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ABSTRACT

This paper presents AutoSteer, a learning-based solution that au-
tomatically drives query optimization in any SQL database that
exposes tunable optimizer knobs. AutoSteer builds on the Bandit op-
timizer (Bao) and extends it with new capabilities (e.g., automated
hint-set discovery) to minimize integration effort and facilitate
usability in both monolithic and disaggregated SQL systems. We
successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-
SQL, MySQL, and DuckDB - five popular open-source database en-
gines with diverse query optimizers. We then conducted a detailed
experimental evaluation with public benchmarks (JOB, Stackover-
flow, TPC-DS) and a production workload from Meta’s PrestoDB
deployments. Our evaluation shows that AutoSteer can not only
outperform these engines’ native query optimizers (e.g., up to 40%
improvements for PrestoDB) but can also match the performance
of Bao-for-PostgreSQL with reduced human supervision and in-
creased adaptivity, as it replaces Bao’s static, expert-picked hint-sets
with those that are automatically discovered. We also provide an
open-source implementation of AutoSteer together with a visual
tool for interactive use by query optimization experts.
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1 INTRODUCTION

Our research community has been making rapid strides in applying
modern machine learning (ML) techniques to tackle longstanding
problems in databases [6, 24, 48]. Learned query optimization lies at
the forefront of this progress [51]. Various techniques from query-
driven and data-driven to their combinations have been proposed
[19, 20, 23] — not only to improve core query optimization tasks
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Figure 1: AutoSteer is a framework for steering query opti-
mizers of SQL databases autonomously. For each query, we
search for effective rewrite rules and store them in the query
span. Then, we use a greedy algorithm to explore alternative
query plans efficiently. The results can be used to train pre-
dictive models or to debug existing query optimizers.

such as cardinality estimation [22, 23, 31, 32, 37, 39, 43], join order
enumeration [29], or query rewriting [50], but also to build end-to-
end query optimizers replacing [28, 42] or enhancing [27, 30, 44, 47]
traditional ones. The practicality and robustness of these techniques
are critical when applying them in industrial settings [47].

The so-called “steering approach” of Bao (Bandit optimizer) has
been a successful example of a practical solution due to its empha-
sis on shortening training times, adaptivity to dynamic workloads,
and ability to integrate with traditional optimizers [27]. Given a
pre-determined collection of “hint-sets” (a hint-set indicates which
query rewrite rules (RRs) should be considered in query optimiza-
tion), Bao learns to steer an already existing query optimizer by
helping it choose the right hint-set to use for every incoming query.
This way, potential planning mistakes of traditional query optimiz-
ers can be avoided. As Bao’s initial success continues to drive wider
adoption in increasingly more sophisticated deployment and work-
load settings [3, 47], it also brings new challenges to the surface.
We tackle two such challenges in this paper:

Integration effort: Adopting Bao to a new database system re-
quires coming up with the right collection of hint-sets. In the origi-
nal approach developed for PostgreSQL [1], a static collection of
48 hint-sets is manually selected based on deep knowledge of the
underlying PostgreSQL optimizer [5], after which Bao indepen-
dently learns to choose among these hint-sets on a per-query basis.
Unfortunately, manually engineering feature hint-sets can be quite
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challenging, as first noted by Negi et al. [30]. It is especially hard to
hand-select hint-sets for those systems with a high number of pos-
sible hints to explore (e.g., Microsoft’s query engine SCOPE has 256
rewrite rules, leading to 22°¢ possibilities to consider [30]). While it
is possible to handcraft effective hint-sets for almost every database
system [7-10], the knobs available in a particular system are not
only different from all the other systems but are also implemented
at different granularities. For example, PostgreSQL, PrestoDB, and
MySQL expose these knobs at a session level [7-9], while SQLServer
extends the structured query language to embed the knobs directly
within the queries [10]. Therefore, integrating Bao into a new sys-
tem requires deep insights and a solid understanding of the query
optimizer to determine a promising collection of hint-sets. This
impedes a generic application of Bao to new database systems and
their optimizers. Instead, we need a more systematic approach that,
given a SQL database, automates the hint-set selection process
as well as minimizing the overall expert knowledge and manual
engineering effort involved in integrating Bao.

Use in disaggregated settings: Database systems have been evolv-
ing away from their traditional monolithic architectures (e.g., fed-
erated, connector-based, coordinator/worker-style, data lake, and
lakehouse querying systems [4, 13, 26, 34, 35, 40, 45, 49]). In such
disaggregated settings with loosely-coupled database components,
query optimizers must operate in complex and dynamic environ-
ments, often with limited access to accurate statistics and meta-
data [16, 21, 26]. Therefore, they often lack reliable cost models and
rely on rules or heuristics for optimization. As such, an ML-based
approach that can be easily integrated and automatically self-adapts
could bring significant improvements to query performance [2, 41].

In this paper, we present AutoSteer, a new “plug-and-play” query
optimization solution that builds on and extends Bao with new capa-
bilities so it can be easily integrated and used with any SQL database
system that exposes tunable optimization knobs. As illustrated in
Figure 1, given a list of knobs as input (knobs.txt) and interacting
with the database through SQL and explain statements (DB Connec-
tor), our solution uses a greedy algorithm to systematically explore
promising hint-sets. This approach takes advantage of the notion
of “query spans” [30] together with the compositional structure of
advantageous hint combinations. This is in contrast to manually
generated static hint-sets [27] and other previous approaches that
rely on leveraging cost models or random sampling [30, 47]. Further-
more, AutoSteer generates hint-sets dynamically on a per-query
basis, which maximizes workload adaptivity.

Furthermore, AutoSteer also provides an interactive usage mode
to support human database experts in debugging and improving
existing optimizers. For example, AutoSteer automatically discovers
new hint-sets, generates alternative query plans, and evaluates the
performance of the generated plans. This approach can assist query
optimizer experts in gaining a deeper understanding of the cases
where specific rewrite rules have a negative impact.

Overall, our extensions to Bao significantly expand the prac-
tical applicability of steering optimizers [27, 30, 47]. We provide
experimental evidence from AutoSteer’s use in five open-source
databases. We further tested our solution using a real PrestoDB
workload deployed at Meta, showing that it can also be effectively
used in large-scale industrial settings.
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Contributions. The key contributions of this paper include:
e We introduce AutoSteer, a practical learning-based framework
to steer existing Cascades-style query optimizers.
AutoSteer builds on and extends Bao with a novel hint-set
discovery approach, which helps to generalize the technology
behind Bao for a wide variety of SQL systems.
We provide an open-source prototype implementation of Au-
toSteer? together with an interactive tool® to help human ex-
perts better understand AutoSteer’s results. Our prototype has
“plug and play” support for PrestoDB, PostgreSQL, SparkSQL,
MySQL, and DuckDB and is extensible to other SQL engines.
We demonstrate AutoSteer’s practicality, generality, and effec-
tiveness in query performance improvement via an extensive
experimental evaluation based on several public benchmarks
and a production workload tested inside Meta.
Based on the experience gained along the course of this project,
we share a few key insights which we believe can inform future
work in query optimizer development.

2 RELATED WORK

Traditional Query Optimization. Our work primarily focuses on
improving query optimization in SQL databases with traditional,
Cascades-style query optimizers. First proposed in the 1990s [17],
Cascades is an extensible query optimization framework that has
been widely used in many industrial-scale as well as open-source
database systems (e.g., PrestoDB [35], SCOPE [49], SparkSQL/Cata-
lyst [13], Greenplum/Orca [36], Apache Calcite [14]). The Cascades
framework follows a unified approach to logical/physical query
planning by supporting both rule- and cost-based optimization,
which is achieved by a set of transformation (logical) and imple-
mentation (physical) rules that are applied to the query plan. While
rewrite rules drive logical planning, physical planning requires a
reliable model to estimate the costs of query plan alternatives. Cost
models, in turn, rely on the availability of accurate, up-to-date sta-
tistics and cardinality estimates [18]. Since mistakes happen, most
industrial systems provide various workarounds to minimize the
impact of such mistakes in their production deployments. For ex-
ample, most of these systems support query hinting mechanisms as
a tool to guide the optimizer’s choices in exploring the plan search
space more effectively [7-10, 15, 33]. Furthermore, in big data sys-
tems with federated architectures, such as PrestoDB [35], SCOPE
[49], or SparkSQL [13], rule-based optimization is more heavily
used in lack of the required statistics and cost models, which are
harder to maintain in their larger scale and more heterogeneous
production environments [16, 26].

Learned Query Optimization. Unsolved challenges of traditional
query optimization have been investigated by several novel ap-
proaches that leverage recent advances in ML [51]. While there are
too many to enumerate here [6], we believe it is sufficient to give a
few representative examples. ML has been applied to improve both
key components of a query optimizer such as the cardinality estima-
tor [22, 23, 31, 32, 37, 39, 43] and the query planner [29, 44, 50], as
well as the query optimizer itself as a whole [28, 42]. As an example
of the use of ML in query planning, the LearnedRewrite approach
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recently proposed by Zhou et al. uses Monte Carlo tree search to
find better orders in which rewrite rules should be applied, reducing
both query optimization and execution time in PostgreSQL’s query
optimizer [50]. As another example, HybridQO proposed by Yu et
al. can produce better join orders by combining cost- and learning-
based optimization and leveraging an optimizer’s hint functionality
in candidate plan generation [44]. In contrast, end-to-end learned
query optimizers such as Neo [28] and Balsa [42] are designed as
more performant drop-in replacements for traditional ones. While
Neo bootstraps itself by learning from an expert optimizer (e.g.,
PostgreSQL’s query optimizer), Balsa leverages a simulation-based
approach. Both approaches have been shown to outperform open-
source and commercial query optimizers, but only under certain
workload assumptions (e.g., static datasets and schemas) and at
the expense of long training times, which prohibits their frequent
retraining. This motivated the more practical approach taken in
Bao [27], which aims at steering traditional optimizers towards
making better plan choices instead of entirely replacing them.
Steering Query Optimizers with Bao. The Bandit optimizer
(Bao) learns to assist an already existing optimizer by providing it
with hints, indicating which rewrite rules (RRs) should be turned
off during query optimization [27]. Providing hints to a database
system does not involve intrusive changes, as most database sys-
tems already expose optimizer knobs or flags that can be configured.
Database experts and administrators can use these knobs to enable
or disable specific RRs.

Bao was first applied to PostgreSQL, where it leveraged n = 48
different hint-sets to generate n (not necessarily different) query
execution plans (QEP). Each hint-set disables a subset of the rewrite
rules and can be seen as a simpler version of the default PostgreSQL
query optimizer. In the second step, a tree convolutional neural net-
work (TCNN) predicts the cost (e.g., the query latency or the CPU
time) of each QEP. Based on the generated plan alternatives and
their predicted costs, Bao decides which QEP should be executed.
Instead of always choosing the plan with the best-predicted perfor-
mance, Bao uses Thompson sampling to balance the exploration of
new, alternative QEPs and the exploitation of plans already known
to be efficient. Next, PostgreSQL executes the selected plan and
records the execution time. Finally, both plan and execution times
are added to Bao’s experience, which is used to periodically re-train
the model. After PostgreSQL, Bao has also been successfully applied
to several commercial and open-source database systems, includ-
ing Vertica, Microsoft Azure Synapse (SQL Server), and Amazon
RedShift [3].

To assess Bao’s industrial promise, Negi et al. explored how to
apply Bao at the scale of Microsoft’s SCOPE workloads [30]. SCOPE
is Microsoft’s internal query processing system for big data work-
loads, which primarily uses a rule-based query optimizer, though
it can also support cost-based optimization through its cost model
[49]. Negi et al’s work on “Bao-for-SCOPE” introduced a number of
key concepts which we also leverage in our work: rule categories,
rule configurations, rule signatures, and job/query spans. There are
four rule categories: required, off-by-default, on-by-default, and
implementation. While required rules must be turned on to gen-
erate valid query plans, only rules from the other categories can
be turned off to generate new query plans. A rule configuration is
a bit vector specifying which rules are turned on and off during
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query optimization. Rule signatures track which rules have effec-
tively contributed to the final query plan during the optimization. In
addition to the rule signature, a job/query span contains only non-
required rules. Based on these definitions, Negi et al. introduced a
randomized configuration search to generate M rule configurations
that produce possibly yet unknown QEPs.

In follow-up work, Zhang et al. built QO-Advisor to prepare Bao-
for-SCOPE for actual production deployments at Microsoft [47].
This required adding support to deal with various operational chal-
lenges, such as the steering overhead, unexpected performance re-
gressions, and the need for debugging. To reduce steering overhead,
expensive tasks such as query span approximation and alternative
plan exploration are done offline, as well as utilizing the cost model
provided by SCOPE where possible.

All previous adoptions of Bao described above were done as
custom integrations, each time targeting a particular system con-
sidering its specific architecture and workloads. Our approach fun-
damentally differs from these due to its focus on generality, i.e.,
making Bao more easily applicable in any SQL database system.
The key enabler for this has been our automated hint-set discovery
approach, which not only removes the need for manually designing
system-specific hint-sets, but also makes them more flexible to use
under changing workload conditions. Unlike previous Bao exten-
sions [30, 47], AutoSteer is publicly available? to enable use across
a wide range of SQL systems.

3 AUTOSTEER

In this paper, we present AutoSteer — a practical framework for
adding Bao-style, steering-based learned query optimization capa-
bility to any SQL database that: (i) has a Cascades-style, rule-based
query optimizer and (ii) exposes binary knobs to configure its rules.

Given a database system (DBMS) with an existing rule-based
query optimizer, we aim to find semantically equivalent query plan
alternatives that execute faster than the default plan generated by
that system’s native query optimizer. We follow the same general
learned query optimization framework as in Bao [27]: Several hand-
selected static hint-sets define which rewrite rules of the DBMS are
turned on and off during optimization. Bao then leverages these
different hint-sets to generate alternative query plans and picks the
cheapest plan for execution using its TCNN-based neural prediction
model. This approach is shown to be effective in finding query plans
that are better than the ones that the underlying query optimizer
can find, but there are two fundamental limitations:

(1) Database experts must manually identify a good collection
of static hint-sets from scratch for each system Bao is to be
integrated. Such an approach requires a deep understanding of
that system and its optimizer.

Scaling the number of hint-sets comes at the cost of additional
optimization overhead. Bao always considers the same pre-
determined collection of hint-sets, since they are chosen in ad-
vance and independent of the actual query workloads, whether
they impact a query’s optimization or not.

@

~

In the following, we introduce AutoSteer as a new approach that
overcomes these limitations. AutoSteer’s key focus is on practicality.
It builds on and extends Bao to make it more easily and adaptively
applicable in SQL databases, no matter how simple or sophisticated
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Figure 2: This figure illustrates AutoSteer-G, which communicates with the DBMS through a connector that is completely
external to the DBMS. DBMS components are gray, and AutoSteer’s components are blue. AutoSteer has two different execution
modes: (1) generate training data and build the learned model (Training), (2) optimize queries at run time using the model
(Inference). AutoSteer’s results can also be interactively explored in QO-Insight [12] for debugging and analysis.

their optimizers are. As such, it generalizes recent industrial efforts
on integrating Bao to specific systems [3, 30, 47], thereby facilitat-
ing broader adoption of this novel technology in a larger number
and variety of DBMSs in the ecosystem. To maximize practicality,
AutoSteer has been designed to support several usage options in
terms of its: (i) DBMS integration level (custom vs. generic), (ii)
execution mode (training vs. inference), and (iii) interaction mode
(steering vs. debugging). We will describe these options in detail as
part of the following subsections.

3.1 Architectural Overview

In Figure 3, we sketch two alternative ways of integrating AutoSteer
into an existing DBMS: (1) AutoSteer-Generic leverages an exter-
nal connector whose communication is purely based on SQL and
explain statements; (2) AutoSteer-Custom implements a connec-
tor which is directly integrated into the DBMS optimizer. In this
subsection, we assume AutoSteer-G, and provide further details on
these two integration options in Section 3.5.

In Figure 2, we illustrate a typical SQL query optimization
pipeline in a DBMS and show our AutoSteer-G solution in action.
First, we provide a text file containing the knobs exposed by the
optimizer to AutoSteer (0). Based on these knobs, AutoSteer will
automatically explore and discover hint-sets without additional
user input. Furthermore, instead of sending them to the DBMS,
users and applications submit all queries to AutoSteer (@).

For each query, AutoSteer approximates a ‘query span’ by turn-
ing off rewrite rules (RR) systematically ). Query spans track those
RRs that actually rewrite the query plan. E.g., when such RRs are
turned off, the optimizer would generate an alternative plan [30] (cf.
to Section 3.2 for more details). As we are assuming AutoSteer-G in

AutoSteer-G External Connector Ml
AutoStcer-C B ot SR

Figure 3: Integration Options: AutoSteer-G and -C.

DBMS
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Figure 2, we use an external connector to approximate query spans:
First, it configures the DBMS’s RRs through its exposed knobs and
then lets the DBMS explain the query plan (3) & @). We call the
RRs effective if the plan changes and add them to the query span.

Based on the query span (5), AutoSteer searches for alternative
query plans using a greedy hint-set exploration strategy, which
is explained in more detail in Section 3.3. For a query span with
n effective RRs, the algorithm first creates n hint-sets, with each
hint-set disabling one of the query span’s RRs. In AutoSteer-G, as
a next step, we send the query and each hint-set to the external
connector (6 and let the DBMS explain the resulting plans @.

For the following steps, we differentiate two execution modes:
(1) Training mode: In the training mode, we execute the query
plans from step (&) and track their execution times @. Then, the
aforementioned greedy search explores the search space of the
beneficial hint-sets* by iteratively combining smaller beneficial
hint-sets to create larger hint-sets, which might be beneficial as
well. Later, we leverage the query execution plans (QEPs) and their
run times to train a tree convolutional deep neural network @.
(2) Inference mode: In contrast to the training mode, where QEPs
have been executed to find out their actual run times, in the infer-
ence mode, we leverage the pre-trained tree convolutional neural
network (TCNN)? to predict plan execution times @. As before,
when a query is submitted, we use the greedy search to find promis-
ing hint-sets more efficiently by pruning those hint-sets expected
to perform poorly. Once the greedy search finishes, we sort all
explored hint-sets by their predicted execution times and use con-
textual bandit to pick one hint-set to steer the query.

Finally, AutoSteer supports two user interaction modes:

(1) Steering mode: AutoSteer steers query execution at run time
and uses the pre-trained TCNN to predict the execution time of the
hint-sets (steps @ - @), as described above).

4We call a hint-set beneficial iff it reduces the execution time wrt. the default plan.
5The DBMS could also be leveraged here if it provides a reliable cost model. In our
experiments with PostgreSQL, however, we observed that the learned model leads to
choosing better hint-sets and QEPs than the cost model.



(2) Debugging mode: AutoSteer exports the generated and evalu-
ated hint-sets alongside the queries (9). These results can then be
interactively explored in QO-Insight [12] (0.

3.2 Query Spans

In Bao, hint-sets define which rewrite rules (RRs) are turned on and
off, and they are used to generate alternative query plans [27]. We
cannot consider all the exponentially many hint-sets as database
systems usually implement several tens to hundreds of RRs. How-
ever, creating a fixed number of valuable hint-sets, as suggested
in [27], limits the search space and requires a deep understanding of
the system’s query optimizer and the workloads. Furthermore, Bao
considers the same hint-sets for all queries regardless of whether
the hint-sets turn off rules impacting the plan.

Instead, Negi et al. consider effective rules only (rules that actually

rewrite the plan) and therefore introduce the concept of query
spans [30]. A query span belongs to exactly one query and contains
all the non-required rules that can potentially modify the query plan
during its optimization. A rule r is non-required if the optimizer can
generate a valid query plan without r. Calculating the true query
span is challenging, as rules might have unknown dependencies
on other rules. For example, turning off a set of rules could result
in a different intermediate query plan that causes other alternative
rules to become active.
Batch Approximation. Negi et al. [30] use a heuristics-based
approximation of query spans instead. They leverage the SCOPE
system for their work, whose query optimizer already tracks the
effective RRs. Then, they turn off all effective RRs in one batch, and
the process repeats until it does not detect other alternative rules.
Iterative Approximation. Alternatively, we use a more fine-
grained, iterative approach: We iteratively turn off one effective
rule (and its dependencies) at a time and check if other rules be-
come effective. While this approach requires the query optimizer
to run more often, it tracks rule dependencies more accurately.
Later, we can utilize these dependencies during the exploration of
hint-sets.

AutoSteer’s integration level also impacts the query span ap-
proximation and the detected rules. When a connector is directly
integrated into the query optimizer, it can track all rules program-
matically in one pass. However, an external connector will not detect
those RRs that change the query plan at an algorithmic level be-
cause such changes are usually not included in the explained query
plan. Of course, the more effective RRs AutoSteer finds the more and
potentially better hint-sets it can generate later. We evaluate the
impact of the integration level for PrestoDB in Section 4.4.

While PrestoDB’s optimizer implements 170 RRs, our experi-
ments with AutoSteer-C and the iterative query span approxima-
tion for the 137 JOB queries show that only a few rules (< 20)
effectively contribute to the query plans. This observation reduces
the theoretical search space of hint-sets from 2170 to 220, As 220
configurations are still too many to explore, we propose a greedy
exploration approach, as described next.

3.3 Dynamic Exploration of Hint-Sets

For a given SQL query, AutoSteer’s goal is to find the most bene-
ficial hint-sets that steer the optimizer toward better query plans.
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Although there are 2" potential hint-sets for a query span with n
non-required effective RRs, in our experiments in Section 4 with
several different systems and workloads, we observed that only a
few hint-sets are beneficial in practice. AutoSteer aims to find those
few beneficial hint-sets as efficiently as possible.

Negi et al. propose an algorithm that randomly generates M
hint-sets first and then filters for the most promising query plans
according to SCOPE’s cost model [30]. However, this approach
requires an accurate cost model. Otherwise, we must execute the
plans to determine whether they are beneficial. Furthermore, our
experimental findings in Section 4.5 suggest:

(1) Most beneficial hint-sets consist of smaller, beneficial hint-sets.
(2) Most beneficial hint-sets are small (fewer than four knobs).

Based on these two empirical observations, we introduce a more
structured and efficient way to explore the hint-sets. Our proposed
algorithm, outlined in pseudocode in Listing 1, utilizes a greedy
approach consisting of three building blocks:

M First, we use the empty hint-set {} to execute the default plan,
serving us as a baseline (i.e., the native optimizer’s optimized plan)
in line 4. In results, we map the hint-sets to their resulting query
plans and execution times. The function exec executes the given
query and hint-set, and returns the query plan and the execution
time. When infer=true, AutoSteer does not execute the plan but
instead uses a pre-trained model to predict its run time.

B In the second block starting in line 7, we leverage the query
span’s effective RRs to generate singleton hint-sets, which turn off
exactly one rule. Then, we let the DBMS execute these and track
their resulting query plans and execution times in lines 11 and 12
if they perform better than the default plan. Please note that the
greedy search is easily extendable. E.g., we could consider only
those hint-sets whose improvements exceed a certain threshold.

1 def explore_hint_sets(query, query_span, infer):
results = dict() # Hint-set — (QP, exec. time)
# 1. Execute baseline ({} is the empty hint-set)
results[{}] = exec(query, {3}, infer)
singleton_hint_sets = []
# 2. Run query with one rule turned off at a time
for rule in query_span.effective_rules:
QP, exec_time = exec(query, {rule}, infer)
# Keep track of beneficial hint-sets only
results[{rule}] = {QP, exec_time}
if exec_time < results[{}].exec_time: # Beneficial?
singleton_hint_sets.push({rule})
# 3. Run a bottom-up greedy search
hint_sets = copy(singleton_hint_sets)
while not hint_sets.is_empty():
hs = hint_sets.pop()
# Generate larger hint-sets
combined_hs = combine(hs, singleton_hint_sets)
for new_hs in combined_hs:
QP, exec_time = exec(query, new_hs, infer)
resultsCnew_hs] = {QP, exec_time}
if exec_time < results[{}].exec_time: # Beneficial?
hint_sets.push(new_hs)
return results

Gen. Singletons Baseline

Greedy Exploration

23
24

Listing 1: Pseudocode of AutoSteer’s greedy hint-set search.
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M Third, the bottom-up greedy hint-set exploration loops over the
previously seen beneficial hint-sets (line 15). We extract one hint-
set at a time from the queue of beneficial hint-sets (line 16) and
generate all other combinations with other singleton hint-sets in
line 18. Note that we do not show the handling of alternative rules
and tracking of the best-performing hint-sets (which is necessary
for the inference mode) due to space limitations.

Figure 4 visualizes the algorithm for an example query span
with effective RRs 1, 3, 6, and 9, and alternative RRs 10 and 12.
Outgoing arrows denote rule dependencies of alternative rules. E.g.,
if rule ¢ has been identified as an alternative to rule a, there is
an edge ¢ — a. We use the empty hint-set in the first iteration to
execute the default plan. We then generate alternative plans using
the hint-sets 1, 3, 6, and 9 and track their execution times. Hint-sets
resulting in query plans with execution times exceeding the default
plan execution time (3 and 9) are discarded and not considered
in subsequent iterations. We also consider alternative rules in the
following iterations while generating larger hint-sets.

3.4 Inference Mode using TCNNs

When AutoSteer executes in its inference mode (cf. step @), it uses
a learned model to make predictions about plan execution times.
We borrow this part from Bao which uses a tree convolutional neu-
ral network (TCNN) for its predictive model [27]. Before query
plans can be used with TCNNs, we must preprocess and featur-
ize them. However, this step will slightly differ between DBMSs
as databases have their custom query plan formats and operator
types (e.g., PostgreSQL supports index scans, but PrestoDB does
not). In addition to the preprocessing of PostgreSQL plans in [27],
we implemented the preprocessing of PrestoDB’s query plans and
made the code publicly available.? We use, however, the same con-
figuration for training as in [27]. We refer the reader to [28] for a
deeper investigation into tree convolution applied to query plans.

3.5 Generic vs. Custom Integration

Generic Integration. As was already illustrated in Section 3.1,
AutoSteer-G leverages an external connector whose communication
is purely based on SQL and explain statements. This option is ap-
pealing due to its low programming effort. We thus far implemented
external connectors for PostgreSQL, PrestoDB, SparkSQL, MySQL,
and DuckDB, in less than 100 lines of code each. We show an ex-
ample implementation of such an external database connector for
PostgreSQL and PrestoDB in Listing 2. Since databases have their
own custom APIs for exposing knobs or explaining query plans,
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1 class PostgreSQLConnector(ExternalDBConnector):

2 def __init__(url: str):

3 self.conn = . # setup PostgreSQL connection
4 def set_knob(knob: str, enable: bool) -> void:
5 self.conn.exec(f"SET {knob} TO \

6 {'ON' if enable else 'OFF'}")

7 def explain(query: str) -> dict:

return self.execute(f'EXPLAIN {query}"')
class PrestoDBConnector(ExternalDBConnector):
def __init__(url: str):
self.conn . # setup PrestoDB connection
def set_knob(knob: str, enable: bool) -> void:
self.conn.exec(f'SET SESSION {knob} = {enable}')
def explain(query: str) -> dict:
return self.execute(f'EXPLAIN JSON {query}')

Listing 2: External connectors for PostgreSQL and PrestoDB.

1 class QueryOptimizer:

2 def optimize(root_node) -> QuerySpan:

query_span = QuerySpan()

for rewrite_rule in self.rewrite_rules:

5 rewrite_rule.apply(root_node, query_span)

return query_span

7 class RewriteRule:

8 def apply(node, query_span):

if self.condition(node):
query_span.add(rule_id)
rewrite(node)

for child in node.child_nodes:
apply(child, query_span)

Listing 3: Tracking query spans in AutoSteer-C for PrestoDB.

these connectors implement functions to toggle knobs, explaining,
and executing queries. As can be seen in this example, our external
connectors only slightly vary in syntax from one system to another.
Custom Integration. As an alternative, AutoSteer-C’s connector
is directly integrated into the database’s optimizer (i.e., similar to
previous DBMS-specific applications of Bao [3, 30, 47]). While the
implementation of an integrated connector involves more program-
ming effort and requires a deeper understanding of the DBMS’s
optimizer, it can also make AutoSteer more efficient to execute.
For example, AutoSteer-C would allow tracking effective RRs in a
single pass and find RRs that cannot be detected by comparing the
explained query plans. In contrast, AutoSteer-G would run multiple
explain statements in the number of exposed knobs. Furthermore,
AutoSteer-C reduces the run time overhead of optimizing queries in
the inference mode by more efficiently interacting with the DBMS.

Listing 3 sketches how PrestoDB’s query optimizer can be ex-
tended for AutoSteer-C to track query spans during optimization
directly. First, PrestoDB parses the SQL statement into a logical
query plan and then invokes the query optimizer on the root node
in line 2. The query optimizer sequentially executes the RRs’ apply
function and passes references of the root node and the query span
in lines 4 and 5. The modified RR directly adds itself to the query
span once its conditions is fulfilled and it is applied to the query
plan. Then, similar to explain statements, we would extend SQL’s
grammar to run the in-database query span approximation. Conse-
quently, the custom integration avoids AutoSteer-G’s overhead of
running multiple explain statements.



Table 1: Benchmarks and workloads.

Benchmark | Dataset Size | Number of Queries
JOB [25] 7.2 GB 137
Stack [27] 100 GB 100
TPC-DS [38] | 1/10/100 GB 100
Meta >1PB >3000

Table 2: List of experiments.

Section | Experiment Workload | Setup
§4.2 AutoSteer-C for PrestoDB JOB, Stack 1
§4.3 AutoSteer-C for PrestoDB Meta 2
§4.4 AutoSteer-C vs. -G for PrestoDB JOB 1
§4.5 AutoSteer-G vs. Bao for PostgreSQL | JOB 3
§4.6 AutoSteer-G for SparkSQL TPC-DS 4
§4.7 AutoSteer Coding Effort N/A N/A

We implemented both an external (see Listing 2) and an inte-
grated connector for PrestoDB, and provide an empirical compari-
son in Section 4.4 and a more general discussion on coding effort in
Section 4.7. In general, both of these integration options will be use-
ful in practice. For example, we envision AutoSteer-G to be used for
rapid proof-of-concept prototyping to show the feasibility and to
approximate potential performance gains on a DBMS, after which
AutoSteer-C is implemented for use in production deployments
where its run time efficiency would matter more.

4 EVALUATION

To evaluate AutoSteer, we applied it to five different SQL databases:
PrestoDB, PostgreSQL, SparkSQL, MySQL, and DuckDB. We report
our experimental findings with the former three in this section and
provide a summary of our experience with the latter two as part of
Section 5. The high-level goals of our experimental study are:

o Show AutoSteer’s generality and practicality by testing its effec-
tiveness on a variety of open-source systems and benchmarks
commonly used by database researchers and practitioners.

e Validate AutoSteer’s effectiveness when applied to real-world
workloads from large-scale deployments in industrial settings.

e Evaluate how AutoSteer’s automatically generated hint-sets
fare against the expert-selected hint-sets of original Bao and
the randomized approach used in its SCOPE adaptation [30].

e Quantify the productivity and performance tradeoffs of using
AutoSteer in its custom and generic integration levels.

4.1 Experimental Setup

Benchmarks and Workloads. Table 1 shows the workloads we
used in our experiments. Three of these are public benchmarks
heavily used by the database and query optimization communities
(JOB w/o FK indexes [25], Stack [27], and TPC-DS [38]), and the
fourth is a real-world workload from large-scale PrestoDB deploy-
ments at Meta. These workloads cover a range of scales regarding
dataset sizes (GBs-PBs) and the number of queries (100s-1000s).
Hardware and Software Setups. We used multiple different hard-
ware/software setups for our experiments:

Setup 1: As sketched in Figure 5, we deploy PrestoDB on a 5-node
Kubernetes cluster. All nodes have a dual-socket Intel® Xeon®
Platinum 8280 CPU with 2 X 28 cores at 2.7 GHz, 256 GB memory,
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Pod 1 Pod 2 Pod 3 Pod 4
Gblt/s 6 Gb1t/ s 6 Gbit/s 6 Gbit/s
Worker l Worker 2 [Worker 3] [Worker 4]
[ [ [ 1000 Mbit/s |

AutoSteer-C Pod 0

T T T T SQL Queries (e.g. Stack & JOB)

Figure 5: In Setup 1, we run PrestoDB on a 5-pod K8s cluster.
AutoSteer intercepts queries and automatically explores al-
ternative plans. Datasets are cached on worker-local SSDs.

and an Intel® DC S$3500 SSD attached, which stores a copy of the
datasets to reduce transfer times between nodes. The compute
nodes are connected with 1000 MbE. We run all queries in isolation
and with warm caches.

Setup 2: This setup corresponds to our real-world workload exper-
iments with PrestoDB conducted at Meta. This involved executing
a large interactive dashboarding workload scanning petabytes of
data against a large PrestoDB cluster with hundreds of nodes. We
tested more than 3000 queries that run every day at Meta.

Setup 3: We run PostgreSQL 13 on a 16-core AMD Ryzen
3950X@3.5 GHz machine with 96GB DDR4-2667 memory. We only
execute hint-sets yielding new query plans and use warm caches.

Setup 4: We configured SparkSQL v3.2.2 as it is internally used at
Intel and deployed it on a single machine equipped with a dual-
socket Intel® Xeon® Platinum 8280 CPU with 2x 28 cores at 2.7 GHz
and 256 GB memory. All datasets were stored in memory.

To account for runtime variances in Setups 1, 3, and 4, we ex-

ecuted the query plans generated by each hint-set multiple times
and compared their median execution times.
Overview of Experiments. Table 2 provides an overview of the
conducted experiments together with the experimental workloads
and setups used for each. In terms of its usage options, we explicitly
state if AutoSteer was used in the custom (AutoSteer-C) vs. generic
(AutoSteer-G) integration level in each of the following subsections.
For each experiment, we state whether we used the Training or the
Inference execution mode. We set the interaction mode to Steering
for all of our experiments.

4.2 AutoSteer-C for PrestoDB

Does AutoSteer-C find better plans than PrestoDB? In Figure 6,
we compare AutoSteer-C to PrestoDB. We executed all 137 JOB
queries on the PrestoDB cluster (Setup 1), and we show the rela-
tive performance changes for a uniform sample. Then, we sort the
queries by their relative performance improvements achieved by
the best known® query plan generated by AutoSteer-C’s training
mode and plot them in ascending order. Here, we consider only
alternative plans that differ from the default query plan. Our ap-
proach finds a better alternative execution plan for most queries
(green bars). For this selection, there are only four queries for which
the best known alternative plan performed worse than the default
plan generated by PrestoDB (28a, 5c, 25a, 21a). However, those
queries have short execution times of < 4 seconds. In contrast, by

The term “best known hint-set” refers to the hint-set that leads to the fastest execution
plan among all plans explored by either AutoSteer or its competitors.
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Figure 7: The relative run time savings of the best known plan () found by AutoSteer-C’s training mode compared to PrestoDB.
For the inference mode, a pre-trained TCNN predicts plan run times and selects the plan with the best-predicted performance (H).
Solid colors represent unseen queries from the test set, and transparent colors represent those from the training set.

Table 3: The top-5 hint-sets that yield the largest performance Table 4: AutoSteer’s relative and absolute run time improve-

gains wrt. to PrestoDB’s default plan. We ran JOB queries
in isolation (Setup 1). The last column shows the number of
JOB queries for which this hint-set produced the fastest plan.

Run Time Changes [%]
Hint-Set | Average | Worst Case | # Best HS
HashGenOptimizer | -30.35% +12.82 75
UnaliachymbalRefs | 9829% | +007 25
PickTabLayoutForPred | -5.75% +0.03 13
UnaliasSymbolRefs -8.99% -0.44 9
PruneTabScanCols | -8.63% +3.01 8

turning off the HashGenOptimizer, the execution time of query 17b
decreases by more than 40% (127 — 75 = 52 seconds).

What are the top hint-sets AutoSteer-C generates? Table 3
presents the top-5 hint-sets discovered by AutoSteer-C for PrestoDB.
The second column shows the average run time reduction achieved
by each hint-set when it generated the fastest query plan. Out of
all 137 JOB queries, the third column shows the impact on the per-
formance in the worst case. The last column shows the number
of queries for which the hint-set produced the best known plan.
The top hint-set disables HashGenOptimizer and yields the fastest
execution plan for 75 JOB queries. As described in [35], HashGenOp-
timizer adds local projections to compute hash codes early during
execution, increasing the cost of downstream shuffles and filling up
buffer memory. Moreover, as our experiments show, these shuffles’
overhead will outweigh the parallelism’s performance gains. While
most JOB queries (75/137) benefit from disabling HashGenOpti-
mizer, a few will regress by up to 12.8%. In Section 5, we discuss
how experts could leverage AutoSteer’s insights to improve a spe-
cific rule conceptually.
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ments compared to PrestoDB’s default plans on average using
Setup 1. The results belong to the queries from the test set.

JOB Stack
Rel. Improv. (Best Known Hint-Set) | 30.25% | 42.38%
Rel. Improv. (Inference Mode) 27.93% | 31.54%
Abs. Improv. (Best Known Hint-Set) | 305s 284s
Abs. Improv. (Inference Mode) 282s 211s

Can AutoSteer-C’s Inference Mode improve PrestoDB? To
answer that question, we fit a tree convolutional neural network
(TCNN) that we later use to infer the query plans’ execution times.
First, we use AutoSteer’s training mode to explore hint-sets for the
JOB and Stack benchmarks in Setup 1. We split the 237 (100 Stack
and 137 JOB) queries into training and test sets at an 80/20 ratio.
Next, we train the TCNN in a supervised fashion on the training
set and choose the same configurations as suggested in [27]. Then,
the TCNN predicts the run time for each query plan.

Figure 7 compares the best-performing plans found in training
mode to those selected in AutoSteer’s inference mode for JOB. The
orange bars show the relative improvements of the best known
plan wrt. PrestoDBs default query plan. Blue bars show the relative
improvements of the plans selected by AutoSteer’s inference mode.
For most queries, the TCNN chooses a hint-set that improves the
execution time compared to PrestoDB’s default plan. However, for
a few queries, such as e9b and 15d, the TCNN chooses hint-sets
that negatively impact the execution time. Overall, the inference
mode generalizes well to unseen queries from the test set.

Table 4 considers AutoSteer’s overall impact on the JOB and
Stack benchmarks in Setup 1. We compare the average relative
and absolute performance improvements of the hint-sets found
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Figure 8: Experiments with a production workload at Meta.

by AutoSteer-C when choosing either the best hint-sets known
from the training mode or the selected hint-sets in the inference
mode. For Setup 1 and the Stack queries, the best plans discovered
in AutoSteer’s training mode reduce the run time by up to 42%.
AutoSteer’s inference mode reduces the relative run time by up to
31%. The absolute, overall JOB execution time decreases by 305 sec-
onds when selecting the best known hint-set. AutoSteer’s inference
mode reduces the absolute run time by 282 seconds.

RESULT SUMMARY. AutoSteer-C can generate better query plans
than PrestoDB’s native query optimizer in both of its execution modes
(Training and Inference), with zero help from a human expert in hint-
set selection. It finds “HashGenOptimizer” to be the top hint-set.

4.3 AutoSteer-C for PrestoDB: Meta Workload

To validate AutoSteer’s effectiveness in real-world scenarios, we
tested our approach on a large-scale dashboard application deployed
at Meta (Setup 2). The dashboard application runs on PrestoDB and
executes thousands of queries every day over petabytes of data.
Since dashboard views commonly consist of many widgets (queries)
and the dashboard is only helpful once a large portion of queries
are completed, we focus our analysis on tail latency.

We first run a selection of hint-sets generated by AutoSteer on
the workload. To minimize computation time, we leverage the most
promising hint-set known from the experiments described in Sec-
tion 4.2 (i.e., disabling HashGenOptimizer as shown in Table 3). First,
we run AutoSteer’s training mode to generate alternative query
plans and track their execution times. Then, we use that training
data to fit a TCNN, which is later used by AutoSteer’s inference
mode. Figure 8a shows the tail latencies achieved from an “optimal
oracle” that always chooses the best query plan known from Au-
toSteer’s training mode, best-predicted plan from AutoSteer’s infer-
ence mode, and the default plan from Meta’s production PrestoDB
configuration, respectively. With the single hint-set discovered by
our approach, we observe a noticeable reduction in the tail latency.
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Figure 9: Time elapsed and number of rules found for dif-
ferent query span approximation variants in AutoSteer for

PrestoDB. We consider three random queries from JOB [25].

While our predicted approach does not quite reach the performance
of the best known plan, it comes close in most cases.

Any change to a query optimizer might result in a regression. We

plot the query performance changes for our approach (AutoSteer)
and the best known plan in Figure 8b. The “long tail” is significantly
decreased by our approach, although a few regressions (in the order
of 10 minutes) do occur. Since the slowest queries determine this
application’s performance, these regressions are negligible, and the
overall performance is improved.
RESULT SUMMARY. AutoSteer can help reduce tail query latency
of a PB-scale interactive dashboard application running on a PrestoDB
cluster at Meta. Even with one top hint-set discovered by AutoSteer
(“HashGenOptimizer”), about 20% reduction in 99% tail latency can
be achieved over PrestoDB’s native query optimizer.

4.4 Approximating Query Spans in PrestoDB

In this section, we evaluate the impacts of AutoSteer’s integration
level (Section 3.5) as well as its two approximation heuristics batch
and iterative (Section 3.2) on query span approximation perfor-
mance. We measure the performance considering two dimensions:
the execution time and the number of effective RRs found.

How long does query span approximation take for the differ-
ent variants? In the upper part of Figure 9, we compare the execu-
tion times of the query span approximations based on AutoSteer-C
and AutoSteer-G for PrestoDB on three selected JOB queries. We fur-
ther differentiate between the batch and the iterative approximation
heuristics. AutoSteer-C, whose connector is directly integrated into
PrestoDB’s optimizer, tracks effective RRs during the optimization
phase, which allows AutoSteer-C to achieve better performance and
makes it almost an order of magnitude faster than AutoSteer-G’s
external connector. In contrast, the external connector runs one
explain statement for each of the exposed knobs (170).

The batch approximation requires the query optimizer to run
the fewest iterations, therefore, completes faster than the iterative
approximation, which additionally tracks dependencies of the alter-
native RRs. The rule dependencies, however, help reduce the search
space in the following hint-set exploration (cf. Section 3.3).

Given the significant overhead of AutoSteer-G using the iterative
heuristic, this approach is not suitable for short-running and trans-
actional queries, but it might amortize for long-running and analyt-
ical queries. Furthermore, it could help database experts in quickly



implementing a first proof-of-concept revealing the potential per-
formance improvements, where the query span approximation time
would not be as critical.

How many rules do the different query span approximation
variants detect? In the lower part of Figure 9, we plot the number
of detected RRs for each approach. The experiments show that
AutoSteer-C for PrestoDB finds the same number of RRs indepen-
dent of the used approximation heuristic. AutoSteer-G detects fewer
rules (especially in the batch mode) because some of the RRs change
operator details at an algorithmic level which are not included in
the explained query plan that is used by the generic integration
level. For instance, the rules SetFlatteningOptimizer, PickTableLay-
outWithoutPredicate, and ApplyConnectorOptimization affect the
execution plan for JOB query 8d, but their changes are transpar-
ent in the explained plans. When using the iterative heuristic, the
degradation in the number of RRs is not as noticeable.

RESULT SUMMARY. AutoSteer-C with batch heuristic is most effi-
cient in finding the most number of rules during query span approxi-
mation. Despite being slower, AutoSteer-G can also find a significant
majority of the rules and, as such, can be a suitable option to use for
workloads with long-running queries and initial prototyping.

4.5 AutoSteer-G for PostgreSQL

We use Setup 3 to compare AutoSteer-G to (1) the original Bao-
for-PostgreSQL [27] and (2) the randomized hint-set search used
in its SCOPE adaptation [30, 47]. We analyze what hint-sets these
approaches explore and their impact on query performance.

Does AutoSteer-G find better hints than Bao-for-PostgreSQL?
Remember that the key difference between AutoSteer and Bao-
for-PostgreSQL is which and how hint-sets are selected. In con-
trast to Bao’s 48 static hint-sets chosen manually by an expert,
AutoSteer generates them automatically. Considering the 137 JOB
queries, both approaches found the best known hint-set® in 99 cases.
AutoSteer-G, however, discovered better hint-sets for 23 queries.
In the remaining 15 cases, Bao-for-PostgreSQL found at least one
hint-set, which performed better than all hints-sets generated by
AutoSteer-G. However, for those queries where AutoSteer-G did
not find the best hint-set but Bao-for-PostgreSQL did, we missed
performance improvements of 2% on average. Bao-for-PostgreSQL
decreases the overall JOB run time by 33.1%, whereas AutoSteer-G
saves an additional 0.4%, which results in a relative improvement
of 33.5%. However, further experiments showed that the explored
hint-sets and their performance implications also depend on the
PostgreSQL configuration. In other words, AutoSteer-G matches Bao-
for-PostgreSQL’s performance improvements, even though its hint-sets
are automatically explored and not pre-selected by human experts.
What are the top hint-sets found by AutoSteer-G? The top
hint-set AutoSteer-G’s training mode found is turning off Nested
Loop-Joins. That hint-set improves query performance the most
for 29 JOB queries, reducing the run time by 30.7% on average.
The second-best hint-set turns off index scans: in many cases, Post-
greSQL overestimates the selectivity of complex predicates and,
therefore, index lookups yield substantial overhead compared to a
sequential scan. These two top hints are also part of Bao-for-Post-
greSQL. However, AutoSteer-G also discovered brand-new hint-sets,
e.g., disabling Parallel Hashing and GatherMerge, which improved
selected queries by up to 38.5% and 91.1%, respectively.
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Is the greedy hint-set exploration approach effective? In Sec-
tion 3, we hypothesized that beneficial hint-sets are often composed
of smaller beneficial hint-sets and argued for using a greedy hint-
set exploration approach. In Figure 10, we experimentally evaluate
this assumption and visually compare AutoSteer-G’s hint-set explo-
ration with Bao-for-PostgreSQL’s 48 handcrafted hint-sets for the
JOB queries 10b, 12b, and e2a: The y-axis shows the hint-set size.
Some hint-sets (") defined by Bao-for-PostgreSQL result in dupli-
cated execution plans. Contrary, AutoSteer-G tracks already-seen
query plans and does not execute duplicates. The colors encode the
query plan’s relative performance wrt. the best and the worst plans
known from both approaches (on a logarithmic scale). Light colors
indicate better plans, and vice versa. Compared to PostgreSQL’s de-
fault plan (the bottom-most square), most hint-sets result in worse
plans, but only a few lead to better plans. Squares with black edges
were discovered by AutoSteer-G’s greedy training mode. Here, Au-
toSteer finds the best hint-sets () for each query.
How does AutoSteer-G’s greedy hint-set exploration compare
to randomized approaches? The hint-set exploration approaches
used in Bao-for-SCOPE [30, 47] first uniformly draw hint-sets and
then use SCOPE’s cost model to select the ten hint-sets gener-
ating the cheapest plans. As discussed in Section 1, cost models
may not always be available or sufficiently accurate. Therefore,
AutoSteer-G’s greedy hint-set exploration strategy does not rely
on cost models. To compare these two strategies on fairgrounds,
we tested both variants (w/ and w/o using the DBMS cost model)
under Setup 3. We use eight representative JOB queries {10a,...,17a},
execute all query plans (for this experiment, we include duplicates,
as some changes might not be exposed in the QEP) seven times to
get robust measurements and we do not limit the execution time.

Greedy vs. Randomized for a Single JOB Query (Figure 11): We
first compare greedy to randomized exploration without using the
PostreSQL cost model. We consider the expected query performance
improvements E(k) = (X e x, max(x))/|Xj| for randomly drawing
k hint-sets. Here, X} is the set of all combinations with k hint-sets
and max(x) returns the relative improvement of the top hint-set
in x, or 0, if there are no improvements. We show the expected
query performance improvements for JOB query 10a in Figure 11,
for which we executed 250 randomly selected hint-sets. Greedy
quickly gains the expected improvements in iteration E§ and stops
after the second iteration ] after exploring eight hint-sets. In con-
trast, the randomized exploration has to search significantly more
hint-sets to achieve similar improvements (e.g., 95%/99% of greedy’s
improvements after exploring 32/43 hint-sets). These findings indi-
cate that our greedy approach reaches higher query performance
improvements faster than the randomized approach.

Greedy vs. Randomized for Multiple JOB Queries (Table 5): Next,
we compare the two approaches for JOB queries {10a, ..., 17a} (first
w/o, then w/ using the cost model). As summarized in Table 5,

Table 5: Greedy vs. Randomized Hint-Set Exploration

Approach Query Perf. Imp. | Time (min)
Greedy 48.68% 90.45
Randomized 50.22% 4597.10
Greedy w/ cost model 24.85% 1.58
Randomized w/ cost model 24.87% 10.77
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Figure 11: Expected performance improvements for greedy
and randomized explorations for JOB Q10a and PostgreSQL.

greedy explores 86 hint-sets in about 90 minutes to reach a perfor-
mance gain of 48.68%, while randomized explores 2000 hint-sets in
about 4597 minutes to reach 50.22%. Thus, greedy reaches a similar
level of performance improvement in about 2% of the time it takes
for the randomized to do so. Finally, we compare variants of the two
approaches that leverage the PostgreSQL cost model to limit their
exploration to the ten cheapest QEPs. This significantly reduces
the run times of both approaches but also degrades how much they
can improve query performance to less than 25% since the Post-
greSQL cost model overestimated the execution times of the most
beneficial hint-sets. Overall, we observe that greedy strikes a good
tradeoff between query performance improvement and exploration
overhead while not requiring a reliable DBMS cost model.
RESULT SUMMARY. AutoSteer-G’s automated approach can find
plans as good as those found based on Bao-for-PostgreSQL’s expert-
selected hint-sets, while also exploring the plan search space more
efficiently. Furthermore, AutoSteer-G’s greedy hint-set exploration
strategy makes a better tradeoff between plan quality and exploration
overhead than randomized alternatives.

4.6 AutoSteer-G for SparkSQL

To further demonstrate our solution’s general applicability, we also
evaluated it with another widely used SQL engine, SparkSQL.
Can AutoSteer-G improve SparkSQL’s query performance?
Inspired by Intel’s use of TPC benchmarks for its internal projects
around SparkSQL, we experimented with different TPC-DS work-
loads and compared AutoSteer-G to SparkSQL’s native optimizer
for scale factors 1, 10, and 100. AutoSteer-G reduces the overall run
time by up to 44.3% for SF1, 31.0% for SF10, and 22.0% for SF100.
Does the benchmark’s scale factor impact AutoSteer-G’s hint-
set selection decisions? We interestingly observe that AutoSteer-
G explored and selected a different collection of beneficial hint-sets
at different scale factors. For smaller scale factors, the performance
improvements primarily come from turning off expensive RRs such
as ConstantFolding, which do not amortize for most short-running
queries. SparkSQL primarily focuses on large-scale data processing.
As performance is mainly dominated by query execution and not by
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its optimization, the RRs’ efficiency was probably not a priority dur-
ing development. With larger scale factors 10 and 100, performance
improvements can be attributed to hint-sets improving the query
plans on a structural level (e.g., ReorderJoins and CombineUnions).
RESULT SUMMARY. AutoSteer-G can generate better query plans
than SparkSQL’s native query optimizer. Furthermore, due to its more
adaptive approach, it can use different hint-sets at different scale
factors — something that Bao would not be able to do due to its static
approach to hint-set selection.

4.7 AutoSteer-G vs. AutoSteer-C: Coding Effort

We implemented AutoSteer-G connectors for five well-known open-
source database systems using Python3. We use the metric lines of
code (LOC) to approximate the connectors’ code complexity and
exclude all comments, empty lines, import, and log statements. The
connector for DuckDB has the fewest lines of code (34), followed
by PrestoDB (53), PostgreSQL (49), MySQL (55), and SparkSQL’s
connector with 68 lines. For SparkSQL, we had to implement a post-
processing step to remove random identifiers from the explained
query plans. In contrast, implementing AutoSteer-C’s custom inte-
gration for PrestoDB was significantly more complex, as we had to
modify 1757 lines of code. The LOC metric indicates how simple the
connectors are and prototyping a new connector for AutoSteer-G
can be done in a few hours. All connectors are publicly available.?

5 LESSONS LEARNED AND FUTURE WORK

Applying AutoSteer in a Production Environment. We encoun-
tered several additional difficulties when applying AutoSteer to a
large-scale production environment at Meta. First, PrestoDB’s opti-
mizer is cache-oblivious, meaning that the optimizer selects query
plans without using information about the caches of a particular
compute node. Cache hits or misses can significantly affect query
performance. Thus, a change to a query plan that appears positive
or negative may result from caching. Past works on learned query
optimization dealt with this issue by simply assuming a warm or
cold cache (e.g., [28, 42]), but in reality, the cache is rarely entirely
warm or cold. An entirely warm or cold cache will often impact
query performance more than many plan changes. Of course, the
best solution to this problem would be to take the state of the cache
into account as a feature (e.g., [46]), but this is easier said than
done in large distributed environments: measuring the contents of
Meta’s PrestoDB deployment would take significantly longer than
most queries. It is thus beneficial to examine many executions for
a single query plan, preferably across a wide time range, to ensure
different cache states are observed and accounted for statistically.



Second, many academic assumptions about query performance
do not match the needs of some large organizations: (1) A few re-
gressions are inevitable and acceptable with any optimizer change.
Therefore, we use tail metrics — like P90/P95/P99 — to evaluate
cluster performance and to accept or reject optimizer changes.
(2) Changes in relative query performance are less important than
changes in absolute query performance. For example, a 50ms query
becoming a 200ms query looks like a 4x regression but is likely
irrelevant in analytics. However, a 60s query becoming a 50s query,
which “only” looks like a 15% improvement, is a desirable change.
Thus, many past works using geometric means or relative latency
metrics might be misleading. Metrics such as the geometric mean
make an optimizer update that induces both previously described
changes resemble a regression. However, it would actually be a
significant upgrade. We suggest future evaluations of optimizers to
include statistics about absolute changes in query latency.
Optimization Goals. In this work, we focus on minimizing query
latencies. However, in industrial settings, there are different pa-
rameters that one would like to optimize for, including network
transfers, I/O, and memory footprint, amongst others. For example,
in Meta’s PrestoDB deployments, memory is at a premium: increas-
ing the concurrency of a particular query might improve its run
time, but if the query’s memory footprint increases substantially,
other queries on the cluster might run out of resources, spilling
to disk and causing general chaos. As a general rule of thumb, a
10% decrease in a query’s memory footprint is as desirable as a
30% decrease in query latency (there are many exceptions to this
rule, especially for queries with tight deadlines). Similarly, the CPU
usage of a query is relevant to overall data center costs. Trading de-
creased latency for an overall increase in CPU time (e.g., again from
parallelism) might be undesirable if the query was not time-critical.

Fortunately, AutoSteer can be easily extended to support arbi-
trary optimization functions. By changing the reward signal to
whatever combination of measurable performance metrics is de-
sired, AutoSteer can adapt to many different performance require-
ments. Unfortunately, real-world performance requirements often
do not fit in single-query performance metrics. For example, a par-
ticular optimization might increase the memory footprint of one
query by 60MB but decrease the footprint of two others by 25MB
each. If these three queries run concurrently, this nets 10MB sav-
ings. However, such query-to-query tradeoffs are not expressible
as a function of a single query’s performance, so AutoSteer cannot
yet handle them. We leave considerations for multi-query — and
perhaps even entire workload — optimization to future work.
AutoSteer as a Tool for Human Experts. Query optimizers
are highly complex software systems, as we observed firsthand
in our collaboration with the PrestoDB team at Meta. Developed
by over 130 software engineers, it has accrued almost 200 rewrite
rules (RRs) [11]. While developers strive to make each rule ap-
plicable in general, this is impossible in practice; a rule that is
helpful in one context may be harmful in another. For example,
the HashGenOptimizer rule in PrestoDB enforces parallel gener-
ation of hash values for all joins, which improves the joining of
large tables. However, the rule’s overhead outweighs its perfor-
mance gains for smaller tables. To address this issue, we crafted
a heuristic that turned the HashGenOptimizer on or off based on
the predicted input size, which resolved most of the regressions
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we observed in Meta’s dashboard workload. It was AutoSteer that
helped us improve PrestoDB’s query optimizer by discovering this
new heuristic, which is now being considered as a contribution to
PrestoDB’s upstream.

Furthermore, some rewrite rules can seem like “no-brainers” that
ought to improve query performance wherever they are applied,
but will surprisingly regress some queries. Since AutoSteer can
automatically identify these kinds of surprising interactions like in
the PrestoDB example above, it could serve as an invaluable tool
for human experts in improving the design and implementation of
their optimizers. On the other hand, investigating and debugging
rule-based query optimizers for larger and more complex query
plans that comprise tens to hundreds of relations would get in-
creasingly more challenging. To simplify this process, one can use
QO-Insight [12] — a visual tool that lets database experts explore
AutoSteer’s results interactively (i.e., by setting its interaction mode
to Debugging) and supports a query- and rule-centric exploration
mode. The former enables experts to analyze the potential improve-
ments of benchmarks or individual queries, while the latter groups
the performance results by hint-sets.

Integrating AutoSteer-G into other DBMSs. AutoSteer-G is eas-
ily applicable to other SQL databases. For MySQL and DuckDB,
it took us less than an hour to implement the external con-
nector. The main task is to figure out the database’s syntax
for toggling optimizer knobs. DuckDB has the session property
disabled_optimizers, which is a string containing the list of dis-
abled rules. MySQL exposes one session property per knob. For
MySQL, AutoSteer found only around three effective rules because
most of their changes were not exposed in the explained plan. For
DuckDB, which exposes 14 knobs, we could improve the execution
time of all JOB queries by 1.66% on average, but its tail is signifi-
cantly enhanced, with a few queries improving by more than 10%.

To generalize, AutoSteer works best when the underlying DBMS
(1) exposes a clean interface to modify the optimizer’s configura-
tion and (2) provides sufficiently detailed query plans to observe
changes. Therefore, we argue that exposing more detailed opti-
mizer statistics will help AutoSteer to detect better query plans. For
example, database systems could have an option such as EXPLAIN
OPTIMIZATION <query> returning a list or statistics describing the
effective RRs. Such a feature would also help database developers
see which RRs directly contribute to the final query plan.

6 CONCLUSIONS

In this paper, we introduced AutoSteer, a generic, learning-based
query optimization framework that automatically steers traditional
query optimizers of SQL databases. AutoSteer achieves this by ex-
tending Bao with automatically generated dynamic hint-sets, which
can easily adapt to different query workloads and optimizers and
lead to better plans than the manually selected static hint-sets in
Bao. We have shown that our solution can be easily applied to sev-
eral SQL databases and improve their query performance by up to
40% on well-known benchmarks. Furthermore, we tested AutoSteer
on a real-world PrestoDB workload at Meta, where it achieved more
than 20% reduction in 99% tail latency. Query optimization experts
can also use AutoSteer as an interactive tool to generate insights
that can be leveraged to improve existing RRs.
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