted with the following
setup: two machines for Coordinators and three machines for Data
Servers. In addition, one machine is assigned for each of the fol-
lowing roles: Compaction Server, Ingestion Server, and Metadata
Server. All experiments start with warm-up runs where the result
cache is disabled, and the reported values of each experiment are
the averages of three repeated runs.

7.2 Hybrid Performance

In this set of experiments, we choose a hybrid workload comprising
YCSB and TPC-H queries to evaluate the effectiveness of Krypton’s
two-level resource isolation. Specifically, we create two dedicated
resource groups: a serving resource group for executing YCSB and
an analytical resource group for executing TPC-H 1T workloads
separately. We allocate one-third of DSs to the serving resource
group and the remaining DSs to the analytical resource group.

Resource Group Isolation. We first run TPC-H 1T and YCSB work-
loads in their corresponding resource group to study the perfor-
mance of Krypton on analytical and serving workloads, respec-
tively. Then we run a mixed workload of TPC-H 1T and YCSB to
demonstrate the effectiveness of resource group isolation. As il-
lustrated in Figure 9 and Table 4, Krypton delivers a competitive
performance for both analytical and serving workloads. Compared
with separately running TPC-H and YCSB workloads, the hybrid
running with resource group isolation does not incur noticeable
performance degradation for either analytical or serving workloads.

0
5

10
15
20
25
30
35
40
45
50

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

La
te

nc
y

(s
ec

on
d)

Separate: 309.94

Resource Group: 313.39

Figure 9: Analytical Query Latencies (TPC-H 1TB)

Fair Scheduling. Fair scheduling (FS) is designed to solve resource
contention within a resource group. Therefore, in this experiment,
we construct a workload of TPC-H Q6 and Q21, which are represen-
tatives of short- and long-running queries running in the analytical
resource group. Both queries start with one client, and the number
of clients for Q6 increases from 1 to 2, 4, and 8, gradually. Figure 10
shows that, without fair scheduling, the increased resource con-
tention from Q6 causes a significant performance degradation in
Q21.

728.64 1443.31

0
50

100
150
200
250
300
350

1 2 4 8

La
te

nc
y

(s
ec

on
d)

Concurrent Q6

Q6 w/o FS Q6 w/ FS Q21 w/o FS Q21 w/ FS

Figure 10: Effectiveness of Fair Scheduling

In contrast, fair scheduling can specify the portion of resources
(e.g., CPU, memory) allocated to a workload. It, therefore, prevents
the performance of one workload from being dramatically affected
by other concurrent workloads. As shown in Figure 10, Q21’s la-
tency is inversely proportional to the number of clients without
fair scheduling. When the CPU resources (in percentage) for run-
ning Q21 and Q6 are configured as 20% and 80%, respectively, the
latency of Q21 only slightly increases as the number of Q6 clients
increases. In the meantime, we also observe only slight performance
degradation in Q6.

In addition, we collected 10 CPU time samples for each experi-
ment with fair scheduling enabled. As shown in Figure 11, when
running a single Q6 query, which is not able to fully utilize the
configured resources (i.e., 80%), it only consumes approximately
53% of the total resources, and the adaptivity of the fair schedul-
ing mechanism allows Q21 to use an extra 27% CPU time. As the
number of Q6 clients increases, both Q6 and Q21 can use up the
allocated resources, and therefore the accumulated CPU time is
stably shared between them as the configured percentages.

0%

20%

40%

60%

80%

100%

0 10 20 30 40
Time Elapsed (second)

Q6 Q21

Figure 11: Fairness of Fair

Scheduling

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27

#
R
un

ni
ng

C
or
o.

Time Elapsed (min)

G0 G1 G2 G3

Figure 12: Adaptive Parallelism

Control

Adaptive Parallelism Control. To demonstrate the effectiveness
of adaptive parallelism control, we use four clients (𝐺0 - 𝐺3), each
of which repetitively runs Q6 with the maximum degree of intra-
fragment parallelism of 48 in the analytical resource group. As
seen in Figure 12, with only 𝐺0, these queries can run with their

3537

(a) Rows Scanned (b) Query Time

Figure 13: Effects of Optimizing Time Range Queries

maximum degree of intra-fragment parallelism due to sufficient
CPU resources. As we start more clients 𝐺1 - 𝐺3, hence the CPU
resource becomes more contested, the number of running coro-
threads starts to change adaptively for each client as expected.

7.3 Production Performance

We show query performance results and production metrics from
the ZhuXiaoBang production environment.

Effects of Optimizing Time Range Queries. To evaluate the effects
of optimizing time range queries with MVs, we use the following
queries from ZhuXiaoBang workload. We use a fixed end time for
each time range and vary the time range by changing the starting
time. We use MVs to aggregate data for each minute, hour, and day.
In our experiments, the time range varies from 10 minutes to 10
hours.
SELECT feature_index , SUM(feature_value)

FROM feature_table

WHERE event_time BETWEEN $start_time

AND '2023 -02 -16 11:00:30 '

GROUP BY feature_index;

Figure 13(a) shows the number of rows read by queries with and
without the optimization. We observe that the data volume without
temporal optimization increases significantly as the time range in-
creases. With the optimization, however, the data volume is almost
the same. Similarly, the query time remain stable for optimized
queries as the time range increases, as shown in Figure 13(b). For
queries with time ranges that span a few days, the impact of the
optimization is even more significant.

Effects of Lightweight API. We compare the query latency with
around 10,000 QPS to evaluate the effects of Lightweight API. Fig-
ure 14 shows the P99 latency is reduced by about 45% after Light-
weight API is enabled.

Data Freshness of Streaming Ingestion. Data freshness inKrypton
is defined as the time interval between the new rows that can
be queried after corresponding WALs are committed successfully.
Figure 15 shows the P99 latency of streaming load data freshness for
ZhuXiaoBang. As the data input rate increases, the data freshness
becomes worse, but remains pretty low (i.e. around 15 ms).

Read/Write Scenario in Production. ZhuXiaoBang is a typical read-
write hybrid business scenario. Real-time data is imported into

Krypton through the Flink streaming job. On a normal day, the
ingestion rate (rows/sec) and query QPS started to grow after 18:00,
and the peak period of business is around 22:00. The peak inges-
tion rate is about 460% of the daily average, and the peak query
TPS is about 300% of the daily average. Since Krypton adopts the
read-write separation architecture, query performance is not sig-
nificantly affected even at the peak time of data inputs. As shown
in Figure 16, the p99 query latency for ZhuXiaoBang during rush
hours is relatively stable and remains under 60 ms.

8 PRODUCTION EXPERIENCES AND LESSONS

LEARNED

This section briefly summarizes some lessons we have learned
from developing and running Krypton in production since early
2022. As Krypton serves as a general serving and analytical SQL
engine, we have been working with various teams in the company,
such as the Machine Learning platform, Ads, and Shopping. Those
Krypton users provided us with a lot of valuable feedback, which
significantly improved the quality and expedited the iterations of
the system. Below is a representative but by nomeans an exhaustive
list.

Interface Compatibility with Legacy Systems. Prior to Krypton,
multiple customers at ByteDance used Apache Doris [29] and its
related tools. From the beginning of the project, we set the goals for
Krypton to be compatible with Apache Doris (MySQL), including
the SQL dialect, data model, data ingestion interface, and clients.
As a result, the existing Doris users can readily migrate to Krypton
with minimal efforts. Based on our production experience, most
users can smoothly switch their underlying engines to Krypton
without interrupting their services.

Always Explore New Opportunities to Improve Performance. There
is no silver bullet for HSAP systems to providemuch higher QPS and
lower latency than traditional OLAP systems. Instead, we constantly
look for ways to help customers to improve their performance by
closely studying their needs. For example, an online service may
send hundreds of millions of queries to Krypton per day, but only
tens of thousands are distinct except for filtering conditions. In this
case, both result and plan caches are greatly helpful in reducing
resource usage in the back end. Some other key techniques we
used include optimizing the size of WAL and asynchronous writes,
which proved high effectiveness in ensuring the stability of critical
write paths while ingesting a large amount of data.

Live Traffic Testing is Critical. Krypton is a large, complex, and
newly developed system. When we promote Krypton to customers,
they usually do not have enough trust in its features and stability in
the beginning. Even though standard testing benchmarks are used
in development, they can not cover the real use cases in production.
To address this challenge, we adopt the approach of replicating real
online traffic to the Krypton testing clusters. The query results
returned from Krypton are logged asynchronously and compared
with those of the legacy system offline without jeopardizing the
critical path. With this approach, we could discover and fix various
issues, effectively improving the system’s overall quality. In sum-
mary, live testing makes the process for our customers to migrate
to Krypton much smoother.

3538

0 5 10 15 20 25 30
5

10

15

20

25

Time(s)

L
a
te
n
c
y	
P
9
9
(m
s
)

turning	on	Lightweight	API

turning	off	Lightweight	API

Figure 14: Query Latency for Lightweight

API Turning On vs. Turning Off

0 5 10 15 20 25 30
5

10

15

20

25

Time(s)

F
re
s
h
n
e
s
s	
P
9
9
(m

s
)

Input	Rate:	1.5k	rows/s

Input	Rate:	4.4k	rows/s

Input	Rate:	190k	rows/s

Figure 15: Data Freshness of Different

Ingestion Rate for ZhuXiaoBang

18:00 19:00 20:00 21:00 22:00 23:00 00:00
25

30

35

40

45

50

55

60

Time

L
a
te
n
c
y	
P
9
9
(m
s
)

Figure 16: Query Latency During Rush

Hours for ZhuXiaoBang

Krypton is still in early adoption at ByteDance, and we are glad
to share more experiences and lessons learned in the future.

9 RELATEDWORK

Procella [15] is an HSAP system most similar to Krypton. They
share many essential design principles, such as disaggregated stor-
age, separate read and write paths. Both systems heavily utilize
cache and pre-computation to accelerate serving query perfor-
mance.Krypton uses a hierarchical local cache that includes DRAM,
PMem, and SSD, while Procella only caches data in DRAM. In addi-
tion, they are also different in terms of dirty read handling: Procella
pushes data from Ingestion Servers to Data Servers, while Krypton
queries Ingestion Servers as external tables for dirty reads.

Hologres [42] is an HSAP system from Alibaba. Hologres also
adopts disaggregated storage and separate read and write paths
architecture. However, in Hologres, read and write queries run
on the same location where a Table Group Shard resides, while
Krypton and Procella’s read and write queries run on different
nodes. Hologres utilizes a hierarchical cache but does not utilize
PMem as Krypton.

Data warehouse and OLAP systems [13, 53, 54, 58, 75, 87] per-
form complex data analytics over relatively static data, which can-
not handle serving queries with millions of QPS and data ingestion
rates required by HSAP workloads. Snowflake [23] is a cloud data
warehouse that utilizes the cache to improve query performance in a
decoupled computing and storage architecture. Krypton also keeps
a hierarchical cache at its computing layer to speed up query pro-
cessing, which is even more critical for serving workload than ana-
lytical workload. In addition, some previous work [5, 50, 62, 84, 87]
to support real-time analytic queries also shed light on designing
efficient OLAP engines. Krypton adopts many previously prevail-
ing query processing techniques to build a high-performant HSAP
system.

Druid [85] and Pinot [39] are two open-source systems used for
low-latency data ingestion and real-time OLAP analytics on large
datasets. However, their capabilities to support general SQL queries
are more limited than Krypton.

Time-series databases [1, 14, 67, 72, 77] are widely used in IoT
and compute system metrics analysis over a large number of or-
dered data logs. Similar to Krypton, they also focus on the data
ingestion throughput, data freshness, and query latency. However,

they usually have much more limited SQL capabilities than Kryp-
ton.

Kraken [35] is a real-time monitoring and analytics system
providing strong data consistency by a deterministic partitioning
scheme with a single truth source. Similar to Krypton, Kraken also
supports different types of data stream and ingestion. However,
unlike Krypton, Kraken does not allow queries on the data until it
is persisted to the durable storage.

Napa [2] maintains materialized views at data ingestion time to
speed up querying. Krypton adopts a similar approach to maintain
aggregated tables and materialized views at data injection time.

The emergence of new storage hardware such as Intel Optane
Persistent Memory has motivated the evolution of caching sys-
tems [16, 22, 45, 55, 76, 79]. CacheLib [12] is a popular open-source
C++ library for accessing and managing cache data. We note that
Krypton hierarchical cache shares several important design choices
as CacheLib, such as zero-copy interface, full in-memory index of
items cached on SSD, and region/zone-based sequential SSD writes.
We plan to compare the performance of the two in future work.

10 CONCLUSIONS

In this paper, we demonstrate how to build Krypton, a single Hy-
brid Serving and Analytical Processing (HSAP) system, to handle
both types of workloads. Krypton adopts disaggregated storage,
separate data injection and query processing, a hierarchical lo-
cal cache at query processing nodes, and a native columnar stor-
age format to provide excellent elasticity and query performance.
Krypton can provide high data freshness, high data ingestion rate,
and strong data consistency support by utilizing many previously-
known query processing techniques. Lastly, we briefly overview
the lessons and best practices we have learned in developing and
running Krypton in the production environment.

ACKNOWLEDGMENTS

Wewould like to extend our thanks to the anonymous reviewers for
their valuable comments. We heartily thank all people who made
contributions to the design and development of Krypton system:
Wei Chen, David Gong, Liming Fang, Jianfeng Qian, Zixiong Liu,
Ron Hu, Dongwei Wang, Jianhua Cao, Jin Li, Kai Wu, Hao Tan,
Guowei Zhang, Qianling Li, Yize Li, Yang Liu, Hongkai Wei, Yue
Gong.

3539

REFERENCES

[1] Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer Bhola, Rick
Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick Sakharov, George
Talbot, Adam Tart, and Nick Taylor. 2020. Monarch: Google’s Planet-Scale in-
Memory Time Series Database. Proc. VLDB Endow. 13, 12 (sep 2020), 3181–3194.
https://doi.org/10.14778/3181-3194

[2] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Jim Chen, Ming Dai, Thanh
Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang, Yanlai Huang, Adam Li,
Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao, Maya Meng, Prashant Mishra, Jay
Patel, Rajesh S R, Vijayshankar Raman, Sourashis Roy, Mayank Singh Shishodia,
Tianhang Sun, Justin Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali,
Prasanna Venkatasubramanian, Joey Zhang, Kefei Zhang, Yupu Zhang, Zeleng
Zhuang, Goetz Graefe, Divyakanth Agrawal, Jeff Naughton, Sujata Sunil Kosalge,
, and Hakan Hacıgümüş. 2021. Napa: Powering Scalable Data Warehousing with
Robust Query Performance at Google. Proc. VLDB Endow. 12 (2021), 2986–2998.

[3] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 169–180.

[4] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Massively
Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems. Proc.
VLDB Endow. 5, 10 (jun 2012), 1064–1075. https://doi.org/10.14778/2336664.
2336678

[5] Rana Alotaibi, Bogdan Cautis, Alin Deutsch, and IoanaManolescu. 2021. HADAD:
A lightweight approach for optimizing hybrid complex analytics queries. In
Proceedings of the 2021 International Conference on Management of Data. 23–35.

[6] Apache. 2022 (Accessed on 2023-03-02). Apache Parquet. https://parquet.apache.
org/.

[7] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Guy Lohman, C
Mohan, Rene Muller, Hamid Pirahesh, Vijayshankar Raman, Richard Sidle, Adam
Storm, et al. 2019. Wiser: A highly available HTAP DBMS for iot applications. In
2019 IEEE International Conference on Big Data (Big Data). IEEE, 268–277.

[8] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vi-
jayshankar Raman, Richard Sidle, Matt Spilchen, Adam J Storm, Yuanyuan Tian,
Pinar Tözün, et al. 2017. Evolving Databases for New-Gen Big Data Applications..
In CIDR.

[9] Ronald Barber, Matt Huras, Guy Lohman, C Mohan, Rene Mueller, Fatma Özcan,
Hamid Pirahesh, Vijayshankar Raman, Richard Sidle, Oleg Sidorkin, et al. 2016.
Wildfire: Concurrent blazing data ingest and analytics. In Proceedings of the 2016
International Conference on Management of Data. 2077–2080.

[10] Ronald Barber, Vijayshankar Raman, Richard Sidle, Yuanyuan Tian, and Pinar
Tözün. 2019. Wildfire: HTAP for big data. In Encyclopedia of Big Data Technologies.
Springer.

[11] Srikanth Bellamkonda, Hua-Gang Li, Unmesh Jagtap, Yali Zhu, Vince Liang, and
Thierry Cruanes. 2013. Adaptive and Big Data Scale Parallel Execution in Oracle.
Proc. VLDB Endow. 6, 11 (aug 2013), 1102–1113. https://doi.org/10.14778/2536222.
2536235

[12] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gu-
nasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-
Balter, and Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design
and Experiences at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 753–768. https:
//www.usenix.org/conference/osdi20/presentation/berg

[13] Le Cai, Jianjun Chen, Jun Chen, Yu Chen, Kuorong Chiang, Marko A. Dimitrijevic,
Yonghua Ding, Yu Dong, Ahmad Ghazal, Jacques Hebert, Kamini Jagtiani, Suzhen
Lin, Ye Liu, Demai Ni, Chunfeng Pei, Jason Sun, Li Zhang, Mingyi Zhang, and
Cheng Zhu. 2018. FusionInsight LibrA: Huawei’s Enterprise CloudData Analytics
Platform. Proc. VLDB Endow. 11 (2018), 1822–1834.

[14] Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu, Xiaojie Feng,
Yucong Wang, Zhenjun Liu, and Gejin Zhang. 2020. Timon: A Timestamped
Event Database for Efficient Telemetry Data Processing and Analytics. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,
739–753. https://doi.org/10.1145/3318464.3386136 event-place: Portland, OR,
USA.

[15] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
Cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Aharon Ebenstein, Nikita Mikhaylin, Hung ching Lee, Xiaoyan
Zhao, Guanzhong Xu, Luis Antonio Perez, Farhad Shahmohammadi, Tran
Bui, Neil McKay, Vera Lychagina, and Brett Elliott. 2019. Procella: Unify-
ing serving and analytical data at YouTube. PVLDB 12(12) (2019), 2022–2034.
https://dl.acm.org/citation.cfm?id=3360438

[16] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen,
Wenyuan Dai, Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao, and
Andy Rudoff. 2021. Optimizing In-Memory Database Engine for AI-Powered
on-Line Decision Augmentation Using Persistent Memory. Proc. VLDB Endow.
14, 5 (mar 2021), 799–812. https://doi.org/10.14778/3446095.3446102

[17] Jianjun Chen, YonghuaDing, Ye Liu, Fangshi Li, Li Zhang,Mingyi Zhang, KuiWei,
Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu, Shangyu
Luo, Jason Sun, and Yuming Liang. 2022. ByteHTAP: Bytedance’s HTAP System
with High Data Freshness and Strong Data Consistency. Proc. VLDB Endow. 15,
12 (sep 2022), 3411–3424. https://doi.org/10.14778/3554821.3554832

[18] Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, and Honesty C. Young. 1992. Using
Segmented Right-Deep Trees for the Execution of Pipelined Hash Joins. In
Proceedings of the 18th International Conference on Very Large Data Bases (VLDB
’92). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 15–26.

[19] ClickHouse. 2023. ClickHouse: Fast Open-Source OLAP DBMS. https://
clickhouse.com/. [Online; accessed 24-January-2023].

[20] Richard L. Cole and Goetz Graefe. 1994. Optimization of Dynamic Query Eval-
uation Plans. In Proceedings of the 1994 ACM SIGMOD International Confer-
ence on Management of Data (Minneapolis, Minnesota, USA) (SIGMOD ’94).
Association for Computing Machinery, New York, NY, USA, 150–160. https:
//doi.org/10.1145/191839.191872

[21] Brian Cooper. 2023. YCSB/workloadc. https://github.com/brianfrankcooper/
YCSB/blob/master/workloads/workloadc/. [Online; accessed 13-FEbuary-2023].

[22] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing Persistent Memory Bandwidth Utilization for OLAP Workloads. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 339–351. https://doi.org/10.1145/3448016.3457292

[23] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215–226. https:
//doi.org/10.1145/2882903.2903741

[24] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.

[25] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277–288. http://www.vldb.org/pvldb/
vol7/p277-difallah.pdf

[26] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2023 (Accessed on 2023-02-28). cmu-db/benchbase: Multi-DBMS SQL
Benchmarking Framework via JDBC. https://github.com/cmu-db/benchbase.

[27] Peter C Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than
Bloom and Xor. arXiv preprint arXiv:2103.02515 (2021).

[28] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:
Evolution of Development Priorities in a Key-Value Store Serving Large-Scale
Applications. ACM Trans. Storage 17, 4, Article 26 (oct 2021), 32 pages. https:
//doi.org/10.1145/3483840

[29] Doris. 2023. Apache Doris. https://doris.apache.org/. [Online; accessed 24-
January-2023].

[30] ElasticSearch. 2023. What is Elasticsearch? https://www.elastic.co/what-is/
elasticsearch. [Online; accessed 24-January-2023].

[31] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 137–156.

[32] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. 1992. Query Opti-
mization for Parallel Execution. In Proceedings of the 1992 ACM SIGMOD In-
ternational Conference on Management of Data (San Diego, California, USA)
(SIGMOD ’92). Association for Computing Machinery, New York, NY, USA, 9–18.
https://doi.org/10.1145/130283.130291

[33] Kazuo Goda, Yuto Hayamizu, Hiroyuki Yamada, and Masaru Kitsuregawa. 2020.
Out-of-Order Execution of Database Queries. Proc. VLDB Endow. 13, 12 (sep
2020), 3489–3501. https://doi.org/10.14778/3415478.3415571

[34] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing queries using mate-
rialized views: a practical, scalable solution. ACM SIGMOD Record 30, 2 (2001),
331–342.

[35] Stavros Harizopoulos, Taylor Hopper, Morton Mo, Shyam Sundar Chan-
drasekaran, Tongguang Chen, Yan Cui, Nandini Ganesh, Gary Helmling, Hieu
Pham, and Sebastian Wong. 2022. Meta’s next-Generation Realtime Monitor-
ing and Analytics Platform. Proc. VLDB Endow. 15, 12 (sep 2022), 3522–3534.
https://doi.org/10.14778/3554821.3554841

[36] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in
Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation
Algorithm. In Proceedings of the 16th International Conference on Extending Data-
base Technology (Genoa, Italy) (EDBT ’13). Association for Computing Machinery,
New York, NY, USA, 683–692. https://doi.org/10.1145/2452376.2452456

[37] Hive. 2023. Apache Hive. https://hive.apache.org/. [Online; accessed 24-January-
2023].

3540

https://doi.org/10.14778/3181-3194
https://doi.org/10.14778/2336664.2336678
https://doi.org/10.14778/2336664.2336678
https://parquet.apache.org/
https://parquet.apache.org/
https://doi.org/10.14778/2536222.2536235
https://doi.org/10.14778/2536222.2536235
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://doi.org/10.1145/3318464.3386136
https://dl.acm.org/citation.cfm?id=3360438
https://doi.org/10.14778/3446095.3446102
https://doi.org/10.14778/3554821.3554832
https://clickhouse.com/
https://clickhouse.com/
https://doi.org/10.1145/191839.191872
https://doi.org/10.1145/191839.191872
https://github.com/brianfrankcooper/YCSB/blob/master/workloads/workloadc/
https://github.com/brianfrankcooper/YCSB/blob/master/workloads/workloadc/
https://doi.org/10.1145/3448016.3457292
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://github.com/cmu-db/benchbase
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doris.apache.org/
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
https://doi.org/10.1145/130283.130291
https://doi.org/10.14778/3415478.3415571
https://doi.org/10.14778/3554821.3554841
https://doi.org/10.1145/2452376.2452456
https://hive.apache.org/

[38] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,
XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-Based HTAP Database. Proc. VLDB
Endow. 13, 12 (sep 2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[39] Jean-François Im, Kishore Gopalakrishna, Subbu Subramaniam, Mayank Shri-
vastava, Adwait Tumbde, Xiaotian Jiang, Jennifer Dai, Seunghyun Lee, Neha
Pawar, Jialiang Li, and Ravi Aringunram. 2018. Pinot: Realtime OLAP for 530
Million Users. In Proceedings of the 2018 International Conference on Management
of Data (SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, 583–594. https://doi.org/10.1145/3183713.3190661 event-place: Houston,
TX, USA.

[40] ByteDance Inc. 2023. Zhuxiaobang App. https://www.zhuxiaobang.com/.
[41] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir Saman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714 http://arxiv.org/abs/1903.05714

[42] Xiaowei Jiang, Yuejun Hu, Yu Xiang, Guangran Jiang, Xiaojun Jin, Chen Xia,
Weihua Jiang, Jun Yu, Haitao Wang, Yuan Jiang, Jihong Ma, Li Su, and Kai Zeng.
2020. Alibaba Hologres: A Cloud-Native Service for Hybrid Serving/Analytical
Processing. Proc. VLDB Endow. 13, 12 (sep 2020), 3272–3284. https://doi.org/10.
14778/3415478.3415550

[43] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-Query Re-Optimization of
Sub-Optimal Query Execution Plans. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data (Seattle, Washington, USA) (SIG-
MOD ’98). Association for Computing Machinery, New York, NY, USA, 106–117.
https://doi.org/10.1145/276304.276315

[44] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs.
Proc. VLDB Endow. 2, 2 (aug 2009), 1378–1389. https://doi.org/10.14778/1687553.
1687564

[45] Dimitrios Koutsoukos, Raghav Bhartia, Ana Klimovic, and Gustavo Alonso. 2021.
How to use Persistent Memory in your Database. https://doi.org/10.48550/
ARXIV.2112.00425

[46] Per-Åke Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-Time Analytical Process-
ing with SQL Server. Proc. VLDB Endow. 8, 12 (aug 2015), 1740–1751. https:
//doi.org/10.14778/2824032.2824071

[47] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha,
and Wook-Shin Han. 2017. Parallel Replication across Formats in SAP HANA
for Scaling out Mixed OLTP/OLAP Workloads. Proc. VLDB Endow. 10, 12 (aug
2017), 1598–1609. https://doi.org/10.14778/3137765.3137767

[48] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for
Computing Machinery, New York, NY, USA, 743–754. https://doi.org/10.1145/
2588555.2610507

[49] Daniel Lemire. 2023. Effective compression using frame-of-reference and delta
coding. https://lemire.me/blog/2012/02/08/effective-compression-using-frame-
of-reference-and-delta-coding/. [Online; accessed 02-March-2023].

[50] Feng Li, M. Tamer Özsu, Gang Chen, and Beng Chin Ooi. 2014. R-Store: A
scalable distributed system for supporting real-time analytics. In 2014 IEEE 30th
International Conference on Data Engineering. 40–51. https://doi.org/10.1109/
ICDE.2014.6816638

[51] Bin Liu and Elke A. Rundensteiner. 2005. Revisiting Pipelined Parallelism in
Multi-Join Query Processing. In Proceedings of the 31st International Conference
on Very Large Data Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment,
829–840.

[52] Chen Luo, Pinar Tözün, Yuanyuan Tian, Ronald Barber, Vijayshankar Raman,
and Richard Sidle. 2019. Umzi: Unified multi-zone indexing for large-scale
HTAP. In Advances in Database Technology-22nd International Conference on
Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019.
OpenProceedings. org, 1–12.

[53] Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He,
Beinan Wang, Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao
Li, Peng Du, Girish Baliga, and Maosong Fu. 2022. From Batch Processing to
Real Time Analytics: Running Presto® at Scale. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). 1598–1609. https://doi.org/10.1109/
ICDE53745.2022.00165

[54] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, AlexandraWang, et al. 2021.
Greenplum: A Hybrid Database for Transactional and Analytical Workloads. In
Proceedings of the 2021 ACM SIGMOD International Conference on Management
of Data. 2530–2542.

[55] Yunus Ma, Siphrey Xie, Henry Zhong, Leon Lee, and King Lv. 2022. HiEngine:
How to Architect a Cloud-Native Memory-Optimized Database Engine. In Pro-
ceedings of the 2022 International Conference onManagement of Data (Philadelphia,
PA, USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY,
USA, 2177–2190. https://doi.org/10.1145/3514221.3526043

[56] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37–50.

[57] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. Sap hana–the
evolution of an in-memory dbms from pure olap processing towards mixed
workloads. Datenbanksysteme für Business, Technologie und Web (BTW 2017)
(2017).

[58] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive
SQL Analysis at Web Scale. Proc. VLDB Endow. 13, 12 (sep 2020), 3461–3472.
https://doi.org/10.14778/3415478.3415568

[59] memcached. 2018. memcached - a distributed memory object caching system.
https://memcached.org/blog/modern-lru/.

[60] Elena Milkai, Yannis Chronis, Kevin P Gaffney, Zhihan Guo, Jignesh M Patel,
and Xiangyao Yu. 2022. How Good is My HTAP System?. In Proceedings of the
2022 International Conference on Management of Data. 1810–1824.

[61] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik
Eom. 2012. SFS: Random Write Considered Harmful in Solid State Drives. In
10th USENIX Conference on File and Storage Technologies (FAST 12). USENIX As-
sociation, San Jose, CA. https://www.usenix.org/conference/fast12/sfs-random-
write-considered-harmful-solid-state-drives

[62] Niloy Mukherjee, Shasank Chavan, Maria Colgan, Mike Gleeson, Xiaoming He,
Allison Holloway, Jesse Kamp, Kartik Kulkarni, Tirthankar Lahiri, Juan Loaiza,
Neil Macnaughton, Atrayee Mullick, Sujatha Muthulingam, Vivekanandhan Raja,
and Raunak Rungta. 2016. Fault-tolerant real-time analytics with distributed
Oracle Database In-memory. In 2016 IEEE 32nd International Conference on Data
Engineering (ICDE). 1298–1309. https://doi.org/10.1109/ICDE.2016.7498333

[63] MySQL. 2023. MySQL. https://www.mysql.com/. [Online; accessed 24-January-
2023].

[64] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (jun 2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[65] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transactional/-
analytical processing: A survey. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1771–1775.

[66] Sriram Padmanabhan, Timothy Malkemus, Ramesh C. Agarwal, and Anant
Jhingran. 2001. Block Oriented Processing of Relational Database Operations
in Modern Computer Architectures. In Proceedings of the 17th International
Conference on Data Engineering. IEEE Computer Society, USA, 567–574.

[67] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, in-Memory
Time Series Database. Proc. VLDB Endow. 8, 12 (aug 2015), 1816–1827. https:
//doi.org/10.14778/2824032.2824078

[68] Ivy B Peng, Maya B Gokhale, and Eric W Green. 2019. System evaluation of the
intel optane byte-addressable nvm. In Proceedings of the International Symposium
on Memory Systems. 304–315.

[69] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-
tasia Ailamaki. 2016. Adaptive NUMA-Aware Data Placement and Task Sched-
uling for Analytical Workloads in Main-Memory Column-Stores. Proc. VLDB
Endow. 10, 2 (oct 2016), 37–48. https://doi.org/10.14778/3015274.3015275

[70] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexan-
der Böhm, Anastasia Ailamaki, and Kai-Uwe Sattler. 2015. Scaling up mixed
workloads: a battle of data freshness, flexibility, and scheduling. In Performance
Characterization and Benchmarking. Traditional to Big Data: 6th TPC Technology
Conference, TPCTC 2014, Hangzhou, China, September 1–5, 2014. Revised Selected
Papers 6. Springer, 97–112.

[71] Redis. 2023. Redis. https://redis.io//. [Online; accessed 24-January-2023].
[72] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer. 2017. Lit-

tleTable: A Time-Series Database and Its Uses. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD ’17). Association for
Computing Machinery, New York, NY, USA, 125–138. https://doi.org/10.1145/
3035918.3056102 event-place: Chicago, Illinois, USA.

[73] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. 2013. Micro Adaptivity
in Vectorwise. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13). Association
for Computing Machinery, New York, NY, USA, 1231–1242. https://doi.org/10.
1145/2463676.2465292

[74] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun
Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, Felix Weigel,
David Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur,
Qiang Zeng, Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gubichev,
Amr El-Helw, Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei, Thanh Do,

3541

https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/3183713.3190661
https://www.zhuxiaobang.com/
http://arxiv.org/abs/1903.05714
https://doi.org/10.14778/3415478.3415550
https://doi.org/10.14778/3415478.3415550
https://doi.org/10.1145/276304.276315
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.48550/ARXIV.2112.00425
https://doi.org/10.48550/ARXIV.2112.00425
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.14778/2824032.2824071
https://doi.org/10.14778/3137765.3137767
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://lemire.me/blog/2012/02/08/effective-compression-using-frame-of-reference-and-delta-coding/
https://lemire.me/blog/2012/02/08/effective-compression-using-frame-of-reference-and-delta-coding/
https://doi.org/10.1109/ICDE.2014.6816638
https://doi.org/10.1109/ICDE.2014.6816638
https://doi.org/10.1109/ICDE53745.2022.00165
https://doi.org/10.1109/ICDE53745.2022.00165
https://doi.org/10.1145/3514221.3526043
https://doi.org/10.14778/3415478.3415568
https://memcached.org/blog/modern-lru/
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://doi.org/10.1109/ICDE.2016.7498333
https://www.mysql.com/
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/3015274.3015275
https://redis.io//
https://doi.org/10.1145/3035918.3056102
https://doi.org/10.1145/3035918.3056102
https://doi.org/10.1145/2463676.2465292
https://doi.org/10.1145/2463676.2465292

Colin Zheng, Goetz Graefe, Somayeh Sardashti, Ahmed M. Aly, Divy Agrawal,
Ashish Gupta, and Shiv Venkataraman. 2018. F1 Query: Declarative Querying at
Scale. Proc. VLDB Endow. 11, 12 (aug 2018), 1835–1848. https://doi.org/10.14778/
3229863.3229871

[75] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.
1109/ICDE.2019.00196

[76] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden. 2020. Large-
Scale in-Memory Analytics on Intel(®) Optane(™) DC Persistent Memory. In
Proceedings of the 16th International Workshop on Data Management on New Hard-
ware (Portland, Oregon) (DaMoN ’20). Association for Computing Machinery,
New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3399666.3399933

[77] Xuanhua Shi, Zezhao Feng, Kaixi Li, Yongluan Zhou, Hai Jin, Yan Jiang, Bing-
sheng He, Zhijun Ling, and Xin Li. 2020. ByteSeries: An in-Memory Time
Series Database for Large-Scale Monitoring Systems. In Proceedings of the
11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 60–73. https:
//doi.org/10.1145/3419111.3421289

[78] Spark. 2023. Apache Spark. https://spark.apache.org/. [Online; accessed 24-
January-2023].

[79] Jason Sun, Haoxiang Ma, Li Zhang, Huicong Liu, Haiyang Shi, Shangyu Luo,
Kai Wu, Kevin Bruhwiler, Cheng Zhu, Yuanyuan Nie, Jianjun Chen, Lei Zhang,
and Yuming Liang. 2023. Accelerating Cloud-Native Databases with Distributed
PMem Stores. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE). 3043–3057. https://doi.org/10.1109/ICDE55515.2023.00233

[80] TPC. 2023. TPC-H Homepage. https://www.tpc.org/tpch/. [Online; accessed
24-January-2023].

[81] Li Wang, Minqi Zhou, Zhenjie Zhang, Yin Yang, Aoying Zhou, and Dina Bitton.
2016. Elastic Pipelining in an In-Memory Database Cluster. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
1279–1294. https://doi.org/10.1145/2882903.2882904

[82] Yun Wang. 1995. DB2 Query Parallelism: Staging and Implementation. In Pro-
ceedings of the 21th International Conference on Very Large Data Bases (VLDB ’95).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 686–691.

[83] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and modeling non-volatile memory systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 496–508.

[84] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: a hybrid analytical engine towards query
fusion for structured and unstructured data. Proceedings of the VLDB Endowment
13, 12 (2020), 3152–3165.

[85] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. 2014. Druid: A Real-Time Analytical Data Store. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data (SIGMOD
’14). Association for Computing Machinery, New York, NY, USA, 157–168. https:
//doi.org/10.1145/2588555.2595631 event-place: Snowbird, Utah, USA.

[86] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory.. In FAST, Vol. 20. 169–182.

[87] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, et al. 2019. AnalyticDB:
real-time OLAP database system at Alibaba cloud. Proceedings of the VLDB
Endowment 12, 12 (2019), 2059–2070.

3542

https://doi.org/10.14778/3229863.3229871
https://doi.org/10.14778/3229863.3229871
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1145/3399666.3399933
https://doi.org/10.1145/3419111.3421289
https://doi.org/10.1145/3419111.3421289
https://spark.apache.org/
https://doi.org/10.1109/ICDE55515.2023.00233
https://www.tpc.org/tpch/
https://doi.org/10.1145/2882903.2882904
https://doi.org/10.1145/2588555.2595631
https://doi.org/10.1145/2588555.2595631

	Abstract
	1 Introduction
	2 Data Models and System Architecture
	2.1 Data Models
	2.2 System Architecture

	3 Ingestion and Pre-Computation
	4 Efficient and adaptive query processing
	4.1 Query Cache and Adaptive Statistics with Dynamic Sampling
	4.2 Query Rewrite with Materialized Views
	4.3 Adaptive Parallelism Control
	4.4 Resource Isolation and Fair Scheduling
	4.5 Lightweight API for Single Node Serving Queries
	4.6 Dirty Read for Sub-second Data Freshness

	5 Hierarchical Cache with PMem
	5.1 Replacement Policy
	5.2 NUMA-Aware Async PMem Write
	5.3 ZonedStore Based SSD Cache

	6 Efficient columnar data format
	7 Performance Study
	7.1 Workloads and Experiment Setup
	7.2 Hybrid Performance
	7.3 Production Performance

	8 Production Experiences and Lessons Learned
	9 Related Work
	10 Conclusions
	Acknowledgments
	References

