
Declarative Sub-Operators for Universal Data Processing
Michael Jungmair

Technische Universität München
jungmair@in.tum.de

Jana Giceva
Technische Universität München

jana.giceva@in.tum.de

ABSTRACT
Data processing systems face the challenge of supporting increas-
ingly diverse workloads efficiently. At the same time, they are
already bloated with internal complexity, and it is not clear how
new hardware can be supported sustainably.

In this paper, we aim to resolve these issues by proposing a
unified abstraction layer based on declarative sub-operators in ad-
dition to relational operators. By exposing this layer to users, they
can express their non-relational workloads declaratively with sub-
operators. Furthermore, the proposed sub-operators decouple the
semantic implementation of operators from the efficient imper-
ative implementation, reducing the implementation complexity
for relational operators. Finally, through fine-grained automatic
optimizations, the declarative sub-operators allow for automatic
morsel-driven parallelism. We demonstrate the benefits not only
by providing a specific set of sub-operators but also implement-
ing them in a compiling query engine. With thorough evaluation
and analysis, we show that we can support a richer set of work-
loads while retaining the development complexity low and being
competitive in performance even with specialized systems.

PVLDB Reference Format:
Michael Jungmair and Jana Giceva. Declarative Sub-Operators for
Universal Data Processing. PVLDB, 16(11): 3461 - 3474, 2023.
doi:10.14778/3611479.3611539

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/lingo-db/subop-vldb-2023-reproducibility.

1 INTRODUCTION
Data processing engines are increasingly expected to support a
richer set of workloads beyond relational SQL queries. If engines
can not meet users’ processing demands, standard extension mech-
anisms like user-defined operators or procedural extensions are
used, but often at the cost of usability and performance [9, 13].
At the same time, existing engines are already bloated with inter-
nal complexity [45], which is further exacerbated by adding more
complex features to the SQL standard [7]. Additionally, efficiently
implementing operators for modern hardware leads to a lot of
redundancy that decreases developer productivity and maintain-
ability [40], and it is still unclear how data processing systems can
keep up with the increased complexity of modern hardware.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611539

Relational
Operators

1 User-Defined
Operators & Algorithms

Declarative Sub-Operator Layer

Imperative Implementations

3 Automatic
Transformations
for modern HW

2
D
ec
ou

p
le

S
em

an
ti
c
fr
om

Im
p
er
at
iv
e
Im

p
le
m
en
ta
ti
on

Figure 1: Overview of our approach

A few in our community have already identified that relational
algebra should not be the only abstraction level exposed to users [1],
or used internally [8, 17, 25, 45]. More specifically, there have been
different proposals for abstractions that either focus on implement-
ing complex operators [25], representing different workloads [39],
or supporting modern hardware [2, 6, 41].

Fortunately, we argue in this paper that all of these problems
can be addressed with a unified abstraction layer of declarative
sub-operators as shown in Figure 1, if one were to follow a number
of design principles. 1 By exposing this new lower-level abstrac-
tion level, users and frontend libraries can use sub-operators to
efficiently specify custom operators and algorithms. Thus, tradi-
tional extension mechanisms like UDFs and their tradeoffs can be
replaced, and more workloads can be executed efficiently by the
query engine. 2 Furthermore, by using declarative sub-operators,
we can decouple the semantic implementation of complex operators
from the efficient implementation with imperative code. This helps
to reduce internal complexity and make the implementation of
complex operators like window functions more feasible. 3 Finally,
because this new abstraction layer is based on fine-granular yet
declarative sub-operators, one can perform new automatic opti-
mizations and transformations. For example, instead of hard-coding
operator-specific implementations for morsel-driven parallism [29]
we can then automatically apply workload-agnostic transforma-
tions to reach the same result.

Designing such an abstraction layer requires balancing of ex-
pressability (i.e., can all desired algorithms be expressed efficiently)
and declarativity (i.e., how easy can transformations be realized).
In this paper, we propose a novel design for such an abstraction
layer that is more expressible and explicit than prior work and
can thus not only express complex relational operators efficiently
but also user-defined operators and algorithms. However, we also
demonstrate that despite the expressibility, many optimizations and
transformations can still be applied effectively, including automati-
cally introducing morsel-driven parallelism. We successfully imple-
mented a concrete set of sub-operators in our compiling database

3461

https://doi.org/10.14778/3611479.3611539
https://github.com/lingo-db/subop-vldb-2023-reproducibility
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611539
https://www.acm.org/publications/policies/artifact-review-and-badging-current

system LingoDB (cf. Section 6) and refined it based on the gained ex-
perience. Using this implementation1, we demonstrate that we can
not only support a richer set of workloads like complex analytical
queries (full TPC-H and TPC-DS), user-defined operators, iterative
algorithms (e.g., k-Means, PageRank), and numerical workloads, but
also that we can achieve this without incurring performance penal-
ties and while keeping the system’s internal complexity low. We
note that further optimizations like auto-vectorization could help to
improve LingoDB’s performance further, especially for numerical
workloads, but we leave that to future work.

2 THE NEED FOR SUB-OPERATORS
Relational operators have been the cornerstone of relational data-
base systems for decades. They are declarative and abstract away
many implementation details. This allows for effective, automatic
query optimization and enables transparent innovations under the
hood. However, in the last years, increasingly more research works
started questioning if perhaps the abstraction of relational operators
is too high-level for many modern workload requirements. Thus,
we argue that in addition to relational operators, we need another
lower layer of sub-operators to solve the following problems.
P1: Reducing Implementation Complexity The efficient im-
plementation of relational operators is complex and often requires
a high implementation effort. Even basic operators such as aggre-
gations can require complex, monolithic implementations (select
count(distinct a),count(distinct b)...). In addition, databases frequently
add support for new operators for e.g., array processing [31] or
spatial data [14]. Furthermore, fused operators (e.g., GroupJoin,
TopK) are introduced during query optimization to improve per-
formance. Finally, increasingly more complex operators are being
added to the SQL standard: From Window Functions and Ordered
Set Aggregates (2003) to Row Pattern Matching (2016) and Property
Graph Queries (2023)[7]. We argue that this is hardly manageable
for development and maintenance without relying on reusable and
composable abstractions below relational algebra.
P2: Expressing Computations beyond SQL Database systems
are increasingly expected to support computations beyond what
could be expressed with simple SQL queries. Especially iterative
algorithms are hard to implement efficiently with SQL, but they are
commonly required for graph analytics (e.g., page rank, shortest
path) or data mining (e.g., k-means, dbscan). As already proposed
by Bandle et al. [1], a reusable sub-operator layer can allow for effi-
cient implementations of such algorithms. Furthermore, by using
the same building blocks as relational operators, we can integrate
complex algorithms seamlessly in queries. This avoids expensive
materializations and allows the query optimizer to perform opti-
mizations that e.g., push selections through user-defined operators.
P3: Execution on Modern Hardware Modern hardware is in-
creasingly complex and often requires a high implementation effort
in order to fully utilize it. For example, using morsel-driven par-
allelism [29] for efficient multi-threading requires adapting the
implementation of every operator. In contrast, with sub-operators,
we can automatically apply workload-agnostic transformations to
reach the same effect (e.g., using thread-local states) without having
to hard-code an implementation for every relational operator.
1https://github.com/lingo-db/lingo-db

Resulting Requirements In summary, we argue that we need a
unified sub-operator layer that helps with at least the three prob-
lems outlined above. From these problems, we can derive six re-
quirements for such a sub-operator layer

R1 Universal: Sub-Operators should be designed universally
to allow for reusability and composability. Then, new com-
plex operators (P1) and new algorithms (P2) can be imple-
mented by users without adapting the database engine.

R2 Declarative: The design should be declarative to allow for
optimizations and hardware-tailored implementations (P3)

R3 Control Flow Mechanisms: Iterative algorithms require
control flow e.g., in the form of loops (P2)

R4 Embeddable: The sub-operator layer should be embed-
dable inside a tree of relational operators to integrate cus-
tom algorithms in the form of user-defined operators in a
way that also query optimization can work well (P2)

R5 Explicit State: State and its accesses should be explicit
to enable automatic transformations for modern hardware
environments (P3)

R6 Mutable Data Structures: Efficient implementations of
relational operators require mutable data structures (P1)

In addition, the sub-operator layer should be designed to allow for
an efficient execution of relational and non-relational workloads.

3 CONCEPTUAL DESIGN
We propose a concrete abstraction layer built from sub-operators
that meets all requirements discussed in Section 2. We start by
identifying five major design principles as sketched in Figure 2:

(1) Using tuple streams for connecting different sub-operators
enables us to embed sub-operator programs in relational
operator trees for user-defined operators (R4). Furthermore,
this leads to highly declarative, reusable, and composable
sub-operators as we abstract from concrete input and out-
put formats (R1, R2).

(2) Explicit Declarative State State is a first-class citizen
and explicitly accessed (R5). By decoupling operators and
states, logic can be reused with other data structures (R1).
Furthermore, states and state accesses are declarative (R2)
through entry schemas to allow for automatic optimizations.

(3) References To avoid redundancies and keep sub-operators
reusable (R1), sub-operators should either perform state
navigation or access a specific entry. For example, we do
not include an operation that updates values in a hashtable,
as this would perform both the lookup and the modification.
Instead, lookups are explicit and return an abstract reference.
This reference is then consumed by a second operation (e.g.,
scatter) that updates the referenced entry.

(4) Explicit control flow Sub-operators can either create a
tuple stream by performing at most one logical loop, or con-
sume a tuple stream. Control flow is explicitly implemented
to ensure that sub-operator stay simple and reusable (R1)
and to expose control-flow mechanisms (R3)

(5) Views offer additional properties on top of other states.
This makes the design more declarative (R2) and especially
enables the implementation of efficient and complex data
structures (R6).

3462

https://github.com/lingo-db/lingo-db

operator

sub-operator

sub-operator

relational
operator

U
se
r-
d
efi
n
ed

O
p
er
at
or

1. Tuple Streams 2. Explicit & Declarative State

sub-operator

state a: int32, b: string

access[a]

3. References

scatter
writes into
reference

lookup

state k1: int32, k2: string

v1: int64

k1=...
k2=...

reference

4. Explicit Control Flow

fn(...)

sub-operator

generate

sub-op

sub-op state

sub-op

sub-op

nestedMap

current

next ?

sub-op state

loop

5. Views

state

view

+sorted

view

+indexed

Legend lookup

sub-operator tuple stream

map

state state access control-flow

Figure 2: The five major design principles for the proposed sub-operator layer

3.1 Detailed Design
Following these design decisions, and based on the insights and
challenges we faced during the implementation of the design in
LingoDB (cf. Section 6), we developed a concrete design for an
abstraction layer based on sub-operators. Note that we do not claim
that it is the only possible design, but a concrete, implementable
alternative that follows the design principles, meets the require-
ments, and actually works as we show in Section 7. More specifically,
we did not aim for completeness (as the design can be further ex-
tended following the design principles) or minimality (as fused
sub-operators can simplify optimizations: e.g., reduce instead of
gather+map+scatter, scan instead of scanRefs +gather), but for
a practical design. In addition, the detailed design may also vary
depending on the concrete environment (e.g., compiling vs inter-
preting engine, target hardware architectures) and the workloads
that should be supported.

Table 1: Available State and View types

Type / Sub-Operator Description

st
at
es

table relational table managed by the database
single holds exactly one entry
buffer stores entries linearly, but non-continuous
map for each key, exactly one entry is stored
multimap for each key, multiple entries can exist
heap stores only the smallest k entries (w.r.t ordering)
array stores a fixed amount of entries continuously
resultTable table that can be returned to the user

vi
ew

s

continuousView entries can be accessed continuously
sortedView entries can be accessed in sorted order
hashIndexedView hash-based index enables lookups
segmentTreeView maintains partial aggregate values

list non-materialized list (e.g., result of lookup)

More specifically, we propose a concrete set of state and view
types as explained in Table 1. This includes external state types
(e.g., table) with a fixed layout, for which we assume that the query
engine can obtain a handle using some identifier (e.g., table name).
Furthermore, seven intermediate data structures and four view
types can be used. Finally, for handling variable-length results (e.g.,
for lookups), we introduce an abstract list type.

Similarly, Table 2 lists and specifies the semantics for all avail-
able sub-operators. Sub-operators form pipelines that process tuples

following a tuple-at-a-time model. Only after every tuple is fully
processed by all sub-operators, the next tuple is produced by e.g.,
a table scan. The proposed set of sub-operators includes different
kinds of scan operators, operators for basic tuple stream manipula-
tion, and operators for accessing states. Additionally, we propose
sub-operators dedicated to references (produced by e.g., scanRefs,
lookupOrInsert). The first category loads (gather) or updates (scat-
ter, reduce) values from the referenced entry. The second category
manipulates references by e.g., performing basic arithmetic oper-
ations for references to a continuous state. Such operations are
necessary for implementing window functions and algorithms on
arrays. Finally, three different, intentionally limited control-flow
mechanisms are available: generate, nestedMap, and loop. The con-
cept of nestedMap is sufficient for typical intra-pipeline control
flow that is necessary for e.g., implementing nested loop joins or
handling hash collisions. However, expressing iterative algorithms
with nestedMap is hard, especially for algorithms that have no
fixed number of iterations but e.g., terminate when the required ac-
curacy is reached. Such iterative algorithms can be expressed with
a loop. Finally, generate is useful for decomposing scalar values
(e.g., splitting strings into words), or generating sequences (e.g.,
unique random numbers).

3.2 Using States and Sub-Operators
In the following, we discuss how the sub-operators can be used
to implement a full SQL query as shown in Figure 3. Before start-
ing with sub-operators, we assume that the database frontend has
already parsed the SQL query and performed standard query opti-
mization techniques, yielding a physical plan as shown in Figure 3.

Then, step by step, this physical plan is translated into a sub-
operator plan. Both table scans are translated to a scan sub-operator
on an explicit table 1 , 5 . The selection 𝜎𝑎.𝑥<5 is translated into a
map operator 2 that evaluates the expression and a filter 3 that
filters the tuple stream.

For the left outer join, we assume that the left side is smaller
and, thus, used for building the multimap. Hence, each tuple on
the left is inserted explicitly into the multimap 4 . For every tuple
on the right side, a lookup on the multimap is performed 6 . The
list of references to matching entries for the current tuple is passed
through the tuple stream to the nestedMap as an argument. Inside
the nestedMap, the list is scanned 7 , and the required values are
loaded from the reference pointing to the multimap entry 8 and

3463

Table 2: Available Sub-Operators with their semantic and exemplary use cases

𝑡 ∶ 𝑇 = ⟨𝑎 ∶= 𝑥,𝑏 ∶= 𝑦⟩ Tuple with columns a (value x) and b (value y) 𝑡 .𝑐𝑥 get column value of tuple by column name 𝑐𝑥
𝑡𝑠 ∶ [𝑇] = [⟨...⟩∣𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] Definition of Tuplestream J𝑚1 ∶= 𝑥,𝑚2 ∶= 𝑦K ∈ 𝑠 Entry of state 𝑠 with members𝑚1,𝑚2 and values 𝑥, 𝑦
𝑡 ∶ 𝑇 = 𝑡1 ◦ 𝑡2 tuple concatenation (𝑚,𝑐) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔 Mapping of member𝑚 to column 𝑐
𝑋 ... variadic number of values of type 𝑋 𝑐 ∶ 𝑐𝑜𝑙𝑢𝑚𝑛[𝑥] c is a column such that tuple.𝑐 is of type 𝑥

Sub-Operator Semantics Exemplary Usage

sc
an
s scan(𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒,𝑚𝑎𝑝𝑝𝑖𝑛𝑔) → [𝑇] [⟨𝑐1 ∶= 𝑥1, ...⟩∣J𝑚1 ∶= 𝑥1, ...K ∈ 𝑠 ∧∀𝑖 ∶ (𝑚𝑖 , 𝑐𝑖) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔] tablescan

scanRefs(𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒, 𝑐𝑟𝑒𝑓) → [𝑇] [⟨𝑐𝑟𝑒𝑓 ∶= 𝑟⟩∣𝑟 is reference pointing to 𝑥 ∧ 𝑥 ∈ 𝑠] window
scanList(𝑙𝑖𝑠𝑡, 𝑐𝑟𝑒𝑓) → [𝑇] [⟨𝑐𝑟𝑒𝑓 ∶= 𝑟⟩∣𝑟 ∈ 𝑙𝑖𝑠𝑡] hash-join

st
re
am

union(𝑙 ∶ [𝑇]...) → [𝑇] [𝑡∣∃𝑡𝑠 ∈ 𝑙 ∶ 𝑡 ∈ 𝑡𝑠] union all, outer join
map(𝑡 ∶ 𝑇, 𝑓 ∶ 𝑇 → 𝑇) → 𝑇 𝑡 ◦ 𝑓 (𝑡) 𝑓 (𝑡) computes a tuple with new columns map, selection
filter(𝑡 ∶ 𝑇, 𝑐𝑝𝑟𝑒𝑑 ∶ 𝑐𝑜𝑙𝑢𝑚𝑛[𝑏𝑜𝑜𝑙]) → [𝑇] [𝑡∣𝑡 .𝑐𝑝𝑟𝑒𝑑] selection, join
rename(𝑡 ∶ 𝑇, 𝑟𝑒𝑛𝑎𝑚𝑒) ⟨𝑐 ∶= 𝑡 .𝑐∣∄(𝑐, 𝑐𝑛𝑒𝑤) ∈ 𝑟𝑒𝑛𝑎𝑚𝑒⟩ ◦ ⟨𝑐𝑛𝑒𝑤 ∶= 𝑡 .𝑐∣(𝑐, 𝑐𝑛𝑒𝑤) ∈

𝑟𝑒𝑛𝑎𝑚𝑒⟩
rename,

st
at
e
ac
ce
ss

materialize(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒,𝑚𝑎𝑝𝑝𝑖𝑛𝑔) 𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(J𝑚 ∶= 𝑡 .𝑐∣(𝑚,𝑐) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔K) nl-join, sorting
insert(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒,𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑒𝑞𝐹𝑛) 𝑠.𝑖𝑛𝑠𝑒𝑟𝑡(J𝑚 ∶= 𝑡 .𝑐∣(𝑚,𝑐) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔K, 𝑒𝑞𝐹𝑛) hash-join

lookup(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒, 𝑐𝑟𝑒𝑓 , 𝑒𝑞𝐹𝑛) 𝑡 ◦ ⟨𝑐𝑟𝑒𝑓 ∶= {𝑟 if 𝑟 = 𝑠.𝑙𝑜𝑜𝑘𝑢𝑝(𝑡, 𝑒𝑞)
𝑖𝑛𝑣𝑎𝑙𝑖𝑑 otherwise

⟩ hash-join, groupjoin

lookupOrInsert(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒, 𝑐𝑟𝑒𝑓 , 𝑒𝑞𝐹𝑛, 𝑖𝑛𝑖𝑡𝐹𝑛) 𝑡 ◦ ⟨𝑐𝑟𝑒𝑓 ∶ {
𝑟 if 𝑟 = 𝑠.𝑙𝑜𝑜𝑘𝑢𝑝(𝑡, 𝑒𝑞𝐹𝑛)
𝑠.𝑖𝑛𝑠𝑒𝑟𝑡(𝑖𝑛𝑖𝑡𝐹𝑛) otherwise

⟩ aggregation, win-
dow, set operations

ac
ce
ss

re
f gather(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓 ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔) → 𝑇 𝑡 ◦ ⟨𝑐 ∶= 𝑙𝑜𝑎𝑑(𝑡 .𝑐𝑟𝑒𝑓 ,𝑚)∣(𝑚,𝑐) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔⟩ hash-join

scatter(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓 ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔) 𝑠𝑡𝑜𝑟𝑒(𝑡 .𝑐𝑟𝑒𝑓 , J𝑚 ∶= 𝑡 .𝑐∣(𝑚,𝑐) ∈𝑚𝑎𝑝𝑝𝑖𝑛𝑔K) outerjoin, semijoin
reduce(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓 ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑓) scatter(map(gather(𝑡, 𝑐𝑟𝑒𝑓 ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔), 𝑓), 𝑐𝑟𝑒𝑓 ,𝑚𝑎𝑝𝑝𝑖𝑛𝑔) aggregation,window

re
fe
re
nc
es

unwrapFilter(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓) → [𝑇] [𝑡∣𝑡 .𝑐𝑟𝑒𝑓 is valid reference] groupjoin
entriesBetween(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓 𝑏𝑒𝑔𝑖𝑛, 𝑐𝑟𝑒𝑓 𝑒𝑛𝑑 , 𝑐𝑏𝑒𝑡𝑤𝑒𝑒𝑛) → 𝑇 𝑡 ◦ ⟨𝑐𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ∶= ∥{𝑟 ∣𝑡 .𝑐𝑟𝑒𝑓 𝑏𝑒𝑔𝑖𝑛 < 𝑟 ≤ 𝑡 .𝑐𝑟𝑒𝑓 𝑒𝑛𝑑}∥⟩ window, pagerank
getStart(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒, 𝑐𝑟𝑒𝑓) → 𝑇 𝑡 ◦ ⟨𝑐𝑟𝑒𝑓 ∶= 𝑟⟩ and r is reference to first entry ∈ 𝑠 window, pagerank
getEnd(𝑡 ∶ 𝑇, 𝑠 ∶ 𝑆𝑡𝑎𝑡𝑒, 𝑐𝑟𝑒𝑓) → 𝑇 𝑡 ◦ ⟨𝑐𝑟𝑒𝑓 ∶= 𝑟⟩ and r is reference to last entry ∈ 𝑠 window
offsetBy(𝑡 ∶ 𝑇, 𝑐𝑟𝑒𝑓 , 𝑐𝑟𝑒𝑠𝑟𝑒𝑓 , 𝑐𝑜𝑓 𝑓 𝑠𝑒𝑡) → 𝑇 𝑡 ◦ ⟨𝑐𝑟𝑒𝑠𝑟𝑒𝑓 ∶= 𝑡 .𝑐𝑟𝑒𝑓 + 𝑡 .𝑐𝑜𝑓 𝑓 𝑠𝑒𝑡 ⟩ window, pagerank

co
nt
ro
lfl

ow generate(𝑓 ∶ () → [𝑇]) → [𝑇] 𝑓 () intersect all, values()
nestedMap(𝑡 ∶ 𝑇,𝑛𝑒𝑠𝑡𝑒𝑑 ∶ 𝑇 → [𝑇]) → [𝑇] 𝑛𝑒𝑠𝑡𝑒𝑑(𝑡) hash-join, window

loop(𝑠𝑖 ∶ 𝑆𝑡𝑎𝑡𝑒..., 𝑛 ∶ 𝑆𝑡𝑎𝑡𝑒... → 𝑆𝑡𝑎𝑡𝑒... × 𝑏𝑜𝑜𝑙) → 𝑆𝑡𝑎𝑡𝑒... {𝑠𝑖+1 𝑛(𝑠𝑖) = 𝑠𝑖+1 × 𝑓 𝑎𝑙𝑠𝑒

loop(𝑠𝑖+1, 𝑛) 𝑛(𝑠0) = 𝑠𝑖+1 × 𝑡𝑟𝑢𝑒
k-means, pagerank,
iterative algorithms

nestedMap

1 scan2 map

3 filter

4 insert multimap

10 scan

11 filter

12 map

6 lookup

5 scan

list args7 scanList

8 gather 9 scatter

13 union

14 materialize resultTable

table

table

σ

Π

A

B
BA

σa.x<5

a.a=b.a

Πa.a,b.y

scan[table]

for row in table:
emit(row)

scan[multimap]

for entry in multimap:
emit(entry)

map

val := expr
emit({t.*, col : val})

lookup

res := state.lookup(t.[keys])
emit({t.*, col : res})

gather

vals := reference→[members]
emit({t.*, cols: vals})

scatter

reference→[members]:= t.[columns]

insert

state.insert(t.[keys],t.[vals])

materialize

state.append(t.[cols])

filter

if t.pred :
emit(t)

scanList

for reference in list:
emit(col :reference)

union

emit(t1)
emit(t2)
...

tableA:= get table "A"

joinMap:= create multimap
for a in tableA: 1
pred:=a.x<5 2
if pred: 3
joinMap.insert(a.a,false) 4

tableB:= get table ”B”
result:= create resultTable
for b in tableB: 5
list:= joinMap.lookup(b.a) 6
for reference in list: 7
aA=reference→key[0] 8
result.append(aA,b.y) 13/14

reference→val[0]=true 9
for entry in joinMap: 10
if not entry.val[0]: 11
bY:=null 12
result.append(entry.key[0],bY) 13/14

Physical Plan Sub-Operator Plan Sub-Operator Implementation Generated Code

Optimization

Figure 3: Example: A query containing a left outer join is implemented with sub-operators

returned as the result of the nestedMap. In addition, a scatter 9
explicitly writes into each entry (using the reference produced by
scanList), setting a marker value to true to indicate that this entry
had a join partner. Finally, all left tuples without join partner are

computed: The multimap is scanned 10 and filtered for unmarked
entries 11 . Then all columns from B are mapped to null 12 and
unioned with the result of the nestedMap 13 . Last, each tuple

3464

left

1 lookupOrInsert

2 scatter

map 3 lookup

4 unwrapFilter

5 reduce

6 scan

right

result

Figure 4: Sub-Operator-based GroupJoin

emitted by the sub-operators responsible for implementing the
outer join is appended to a resultTable 14 .

The resulting sub-operator plan also specifies the order in which
the sub-operators should be executed. They may be, in principle,
reordered if there is no read/write conflict. Next, automatic trans-
formations and optimizations rewrite the sub-operator plan into
another, semantically equivalent sub-operator plan for e.g., au-
tomatic parallelization as discussed in Section 5. Afterward, the
sub-operators are implemented with imperative code. Because of
our design decisions (state and control flow are explicit), the com-
plexity of sub-operators is very limited. Thus, as sketched in the
figure, the implementation for each sub-operator only consists of
small code snippets that are then fused into efficient, tight loops,
similar to code generated by data-centric code generation [36].

4 IMPLEMENTATION OF COMPLEX
OPERATORS AND ALGORITHMS

Efficiently implementing complex (relational) operators can be chal-
lenging within existing systems: With increasingly complex opera-
tors being introduced (e.g., window functions), even implementing
the correct semantics is non-trivial. In this section, we show that the
proposed design significantly reduces this complexity by (1) lever-
aging the reusable sub-operators and (2) decoupling the semantic
implementation from the applied optimizations. More specifically,
in this section, we discuss the implementation of three different
relational operators (groupjoin, complex aggregations, window
functions) and show how user-defined operators and iterative algo-
rithms can be implemented.

4.1 Complex Relational Operators
GroupJoin Fusing joins and aggregations to so-called GroupJoins
has been proposed as optimization for more than 30 years [3, 32,
34, 48], as they improve performance by using the same hash-table
for join and aggregation. Despite the performance improvements,
not many systems implement GroupJoins because of the additional
implementation effort. However, we can just reuse the existing sub-
operators (already in use for aggregations and joins) to implement
GroupJoins as shown in Figure 4. The build side first ensures that
one map entry for every group-by key exists through a lookupOrIn-
sert 1 that inserts a new entry if necessary and returns a reference
to the relevant entry. Then, additionally required column values
are persisted into the referenced entry using the scatter operation
2 . Next, for every tuple, the probe side performs a lookup 3 that
returns an unsafe reference because potentially no entry was found.
Because of the GroupJoin’s semantic, we only have to consider tu-
ples that match a group on the left. Thus, we filter the tuple stream

input

1 lookupOrInsert

2 reduce

map3 map5 lookupOrInsert

6 scan

7 lookupOrInsert

8 reduce

4 map

9 scan

10 lookup

11 gather

result

“count(c)”

“count(distinct b)”

“distinct b”

Figure 5: Sub-Operator-based complex aggregation

nestedMap

input

1 lookupOrInsert

2 reduce

map 3 scan

bufferparams:

sortedView

continuousView

segmentTreeView

4 scanRefs

5 offsetBy

6 lookup

7 gather

result

“partition by y”

“order by z”

“avg(x) over [l,u]”

Figure 6: Sub-Operator-based complex window function

to only include safe references 4 and perform the reduction 5
as specified by the GroupJoin (e.g., sum(x)). Finally, after every
tuple on the right was processed, the map contains the result of the
GroupJoin. Thus, a scan 6 is performed to produce the resulting
tuple stream that can be consumed by following operators.
Complex Aggregations Even basic aggregations can sometimes
become challenging. Take for example this query: select a, count(

distinct b), count(c)from R group by a. Because of the distinct, we can not
perform a simple aggregation using a single hashtable but also re-
quire duplicate elimination. Figure 5 sketches our implementation
based on sub-operators in such cases: The input stream is processed
twice: Once for the count(distinct) aggregate and once for the other,
non-distinct aggregate. For the non-distinct aggregate, we create a
map, and for each input tuple, the relevant bucket is looked up or
created 1 . On the returned reference, the reduction 2 is performed
according to the aggregate (e.g., 𝑒𝑛𝑡𝑟𝑦.𝑐𝑜𝑢𝑛𝑡 ∶= 𝑒𝑛𝑡𝑟𝑦.𝑐𝑜𝑢𝑛𝑡 + 1).
For the distinct aggregate, we first create twomaps: One for dedupli-
cation 3 and one for the actual aggregation 4 . A lookupOrInsert
5 on the deduplication map is performed for each input tuple,
ensuring that each value is exactly contained once. Afterward, the
map is scanned 6 to produce the distinct values used by the aggre-
gation implemented with lookupOrInsert 7 and reduce 8 . Finally,
we have to join the aggregates from both maps to produce the
final tuple stream. Thus, the first aggregation map is scanned 9 ,
and for every tuple, a lookup 10 on the other map is performed.
The corresponding aggregate values are then loaded 11 from the
reference produced by the lookup.

3465

nested operator

nestedMap

nestedMap

Input Stream Input Stream

1 generate 3 generate

4 lookup map
2 insert

multimap
5 list 6 scanList

7 gather

8 lookupOrInsert

9 gather

10 map
12 scatter

11 filter

Output Stream

Figure 7: User-Defined Operator for a similarity join

Window Functions Window functions like avg(x)over (partition by y

order by z rows between N preceding and current row) require not only parti-
tioning and sorting but also efficient evaluation of aggregate func-
tions on sub-ranges. Using sub-operators, we can first focus on spec-
ifying the correct semantics and then later perform optimizations.
Figure 6 sketches how such a window function can be implemented.
First, we partition the data using a map that contains a buffer for
each entry: For each input tuple, the relevant entry is looked up or
created 1 and the required columns are persisted in the buffer with
the reduction 2 . After the partitioning is complete, we scan the
map 3 and for each partition process the corresponding buffer in a
nestedMap. Inside the nestedMap, we create a sortedView according
to the specified order on top of the corresponding buffer. On top of
the sortedView, two additional views are created: a continuousView
and a segmentTreeView according to the aggregation function. The
continuousView is then scanned 4 , producing a reference for each
entry. This reference is then offset by 𝑁 5 , to produce the lower
bound. Finally, a lookup 6 using lower and upper bound (cur-
rent reference) is performed on the segmentTreeView to obtain the
aggregate for the window 7 .

4.2 User-Defined Operators
In addition to efficiently implementing complex but well-known
relational operators, sub-operators are also useful for realizing user-
defined operators. With user-defined operators, users can extend
the functionality of a database engine by implementing custom
operators that operate on one or more tuple streams. However,
until now, user-defined operators either come with high overhead
or require complex mechanisms inside the database engine [46]. We
propose a zero-overhead, low-effort approach. Similar to how it is
possible to use inline assembly in C programs, we can now embed
sub-operator programs inside a relational query, as both work on
tuple streams. For this, a new relational operator is introduced,
whose semantics is specified by a nested sub-operator plan and can
be analyzed by the query optimizer.

nestedMap

Input

1 materialize

2 buffer (points)

4 gather

5 materialize

3 generate

buffer (initial centroids)

buffer (current centroids)

6 scan

7 scan

8 map

9 lookup+reduce

single (nearest centroid)

10 scan

11 lookup+reduce map (cluster mean)

buffer (next centroids) ?

12 scan+check

13 scan

Loop

Figure 8: K-Means realized with Sub-Operators

For example, let us assume that we want to perform a join based
on string similarity. Figure 7 shows how such a join can be im-
plemented as a user-defined operator with nested sub-operators,
similar to the approach of Chaudhuri et al. [4]. For each string on
the left side, we first 1 generate all 𝑛-grams using a generator
inside a nestedMap and then, for each n-gram, 2 insert the cur-
rent tuple into a multimap. For the right side, we also generate all
𝑛-grams for the current tuple 3 . Then, we perform a lookup 4
in the multimap to find all possible candidates. Using a map, we
now count how many n-grams are shared with each candidate and
only emit candidates that have enough n-grams in common. This
is implemented by 6 scanning the list 5 of all candidates and
7 loading the tuple id from the multimap entry. Then, the corre-
sponding map entry is 8 looked up or inserted, and the current
count is 9 loaded. A map sub-operator 10 computes 𝑐𝑜𝑢𝑛𝑡 + 1
and 𝑐𝑜𝑢𝑛𝑡 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . If the second expression evaluates to true
11 , the current candidate is emitted. In any case, the map entry is
updated to contain the increased count 12 .

4.3 Iterative Algorithms
Iterative algorithms are common in graph analytics, data mining,
or machine learning. Current database systems support iterative
algorithms, if at all, through (1) recursive SQL or (2) user-defined
functions. However, neither is optimal: Recursive SQL is hard to
formulate and can be inherently inefficient because of the lack
of mutable data structures. User-defined functions are treated as
a black box and can not be easily optimized, parallelized, or dis-
tributed. In contrast, by using sub-operators, iterative algorithms
can be implemented declaratively and efficiently. Iteration is imple-
mented by the loop operator, which iterates as long as a dynamic
condition is fulfilled. Inside the loop, all sub-operators and state
types can be used for efficiently executing the current iteration.

More specifically, we now discuss how k-means can be imple-
mented with sub-operators. Figure 8 sketches the implementation,
but smaller details are omitted to keep the figure reasonably small.
First, all input points are 1 materialized into a 2 buffer. Then, 𝑘

3466

random points are sampled from the input. Unique random offsets
are emitted by the 3 generator, 4 the corresponding points are
loaded and then 5 materialized into a second buffer. This buffer
holding the initial centroids is the initial argument of the loop,
which computes a new set of centroids in each iteration.

For each iteration, 6 all points are scanned and for each point,
the nearest centroid is computed in a nestedMap. The current cen-
troids are 7 scanned, and the distance function to the current
point is computed 8 . Then a 9 reduction (𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∶=
𝑎𝑟𝑔𝑚𝑖𝑛 𝑑𝑖𝑠𝑡 ,𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ∶=𝑚𝑖𝑛(𝑑𝑖𝑠𝑡)) is performed on a state of type
single. After all centroids have been processed, the nearest centroid
for the current point is emitted through a scan 10 .

Afterward, a 11 reduction on a map is performed to compute the
new average coordinates for each centroid. These new coordinates
are then 12 compared with the previous coordinates to decide if
the loop should continue. Finally, after the centroids converged (or
an iteration limit is reached), the final centroids can be 13 scanned
and e.g., used for prediction.

5 AUTO-PARALLELIZATION
We just showed how to implement the semantics of complex opera-
tors and algorithms using sub-operators. We now discuss how they
can be automatically executed multi-threaded to fully benefit from
modern many-core systems. In general, two main approaches are
used for intra-query parallelism: Plan-driven parallelism hides par-
allelism in exchange operators [10], which allows keeping all other
operators unmodified but requires static scheduling. In contrast,
morsel-driven parallelism [29] dynamically schedules input tuples
to be processed by pipelines of parallel-aware operators. While
morsel-driven parallelism offers high scalability, performance, and
elasticity, it also comes with a higher implementation effort as each
operator needs to be implemented for parallel execution on top of
the potentially complex operator semantics.

Instead of adapting every operator implementation, we propose
to automatically transform sub-operator programs into parallel
programs. By performing these transformations workload-agnostic
on the sub-operator layer, not only SQL queries profit but also any
other workload expressed as sub-operators.
General Strategy Algorithm 1 depicts the general algorithm for
auto-parallelizing sub-operator programs. For every scan that nei-
ther guarantees a specific order of tuples nor is nested inside a nest-
edMap, we analyze the corresponding pipeline of sub-operators and
try to parallelize it. First, all sub-operators of the current pipeline
are collected (Line 4) and analyzed regarding Read-Write, Write-
Read, and Write-Write conflicts (Line 5). Next, we try to eliminate
each conflict with a transformation and store the transformations
without applying them directly (Lines 8-18). Afterward, if no con-
flicts remain, the scan is marked as parallel (Line 20), and all saved
transformations are stored in a global set (Line 21). Finally, after all
scan operators have been processed, all transformations are applied
(Line 25), and the pipelines can be executed safely in parallel.
Thread-Local States The main conflict resolution strategy as pro-
posed by Leis et al. [29], transforms a global state into thread-local
states that can be accessed and updated without any synchroniza-
tion. Before executing subsequent pipelines that require a consistent
global state, the thread-local states are merged to produce the final

Algorithm 1 Auto-Parallelization Strategy
1: transforms := {}
2: for scan in program do
3: if ¬𝑛𝑒𝑠𝑡𝑒𝑑(𝑠𝑐𝑎𝑛) ∧ ¬𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑠𝑐𝑎𝑛) then
4: operations := getPipelineOperations(scan)
5: conflicts := analyzeConflicts(operations)
6: localTransforms := {}
7: remainingConflicts := {}
8: for op in conflicts do
9: if state partitioning solves conflict then
10: localTransforms.insert(partition_state(op))
11: else if atomic execution solves conflict then
12: localTransforms.insert(mark_atomic(op))
13: else if state supports entry locking then
14: localTransforms.insert(wrap_lock(op))
15: else
16: remainingConflicts.insert(op)
17: end if
18: end for
19: if remainingConflicts is empty then
20: mark scan as parallel
21: transforms:= transforms ∪ localTransforms
22: end if
23: end if
24: end for
25: apply transforms

inputscan

lookupOrInsert

reduce

map

scan

...

parallel scan

lookupOrInsert

reduce

map

threadLocal

map

scan

Aggregation Parallel Aggregation

merge

Figure 9: Parallelization of an aggregation

global state. This strategy works well, especially when new states
are constructed, like materializing elements or performing aggrega-
tions. Figure 9 sketches this strategy for a simple aggregation. As
the lookupOrInsert and reduce operators can lead to Write-Write
and Read-Write conflicts, the map is wrapped in a thread-local
state to eliminate the conflicts without incurring a synchroniza-
tion overhead. Thus, the main pipeline can be executed in parallel.
Afterward, the thread-local maps are merged based on the reduce
operator into a map that is scanned to produce the final result.
Atomic Execution In many cases, no new states are constructed,
but existing ones are updated. Then, the previous transformation
can not be applied. However, if both the update function and the
affected types are simple enough, sub-operators like scatter and
reduce can be executed atomically on modern hardware. In such
cases, we resolve conflicts by marking the sub-operator as atomic
to enforce an atomic execution.
Locking If neither of the previous transformations can be ap-
plied, state entries can be locked before being updated. A lock
sub-operator is, thus, introduced that first locks an entry through
the provided reference before nested sub-operators are executed.
Specialized Map ImplementationMaking a map (e.g., used for
aggregation) thread-local allows us to execute the pipeline in paral-
lel. However, if we just use a regular hashmap, a lot of synchroniza-
tion is required during the merge phase. Thus, following the idea of

3467

LLVM IR

llvm

util arith scf . . .

subop db arith . . .

relalg db subop . . .

SQL UDFs/UDO . . .

Parsing & Module Creation

--to-subop

--lower-subop

Lowerings

Query

Opt.

Opt.

machine code
Optimizing 3

JIT Compiler

Runtime Calls

Runtime

Tables

Sorting

Date
Functionality

String
Functionality

M
L
IR

2

1

4

/data/lineitem.arrow

load

Figure 10: Integration of the proposed Sub-Operator design
in LingoDB (MLIR builtin , LingoDB , sub-operators)

Leis et al., we automatically switch to a special 2-phase map imple-
mentation. In the first phase, thread-local preaggregation fragments
reduce the heavy hitters and partition all entries into 𝑁 buckets.
During the merge phase, 𝑁 hash-tables can be constructed fully
parallel without requiring synchronization over the entries of the
corresponding buckets across all thread-local fragments.

6 IMPLEMENTATION IN LINGODB
With this paper, we not only want to propose a theoretical idea
and design principles but also show that it can be implemented and
applied in practice. In principle, the proposed ideas can be applied
to systems that follow a push-based tuple-at-a-time model and do
not suffer from more operator boundaries compared to relational
operators. We implemented the proposed sub-operator design into
LingoDB [17], our prototype system based on MLIR [28].
MLIR aims to reduce the engineering effort for developing domain-
specific compilers. It features a single, standardized intermediate
representation (IR) format that allows for introducing new abstrac-
tion levels through so-called dialects. Dialects bundle custom types,
operations operating on these types, and attributes used for anno-
tating compile-time constants and metadata. Compared to other
IRs, MLIR is not flat, and operations can contain nested opera-
tions, which for example, allows for modeling explicit high-level
for loops. MLIR further provides an infrastructure to define opti-
mization passes that transform MLIR programs and comes with
built-in passes (e.g., common subexpression elimination). Finally,
high-level dialects are lowered progressively over multiple abstrac-
tion levels until a low-level dialect is reached (e.g., llvm), which can
be executed.
LingoDB The overall goal of LingoDB is to blur the lines between
databases and compilers by implementing database abstractions
on top of MLIR and implementing query optimization as compiler

passes. By building on MLIR and using open intermediate represen-
tations, relational operators can now be freely combined with other
users of MLIR, such as machine-learning frameworks, and cross-
domain optimization becomes viable. To achieve this, LingoDB
introduces new high-level database-specific dialects to MLIR: The
relalg dialect contains relational operators processing tuple streams
and db specifies database-specific scalar types and operations. After
the SQL query has been parsed and translated into an MLIR module,
query optimization is performed through a set of compiler passes
that rewrite the MLIR module accordingly. Finally, the operators
are lowered to imperative code using push-based data-centric code
generation [36] and further lowerings are applied until the llvm
dialect is reached.
Introducing Sub-Operators For this paper, we added a new subop
dialect that contains the sub-operators and the data structure types
as proposed in Section 3. Additionally, we implemented a new nested
operator in the relalg dialect that allows for embedding nested sub-
operators in a relational query. This nested operator is also handled
during query optimization to e.g., pushdown predicates through
user-defined operators if possible. Figure 10 shows how LingoDB
now processes queries using the implemented sub-operators: SQL
queries are still translated into a high-level MLIR module that con-
tains mainly operations of the relalg and db dialects. However, if
user-defined operators are used, operations of the subop dialect are
already present at this stage. Next, query optimization is performed
on relational operators and sub-operators with a set of optimization
passes. Afterward, a pattern-based lowering of relational opera-
tors into sub-operators is performed. The resulting sub-operator
plan can then be further optimized by several new MLIR passes,
including a Parallelize pass. Finally, a lowering pass generates im-
perative MLIR operations from declarative sub-operators by fol-
lowing the idea of data-centric code generation. Since we designed
the sub-operators to be of low complexity, this lowering can also
be performed by matching and applying lowering patterns. The
generated, imperative MLIR operations are further lowered by the
existing LingoDB infrastructure until the low-level llvm dialect is
reached, which can be executed using LLVM [27].
Implemented OptimizationsWe apply the following optimiza-
tions on the sub-operator layer, some of which have already been
discussed in prior work [23, 45].

(1) GlobalSharing (GS): Share scans and states between inde-
pendent pipelines.

(2) ReuseLocal (RL): Avoid materializations and locally reuse
already existing data structures e.g., reuse an aggregation
hashtable for a subsequent join.

(3) SpecializeStates: State is specialized based on data proper-
ties and usage patterns. For example, multimaps can often
be rewritten into a buffer for materialization and a hashIn-
dexedView to allow for lookups, saving on costly resize
operations and synchronization overhead.

(4) DeferLoading (DL): By splitting gather operations and
pushing them up as far as possible, we can defer loading
and, thereby, improve performance.

(5) EntryCompression (EC): By storing null indicators effi-
ciently in one single integer, the entry size can be reduced
by up to a factor of two by reducing padding requirements.

3468

7 EVALUATION
In this section, we evaluate our proposed design and its implemen-
tation in LingoDB. First, we show that our approach significantly
reduces the effort for implementing both complex relational opera-
tors and user-defined operators and algorithms. Then, we show that,
despite these improvements, our implementation offers competitive
performance for complex analytical workloads by comparing the
overall system performance of LingoDB to state-of-the-art systems
using the TPC-H and TPC-DS benchmarks. Next, we show that also
workloads beyond relational queries can be executed efficiently
in three case studies. Finally, we perform a more detailed ablation
study on the implemented optimizations and analyze the scalability
of LingoDB when using multiple threads.

If not noted otherwise, experiments were run multi-threaded on
an AMD Ryzen 9 5950X CPU with a base frequency of 3.4 GHz and
a maximal frequency of 4.9 GHz, and 64 GiB of main memory. The
system runs Ubuntu 22.04.

7.1 Supported Workloads & Complexity
In Section 2, we argued that sub-operators can reduce the com-
plexity to efficiently implement complex relational operators and
support non-relational workloads.
Supported Relational Workloads Implementing complex rela-
tional operators in LingoDB has become much easier with sub-
operators. Now we only have to express the operator’s semantics
using suitable reusable sub-operators. This effect can also be ob-
served in Table 3, which shows lines of code for implementing
selected relational operators for both our approach and in DuckDB.
Even for operators like complex aggregations, window functions, or
group joins, only a few hundred lines are required. Often, DuckDB
requires around 4x more code, especially for implementing parallel
execution, which we deal with automatically. Also, DuckDB does
not implement some more complex operators like GroupJoins or
intersect all, probably due to the required implementation effort.
Altogether, the reduced implementation effort makes it possible for
us to support a wide range of relational operators in LingoDB:

• 10 basic operators (e.g., tablescan, selection, map, sort)
• all set operations with set and multi-set semantics
• 7 different join operators that can be executed as nested-

loop join, index-nested-loop join, or hash-based,
• complex aggregations and window functions
• fused operators for optimization: GroupJoin and TopK

Because of this extensive support for complex relational operators,
LingoDB can now run even complex analytical benchmarks like
TPC-DS [35], which require all of the listed operators (except for
GroupJoin and TopK).
Beyond Relational WorkloadsWe designed our approach such
that we can also support other workloads, potentially embedded
into a relational query. To demonstrate this, we fully implemented
three different algorithms outside of the database engine: a cus-
tom similarity join algorithm as discussed in Section 4.2 and two
well-known iterative algorithms: k-means and pagerank. This also
includes pre- and post-processing phases that are typically ignored
but are non-trivial to implement (e.g., sampling k random points for
k means or mapping vertex identifiers to dense integers for pager-
ank). As discussed in Section 9, we are still working on user-facing

Table 3: Lines of Code required for operators in the database
engine and different user-defined algorithms.2

operator LingoDB DuckDB

tablescan 36 111
sort 52 202
aggregation 384 1358
window 349 524
GroupJoin 149 n/a
except [all] &
intersect [all] 192 n/a

algorithm MLIR

similarityJoin 94
k-means 214
pagerank 162

Table 4: Overall lines of code for the integration in LingoDB3

Component C++
Sub-Operator Dialect 2074
Implementation of Relational Operators 2143
Implementation of Sub-Operators 3203
Optimization Passes 1392
Parallelization Pass 347
Pushdown through Nested Sub-Operators 43

0

50

100

150

200

250

LingoDB LingoDB(2022)

Ti
m
e
[m

s]
Execution

0

25

50

75

100

LingoDB LingoDB(2022)

Ti
m
e
[m

s]

Compilation

Figure 11: Comparison to old LingoDB (TPC-H SF1, 1 Thread)

frontends to make the developer experience more convenient. Thus,
we implemented these algorithms by specifying the sub-operators
directly in the highly verbose IR format of MLIR. But even with
this more verbose style, we can specify all of these algorithms in a
few lines as shown in Table 3.
System Complexity Despite the wide range of supported oper-
ators and workloads, the total amount of code is fairly small, as
shown in Table 4. Especially, the amount of code required for auto-
matic parallelization is small even though it spares a lot of effort
and manages to fully parallelize every TPC-H and TPC-DS query.

7.2 Comparison with LingoDB2022
Since we integrated our approach into LingoDB, we compare both
execution and compilation times to the version of 2022 [17] single-
threaded for TPC-H with scale-factor 1 as shown in Figure 11.
We can observe that the execution performance improved slightly.
This is not directly related to using sub-operators but to optimiza-
tions like introducing group joins that are now feasible and further
improvements in query optimizations. The compilation latency
slightly increased due to three factors: We added additional query

2window functions and groupjoin reuse logic of the aggregation operator
3whitespace and comments are excluded

3469

0

250

500

750

DuckDB Hyper LingoDB Umbra

Ti
m
e
[m

s]

TPC-H (SF10)

0

100

200

300

400

500

DuckDB Hyper LingoDB Umbra
Ti
m
e
[m

s]

TPC-DS (SF10)

Figure 12: Execution times for TPC-H and TPC-DS queries

1 partition 100 partitions 100k partitions

rank csum fsum rank csum fsum rank csum fsum

0
25
50
75
100
125

0
25
50
75
100

0

20

40

60

Th
ro
ug

hp
ut

[M
T/
s]

title
DuckDB
Hyper
Umbra
LingoDB

Figure 13: Micro-benchmark for window functions

optimization techniques since 2022, introduced the sub-operator
layer, and generate more complex code for parallel execution even
though we only execute it here with one thread. Still, the compila-
tion latencies remain reasonable and could be further improved by
orthogonal approaches like adaptive query compilation [24].

7.3 Performance for SQL Benchmarks
Many problems can be solved by introducing another layer of ab-
straction. However, in many cases, this additional abstraction layer
has a negative impact on performance. To show that our system us-
ing sub-operators is competitive for analytical workloads, we com-
pare LingoDB with the vectorized database system DuckDB [43],
the commercial version of Hyper [20] published by Tableau [16],
and the research database system Umbra [37]. Figure 12 depicts the
overall execution times for both TPC-H and TPC-DS on scale factor
10. LingoDB significantly outperforms DuckDB by an average fac-
tor of 4.8 (TPC-H) and 3.9 (TPC-DS) and is, on average, 10% faster
than Hyper for TPC-H and TPC-DS. Umbra remains faster because
of orthogonal optimizations like better query optimization.

7.4 Micro Benchmark for Window Functions
In this paper, we claim that we can efficiently implement complex
operators using sub-operators. We perform a microbenchmark to
evaluate the performance of window functions similar to the ones
conducted by Leis et al. [29]. We compare the execution times of
LingoDB, DuckDB, Hyper, and Umbra for three different queries,
each featuring a single window operator over 10M tuples while we
vary the number of partitions. The three queries compute the rank,
the cumulative sum (csum), and the sum of the preceding and fol-
lowing 100 values (fsum). The measured execution times are shown
in Figure 13. Overall, we observe that LingoDB’s performance is
competitive as LingoDB is almost always faster than DuckDB but
falls behind in performance to Umbra and Hyper.

0.0
0.5
1.0
1.5

Python LingoDB +Pushdown

Ti
m
e
[s
] Part

DuckDB
LingoDB
Python

Figure 14: Execution times for Similarity Join Example

0

5

10

15

20

Hyper LingoDB scikit-learn

Ti
m
e
[s
]

Full Example

0.0

0.2

0.4

0.6

LingoDB scikit-learn

Ti
m
e
[s
]

Iterations

Figure 15: Execution times for k-Means Example

7.5 Case Study: Similarity-Join
As discussed in Section 4.2, sub-operators can be used for extending
the functionality of database systems by declaratively specifying
user-defined operators. We evaluate this feature based on the string
similarity join introduced in Section 4.2. More specifically, we per-
form the evaluation based on an example query that finds similar
movie titles from a certain genre in the IMDB-based JOB dataset [30].
For LingoDB, we implemented the proposed algorithm with sub-
operators inside a nested operator embedded in the remaining query.
This tight integration already avoids materialization barriers and
benefits from parallel execution and generating data-centric ma-
chine code. Furthermore, using declarative sub-operators enables
the query optimizer to perform advanced optimizations such as
pushing selections through the user-defined operator.

The implementation in LingoDB is compared with a combination
of DuckDB (standard query parts) and python (similarity join) in
Figure 14. We can observe that already by avoiding materialization
barriers, parallelization, and code generation leads to a speedup
of more than 4 times. When adding a selective selection after the
similarity join, the speedup increases further, as LingoDB can auto-
matically push the selection through the user-defined operator.

7.6 Case Study: Iterative Algorithms
In the following subsection, we show that also complex iterative
algorithms can be implemented efficiently outside of the database
engine. We compare the performance of an implementation with
sub-operators embedded inside a relational query against using
recursive SQL in Hyper, a combination of DuckDB and optimized
python packages (both scikit-learn and scikit-network use hand-
optimized C implementations under the hood), and Weld [39].

We start by evaluating an implementation of the k-means al-
gorithm as already discussed in Section 4.3. For this, we use an
end-to-end example based on the New York taxi data set [47], which
for a given time of the day, clusters all recorded trips based on the
pickup location into 30 clusters and only reports the 5 clusters with

3470

Graph

0

10

20

30

40

Hyper scikit-network
LingoDB

Ti
m
e
[s
]

Full Example

Prep.

0

1

2

3

4

5

LingoDB Weld
scikit-network

Ti
m
e
[s
]

Iterations

Figure 16: Execution times for PageRank Example

0

10

20

30

LingoDB NumPy Weld

Ti
m
e
[s
]

Haversine

0

2

4

6

LingoDB NumPy Weld

Ti
m
e
[s
]

Blackscholes

Figure 17: Execution Times for numerical workloads

the highest average lucrativity. As shown in Figure 15 LingoDB is
faster in both the full example and the iterative part.

We also implemented the page-rank algorithmwith sub-operators.
For a concrete end-to-end example, we aim to identify successful ac-
tors using the page-rank algorithm on a graph𝐺 and only emit the
top ten actors.𝐺 is computed from the IMDB-based JOB dataset [30]
as follows: A directed edge (𝑥,𝑦) is contained in𝐺 for every movie
that lists 𝑦 in the actor list before 𝑥 . The execution times for both
the full example and the iterative parts are plotted in Figure 16. We
can observe that for the full query, LingoDB is faster than Hyper
and DuckDB/scikit-network, which especially suffers from having
to construct a certain graph format in python.When just comparing
the iterative part, Weld is faster than LingoDB and scikit-network
but also expects the graph to be in a certain format that matches
Weld’s execution paradigms. If we account for the preprocessing
time required by Weld, LingoDB is significantly faster.

7.7 Case Study: Numerical Workloads
Since relational workloads are increasingly combined with numeri-
cal workloads, we also evaluate the performance for two numerical
workloads already used for evaluating Weld [38]. Similar to Weld,
we implemented a small python library that emits sub-operators,
and profit from fusing pipelines using the ReuseLocal pass. The re-
sulting execution times for LingoDB, Weld, and NumPy are shown
in Figure 17. We observe that our approach is significantly faster
than NumPy through optimizations and using parallelism. Weld has
superior performance, most probably due to using vectorization,
which especially helps with numerical workloads.

7.8 Effect of Optimizations and Parallelization
Finally, we analyze the speedup gained through the implemented
optimizations and the auto-parallelization as shown in Figure 18.
In an ablation study, we activate the different optimizations step
by step, excluding specialization because of the high correlation

Q 7Q 27 Q 68Q 77
Q 44Q 88

0%

100%

200%

300%

+GS +RL +DL +EC

fa
st
er

Optimizations

SMT
Q1

Q18

Q3 Q6Q9

5

10

15

2 4 8 16 24 32

Sp
ee
du

p

Parallelization

Figure 18: Effect of optimizations and parallel execution.

Table 5: Comparison of related work with declarative IRs

Voodoo Lolepops Weld Modularis Spark SDQL DBLAB Ours
[41] [25] [39] [26] [49] [44] [45]

Explicit States ✓ ∼ ✓ ✗ ∼ ✓ ✓ ✓
Control Flow ✗ ✗ ✓ ∼ ✗ ∼ ✓ ✓
Embeddable ∼ ✓ ✗ ✓ ∼ ∼ ∼ ✓
Mutable DS ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
Universal IR ✗ ✗ ✓ ∼ ✓ ∼ ✓ ✓
Parallelization ✓ ∼ ✓ ✓ ✓ ✓ ∼ ✓
Distribution ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Het. HW ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Vectorization ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

with the parallelization strategy. Figure 18 shows the measured
speedups of the execution time for all TPC-DS queries (SF 10).

We can observe that the GlobalSharing pass does not improve
many queries. But when it does, it results in speedups of up to 2x.
Similarly, only a few queries profit slightly from the ReuseLocal pass
as the reused data structures are often small and do not impact the
overall execution time much. In contrast, almost all queries benefit
from the DeferLoading pass, up to a speedup of 3x. Finally, entry
compression has a moderate effect: many queries profit slightly,
but only some significantly (up to 25%). While theoretically, these
optimizations can both decrease or increase compilation times sig-
nificantly, we observed that most optimizations do not consistently
speed up or slow down compilation. Only the GlobalSharing opti-
mization consistently reduces the compilation time.

Furthermore, Figure 18 also displays the scaling behavior for
selected TPC-H queries [21] as we increase the number of threads.
It can be observed that our parallelization strategy works and scales
roughly linear until the memory bandwidth is saturated or SMT
is used. A similar scaling behavior can also be observed for other
(compiling) systems like Umbra.

8 RELATEDWORK
In this paper, we proposed a new design for an abstraction layer
below relational operators. In the following, we discuss related
work and contrast the most relevant declarative approaches with
our approach as summarized in Table 5.
Intermediate representations for compiling query engines
Over the last ten years, lower-level abstractions have especially
been proposed to simplify the development of compiling query
engines[17, 22, 44, 45]. We see this line of work orthogonal to our
approach of introducing declarative sub-operators, as prior work
focuses on decreasing complexity by introducing new high-level
imperative abstraction layers.

3471

Unified Representations for Big Data Systems Big data sys-
tems like Spark [49] have also introduced unified abstractions to
abstract from challenges in distributed computing (e.g., resiliency)
and make distributed data processing available for different kinds
of workloads. At first glance, also Spark’s operators seem similar to
the sub-operators we proposed. However, only a few operators like
map, filter, or nestedMap/flatMap are equivalent to the correspond-
ing sub-operators, and most operators are much more high-level
and complex: Control-flow for a k-means implementation and state
such as hash-tables for reduceByKey are not exposed but are in-
ternally managed. Users can only choose to either use one of the
provided complex operators (e.g., window functions) or implement
their custom operator in imperative code using Spark’s framework.
Conceptually, Modularis [26], a distributed execution layer for data
analytics, is quite similar to Spark. The main differences are that
Modularis declarative sub-operators are designed to have limited
complexity and be portable and operate on tuple streams instead of
RDDs. Furthermore, many different unified representations aim to
support different workloads, usually relational workloads combined
with other high-level domains [5, 15, 18, 33].
Weld With Weld [39], Palkar et al. proposed a runtime for high-
performance data analytics based on a common intermediate repre-
sentation for a range of data-parallel workloads such as simple SQL
queries, machine learning, and graph analytics. Two main differ-
ences distinguish Weld from our approach: First, Weld’s IR centers
around immutable data structures (e.g., vectors and dictionaries)
created by merging values into builders in parallel loops. While this
design simplifies dealing with automatic vectorization and paral-
lelization, it also significantly reduces the expressibility of the IR, as
many efficient implementations of algorithms require mutable state
(e.g., SemiJoins). In contrast, even though our design allows for
mutable states, we are still able to effectively auto-parallelize for-
mulated programs. Even more important, every Weld program can
be reduced to a sub-operator program that can be fully parallelized.
Second, even though Weld can serve as a backend for relational
queries, embedding Weld programs as user-defined operator inside
a relational query remains difficult: (1) It would require a material-
ization and (2) relational optimizations such as pushing selections
through a user-defined operator would remain difficult.
Targeting Heterogeneous Hardware Additionally, special in-
termediate representations have been introduced for (compiling
for) modern hardware [2, 6, 11, 26, 41]. In 2016, Pirk et al. pro-
posed Voodoo [41], a vector algebra for portable database logic
across modern hardware. For generating code for different hard-
ware (e.g., CPU, GPU), they introduce the Voodoo Algebra as an
intermediate representation that can be produced from physical
query plans. It features declarative stateless operators that describe
data flow and state is managed explicitly. By design, Voodoo does
not contain control-flow mechanisms and complex data structures
beyond linear vectors to simplify the compilation for GPUs. Also,
work on heterogeneous hardware uses the name “sub-operators”
for pre-compiled kernels that are not declarative but can still solve
problems like specialization for specific hardware [42] or placing
OpenCL kernels across devices [19].
Composing Relational Operators Dittrich et al. made the case
for Deep Query Optimization [8] and envisioned that relational oper-
ators should be broken up into more fine-granular sub-components

to perform deeper query optimization, e.g., automatically specializ-
ing state types. In 2021, Kohn et al. proposed using Low-Level Plan
Operators for implementing otherwise monolithic and complex sta-
tistical operators like aggregations and window functions [25] and
optimizations such as reusing and specializing state. Similarly, Ex-
calibur [12] also splits relational operators into low-level operators
before implementing them with Voila [11].

In addition, we share many goals and basic ideas with the vision
of Bandle et al. [1]. However, our concrete, implemented design is
based on many novel design decisions, such as using references
to decouple state lookup from state updates and views to make
state transformations more declarative. Furthermore, we focus on
implementing complex operators, user-defined operators, and paral-
lelization and, most importantly, show that this approach is viable.

9 FUTUREWORK
The proposed sub-operator design opens up a lot of opportunities
for future work.
User-Facing Frontends and LibrariesWe just showed that the
proposed sub-operator design can be used to implement data pro-
cessing algorithms beyond SQL. In that case, end-users still have to
write sub-operator programs themselves. Thus, we plan on working
on user-facing frontends and libraries similar to the approach taken
by Weld [39]. Then, users could benefit from the tight integration
and all the optimizations by just switching to a different library.
Vectorized ExecutionGubner et al. demonstratedwith VOILA [11]
that a suitable database intermediate representation can be efficiently
executed both in a vectorized and data-centric way. We believe that
this is also feasible with our design: We could generate vector-
ized code for certain sub-operators but also execute sub-operator
pipelines using pre-compiled vectorized functions to save on com-
pilation times or profit from specialized implementations.
Distribution and Heterogeneous Hardware In Section 5, we
already showed how we can automatically parallelize sub-operator
programs. Similarly, we also plan to leverage the sub-operator de-
sign to automate the distribution of sub-operator programs across
multiple machines and heterogeneous hardware. Since automating
parallelism already solves similar problems (distributing work on
different threads), we believe that our design will also be applied
for distribution and heterogeneous hardware.
Adaptive Pipelines Currently, we simultaneously lower all sub-
operators to imperative code. In the future, we could perform the
lowering on pipeline granularity and thereby adapt to sometimes
unexpected behavior.

10 CONCLUSION
This paper proposes a novel design for declarative sub-operators
that supports increasingly diverse workloads, reduces the imple-
mentation complexity for relational operators, and allows for auto-
matic transformations to e.g., introduce parallelism. We proposed
five main design principles that help us balance expressibility and
declarativity. Following these design principles, we proposed a
concrete set of sub-operators and state types which were fully im-
plemented in LingoDB.We showed that LingoDB can now support a
richer set of workloads while keeping the development complexity
low and being competitive in performance.

3472

REFERENCES
[1] Maximilian Bandle and Jana Giceva. 2021. Database Technology for the Masses:

Sub-Operators as First-Class Entities. Proc. VLDB Endow. 14, 11 (2021), 2483–2490.
https://doi.org/10.14778/3476249.3476296

[2] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. 2018. Generating custom code for efficient query execution
on heterogeneous processors. VLDB J. 27, 6 (2018), 797–822. https://doi.org/10.
1007/s00778-018-0512-y

[3] Damianos Chatziantoniou, Michael O. Akinde, Theodore Johnson, and Samuel
Kim. 2001. The MD-join: An Operator for Complex OLAP. In Proceedings of the
17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg,
Germany, Dimitrios Georgakopoulos and Alexander Buchmann (Eds.). IEEE
Computer Society, 524–533. https://doi.org/10.1109/ICDE.2001.914866

[4] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A Primitive
Operator for Similarity Joins in Data Cleaning. In Proceedings of the 22nd Inter-
national Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA,
USA, Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.).
IEEE Computer Society, 5. https://doi.org/10.1109/ICDE.2006.9

[5] Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina Kemme, and Laurie J.
Hendren. 2018. HorseIR: bringing array programming languages together with
database query processing. In Proceedings of the 14th ACM SIGPLAN International
Symposium on Dynamic Languages, DLS 2018, Boston, MA, USA, November 6, 2018,
Tim Felgentreff (Ed.). ACM, 37–49. https://doi.org/10.1145/3276945.3276951

[6] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. 2019. HetExchange: Encapsulating heterogeneous CPU-GPU par-
allelism in JIT compiled engines. Proc. VLDB Endow. 12, 5 (2019), 544–556.
https://doi.org/10.14778/3303753.3303760

[7] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak,
Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vr-
goc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and
SQL/PGQ. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and
Amr El Abbadi (Eds.). ACM, 2246–2258. https://doi.org/10.1145/3514221.3526057

[8] Jens Dittrich and Joris Nix. 2020. The Case for Deep Query Optimisation. In
10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf

[9] Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E.
Ioannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly Performant
User-Defined Functions in Relational Databases. Proc. VLDB Endow. 15, 10 (2022),
2270–2283. https://www.vldb.org/pvldb/vol15/p2270-foufoulas.pdf

[10] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query Processing
System. In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, USA, May 23-25, 1990, Hector Garcia-
Molina and H. V. Jagadish (Eds.). ACM Press, 102–111. https://doi.org/10.1145/
93597.98720

[11] Tim Gubner and Peter A. Boncz. 2021. Charting the Design Space of Query
Execution using VOILA. Proc. VLDB Endow. 14, 6 (2021), 1067–1079. https:
//doi.org/10.14778/3447689.3447709

[12] Tim Gubner and Peter A. Boncz. 2022. Excalibur: A Virtual Machine for Adaptive
Fine-grained JIT-Compiled Query Execution based on VOILA. Proc. VLDB Endow.
16, 4 (2022), 829–841. https://www.vldb.org/pvldb/vol16/p829-boncz.pdf

[13] Surabhi Gupta and Karthik Ramachandra. 2021. Procedural Extensions of SQL:
Understanding their usage in the wild. Proc. VLDB Endow. 14, 8 (2021), 1378–1391.
https://doi.org/10.14778/3457390.3457402

[14] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
J. 3, 4 (1994), 357–399. http://www.vldb.org/journal/VLDBJ3/P357.pdf

[15] Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Kernel
for Linear and Relational Algebra Computation. In Proceedings of the 4th ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, Be-
yondMR@SIGMOD 2017, Chicago, IL, USA, May 19, 2017, Foto N. Afrati and Jacek
Sroka (Eds.). ACM, 2:1–2:10. https://doi.org/10.1145/3070607.3070608

[16] Tableau Software Inc. 2023. Tableau Hyper API. https://tableau.github.io/hyper-
db/docs/. Accessed: 2023-07-10.

[17] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open
Framework for Query Optimization and Compilation. Proc. VLDB Endow. 15, 11
(2022), 2389–2401. https://www.vldb.org/pvldb/vol15/p2389-jungmair.pdf

[18] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen,
Kwanghyun Park, Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Kr-
ishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, and Carlo Curino.
2020. Extending Relational Query Processing with ML Inference. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The
Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf

[19] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive Work
Placement for Query Processing on Heterogeneous Computing Resources. Proc.

VLDB Endow. 10, 7 (2017), 733–744. https://doi.org/10.14778/3067421.3067423
[20] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 195–206.

[21] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter A. Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. Proc. VLDB Endow.
11, 13 (2018), 2209–2222. https://doi.org/10.14778/3275366.3275370

[22] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. VLDB
J. 30, 5 (2021), 883–905. https://doi.org/10.1007/s00778-020-00643-4

[23] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building
Efficient Query Engines in a High-Level Language. Proc. VLDB Endow. 7, 10
(2014), 853–864. https://doi.org/10.14778/2732951.2732959

[24] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society, 197–208.
https://doi.org/10.1109/ICDE.2018.00027

[25] André Kohn, Viktor Leis, and Thomas Neumann. 2021. Building Advanced SQL
Analytics From Low-Level Plan Operators. In SIGMOD ’21: International Confer-
ence on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang
Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1001–1013.
https://doi.org/10.1145/3448016.3457288

[26] Dimitrios Koutsoukos, Ingo Müller, Renato Marroquín, Ana Klimovic, and Gus-
tavo Alonso. 2021. Modularis: Modular Relational Analytics over Heteroge-
neous Distributed Platforms. Proc. VLDB Endow. 14, 13 (2021), 3308–3321.
https://doi.org/10.14778/3484224.3484229

[27] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.
2004.1281665

[28] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In CGO. IEEE, 2–14.

[29] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and M. Tamer
Özsu (Eds.). ACM, 743–754. https://doi.org/10.1145/2588555.2610507

[30] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[31] David Maier, Peter Baumann, Martin Kersten, Kian-Tat Lim, and Michael Stone-
braker. 2013. ArrayQL algebra: version 3. http://www.xldb.org/wp-content/
uploads/2012/09/ArrayQL_Algebra_v3+.pdf. Accessed: 2023-07-10.

[32] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with Group-
By and Join by Groupjoin. Proc. VLDB Endow. 4, 11 (2011), 843–851. http:
//www.vldb.org/pvldb/vol4/p843-moerkotte.pdf

[33] Ingo Müller, Renato Marroquín, Dimitrios Koutsoukos, Mike Wawrzoniak, Sabir
Akhadov, and Gustavo Alonso. 2020. The collection Virtual Machine: an ab-
straction for multi-frontend multi-backend data analysis. In 16th International
Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Oregon,
USA, June 15, 2020, Danica Porobic and Thomas Neumann (Eds.). ACM, 7:1–7:10.
https://doi.org/10.1145/3399666.3399911

[34] Ryohei Nakano. 1990. Translation with Optimization from Relational Calculus
to Relational Algebra Having Aggregate Functions. ACM Trans. Database Syst.
15, 4 (1990), 518–557. https://doi.org/10.1145/99935.99943

[35] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang, David B.
Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha,
and Young-Kuk Kim (Eds.). ACM, 1049–1058. http://dl.acm.org/citation.cfm?id=
1164217

[36] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[37] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-
cidr20.pdf

[38] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (2018), 1002–1015. https://doi.org/10.14778/3213880.3213890

3473

https://doi.org/10.14778/3476249.3476296
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.1007/s00778-018-0512-y
https://doi.org/10.1109/ICDE.2001.914866
https://doi.org/10.1109/ICDE.2006.9
https://doi.org/10.1145/3276945.3276951
https://doi.org/10.14778/3303753.3303760
https://doi.org/10.1145/3514221.3526057
http://cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf
https://www.vldb.org/pvldb/vol15/p2270-foufoulas.pdf
https://doi.org/10.1145/93597.98720
https://doi.org/10.1145/93597.98720
https://doi.org/10.14778/3447689.3447709
https://doi.org/10.14778/3447689.3447709
https://www.vldb.org/pvldb/vol16/p829-boncz.pdf
https://doi.org/10.14778/3457390.3457402
http://www.vldb.org/journal/VLDBJ3/P357.pdf
https://doi.org/10.1145/3070607.3070608
https://tableau.github.io/hyper-db/docs/
https://tableau.github.io/hyper-db/docs/
https://www.vldb.org/pvldb/vol15/p2389-jungmair.pdf
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p24-karanasos-cidr20.pdf
https://doi.org/10.14778/3067421.3067423
https://doi.org/10.14778/3275366.3275370
https://doi.org/10.1007/s00778-020-00643-4
https://doi.org/10.14778/2732951.2732959
https://doi.org/10.1109/ICDE.2018.00027
https://doi.org/10.1145/3448016.3457288
https://doi.org/10.14778/3484224.3484229
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/2850583.2850594
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
https://doi.org/10.1145/3399666.3399911
https://doi.org/10.1145/99935.99943
http://dl.acm.org/citation.cfm?id=1164217
http://dl.acm.org/citation.cfm?id=1164217
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.14778/3213880.3213890

[39] Shoumik Palkar, James Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman P. Amarasinghe, and Matei Zaharia. 2017.
Weld: A Common Runtime for High Performance Data Analysis. In 8th Bi-
ennial Conference on Innovative Data Systems Research, CIDR 2017, Chami-
nade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf

[40] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proc. VLDB Endow. 15, 12 (2022), 3372–3384. https://www.
vldb.org/pvldb/vol15/p3372-pedreira.pdf

[41] Holger Pirk, Oscar R. Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - A
Vector Algebra for Portable Database Performance on Modern Hardware. Proc.
VLDB Endow. 9, 14 (2016), 1707–1718. https://doi.org/10.14778/3007328.3007336

[42] Orestis Polychroniou and Kenneth A. Ross. 2020. VIP: A SIMD vectorized
analytical query engine. VLDB J. 29, 6 (2020), 1243–1261. https://doi.org/10.
1007/s00778-020-00621-w

[43] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management of
Data, SIGMODConference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 1981–1984. https://doi.org/10.1145/3299869.3320212

[44] Hesam Shahrokhi and Amir Shaikhha. 2023. Building a Compiled Query Engine
in Python. In Proceedings of the 32nd ACM SIGPLAN International Conference
on Compiler Construction, CC 2023, Montréal, QC, Canada, February 25-26, 2023,
Clark Verbrugge, Ondrej Lhoták, and Xipeng Shen (Eds.). ACM, 180–190. https:
//doi.org/10.1145/3578360.3580264

[45] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan,
Georgia Koutrika, and Sam Madden (Eds.). ACM, 1907–1922. https://doi.org/10.
1145/2882903.2915244

[46] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. Proc. VLDB Endow. 15, 5
(2022), 1119–1131. https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf

[47] New York City Taxi and Limousine Commission (TLC). [n.d.]. TLC Trip Record
Data. http://web.archive.org/web/20080207010024/http://www.808multimedia.
com/winnt/kernel.htm

[48] Günter von Bültzingsloewen. 1989. Optimizing SQL Queries for Parallel Execu-
tion. SIGMOD Rec. 18, 4 (1989), 17–22. https://doi.org/10.1145/74120.74123

[49] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

3474

http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p127-palkar-cidr17.pdf
https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf
https://www.vldb.org/pvldb/vol15/p3372-pedreira.pdf
https://doi.org/10.14778/3007328.3007336
https://doi.org/10.1007/s00778-020-00621-w
https://doi.org/10.1007/s00778-020-00621-w
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3578360.3580264
https://doi.org/10.1145/3578360.3580264
https://doi.org/10.1145/2882903.2915244
https://doi.org/10.1145/2882903.2915244
https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
https://doi.org/10.1145/74120.74123

	Abstract
	1 Introduction
	2 The Need for Sub-Operators
	3 Conceptual Design
	3.1 Detailed Design
	3.2 Using States and Sub-Operators

	4 Implementation of Complex Operators and Algorithms
	4.1 Complex Relational Operators
	4.2 User-Defined Operators
	4.3 Iterative Algorithms

	5 Auto-Parallelization
	6 Implementation in LingoDB
	7 Evaluation
	7.1 Supported Workloads & Complexity
	7.2 Comparison with LingoDB2022
	7.3 Performance for SQL Benchmarks
	7.4 Micro Benchmark for Window Functions
	7.5 Case Study: Similarity-Join
	7.6 Case Study: Iterative Algorithms
	7.7 Case Study: Numerical Workloads
	7.8 Effect of Optimizations and Parallelization

	8 Related Work
	9 Future Work
	10 Conclusion
	References

