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ABSTRACT
Stream processing is widely used for real-time data processing and
decision-making, leading to tens of thousands of streaming jobs
deployed in ByteDance cloud. Since those streaming jobs usually
run for several days or longer and the input workloads vary over
time, they usually face diverse runtime issues such as processing
lag and varying failures. This requires runtime management to
resolve such runtime issues automatically. However, designing a
runtime management service on the ByteDance scale is challenging.
In particular, the service has to concurrently manage cluster-wide
streaming jobs in a scalable and extensible manner. Furthermore, it
should also be able to manage diverse streaming jobs effectively.

To this end, we propose StreamOps to enable cloud-native
runtime management for streaming jobs in ByteDance. StreamOps
has three main designs to address the challenges. 1) To allow for
scalability, StreamOps is running as a standalone lightweight control
plane tomanage cluster-wide streaming jobs. 2) To enable extensible
runtime management, StreamOps abstracts control policies to
identify and resolve runtime issues. New control policies can
be implemented with a detect-diagnose-resolve programming
paradigm. Each control policy is also configurable for different
streaming jobs according to the performance requirements. 3) To
mitigate processing lag and handling failures effectively, StreamOps
features three control policies, i.e., auto-scaler, straggler detector,
and job doctor, that are inspired by state-of-the-art research and
production experiences at ByteDance. In this paper, we introduce
the design decisions we made and the experiences we learned
from building StreamOps. We evaluate StreamOps in our production
environment, and the experiment results have further validated our
system design.
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1 INTRODUCTION
ByteDance relies heavily on stream processing to handle massive
amounts of real-time streaming data. We have adopted an open-
sourced solution Apache Flink [8] as the Stream Processing Engine
(SPE) to serve large-scale stream processing. According to the
open-sourced statistics [13], popular applications such as TikTok,
Douyin, and Toutiao in ByteDance serve 1.9 billion users across
150 countries. Those applications generate up to 9 billion online
streaming records per second during the peak hour. Distributed
stream processing plays an important role in those applications
to handle such high-volume data in real-time. Typical stream
processing scenarios include high-quality content recommendation,
real-time streaming data warehouse, and security and risk control.
Specifically, tens of thousands of stateless and stateful streaming
jobs are deployed on large-scale in ByteDance cloud. They are
allocated with millions of CPU cores and exabytes of memory to
process massive amounts of data with high throughput and low
latency. Streaming jobs under different scenarios have shown high
diversity in terms of input workload characteristics, processing
logic, and performance requirements.

An automated runtime management service is necessary to
ensure that streaming jobs can keep up with the input stream
and meet the performance requirements. As a fact, streaming jobs
usually experience changes in workloads and resources during
their lifetime. Such dynamic changes cause varying runtime issues
for streaming jobs such as processing lag and runtime failures.
ByteDance cloud statistics show that hundreds of streaming jobs
may experience these issues on a daily basis. Resolving such
runtime issues requires recursively analyzing the runtime status
of streaming jobs and adjusting the job configurations such as
processing logic, resources allocation, and workloads distribution
scheme. As a result, manual runtime management of tens of
thousands of streaming jobs on the ByteDance scale is not a feasible
option due to its time-consuming and resource-intensive nature.
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We propose StreamOps, a cloud-native runtime management
service for cluster-wide streaming jobs. In general, StreamOps is
inspired by Trisk [31] to run as a control plane. It applies runtime
management in three main steps: 1) Monitoring runtime metrics for
cluster-wide streaming jobs. 2) Applying control policies to identify
runtime issues and their root causes. 3) Resolving runtime issues by
dynamically reconfiguring affected streaming jobs. The design and
implementation of StreamOps are following standard cloud-native
principles [12], it addresses the runtime management problem of
streaming jobs in ByteDance scenario with three main designs:

1) To scale StreamOps to manage cluster-wide streaming jobs,
StreamOps is designed as a standalone service. In this way, it can
be scaled to multiple parallel instances, allowing for concurrent
management of varying numbers of streaming jobs. It further
leverages global storage to store necessary state such as runtime
metrics and control settings for streaming jobs.

2) To extend new control policies for future runtimemanagement
optimization opportunities, StreamOps separates the control
policies from the execution of control mechanisms. Thus, new
control policies can be implemented with a detect-diagnose-resolve
procedure without knowing the details of control mechanisms. It
further exposes control settings of different control policies for
customization across different streaming jobs.

3) To mitigate processing lag and handle common failures
effectively, StreamOps features three control policies: auto-scaler,
straggler detector, and job doctor. We observe that the processing
lag of streaming jobs is mainly caused by under-provisioned
resources, stragglers, and/or data skewness. These three control
policies are designed to resolve the corresponding scenarios. a)
The auto-scaler identifies overloaded streaming jobs and resolves
the issue by scaling out resources predictively. It can also scale in
underloaded streaming jobs. b) The straggler detector identifies
tasks that are slower than their peers due to resource issues and re-
allocates resources for them. c) The job doctor consists of multiple
rules to handle data skewness scenarios and common failure issues
that require manual source code updates. Specifically, instead of
applying dynamic reconfigurations, it fires alarms with insights,
e.g., root causes and potential solutions of runtime issues, to help
users handle them appropriately.

To summarize, wemade the following contributions in this paper:

• We demonstrate the design decisions we made to build
StreamOps, a cloud-native control plane that can manage
large-scale streaming jobs in ByteDance cloud.

• StreamOps encapsulates a three-step programming
paradigm for control policies implementation.

• StreamOps features three control policies, auto-scaler,
straggler detector, and job doctor, to effectively mitigate
processing lag and common failures for streaming services
in ByteDance scenario.

• We present the experiment results in our production
environment to demonstrate the effectiveness of StreamOps.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the concepts of stream
processing. Then, we describe the features of streaming services in

ByteDance’s scenario. Finally, we discuss our runtime management
requirements, which motivate our build of StreamOps.

2.1 Background
2.1.1 Distributed Stream Processing. A streaming job is
instantiated from an execution topology. The execution topology
describes the processing logic of a streaming job and can be
represented as a directed acyclic graph, where vertices in the graph
represent operators and edges represent the intermediate streams
between operators. To deploy a streaming job, each operator can
be further instantiated as parallel tasks, and the input streams
of the operator are partitioned among those tasks for parallel
execution. A configuration for a streaming job mainly describes
its execution plan. It mainly covers the resources allocated for the
Flink cluster, the processing logic of operators, and the distribution
of the workload among parallel tasks.

We adopt an open-source solution Apache Flink as the SPE for
large-scale stream processing. In most streaming scenarios, Flink
streaming jobs are deployed in per-job mode on Kubernetes [6],
ensuring each job has its own independent Flink cluster for
performance isolation. The Flink Runtime comprises two main
components: JobManager and TaskManager. The JobManager is a
centralized process that ensures consistency and fault tolerance
while the TaskManagers are allocated with resources and deployed
as worker nodes for a streaming job.

2.1.2 Streaming Services in ByteDance. The streaming services
in ByteDance cloud mainly exhibit three features: large-scale
deployment, diverse streaming scenarios, and changes of workloads
and resources.
Large-scale deployment. As aforementioned, to enable real-time
online services under high volume input workloads, i.e., up to 9
billion streaming records per second, distributed stream processing
has been widely adopted. Tens of thousands of streaming jobs are
deployed in ByteDance cloud. They are allocated with millions
of CPU cores and exabytes of memory to process high-volume
streaming workloads.
Diverse streaming scenarios. Streaming jobs in ByteDance have
also shown high diversity in terms of input workload characteristics,
processing logic, and performance requirements. Based on our
statistics, ByteDance has thousands of streaming scenarios that are
divided according to various projects. Typical types of streaming
scenarios in ByteDance are: 1) Online feature extraction and online
machine learning. Online recommendation services must extract
massive online features in real-time from multiple sources, which
demand low latency, high throughput, and high availability to
achieve a high-quality content recommendation. 2) Real-time data
warehouse for statistical analysis. Data transmission services (DTS)
in the real-time data warehouse are implemented as streaming jobs
that continuously clean and transform data among varying data
sources e.g., Kafka [25] and MySql [39]. Those services are less
sensitive to processing latency but require more resource efficiency.

Changes of workloads and resources. Streaming jobs usually
experience changes in their workloads and resources during their
lifetime, resulting in varying runtime issues such as processing lag
and failures. Our analysis reveals that on a daily basis, hundreds
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of streaming jobs experience these runtime issues. Specifically,
streaming jobs in ByteDance generate 9 billion online streaming
records per second during peak hours, while during trough hours,
the volume decreases by approximately 4-5 times. As a result,
streaming jobs configured with under-provisioned resources may
experience high processing lag when the input rate of streaming
data is significantly increased during peak hours. Conversely,
we can configure over-provisioned resources for high-priority
streaming jobs based on their workload during peak hours, which
avoids high processing lag but results in resource wastage. Besides
the changes in data volume, the workload distribution among
partitions of input streams may also change over time, resulting in
data skewness among parallel tasks and accumulating processing
lag. In addition, streaming jobs can be slowed down when parallel
tasks are deployed on physical nodes experiencing resource issues,
such as resource contention, slow disk I/O, and older machines with
limited computational resources. Furthermore, runtime failures can
occur due to data processing exceptions or server crashes.

2.2 Motivation
As more and more streaming jobs are deployed, applying runtime
management manually for tens of thousands of streaming jobs
on the ByteDance scale becomes extremely time-consuming and
requires significant manpower resources. This process involves
users reporting issues, experts analyzing runtime metrics and
logs from Flink, Message Queues, and Kubernetes, and making
manual adjustments to the job configurations until the issue is
resolved. Thus, an automated runtime management service that
can serve a control plane is necessary. By summarizing the runtime
management scenarios, we conclude the following three main
requirements for the control plane:

1) Scalability. The control plane has to be scalable enough
to manage cluster-wide streaming jobs. In particular, the control
plane needs to apply control policies on tens of thousands of
streaming jobs concurrently. The runtime management on each
streaming job should be completed in a short time, e.g., within five
minutes. Additionally, as a cloud-native service, it should have an
availability of at least 99.9% to provide stable runtime management
for streaming jobs in ByteDance cloud.

2) Effectiveness. The control plane should incorporate effective
control policies to address common runtime issues such as
processing lags and failures Runtime issues in stream processing
can be caused by various factors. For instance, processing lag can
be the result of under-provisioned resources of the streaming job or
load imbalance across parallel tasks. Therefore, to ensure effective
runtime management for streaming jobs, the control plane must
perform two key functions: a) identify the root causes of runtime
issues by analyzing metrics from different sources, and b) resolve
these issues using carefully designed models.

3) Extensibility. While the control plane currently handles
a subset of observed runtime issues, it should be designed with
extensibility to allow for the implementation of control policies
for new scenarios that may arise in the future. For example, we
plan to investigate the feasibility of using machine learning-based
control policies to address a broader range of resource configuration
issues. Furthermore, the control plane should be able to customize

control policies to suit the diverse workload characteristics and
performance requirements of different streaming jobs. Intuitively,
runtime issues of high-priority streaming jobs need to be resolved
promptly to prevent revenue loss.

We observe that novel research prototypes [16, 23] and in-
production solutions [30, 33] have been proposed to apply runtime
management for streaming jobs in the past decade. However, they
fall short of satisfying all runtime management requirements of
streaming services in ByteDance scenario.

Representative research prototypes [16, 23] mainly focus
on designing effective control policies to detect and resolve the
runtime issues for a single streaming job. Specifically, DS2 [23]
mainly focus on the auto-scaling problem, it proposes a novel rate-
based model to detect bottleneck among the entire pipeline and
predict optimal parallelism for each operator. Dhalion [16] proposes
a hybrid control policy to identify multiple resource issues such as
resource over/under-provision, data skewness, and stragglers in a
streaming job. However, both Dhalion and DS2 failed to provide
an end-to-end solution to achieve large-scale runtime management
for cluster-wide streaming jobs. Specifically, they failed to address
1) the lifecycle management of the control plane on a large scale
and 2) how to customize control policies for streaming jobs with
varying performance requirements and workload features.

In-production solutions [30, 33] are carefully designed on
the self-maintained streaming engine and resource management
platform. Specifically, to naturally leverage the scalability of their
own SPE Flare on Orleans [7], Chi [30] embeds the control
plane as a special operator into the streaming pipeline, which
achieves efficient single job management but ignored cluster-level
deployment details. Turbine [33] proposes a modularized system
architecture to manage Jobs, Tasks, and Resources separately
at the cluster level. But it is tightly coupled with their own
infrastructure [10, 27] in Meta. In contrast, ByteDance leverages
open-source solutions, such as Apache Flink as the SPE and
Kubernetes as the cloud platform, for deploying its cloud-
native streaming services. This requires customizations in those
platforms to fill the gap for efficient runtime management of
streaming services over ByteDance cloud. Although there have
been efforts [14, 15] in the Flink community to explore resource
management for streaming jobs, we advocate for a holistic solution
that can effectively resolve runtime issues related to resources,
workloads, and the processing logic for streaming jobs.

The unique requirements of runtime management in
ByteDance’s scenario necessitate a distinct design for the
control plane that fulfills three key requirements. We propose
StreamOps, a control plane for large-scale cloud-native stream
processing runtime management. In the following chapters, we first
describe our design decisions and the overall system architecture
in Section 3. Next, in Section 4, we discuss how StreamOps enables
extensible runtime management for varying streaming jobs. Then,
in Section 5, we introduce three effective control policies to resolve
common runtime issues in ByteDance.

3 STREAMOPS OVERVIEW
In this section, we discuss the design decisions and introduce an
overview of the StreamOps architecture and workflow.
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Figure 1: The design choices for where to deploy the control
plane (CP).

3.1 Design Decisions
The main design goal of the StreamOps is to manage tens of
thousands of Flink streaming jobs in ByteDance cloud concurrently
with low response time. To achieve this goal, we mainly need
to answer three questions: 1) Where to deploy the control
plane? 2) How does the control plane apply cluster-wide runtime
management? 3) Where to store the runtime management state?

3.1.1 Where to deploy the control plane? By summarizing the state-
of-the-art work [16, 17, 23, 30, 31, 33], we mainly observed three
design choices of the control plane deployment as shown in Figure 1:

1) Operator-level control plane [30]. To manage the runtime
of each streaming job, the control plane can be implemented as a
special control operator in a streaming job. The control operator
interacts with other operators via the fine-grained control messages
to retrieve metrics and apply reconfigurations efficiently. Such
a design achieves low latency interaction between the control
plane and parallel tasks in SPE runtime. In addition, the control
policies of the control plane can be implemented flexibly inside
the operator. However, it requires significant modifications to the
SPE runtime to achieve the operator-level interaction via control
messages. Additionally, the failure of the control plane affects the
availability of the SPE runtime.

2) Built-in control plane [17, 31]. The control plane can be
implemented as a centralized service inside the SPE runtime. For
example, the control plane can be running as a process alongside
JobManager in Flink Runtime. Subsequently, the control plane
interacts with SPE runtime with a carefully designed control
protocol to achieve efficient runtime management. The protocol
can be implemented by leveraging the network stack in the SPE
runtime for low-latency communication. In addition, the failure
of the control plane does not affect the SPE runtime. However,
since the control plane is implemented in SPE runtime, any update
on the control plane involves modifications to the SPE source
code. Moreover, in cases where control policies require metrics
from sources outside of the SPE runtime, such as message queues
and Kubernetes, the SPE runtime has to interact with third-party
systems.

3) Standalone control plane [16, 23, 33]. The control plane
can be implemented as a standalone centralized service running
outside of the SPE runtime. Subsequently, the control plane can be
deployed with a set of parallel instances on the cloud to manage
streaming jobs concurrently. In particular, the lifecyclemanagement
of the control plane is independent of the SPE runtime. The control
plane can also adapt resources on demand based on the number of

streaming jobs it manages. Since the control plane is standalone, the
development of the control plane does not affect the SPE runtime.
But at the cost of remote communication cost.

Our decision. We choose to design StreamOps as a standalone
service in ByteDance cloud to manage cluster-wide streaming jobs
for the following reasons: 1) The development of the StreamOps can
be independent of the SPE runtime development. Hence, we can add
features to StreamOps easily in the future. 2) StreamOps is able to
manage streaming jobs with runtime metrics from different sources
without introducing additional dependencies on SPE runtime. 3)
The lifecycle management of the StreamOps is decoupled from
the SPE runtime, which provides greater flexibility and higher
availability.

3.1.2 How does the control plane apply cluster-wide runtime
management? The control plane can be scaled to multiple instances.
To enable cluster-wide runtime management, control plane
instances may interact with streaming jobs in the following two
approaches:

1) Proactive cluster-wide scanning. The control plane may
initiate multiple instances and allocate each instance with a subset
of streaming jobs for periodic runtime status scans. In this way,
runtime management can be applied in a top-down architecture,
and streaming jobs are not aware of the upper layer control plane.
However, it is hard to customize the runtime management check
for different streaming jobs.

2) Passive per-job triggering. Instead of scanning streaming
jobs proactively, the control plane may listen to runtime
management requests from streaming jobs passively. Each
streaming job can be associated with a runtime management trigger
to send requests to the control plane. Subsequently, a control plane
instance will be assigned to process runtime management requests.
Such an approach enables customizable runtime management for
different streaming jobs. However, the lifecycle management of the
triggers introduces additional engineering efforts.

Our decision.We choose to adopt the passive per-job triggering
as the default approach for the following reasons: 1) Enabling
customizable runtime management matches the design goal of
StreamOps in ByteDance. 2) Decoupling the runtime management
triggers from the control plane makes the control plane architecture
more lightweight with lower resource consumption. 3) Although
this approach makes local runtime management decisions for each
streaming job, it can also make global decisions to achieve multi-
tenant runtime management, e.g., dynamically scaling cluster-wide
streaming jobs, based on a global lock such as Zookeeper [21]. 4)
The runtime management trigger can either be implemented within
the SPE runtime to leverage SPE runtime for simplified lifecycle
management or managed independently in a unified manner. We
choose to implement them within the SPE runtime, leaving the
unified management approach for future work.

3.1.3 Where to store the runtime management state? Control
policies in the control plane can be stateful. This requires the control
plane to maintain the necessary state for the associated control
policies. There are mainly two types of state. 1) Control policies
may need to read the historical metrics and configurations of each
steaming job for more accurate and stable dynamic reconfiguration
decisions. 2) Since varying streaming jobs may customize their
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Figure 2: StreamOps architecture and a workflow overview.

control policies, the control plane needs to maintain control settings
for the associated streaming job. We mainly considered two types
of state storage approaches:

1) Local state storage. Streaming jobs can be pinned to a control
plane instance. In this way, the associated state of a streaming job
can be stored in the control plane instance locally. The main benefit
of such an approach is to access the state efficiently without remote
state access. However, additional state management overhead has
been introduced to the control plane to maintain the state of the
allocated streaming jobs. In addition, because the streaming jobs
may have varying runtime management frequencies and dynamic
reconfiguration overhead, the load balance among control plane
instances is challenging.

2) Global state storage. The control plane may also maintain
the state in global storage, such that all control plane instances
access state remotely. In this way, the control plane is stateless
and each instance can manage an arbitrary streaming job. The
main benefit of this approach is to make the control plane more
lightweight and scalable. It is also easier to achieve load balancing.
Moreover, the maintenance of the global state storage introduces
additional engineering overhead.

Our decision. We choose to adopt the global state storage
approach for the following reasons: 1) Global state storage enables
more desired benefits for ByteDance scenarios such as lightweight
and scalability. 2) We can easily leverage existing in-production
level global storage services in ByteDance to manage the state of
the control plane correspondingly.

3.2 Overall Architecture
By summarizing our design decisions, we have developed
StreamOps. An overview of the StreamOps architecture and an
example workflow is depicted in Figure 2.

3.2.1 StreamOps Runtime. StreamOps mainly has three modules
that can natively interact with Kubernetes and run in containers. 1)
A control plane service to manage cluster-wide streaming jobs. 2) A
global storage to manage the associated state for control plane service.
3) Each streaming job is attached with a runtime management
trigger, i.e., RM Trigger to send runtime management requests to
the control plane.

Control Plane Service. The control plane service is stateless and
can be scaled to a set of parallel control plane instances. There is a
load balancer running alongside parallel control plane instances.
It receives runtime management requests and forwards them to
parallel control plane instances. Specifically, the load balancer
distributes the requests among control plane instances with the
awareness of the workloads among control plane instances.
Global Storage. The global storage decouples the periodic
metrics/logs report and the metrics/logs retrieval. During normal
stream processing, the raw metrics and logs from different
sources, e.g., Flink Runtime, Message Queues, and Kubernetes,
are periodically reported to the global storage. During runtime
management, i.e., a runtime management request is triggered, the
control plane service queries necessary runtime metrics and logs to
apply runtime management accordingly.
Runtime Management Trigger. The runtime management
trigger can send runtime management requests on demand. In
particular, a runtime management request can be triggered in
three ways. 1) Scheduled trigger: streaming jobs may trigger
runtime management requests periodically. This is useful to
detect unpredictable runtime issues in time. For example, the
frequency of runtime management can be customized for each
streaming job. 2) Conditional trigger: streaming jobs can trigger
runtime management requests on specific conditions. For instance,
a streaming job can be configured to automatically trigger a
request when processing lag exceeds a certain threshold or
when the pipeline experiences backpressure. Additionally, some
streaming jobs may exhibit periodic peaks at certain times and
can be configured with a conditional trigger to adjust resources
accordingly. 3) Manual trigger: the owners of streaming jobs may
trigger runtimemanagement requests manually, which is important
for resolving emergent runtime issues.

3.2.2 StreamOps Workflow. StreamOps interacts with Flink
Runtime in mainly three steps.

1) The RM trigger of a streaming job sends a runtimemanagement
request to the control plane service at a configurable frequency. The
RM trigger sends a new runtime management request only when
the last one is completed. Hence, there will only be one control
plane instance to manage the streaming job at any time.

2) All runtime management requests will be handled by an
instance of control plane service. Subsequently, the control plane
service instance queries the runtime management state for the
streaming job from global storage. Such as a) a subset of runtime
metrics, b) the associated job configurations, and c) control settings
Then, the control plane service makes control decisions according
to the retrieved state.

3) The control plane service can either apply a dynamic
reconfiguration or fire an alarm according to the control decisions.
The dynamic reconfiguration is executed by instructing Flink
Runtime to update its job configurations. An alarm will be fired
when a system-level reconfiguration is not applicable. In the alarm,
we reveal the root causes and possible solutions to help users resolve
runtime issues for streaming jobs manually.

3.2.3 Fault Tolerance. StreamOps ensures stable and fault-tolerant
runtime management services by considering various failure
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scenarios: 1) Failure of runtime modules. Since control plane service
is stateless, its failures can be naturally handled by reallocating
resources and restarting new instances from cloud platforms.
Global storage is managed by an in-production storage service
in ByteDance with fault tolerance. RM Trigger extends the fault
tolerance semantics from Flink runtime. 2) Failure of metrics
retrieval. Metrics reported from different sources in an ad-hoc
manner may be missing or out-of-order, leading to unexpected
control decisions. Tomitigate this, StreamOps incorporates ametrics
completeness check step before executing runtime management.
3) Failure of making control decisions. Control decisions can be
ineffective or incorrect in resolving runtime issues. Similar to
prior work [16], StreamOps employs a rollback mechanism when
the runtime issue persists. It also limits or temporarily pauses
frequent control decisions to prevent excessive resource updates
that could impact the stability of cloud platforms. 4) Failure of
reconfigurations. The execution of reconfigurations may fail due
to stream processing errors or the unavailability of resources on
cloud platforms. StreamOps handles such failures by gracefully
skipping the current reconfiguration and allowing the streaming
job to request the next round of runtime management in the future.

4 CONTROL PLANE SERVICE
The design goal of the control plane service is to achieve extensible
control policies for streaming jobs. To achieve this, by following
the principle of the separation of policy and mechanism [26], we
separate control policies from the detailed control mechanisms that
are physically interacting with Flink Runtime. Specifically, control
policies can be implemented by leveraging the exposed three-step
programming paradigm. Control mechanisms, i.e., metrics retrieval
and reconfiguration, are encapsulated and can be executed by
interacting with Flink Runtime and other systems.

4.1 Control Policies
Control policies read runtime metrics and logs to detect runtime
issues and make control decisions to resolve them if necessary. To
enable extensible and customizable control policies, we separate
control policies from the execution mechanisms. Thus, control
policies can be implemented with a detect-diagnose-resolve
procedure without knowing the details of control mechanisms.
We discuss the design of the auto-scaler, straggler detector, and

Algorithm 1: Code sketch of a control policy in StreamOps.
Data: 𝐽 𝑜𝑏_𝑁𝑎𝑚𝑒 // The Streaming Job Name.

Data:𝑀𝑒𝑡𝑟𝑖𝑐𝑠_𝑁𝑎𝑚𝑒 // The runtime metrics required by

the control policy.

1 while True do
// StreamOps listens runtime management requests.

2 if receive a runtime management request then
3 Run_Control_Policy(𝐽 𝑜𝑏_𝐶𝑜𝑛𝑓 ,𝑀𝑒𝑡𝑟𝑖𝑐𝑠_𝑁𝑎𝑚𝑒);

4 Function Run_Control_Policy(𝐽 𝑜𝑏_𝑁𝑎𝑚𝑒 ,𝑀𝑒𝑡𝑟𝑖𝑐𝑠_𝑁𝑎𝑚𝑒):
5 𝐶𝑜𝑛𝑓𝑗𝑜𝑏 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙 ,𝑀𝑒𝑡𝑟𝑖𝑐𝑠 =

Metrics_Retriever.retrieve(𝐽 𝑜𝑏_𝑁𝑎𝑚𝑒 ,𝑀𝑒𝑡𝑟𝑖𝑐𝑠_𝑁𝑎𝑚𝑒);
// Get job configuration, control settings, and the

associated metrics.

6 𝑆𝑦𝑚𝑝𝑡𝑜𝑚 = Detect(𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙 );
7 𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 = Diagnose(𝑆𝑦𝑚𝑝𝑡𝑜𝑚,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙 );
8 𝐶𝑜𝑛𝑓 ′

𝑗𝑜𝑏
= Resolve(𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 ,𝐶𝑜𝑛𝑓𝑗𝑜𝑏 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙 );

9 Reconfig_Executor.execute(𝐶𝑜𝑛𝑓 ′
𝑗𝑜𝑏

);

job doctor following this procedure in Section 5. We encapsulate a
programming paradigm according to the detect-diagnose-resolve
procedure. This allows us to extend new control policies easily
in the future. In addition, each control policy is further exposed
with control settings to customize the runtime management for
each streaming job. This allows users to fine-tune control policies
according to their performance requirements.
Control Policy Workflow. An overview architecture and
execution workflow of control policies inside a control plane
instance is depicted in Figure 3. When a runtime management
request is triggered, the associated control policy will be applied. It
mainly works in three steps. 1) The control policy relies on Metrics
Retriever to retrieve the runtime management state such as runtime
metrics of the streaming job. 2) The control policy makes control
decisions based on a detect-diagnose-resolve procedure. It can be
customized for each streaming job with pre-defined control settings.
3) The control decisions can be applied on the Flink Runtime based
on the Reconfig Executor. Specifically, the Reconfig Executor may
either apply reconfiguration on the Flink Runtime or fire alarms
to the users. Multiple control policies can be executed during each
round of runtime management on a control plane instance, but only
one control decision can be applied at a time. This is decided by
the priority assigned to each control policy.
Control Policy Programming Paradigm. Based on the overall
execution workflow, we expose the detect-diagnose-resolve
programming paradigm for control policies implementation. This
is similar to the programming model provided by Dhalion [16] and
DS2 [23]. We show an example of implementing a control policy
based on the detect-diagnose-resolve programming paradigm in
Algorithm 1. The control policy is long-running and listens to the
associated runtime management requests. When the control policy
receives a request, it applies a detect-diagnose-resolve procedure
for the associated streaming job. 1) The control policy has a pre-
defined subset of metrics and logs as the input, which is retrieved
from the Metrics Retriever. Subsequently, it detects symptoms
based on those metrics and logs. 2) If a symptom is detected, the
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control policy diagnoses the root causes for the symptom. The
diagnosis is executed by carefully analyzing related metrics. For
example, the root cause of the processing lag can be either under-
provisioned resources or load imbalance. To further confirm the
root cause, the control policy has to identify the bottlenecked
operator, and then, check the detailed execution status and resource
utilization of parallel tasks. 3) If the root cause is located, the
control policy needs to propose a new configuration to resolve the
performance bottleneck if necessary. This is achieved by invoking
reconfiguration APIs provided by Reconfig Executor.
Control Settings. To allow for more precise identification of
runtime issues, the execution of control policies on a specific
streaming job can be customized through user-defined control
settings. For instance, users can adjust the lag size threshold for the
auto-scaler to fine-tune its sensitivity in making dynamic scaling
decisions. Control policies may have different control settings, and
developers may expose these settings to users according to the
detailed execution logic in the control policy.

4.2 Control Mechanisms
Control mechanisms interact with other systems such as global
storage and Flink Runtime for metrics retrieval and dynamic
reconfiguration. In the following, we discuss the detailed techniques
and design decisions that have been made to achieve efficient
execution of control mechanisms.
Metrics Retrieval. The runtime metrics required by control
policies are retrieved by the Metrics Retriever. The runtime metrics
can be complex in two dimensions: the types of metrics and the
time range over which they are measured. While control policies
usually require only a small subset of runtime metrics as input from
those two dimensions. Thus, it is important thatMetrics Retriever is
able to query a subset of metrics for efficient runtime management.

Existing SPEs such as Apache Flink enable queryable metrics by
simply reading runtime metrics of the streaming job on the fly. Such
a metrics management approach is simple and works well in small-
scale clusters, but does not meet the goal of StreamOps in three folds.
1) It does not support the range query of historical metrics. Instead,
only the latest runtime metrics are available. 2) In a large-scale
cluster, collecting metrics is time-consuming. It requires gathering
the latest metrics of parallel tasks across different physical nodes.
3) Metrics from other platforms such as Kubernetes and Message
Queues are also important for identifying runtime issues.

The main idea of metrics management in ByteDance is to
cache historical metrics and decouple the metrics retrieval and
report via an in-production time-series database. An overview of
metrics management over ByteDance cloud is depicted in Figure 4.
There are mainly three types of metrics sources, i.e., metrics from
Flink, Kubernetes, and Message Queues, that periodically report
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Figure 5: A workflow overview of scaling execution.

metrics to the database. Control policies can get the expected
metrics by declaring the required metrics for the Metrics Retriever.
Subsequently, the Metrics Retriever queries a subset of metrics and
aggregates the raw metrics as the input for those control policies.
The metrics retrieval is efficient with SLO guarantee based on the
time-series database service.
Reconfiguration Execution. The reconfiguration of a streaming
job is physically executed by the Reconfig Executor, which requires
support from Flink Runtime. For example, when the auto-scaler
makes a scaling out decision, the Reconfig Executor proposes a
new configuration with respect to the estimated resources. Then,
the Flink Runtime needs to rescale the deployed streaming job by
acquiring more resources from Kubernetes and creating more task
instances according to the new configuration.

The reconfiguration causes the unavailability of the original
stream processing. Hence, the impact of reconfiguration needs to
be as low as possible. Based on our profiling results of deploying
streaming tasks, we observe that a majority of the time (up to
70%) is used for scheduling resources during restarting the entire
streaming job in ByteDance cloud. To this end, inspired by the
adaptive scheduling [15] in the latest Flink-1.16, we adopt a dynamic
reconfiguration mechanism without releasing existing resources. In
particular, the Flink Runtime negotiates with Kubernetes to add (or
remove) additional Kubernetes pods. Subsequently, the streaming
job will be updated without re-compiling or re-submitting.

An overview workflow of reconfiguration is depicted in Figure 5.
The Flink Runtime maintains the execution plan for the current
streaming job. The reconfiguration is executed by updating the
execution plan and redeploying parallel tasks accordingly. Once the
Reconfig Executor receives a new job configuration that changes the
parallelism of operators, it requests the Flink Runtime to scale out/in
the streaming job in mainly three steps. 1) The JobMaster creates
a new TaskManager for new task deployment without affecting
the current stream processing. 2) Once the resource is allocated,
JobMaster updates the execution plan of the current streaming job
according to the new configuration. 3) Finally, JobMaster stops and
redeploys the parallel tasks from the latest checkpoint to let the new
configuration take effect. Overall, dynamic reconfiguration takes
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2-3 minutes to complete over large-scale streaming jobs deployed
with thousands of parallel tasks, which is up to 2x faster than the
default stop-and-restart mechanism in the original Flink Runtime.

5 CONTROL POLICIES INSTANTIATION
The main design goals for control policies in ByteDance are to 1)
ensure streaming jobs keep up with the input stream and mitigate
common runtime issues such as processing lag and failures. 2)
make better use of cluster resources. StreamOps features an auto-
scaler, a straggler detector, and a job doctor to achieve these goals.
Processing lag is mainly caused by under-provisioned resources
or load imbalance. The load imbalance can be further caused
by stragglers or data skewness. This can be handled effectively
with the three proposed control policies. The auto-scaler identifies
overloaded and underloaded resources and rescales resources
predictively. The straggler detector identifies stragglers and re-
allocates resources. While the job doctor handles data skewness
and other failure issues that require manual source code updates. It
fires alarms with insights to help resolve the issue.

An overview of control policies architecture is shown in Figure 6.
As aforementioned, all control policies can be implemented based
on the detect-diagnose-resolve paradigm: 1) The frequent runtime
issues (or symptoms) can be detected based on pre-defined detection
mechanisms over the associated runtimemetrics. 2) Control policies
diagnose root causes based on carefully designed diagnosis rules.
3) Once a root cause is confirmed, control policies introduce model-
guided resolvers in control policies to propose effective solutions.

5.1 Auto-Scaler
The main design goals of auto-scaler are to 1) mitigate high
processing lag issues caused by overloaded stream processing
with under-provisioned resources by scaling out; and 2) improve
resource utilization efficiency when the streaming job is
underloaded with over-provisioned resources by scaling in. To
achieve these goals, the auto-scaler must answer two key questions:
1) “When to scale”: To identify whether the streaming job is
overloaded or underloaded and dynamic scaling is required. 2) “How
much to scale”: To predict the appropriate resources, i.e., what is
an optimal resource configuration for current input workloads.

Algorithm 2: Auto-Scaler workflow.
1 Function Detect(𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
2 if 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 ≥ 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 ≤ 𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
3 return 𝑡𝑟𝑦_𝑟𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔;

4 Function Diagnose(𝑆𝑦𝑚𝑝𝑡𝑜𝑚,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
5 if 𝑆𝑦𝑚𝑝𝑡𝑜𝑚 is not 𝑡𝑟𝑦_𝑟𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔 then
6 return null;

7 if Load balanced then
8 if 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 ≥ 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 is increasing and
𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑_𝑡𝑎𝑠𝑘𝑠 ≥ 𝑛1 then

9 return 𝑛𝑒𝑒𝑑_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑜𝑢𝑡 ;

10 else if 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 ≤ 𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and
𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑_𝑡𝑎𝑠𝑘𝑠 ≥ 𝑛2 then

11 return 𝑛𝑒𝑒𝑑_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑖𝑛;

12 Function Resolve(𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 ,𝐶𝑜𝑛𝑓𝑗𝑜𝑏 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
13 if 𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 is 𝑛𝑒𝑒𝑑_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑖𝑛 or 𝑛𝑒𝑒𝑑_𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑜𝑢𝑡

then
14 Try Scaling In/Out with AutoScaling Model;

Diagnosis rule. The main challenge of deciding “When to
scale” is to accurately identify whether the streaming job is
overloaded/underloaded and rescale it accordingly. In particular,
simply relying on the backpressure related metrics is not general
enough to cover all overloaded cases in ByteDance. For example,
the data transmission services in ByteDance are running with a
single operator and do not incur backpressure when overloaded.
Therefore, the auto-scaler is designed with a diagnosis rule over the
processing lag related metrics.

An overview of auto-scaler diagnosis workflow is depicted in
Algorithm 2. The prerequisite of scaling decisions is the load
balance among parallel tasks. The parallel tasks are considered
as load balanced with two conditions: 1) Most parallel tasks have
similar useful time ratio. In particular, the useful time ratio of a
task follows the definition in DS2 [23], which is measured by the
actual working time of a parallel task over a time period. 2) The
CPU resource utilization of allocated containers for TaskManagers
is in a similar range. Subsequently, the streaming job is considered
overloaded if: a) It has high processing lag, i.e., the lag size exceeds
a predefined threshold and is still increasing. b) Most parallel tasks
are overloaded, i.e., having a high useful time ratio. Note that the
streaming job may not need to be scaled out when the processing
lag is decreasing. In contrast, the streaming job is considered
underloaded and can be scaled in when the streaming job has very
low processing lag and most parallel tasks have a low useful time
ratio. Since the SLO and stability of the streaming job is more
important than resource utilization, we set the scaling in threshold
more conservatively compared to scaling out. Besides, users can
also tune the configurations of the diagnosis rule to adapt to their
own streaming scenarios.

Resolution. A streaming job usually requires to be rescaled
multiple times to converge to a stable configuration for current
workloads. The main challenge of “Howmuch to scale” is: to predict
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accurate resources in order to reduce the convergence time for a
stable resource configuration. The auto-scaler adopts a predictive
autoscaling model to answer this question. The autoscaling model
predicts the parallelism for each operator inspired by prior work
DS2 [23]. This is achieved by quantifying the processing capability
and input workloads of each operator. The model requires four
inputs. 1) Streaming DAG of the job. 2) Input Rate of the job. 3) Useful
Time per operator. 4) In/Out Ratio per operator. Intuitively, the
Streaming DAG can be retrieved directly from Flink Runtime. While
the other three inputs have to be derived from runtime metrics. In
the following, we discuss how we derive all inputs by querying
the associated runtime metrics within a time period 𝑇 , i.e., from
𝑛𝑜𝑤 −𝑇 to 𝑛𝑜𝑤 .

The Input Rate of the streaming job is not always equivalent
to the output rate of source operators. In particular, when source
operators are backpressured and throttled, the Input Rate will be
greater than the output rate of source operators, and the processing
lags are increasingly accumulated. As a result, we need to get the
estimated Input Rate with the consideration of the processing lag
increase rate, which can be derived as follows:

𝐿𝑎𝑔𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑎𝑡𝑒 = (𝐿𝑎𝑔𝑛𝑜𝑤 − 𝐿𝑎𝑔𝑛𝑜𝑤−𝑇 )/𝑇
Based on the processing lag increase rate, the estimated Input Rate
of a source operator can be derived by:

𝐼𝑛𝑝𝑢𝑡𝑅𝑎𝑡𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡𝑅𝑎𝑡𝑒 + 𝐿𝑎𝑔𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑅𝑎𝑡𝑒
For the Useful Time over a time period 𝑇 , we observe that Busy

Time Per Second metrics provided by Flink Runtime records the
useful time of a task per second. Subsequently, the Useful Time per
operator over a time period 𝑇 can be derived by:

𝑈𝑠𝑒 𝑓 𝑢𝑙𝑇𝑖𝑚𝑒 =

𝑛𝑜𝑤∑︁
𝑛𝑜𝑤−𝑇

𝐵𝑢𝑠𝑦𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑

The In/Out Ratio per operator can be simply derived by
summarizing the number of records in/out over the time period 𝑇 .

When the new parallelism has been calculated based on the DS2
model, the physical resources can be linearly estimated according to
the new parallelism, which is similar to the prior work Turbine [33].

5.2 Straggler Detector
The main design goal of the straggler detector is to identify
stragglers and migrate them to other nodes in order to mitigate high
processing lag issues. Stragglers are parallel tasks that typically
run slower than their peers due to various resource issues on
the physical nodes. Although cloud platforms such as Kubernetes
may alleviate some resource issues among physical nodes, such as
resource contention, they may not be able to respond to application-
level stragglers in a timely manner due to the overhead involved in
scanning all physical nodes. The stragglers cause load imbalance
among parallel tasks and further introduces high processing lag. As
a result, the main requirement of the straggler detector is to identify
stragglers among parallel tasks accurately when the processing lag
threshold is exceeded. Subsequently, the straggler detector mainly
handles the resource problems of the parallel tasks by reallocating
resources for stragglers.

Diagnosis rule. The straggler detector is a rule-based
model summarized from the runtime management experience in

Algorithm 3: Straggler Detector workflow.
1 Function Detect(𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
2 if 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝐿𝑎𝑔 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
3 return 𝑡𝑟𝑦_𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛;

4 Function Diagnose(𝑆𝑦𝑚𝑝𝑡𝑜𝑚,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
5 if 𝑆𝑦𝑚𝑝𝑡𝑜𝑚 is not 𝑡𝑟𝑦_𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 then
6 return null;

7 if Load imbalanced then
8 𝑆𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟_𝑡𝑎𝑠𝑘𝑠 ← Identify 𝑆𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠 with higher 𝑙𝑜𝑎𝑑

from𝑇𝑎𝑠𝑘𝑠 ;
9 if rate of 𝑆𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟_𝑡𝑎𝑠𝑘𝑠 ≤ rate of 𝑁𝑜𝑟𝑚𝑎𝑙_𝑡𝑎𝑠𝑘𝑠 and

𝑆𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟_𝑡𝑎𝑠𝑘𝑠 ≤ 𝑛 then
10 return 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 ;

11 Function Resolve(𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 ,𝐶𝑜𝑛𝑓𝑗𝑜𝑏 ,𝐶𝑜𝑛𝑓𝑐𝑜𝑛𝑡𝑙):
12 if 𝑅𝑜𝑜𝑡_𝐶𝑎𝑢𝑠𝑒 is 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑠_𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑 then
13 Re-allocate resources with Straggler Detection Model;

ByteDance. An overview of the execution workflow of the straggler
detector can be depicted in Algorithm 3. we identify stragglers by
leveraging the load, i.e., useful time ratio and the processing rate
of parallel tasks. In particular, the stragglers that have resource
issues usually have higher loads and lower or similar processing
rates than their peers. And they are usually located in the same
subset of machines. Based on this feature, we diagnose the root
cause resulting from stragglers with mainly two steps: 1) We find
out a subset of tasks that have a higher load but a lower processing
rate than their peers. This is achieved based on Z-score [37]. 2) We
consider the subset of tasks as stragglers if the ratio of those tasks
is small compared to the total number of parallel tasks. Similar
to Dhalion [16], the data skewness scenario is filtered out by
comparing the processing rate of overloaded tasks with their peers.
We will discuss how we identify data skewness issues in Section 5.3.

Resolution. To resolve the straggler issue, instead of simply
migrating a straggler task from one TaskManager to another inside
the Flink cluster, we need to migrate TaskManagers containing
stragglers to other physical nodes. Thus, migrating stragglers
affects other parallel tasks and introduces non-negligible scheduling
overhead. In addition, there are also false positive cases among
stragglers that are not necessarily needed to be migrated. To
this end, we design a simple but effective model, i.e., Straggler
Detection Model to check and decide whether a TaskManager needs
to be migrated. The Straggler Detection Model works as follows:
1) For the identified subset of stragglers, we further find out the
TaskManagers and their allocated physical nodes. 2) If the majority
of TaskManagers containing stragglers are in the same physical
node (the number of nodes is configurable), we blacklist the physical
node for the streaming job and no further resources will be allocated
to the node. 3) We migrate TaskManagers in the blacklisted nodes
to other nodes.

5.3 Job Doctor
We design the job doctor to detect and identify the root causes
of the runtime issues that cannot be resolved by reconfigurations
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Table 1: JobDoctor diagnosis rules for varying runtime issues.
Category Runtime Issues

Resource Usage Analysis JM/TM CPU usage
JM/TM Memory usage

Failover Analysis All Failovers e.g., OOM

Flink Configuration Analysis

JVM Frequent Full GC
Skewed State Distribution
Inappropriate State Backend Configuration

Data Processing Analysis Processing Lag Size Exceeded
Backpressured

on Flink Runtime. It provides a web dashboard for streaming jobs
to request diagnosis of runtime issues and receive insights into
their root causes. Instead of applying reconfiguration to resolve
the runtime issues dynamically, the job doctor fires alarms to users
with the diagnosis results for the runtime issues. The runtime issues
are to be resolved from the users’ side manually. Job doctor is
especially useful when the associated reconfiguration mechanisms
for resolution are not supported. For example, resolving data
skewness mainly involves updating the workload distribution
among parallel tasks. The modification of the workload distribution
further requires updating the source code of a streaming job.

Diagnosis rules. Job doctor is generally a combination of
diagnosis rules. Those diagnosis rules are summarized from expert
knowledge and experiences. Table 1 summarizes representative
four categories of runtime diagnosis rules for associated issues,
including Resource Usage Analysis, Failover Analysis, Memory
Analysis, and Data Processing Analysis. 1) Resource Usage Analysis
suggests a better CPU/Memory configuration for JobManagers and
TaskManagers of the Flink cluster according to the average and
peak usage of resources. 2) Failover Analysis handles exceptions by
suggesting pre-defined exception handling rules such as increasing
memory size to resolve OOM exceptions. 3) Flink Configuration
Analysis monitors Flink configuration related issues. For example,
the job doctor can suggest state backend configurations in Flink
according to the state size for better state access performance. 4)
Data Processing Analysis detects and diagnoses data processing
issues such as processing lags and backpressure, which may be
caused by data skewness. Unlike the straggler detector, data
skewness results in tasks with a higher load having a higher
processing rate, and based on this condition, the job doctor can
differentiate between the diagnosis of stragglers and data skewness.

Resolution. To help resolve the runtime issues, the job doctor
notifies users with the insights (i.e., the diagnosis results) of
the runtime issues and recommends resolution guidance that
may potentially resolve the problem. For example, the job doctor
notifies users with the current workload distribution and the
resource utilization among parallel tasks. Subsequently, users can
reconfigure the key partitioning strategy of their streaming job to
resolve the data skewness.

6 EXPERIMENTAL EVALUATION
This section reports the performance evaluation results of
StreamOps from the in-production environment in ByteDance. First,
we evaluate the overall scalability of StreamOps for managing
cluster-wide streaming jobs. Second, we evaluate the effectiveness
of each control policy for resolving the runtime issues under the
associated scenarios.

6.1 Experiment Setup
We measure the overview performance of StreamOps on one of our
in-production clusters. The cluster runs thousands of streaming
jobs for varying online services. We measure the overall CPU
and Memory consumption of the cluster over 24 hours before
integrating with StreamOps, which is shown in Figure 7. Figure 7a
reveals that nearly 75% of streaming jobs have relatively low CPU
consumption, i.e., under 50%. Figure 7b reveals that nearly 80%
of streaming jobs have a relatively healthy memory consumption
i.e. the memory usage is between 50% ∼ 80%. In summary, the
detailed resource usage indicates that there is a large resource
optimization space for the in-production cluster in ByteDance. In
this experiment, we show that StreamOps scales well and is able to
increase the overall resource utilization and reduce the processing
lag runtime issues effectively.

6.2 Performance Overview
We first evaluate the overall scalability of StreamOps over our in-
production environment. We deployed StreamOps with 50 instances
over the cluster. Each instance is configured with 16 CPU cores
and 32GB memory. To guarantee stability, most streaming jobs
have been configured with an in-frequent runtime management
trigger, e.g., 4 times per day by default. While streaming jobs may
customize their own trigger for better runtime management.

We measure the runtime management requests received by
StreamOps in 1 day and summarized the statistics of the number
of requests received and the time spent to respond. Figure 8 shows
the overall scalability of the StreamOps. Specifically, Figure 8a
shows the CDF of the requests per second received by StreamOps.
Figure 8b shows the CDF of 95% response latency per second for
all requests handled by StreamOps. Based on the in-production
performance results, we have the following observations: In general,
StreamOps receives up to 33k requests per second over the entire
cluster, and it can apply runtime management within 60 seconds
for 99% of runtime management requests. This confirms the good
scalability of StreamOps because of the lightweight and stateless
system architecture.

6.3 Auto-Scaler in Action
In this section, we demonstrate the effectiveness of the auto-scaler.
We select a large-scale in-production streaming job to evaluate the
auto-scaler. The streaming job contains a single operator to collect
and analyze the runtime statistics of online web services. Figure 9a
shows the input rate of the streaming job over 2 days. Specifically,
the input rate of the streaming job periodically increases to nearly
3 million events per second and decreases to nearly 800k events per
second. The input stream has 3000 partitions. In addition, the initial
parallelism for the streaming job has been set to 750 by default,
which is 25% of the number of partitions.

Figure 9a shows changes in parallelism and the input rate over
time. Based on the results, we have the following observations.
1) Although the initial parallelism of the streaming job is able to
avoid processing lags, it wastes a large number of resources if auto-
scaling is not enabled. Specifically, the detailed CPU consumption
metrics indicate that the overall CPU utilization is 26%. 2) Auto-
scaler makes in-time scaling decisions according to the changes in
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Figure 7: CPU and Memory
usage of streaming jobs in
selected ByteDance cluster.
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Figure 8: StreamOps scalability
overview.
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Figure 9: Auto-scaler for real
scenario in ByteDance.
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Figure 10: Straggler Detector
for real scenario in ByteDance.

the input workloads. It can scale in the parallelism to 200 during
trough hours while scaling the parallelism out to 600 during peak
hours. The allocated resources can be adjusted proportionally. On
average, auto-scaling is able to save up to 60% resources during
peak hours and 87% during trough hours. 3) The scaling execution
may cause an input rate spike due to blocked input data during
scaling. When the streaming job is updated, the blocked input
data is consumed in a short time, causing short input rate spikes.
This highlights the need for careful tuning of the scaling model to
balance dynamic scaling costs with sensitivity to workload changes.

Figure 9b shows the detailed changes in lag size over time. Based
on the results, we have the following observations. 1) The overall
lag size remains consistently low, with almost 0 lag in 99.4% of the
entire time period. This confirms that auto-scaler is able to make
better use of resources while mitigating the processing lag for large-
scale streaming jobs. 2) However, multiple processing lag spikes
are also observed. As aforementioned, this is mainly caused by the
inevitable scaling execution overhead. We leave the exploration
of more efficient scaling execution mechanisms in cloud-native
environments as our future work.

6.4 Straggler Detector in Action
In this section, we demonstrate the effectiveness of the straggler
detector. According to our in-production statistics, the straggler
detector is able to detect nearly 300 streaming jobs with stragglers
per day. It can resolve the processing lag issue for them effectively
within 10 minutes. This confirms that the straggler detector can
reduce runtime management costs and handle straggler issues
automatically. To understand the detailed execution behavior of the
straggler detector, we have sampled two representative straggler
cases from our in-production environment.

We selected two streaming jobs named DTS_Job_1 and
DTS_Job_2. Both streaming jobs are data transmission services,
i.e., to read the high volume input stream from Kafka and apply
data cleaning correspondingly. Initially, they are deployed with
2000 parallel tasks and 400 TaskManagers. Each of them has an
input stream with 2000 partitions. Each parallel task is allocated
with a partition of the input stream for parallel stream processing.
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Figure 11: The processing lag size breakdown.

In both scenarios, the stragglers are mainly caused by lacking CPU
resources on the overloaded physical nodes.

Figure 10 reports the changes in the processing lag for each
streaming job over a period of time. Based on the results, we
have the following observations. 1) Both streaming jobs have low
processing lag, i.e., under 200k which can be processed within a few
minutes, during normal data processing. This indicates that they
are allocated plenty of physical resources for data processing. 2)
The processing lag of the DTS_Job_1 started to increase from time
9500 seconds, while the processing lag of the DTS_Job_1 started
from time 4000 seconds. 3) The processing lag decreased after the
straggler issue was detected and resolved.

To further confirm the effectiveness of the straggler detection,
we show the detailed processing lag size breakdown in Figure 11. In
particular, we sampled the top 5 partitions with the largest lag size
over the period. The detailed processing lag results have shown that
over 80% of the increased processing lag is accumulated in those
partitions. This indicates that parallel tasks assigned with those
partitions are stragglers. They cannot keep up with the input rate of
those partitions. By further analyzing the allocated physical nodes
for those stragglers, we observe that those nodes are overloaded
because of resource sharing among multiple jobs. The straggler
detector is able to identify stragglers and resolve the issue effectively
by migrating the associated TaskManagers out to other nodes.

6.5 Job Doctor in Action
In this section, we demonstrate the effectiveness of job doctor.
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Figure 12: Job Doctor for real scenarios.

The job doctor is widely utilized, with thousands of runtime
management requests triggered via the dashboard per day.
Figure 12a shows the statistics over 7 days, summarizing the
normalized number of streaming jobs with successfully diagnosed
runtime issues based on four categories of rules. Based on the
detailed results, we have the following observations: 1) The Flink
configuration issues are the least frequent. This indicates that
based on the development and management of Flink streaming
jobs in ByteDance over the years, we have accumulated massive
experience in setting appropriate Flink configurations for varying
streaming jobs. 2) However, data processing, failover, and resource
usage issues still commonly exist in ByteDance cloud. As a result,
StreamOps is important in ByteDance’s scenario to help resolve
those runtime issues effectively.

Previously, when runtime issues were detected, users had to
request oncalls and rely on Flink experts to manually diagnose
root causes. With the introduction of the job doctor, users can
now diagnose root causes for runtime issues, reducing the need
for oncalls. Figure 12b shows statistics from a 7-week period,
summarizing the normalized number of streaming jobs with
detected runtime issues and the normalized number of jobs with
oncalls requested after using the job doctor. Based on the number
of oncall per week, we confirm that the job doctor can help users
resolve runtime issues based on the four categories of diagnosis
rules. In particular, the actual number of oncalls is up to 4.5x lower
than the number of runtime issues incurred daily.

7 RELATEDWORK
In the past decade, a lot of stream processing engines have emerged
in both academia and industry [1–5, 18, 22, 28, 32, 34–36, 40–43].
The runtime management of streaming services over SPEs has been
widely discussed in both academia and industry. Specifically, the
runtime management topics can be generally divided into three
categories: 1) Control plane, 2) Control policies, and 3) Dynamic
reconfiguration optimization.

Control Plane. Existing research prototypes [30, 31, 33]
propose control planes to manage the runtime of streaming
jobs with different design goals. Chi [30] and Trisk [31] focus
on extensibility and efficiency. They both expose programming
models for designing varying control policies, and enable efficient
reconfiguration based on fine-grained atomic task-level operations
in the SPE runtime. Turbine [33] provides cluster-wide runtime
management for streaming jobs in Meta and decouples the
runtime management into job management, task management, and
resource management for effectiveness. The design of StreamOps

draws significant inspiration from the prior work Trisk [31].
StreamOps adopts the concept of a standalone control plane with
modularized functionalities, as seen in Trisk. However, StreamOps
has different design decisions and goals compared to existing works.
Specifically, StreamOps incorporates multiple designs to achieve
effective runtime management for cluster-wide streaming jobs in
ByteDance’s scenario.

Control Policies. Control policies play a crucial role in
optimizing the runtime performance of streaming jobs. Prior
research prototypes [9, 16, 17, 23, 24, 29] have proposed different
control policies to dynamically reconfigure streaming jobs with
various performance objectives. DS2 [23], DRS [17], Nephele [29],
and Dhalion [16] focus on making dynamic scaling to maximize
throughput or guarantee latency. Henge [24] aims to achieve
SLO/SLAs while maximizing the overall system utilization through
automata-based cluster-wide resource management. In contrast,
StreamOps focuses on the general runtime management of
streaming jobs over ByteDance cloud. StreamOps is able to integrate
novel control policies for effective runtime management.

Reconfiguration Optimization. The reconfiguration of
streaming jobs introduces inevitable downtime. Existing work [9,
11, 19, 20, 38] propose optimized mechanisms for efficient dynamic
reconfiguration. Seep [9] proposes a partial-pause-and-resume
reconfiguration execution mechanism to partially update the
streaming pipeline without affecting the rest of the parallel
tasks. Rhino [11] and Clonos [38] mainly focus on optimizing
the state management framework by proactive state replication
to enable fast state migration and recovery. Megaphone [20]
and Meces [19] propose fine-grained state migration scheduling
strategies to reduce the latency spike incurred by transferring state
remotely. Due to the complicated streaming scenario in ByteDance,
enabling fine-grained reconfiguration optimization requires large-
scale refactorization on the codebase and potentially affects the
stability of services. We leave the investigation of the efficient
reconfiguration in ByteDance cloud as a future work.

8 CONCLUSION
In conclusion, we present StreamOps, a standalone lightweight
control plane to manage cluster-wide streaming jobs in ByteDance
cloud. We show that StreamOps is scalable to handle tens of
thousands of runtime management requests from streaming jobs
within one minute. Streaming jobs can also customize their runtime
management by tuning the control settings of different control
policies. Our carefully designed auto-scaler, straggler detector, and
job doctor are also able to handle processing lag and common
runtime failure issues effectively.
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