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ABSTRACT
Nowadays, data is represented by vectors. Retrieving those vectors,
among millions and billions, that are similar to a given query is a
ubiquitous problem, known as similarity search, of relevance for a
wide range of applications. Graph-based indices are currently the
best performing techniques for billion-scale similarity search. How-
ever, their random-access memory pattern presents challenges to
realize their full potential. In this work, we present new techniques
and systems for creating faster and smaller graph-based indices. To
this end, we introduce a novel vector compression method, Locally-
adaptive Vector Quantization (LVQ), that uses per-vector scaling
and scalar quantization to improve search performance with fast
similarity computations and a reduced e�ective bandwidth, while
decreasing memory footprint and barely impacting accuracy. LVQ,
when combined with a new high-performance computing system
for graph-based similarity search, establishes the new state of the
art in terms of performance and memory footprint. For billions of
vectors, LVQ outcompetes the second-best alternatives: (1) in the
low-memory regime, by up to 20.7x in throughput with up to a 3x
memory footprint reduction, and (2) in the high-throughput regime
by 5.8x with 1.4x less memory.
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1 INTRODUCTION
In the deep learning era, high-dimensional vectors have become
the quintessential data representation for unstructured data, e.g.,
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Figure 1: Our contributions enable high-throughput andhigh-
accuracy similarity search with a small memory footprint
(results with a 10-recall@10 of 0.9 for deep-96-1B). For graph
methods, the memory footprint is a function of the graph
out-degree ' and the vectors’ footprint. Our low-memory
con�guration (LVQ-8 and ' = 32) outperforms the current
leaders, Vamana [28],HNSWlib [39], FAISS-IVFPQfs [31], and
ScaNN [21], by 2.3x, 2.2x, 20.7x, and 43.6x with 3.0x, 3.3x, 1.7x,
and 1.8x less memory, respectively. Our highest-throughput
con�guration (LVQ-8 and ' = 126) outperforms the second-
highest by 5.8x while using 1.4x less memory.

for images, audio, video, text, genomics, and computer code [e.g.,
16, 30, 37, 45, 50]. The representations are generated so that se-
mantically related vectors are close to each other according to a
chosen similarity function. A common procedure is to search over
these vectors for the nearest neighbors to a given query vector. This
enables a wide range of applications, such as image generation [11],
NLP [12], question answering [34], recommender systems [38], and
ad matching [20]. Datasets with billions of vectors, each with hun-
dreds of dimensions, are increasingly common [52]. Because of the
scale and the curse of dimensionality, exact nearest neighbor search
is impractical and the literature is focused on approximate methods.
Graph-based approximate nearest neighbormethods [5, 28, 39] have
been empirically found to o�er a better latency-accuracy trade-o�
than other types of algorithms [55].

Despite requiring fewermemory accesses per query, graph-based
search algorithms continue to o�er limited throughput and a sub-
stantial memory footprint at very large database sizes making
single-machine deployment challenging. Many works have focused
on reducing the number of distance computations per query further
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by changing the parameters of the graph to lower the number of
points visited per query. Although this lowers latency and increases
query throughput, it does so at the expense of recall and with little
reduction in memory consumption. Since applications typically
demand a hard and fast lower bound on recall, there are limits to
this approach.

The random memory access patterns that come with graph al-
gorithms present further challenges to the system’s throughput.
The inability to e�ectively prefetch vectors with a hardware
prefetcher means that the latency of accessing random vectors
cannot be easily hidden and may quickly become a throughput
bottleneck. Furthermore, vectors are di�cult to cache due to the
size of the index. Although most of the literature on large-scale
similarity search puts more emphasis on the computational inten-
sity of this workload, the simplicity of the distance computation
kernel and the aforementioned fetching issues ultimately make the
workload memory-bandwidth limited. However, many billion-scale
similarity search systems lack the high-performance computing
block-and-tackling necessary to wring out enough distance compu-
tation performance to put pressure on the memory subsystem.

Gains may be made by performing distance computations on
compressed vectors, thereby lowering both computation and mem-
ory footprint. However, compression introduces new challenges,
including lowering of recall. Product Quantization and other lossy
compression methods are often used to reduce the memory foot-
print [28] but incur more expensive similarity computations
and require the auxiliary storage of uncompressed vectors any-
way to boost recall during a �nal re-ranking step. Other methods
introduce too much distortion in the distances (e.g., dimensionality
reduction and standard scalar quantization), leading to unaccept-
able accuracy.

In this work, we propose LVQ, a locally-adaptive vector quan-
tizer, that uses a simple and e�cient compression method to
reduce memory pressure and a built-in two-level quantization re-
mainder system that avoids keeping full precision vectors. After
centering the data, LVQ scales each vector individually (i.e., the
local adaptation) and then performs uniform scalar quantization. Its
per-vector compression introduces a negligible accuracy degra-
dation thanks to its e�ective usage of all quantization levels. LVQ
reduces the bandwidth by up to ~8x compared to a �oat32-valued
vector, greatly accelerating the search. When needed, the second-
level quantization remainder is used for a �nal re-ranking to further
boost search recall. Moreover, we show that we can build accurate
graphs directly from LVQ-compressed vectors.

We also introduce a new open-source performance library for
billion-scale similarity search that removes the barriers limiting the
throughput of most graph-based search algorithms and, in our case,
allows LVQ to shine. We streamline memory accesses, by �at-
tening the memory layout, avoiding any memory indirections, and
using a new custom software prefetcher. We also accelerate sim-
ilarity computations using AVX instructions, which in the case of
LVQ are blazingly fast (up to 2.12x faster than with �oat16-valued
vectors). In summary, we present the following contributions:
• Novel Compression Algorithm. We present Locally-adaptive

Vector Quantization (LVQ), a technique that strikes a balance be-
tween e�ective bandwidth reduction and introducing a minimal
decoding overhead for similarity computations (Section 3).

• Fast Implementation. The combination of LVQ and our opti-
mized graph search (presented in Section 5 with hyperparameter
recommendations) establishes the new state-of-the-art for large-
scale similarity search in terms of performance and memory
footprint. We present a preview in Figure 1. We backup these
claims with an extensive set of experimental results (Section 6).

• Index construction with LVQ. LVQ enables building graph
indices directly from compressed vectors, releasing memory pres-
sure in this time-consuming step while minimally a�ecting index
quality (Section 4).

• Open Source Framework. We open-source a similarity search
library1 to allow the research community to experiment with our
algorithms and billion-scale search framework.

• New Dataset and Generator. To promote similarity search
research in line with modern applications that use deep learning
embeddings, we introduce a new dataset with3 = 768 dimensions,
produced using large language models [34]. We open source the
code2 to generate this dataset from a standard corpus. In this
paper we use an instance with 10 million vectors.

2 PRELIMINARIES
The similarity search problem (also known as nearest-neighbor
search) is de�ned as follows. Given a vector database X = {x8 2
R3 }8=1,...,= , containing = vectors with 3 dimensions each, a similar-
ity function, and a query q 2 R3 , we seek the : vectors in X with
maximum similarity to q. Given the size of modern databases, guar-
anteeing an exact retrieval becomes challenging and this de�nition
is relaxed to allow for a certain degree of error: some retrieved
elements may not belong to the ground-truth top : . This relaxation
avoids a full linear scan of the database.

Similarity is determined using a similarity function sim : R3 ⇥
R3 7! R, where a higher value indicates a higher degree of similar-
ity. This function is symmetric, i.e., sim(x, x0) = sim(x0, x).

Metrics. Search accuracy is measured by :-recall@: , de�ned
by |( \⌧C |/: , where ( are the ids of the : retrieved neighbors and
⌧C is the ground-truth. Unless otherwise speci�ed, we use : = 10
in all experiments and 0.9 as the default accuracy value. Search
performance is measured by queries per second (QPS).

Scalar quantization. Scalar quantization is a classical technique
in signal processing mapping �oating-point values to integer values
within a speci�ed range. We de�ne the uniform scalar quantization
function as

& (G ;⌫, ✓,D) = �

�
G � ✓
�

+ 1
2

⌫
+ ✓, where � = D�✓

2⌫�1 , (1)

⌫ is the number of bits used for the code, and D and ✓ are upper and
lower bounds, commonly chosen as the maximum and minimum
of the values to quantize.

2.1 Graph-based similarity search
Among other similarity search approaches, graph-basedmethods [5,
28, 39] stand out with their high accuracy and performance for high-
dimensional data. They are the state of the art at billion-scale [52].

1https://github.com/IntelLabs/ScalableVectorSearch
2https://github.com/IntelLabs/DPR-dataset-generator
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Algorithm 1: Greedy graph search.
Inputs: graph⌧ = (V, E) , query q, number of neighbors : 2 N,

priority queue capacity, � : , initial candidates S ⇢ V ,
similarity function sim

Result: : approximate nearest neighbors to q in⌧
1 Q = S // Initialize candidate set Q.

// Initially, no nodes are marked as explored.

2 while there exists an unexplored node in Q do
3 x = closest unexplored node to q in Q w.r.t. sim
4 Mark x as explored
5 for x0 2 N(x) do Q  Q [ x0

// Limit the size of Q to at most , :

6 Q = the (at most), closest nodes to q in Q w.r.t sim

7 return : nearest nodes to q in Q w.r.t. sim

The key idea is that a fast search algorithm is guaranteed to con-
verge to the nearest neighbor by a best-�rst traversal of the Delau-
nay graph. However, building a Delaunay graph is too computation-
ally expensive and approximations are used [55]. Many variations
exist, e.g., using di�erent edge selection strategies [17, 25] or adding
a hierarchy [14, 39]. In this work, we use the graph building intro-
duced by Subramanya et al. [28] for its strong search performance,
but our results apply to other graphs-based methods.

In the following discussion, let ⌧ = (V, E) be a directed graph
with verticesV corresponding to elements in a datasetX and edges
E representing neighbor-relationships between vectors. We denote
with N(x) the set of out-neighbors of x in ⌧ .

Graph search. Graph search involves retrieving the : nearest
vectors to query q 2 R3 with respect to the similarity function
sim by using a modi�ed greedy search over ⌧ (see pseudo-code in
Algorithm 1). The parameter W provides a knob for trading accu-
racy and performance as increasing W improves the accuracy of
the : nearest neighbors at the cost of lower performance by explor-
ing more of the graph. Practical implementations of Algorithm 1
provide optimization opportunities discussed in Section 5.

Graph construction. To build the graph we follow the approach
by Subramanya et al. [28]. Starting from an uninitialized graph
⌧ = (+ , ;) and target maximum degree ', we iteratively perform
an update routine for each node x 2 V . For this, we �rst run Algo-
rithm 1 using the node x as the query with, > ' on the current
graph ⌧ to obtain C: the : = , approximate nearest neighbors
to x. The pruning algorithm [28] shown in Algorithm 2 is run on
C to re�ne the candidate list. The re�ned candidate list C is used
to update the outward adjacency list for x in ⌧ . Finally, we add
backward edges (x, x0) for all x0 in x’s updated neighborhood and
prune x0’s edges using Algorithm 2 to the maximum degree '.

Two passes are done through the dataset [28]: one with the
relaxation factor U = 1.0 and the other with a potentially di�erent
U . The optimal values for hyperparameters such as U , ', and,
depend on several factors, such as the dataset manifold, its scale
and the accuracy-performance trade-o� of choice. Nevertheless, we
�nd in practice that the same parameter values work very well for
di�erent datasets of similar scale (see Section 6).

Algorithm 2: Neighborhood graph pruning [28].
Inputs: graph⌧ , x 2 V , set C of out-neighbor candidates for x,

relaxation factor U 2 R+, out-degree bound ' 2 N,
similarity function sim

Result: The new out-neighbors N(x) of x in⌧ s. t. |N (x) |  '.
1 C  (C [ N(x) ) \ {x} // Add the current out-neighbors

2 N(x)  ; // Clear the out-neighbors of x
3 while C < ; do
4 x⇤  argmax

x00 2C
sim(x, x00 )

5 N(x)  N(x) [ {x⇤}
6 if |N (x) | = ' then break

7 for x0 2 C do
8 if U · sim(x⇤, x0 ) � sim(x, x0 ) then C  C \ {x0 }

3 LOCALLY-ADAPTIVE VECTOR
QUANTIZATION

The IEEE 754 format [22] is designed for �exibility, allowing to
represent a wide range of very small and very large numbers. How-
ever, our empirical analysis of many standard datasets and deep
learning embeddings informed us of regularities in the empirical
distributions of their component values. In line with modern trends
in AI [19], we leverage these regularities for quantization. We ex-
plored several 8-bit �oating point encodings [53], but found the
precision over the small dynamic range of numeric values present
in our application to be insu�cient for the required search accuracy.

We further found that scalar quantization, in Equation (1), with
global bounds for the whole dataset or with bounds computed
individually for each dimension do not make a good use of the
available bits, as demonstrated in Figure 2. In the following, global
quantization refers to scalar quantization with global normalization.

We thus introduce Locally-adaptive Vector Quantization (LVQ)
that fully utilizes the available range (Figure 2) by changing the
slicing direction for computing the quantization bounds. Retain-
ing the simplicity of scalar quantization allows for fast similarity
computations while reducing the e�ective bandwidth.

De�nition 1. We de�ne the Locally-adaptive Vector Quantization
(LVQ-⌫) of vector x = [G1, . . . , G3 ] with ⌫ bits as

& (x) = [& (G1 � `1;⌫, ✓,D), . . . ,& (G3 � `3 ;⌫, ✓,D)], (2)

where the scalar quantization function & is de�ned in Equation (1),
- = [`1, . . . , `3 ] is the mean of all vectors in X and the constants D
and ✓ are individually de�ned for each vector x = [G1, . . . , G3 ] by

D = max
9

G 9 � ` 9 , ✓ = min
9

G 9 � ` 9 . (3)

LVQ works with mean-centered vectors to homogenize the dis-
tributions across dimensions, see Figure 3. The quantization bounds
D and ✓ are computed individually for each vector and, hence, are lo-
cally adaptive. This normalization ensures that the dynamic range
is used e�ciently, see Figure 2. Treating all dimensions equally
could be problematic in the presence of large variance di�erences
across vector dimensions. Although this scenario is not observed
in practice (Figure 3 and Figure 14 in the supplementary material
[1]), either in standard datasets or in deep learning embeddings, we
empirically show the robustness of LVQ in Appendix A.1 [1].
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Figure 2: Empirical distributions of the values in each vector
for deep-96-1M (we show the mean across vectors ±2f). For
95% of the vectors, global and per dimension normalization
only utilize around 60% and 75% of the available range, re-
spectively. LVQ normalization approximates the uniform
distribution better, utilizing the whole range and yielding a
more faithful encoding.

Figure 3: Empirical distributions of vector values in indi-
vidual dimensions for two prototypical datasets. After de-
meaning, the values become highly amenable to quantiza-
tion, as the distributions will not contain regions within the
dynamic range with either very high or very small density.
Additional datasets are included in Figure 14 in the supple-
mentary material [1].

For each 3-dimensional vector compressed with LVQ-⌫, we need
to store the quantized values and the constants D and ✓ . Moreover,
to improve search performance, LVQ-compressed vectors can be
padded to a multiple of ? = 32 bytes to be aligned with half cache
lines. The footprint in bytes of a vector compressed with LVQ-⌫ is

footprint(& (x)) = d(3 · ⌫ + 2⌫2>=BC )/8/?e · ?, (4)

where ⌫2>=BC is the number of bits used for D and for ✓ . Typically,
we encode them in �oat16, in which case ⌫2>=BC = 16.

The compression ratio CR for LVQ is given by

CR(& (x)) = 3 · ⌫>A86/(8 · footprint(& (x))), (5)

where ⌫>A86 is the number of bits per each dimension of x. Typically,
vectors are encoded in �oat32, thus ⌫>A86 = 32. For example, when
using ⌫ = 8 bits and no padding (? = 0), the compression ratio for
deep-96-1B (3 = 96) is 3.84 and 3.98 for DPR-768-10M (3 = 768).

3.1 Two-level quantization
In graph search, most of the search time is spent (1) performing
random memory accesses to retrieve the vectors associated with
the out-neighbors of each node and (2) computing the similarity
between the query and each vector. After optimizing the compute

using AVX instructions, search is heavily dominated by the memory
access time. This is exacerbated as the number 3 of dimensions
increases (3 is in the upper hundreds for deep learning embeddings).

To reduce the e�ective memory bandwidth during search, we
compress each vector in two levels, each with a fraction of the
available bits. After using LVQ for the �rst level, we quantize the
residual vector r = x � - � & (x). The scalar random variable
/ = - � - �& (- ), which models the �rst-level quantization error,
follows a uniform distribution in [��/2,�/2) (see Equation (1)).
Thus, we encode each component of r using the scalar quantization
function

&res (A ;⌫0) = & (G ;⌫0,��/2,�/2), (6)
where ⌫0 is the number of bits used for the residual code.

De�nition 2. We de�ne the two-level Locally-adaptive Vector Quan-
tization (LVQ-⌫1x⌫2) of vector x as a pair of vectors & (x),&res (r),
such that

• & (x) is the vector x compressed with LVQ-⌫1,
• &res (r) = [&res (A1;⌫2), . . . ,&res (A3 ;⌫2)],

where r = x � - �& (x) and &res is de�ned in Equation (6).

No additional constants are needed for the second-level, as they
can be deduced from the �rst-level ones. Given the �rst-level func-
tion in Equation (4), the memory footprint of LVQ-⌫1x⌫2 is

footprint(& (x),&res (r)) = footprint(& (x)) + 3 · ⌫2 . (7)

3.2 Integrating LVQ into graph-based indices
We use �rst-level LVQ to search the graph. This improves the search
performance by decreasing the e�ective bandwidth, determined by
the number ⌫1 of bits transmitted from memory for each vector.
The reduced number of bits might generate a loss in accuracy.When
present, the second level, or compressed residuals, is used for a �nal
re-ranking step, recovering part of the accuracy lost in the �rst level.
Here, we replace Line 6 of Algorithm 1 by a gather operation, that
fetches&res (r) for each vector& (x) in Q, recomputes the similarity
between the query q and each & (x) +&res (r), and �nally selects
the top-: . Moreover, we can safely build the graph from vectors
compressed using LVQ, as we show in the next section.

Adapting to shifts in the data distribution In the case of
dynamic indices (supporting insertions, deletions and updates), a
compression method should easily adapt to data distribution shifts.
Search accuracy can highly degrade over time if the compression
model and the index are not periodically updated. Such an update
often involves running expensive algorithms (e.g., PQ [33] involves
running multiple instances of k-means). For LVQ, the model update
is simpler, requiring recomputation of the dataset mean - and
reencoding of the data vectors, operations that scale linearly with
=, and do not require loading the full dataset in memory.

4 THEORETICAL RESULTS ON GRAPH
CONSTRUCTION

This section is devoted to showing that we can build a graph with
LVQ-compressed vectors without impacting search accuracy, thus
accelerating and reducing the footprint of the expensive index
construction step. For example, for deep-96-1B (Section 6.1), graph
building requires at least 835GiB for a maximum out degree ' = 128.
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Table 1: Memory requirements (graph + vectors) for graph
building with full-precision (FP) and with LVQ-⌫ vectors. De-
pending on the dataset and the graph maximum out-bound
degree ('=32,64,128), the memory reduction can reach 6.2x.

deep-96-1B text2Image-200-100M DPR-768-10M

Size (GiB) Ratio Size (GiB) Ratio Size (GiB) Ratio
' FP LVQ-4 FP LVQ-4 FP LVQ-4

32 477 168 2.84 864 216 4.00 298 48 6.20
64 596 287 2.08 983 335 2.93 310 60 5.17
128 834 525 1.59 1222 574 2.13 334 84 3.98

Figure 4: Search performance (conducted with �oat32-valued
vectors to normalize for compute di�erences) on graphs built
with vectors compressed using LVQ (left) and global quanti-
zation (right) with di�erent number of bits for deep-96-100M.
We observe almost no decrease in throughput in graphs built
with 4 or more bits with LVQ (the curves with 8 and 32 bits
overlap). In contrast, we observe a sharp drop in throughput
for graphs built using global quantization with 4 bits. Thus,
we can savememory by building graphs with LVQ-4 or LVQ-8
without a�ecting the search quality.

Notably, when graphs are built with LVQ-compressed vectors, the
search accuracy is almost unchanged even when setting ⌫ as low
as 8 or 4 bits (see Figure 4). The minimum memory requirements
(graph + dataset size) in GiB to construct a graph from full precision
and from LVQ with ⌫ = 4 bits are reported in Table 1, where the
memory reduction can be as high as 6.2x. In this section we explain
why LVQ makes these savings possible, corroborating that this is
indeed logical and even expected.

There are three steps required to generate the adjacency list of
each vertex in the graph: building, sorting and pruning the neigh-
bors candidate list. We will begin with the latter, as it is the critical
step to make the graph searchable.

4.1 Graph pruning with LVQ
We will now characterize both theoretically and experimentally
the errors introduced in the graph-pruning step when building the
graph from vectors compressed with LVQ. These errors are mild
and LVQ is fully compatible with the graph-pruning rule in Line 8
of Algorithm 2.

Let us consider C the set of candidates for x’s adjacency list in⌧ .
The pruning process iterates through C and, at each step, adds to
the set of out-neighbors of x its most similar vector x⇤, removing
from C all the vector that are closer to x⇤ than to x (Algorithm 2).

When the similarity is Euclidean distance, i.e., sim(x, x0) =
� kx � x0 k2, the pruning rule in Line 8 of Algorithm 2 becomes

U
��x⇤ � x0��2  ��x � x0��2 . (8)

Geometrically, as shown in Figure 5 (left), this is equivalent to
determining the perpendicular bisector hyperplane for x and x⇤,
and eliminating from C all vectors x0 that lie on same half-space as
x⇤. The pruning can be performed by computing

sign(a>x0�1), with a =
x � x⇤
kx � x⇤k2

, 1 =
kxk22 � kx⇤k22
2kx � x⇤k2

. (9)

and eliminating those vectors x0 for which sign(0x0 � 1) = �1.
Proposition 1. When using Euclidean distance as the similarity
function and U = 1, the graph pruning rule for full-precision vectors,
Equation (8), and the one using vectors compressed with LVQ, i.e.,��& (x⇤) �& (x0)

��
2 

��& (x) �& (x0)
��
2 , (10)

are equivalent (in the sense of simultaneously holding) when

|a>x0 � 1 | · kx � x⇤k � |⇢ |, (11)

where a> and 1 are de�ned in Equation (9) and ⇢ 2 R is an error that
depends on the quantization error and the vectors x, x⇤, and x0.

The proof is in Appendix B [1].
Classical signal processing theory dictates that under normal

conditions the error introduced by a scalar quantization follows a
uniform distribution. This uniformity is inherited by the quanti-
zation error in LVQ (see Figure 16 in the supplementary material
[1]).

Proposition 2. Under the conditions in Proposition 1 and assuming
a uniformly distributed quantization error, the error ⇢ is a normally
distributed random variable with mean `⇢ and variance f2⇢ , given by

`⇢ =
3

24
(�2

G � �2
G⇤ ), (12)

f2⇢ =
�2
x

12
kx0 � xk2 +

�2
x⇤

12
kx0 � x⇤k2 +

�2
x0

12
kx � x⇤k2+

+
3 (�4

x + �4
x⇤ )

720
+
3�2

x0 (�2
x + �2

x⇤ )
144

. (13)

where �x, �⇤x, and �x0 are the quantization steps for x, x⇤, and x0,
respectively, given by Equation (1).

The proof is in Appendix B [1].

Corollary 1. Let � be the normal cumulative distribution function.
|⇢ | follows a folded normal distribution parameterized by

` |⇢ | = f⇢

r
2
c
exp (�`2⇢/2f

2
⇢ ) + `⇢ (1 � 2�(� `⇢

f⇢
)), (14)

f2|⇢ | = `2⇢ + f2⇢ � `
2
|⇢ | . (15)

With these theoretical results in hand, we are now ready to
characterize Proposition 1 empirically, i.e., the number of bits ⌫ (see
De�nition 1) needed to run the pruning algorithm with minimal
errors. We generate triplets of vectors x, x⇤ and x0 that may be
found during pruning from 1 million vectors taken from the deep-
96-100M dataset presented in Table 2. For this, we select a vector x
at random, �nd its (ground-truth) ) nearest neighbors, and among
those we �rst randomly sample x⇤, and then x0 from those that are
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a>x0 � b > 0

Figure 5: (Left) For U = 1, the graph pruning rule (see Al-
gorithm 2) can be interpreted as determining the perpen-
dicular bisector hyperplane for x and x⇤, and eliminating
the candidates (green crosses) that lie on the same (green)
half-space as x⇤. This amounts to eliminating the vectors
with sign(a>x0 � 1) = �1, see Equation (9). (Right) Proposi-
tion 1 predicts that, under the green line, two graphs, one
built with compressed vectors and one with full-precision,
are equally accurate. We compare LVQ (in blue) and global
quantization (in orange) with a varying number of bits (ex-
pectations computed across 106 samples and error bands at
+3f |⇢ | for deep-96-100M). Empirically, graphs pruned using
vectors compressed with LVQ-4 or LVQ-8 are well within the
safe zone, while the errors bands for 4-bit global quantization
are close to the threshold. This correlates with the search
accuracy in Figure 4 that is only slightly lower for LVQ-4 but
severely degraded for 4-bit global quantization.

farther from x than x⇤. The results in Figure 5 (right) show that we
can reduce ⌫ in LVQ safely to 4 bits without a�ecting the pruning
rule. With 2 bits, the error bars overlap and no guaranties can be
given. These results are in agreement with the search accuracy we
observe in Figure 4.

4.2 Candidates selection and sorting with LVQ
The candidates list consists of the ) closest vectors among those
visited in a search. If the compression error is small enough com-
pared to the distance between x and its ) -th nearest neighbor, we
could expect similar candidates lists when using compressed or
full-precision vectors. To evaluate this, we analyze the ) nearest
neighbors of an exhaustive search with compressed vectors.

In Figure 6 (left), we present average results for 105 vectors
chosen at random from the dataset deep-96-100M () = 750). For
LVQ with 8 and 16 bits, the recall is almost one. This suggests
that there should be no di�erence between the candidates lists
using full-precision or LVQ. At 4 bits, the recall for LVQ is 0.82,
suggesting a high degree of agreement between the compressed
and uncompressed lists of candidates. For global quantization, we
observe a degraded recall of 0.6, pointing to a loss of equivalence
between the candidate lists. These results are in agreement with
what we observe in Figure 4. The search throughput for graphs
built with LVQ using 4 bits is almost unchanged from the baseline
(32 bits). For graphs built with global vector quantization using 4
bits, the search throughput su�ers signi�cantly.

To assess how LVQ a�ects the ordering of the candidate list ele-
ments, we use Ranked Bias Overlap (RBO) [57], a standard metric

Figure 6: With four or more bits per value, LVQ does not
introduce artifacts in the computation and sorting of the
candidate lists (of length 750) used for graph pruning (bands
at ± one standard deviation). To check the presence of the
correct elements, we track 750-recall@750, con�rming that
LVQ stays above 0.8 for four bits, whereas the global quanti-
zation drops to 0.6. To check the order of the elements, we use
Ranked Bias Overlap (RBO) [57], obtaining similar numbers.

to compare ranked lists. First, we �nd the two candidate lists, i.e.,
for LVQ-compressed and full-precision vectors, using exhaustive
search. Next, we compute the RBO between the lists sorted accord-
ing to the similarity between LVQ-compressed and full-precision
vectors. Figure 6 shows the results for 105 vectors chosen at random
in the dataset deep-96-100M. Again, for LVQ with 4, 8, and 16 bits,
we observe a high-quality sorting. For global quantization at 4 bits,
the sorting gets a�ected.

5 IMPLEMENTATION CHALLENGES
As with most high-performance algorithms, a �ne-tuned implemen-
tation is fundamental to realize the full potential of graph-based
similarity search. We now describe a set of optimizations that are
geared towards putting the system in its natural memory bottle-
necked regime and improving its performance. To illustrate the
discussion with experimental results and ablation studies, we use
the deep-96-100M dataset (see Table 2 in Section 6.1) and use the
system described in Section 6.2.

E�cient similarity calculations using LVQ with AVX. Com-
puting the similarity between two vectors is a key kernel under-
pinning similarity search. SIMD vector instructions can be used to
e�ciently implement distance computations for LVQ-⌫ and LVQ-
⌫1x⌫2. We store compressed vectors as densely packed integers
with scaling constants stored inline. When 8-bits are used, native
AVX instructions are used to load and convert the individual com-
ponents into �oating-point values which are combined with the
scaling constants. The case ⌫1 = ⌫2 = 4 in LVQ-⌫1x⌫2 requires a
little more work, involving vectorized integer shifts and masking.
We fuse the decompression with the distance computation against
the query vector. This fusion, combined with loop unrolling and
masked operations to tail elements, creates an e�cient distance
computation implementation that makes no function calls, decom-
presses the quantized vectors on-the-�y and accumulates partial
results in AVX registers.

A notable optimization is the ability to set the dimensionality at
compile time (static) versus at runtime (dynamic). As the dimension-
ality of a dataset is �xed once and for all, setting it statically presents
no detrimental aspects and it improves the compiler’s ability to
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(a) Impact of prefetching (b) E�ect of huge pages (c) Bandwidth utilization (d) Core scaling

Figure 7: (a) Our advanced prefetching, parameterized by prefetch-o�set and prefetch-step, provides up to 2x performance gain
over no-prefetch (yellow bar). Commonly used prefetch schemes using prefetch-step=1 (red bars) show sub-optimal gains. (b)
By explicitly utilizing huge pages, we achieve signi�cant performance gains as datasets grow: 20% in deep-96-100M and 90% in
deep-96-1B. (c) We reach 90% and 78% of the read-only peak bandwidth for �oat16 and LVQ-8 data types, respectively. (d) We
achieve good performance scaling with the number of threads, obtaining 23.5x and 33x gains over single-thread for �oat16
and LVQ-8 vectors, respectively. For �oat16 vectors, performance tops at 40 threads (on a system with 40 cores). Thanks to the
reduced bandwidth, LVQ-8 performance continues to grow up to the maximum number (80) of hyperthreaded cores. Unless
speci�ed, experiments are done for deep-96-100M with a 10-recall@10 of 0.9.

Figure 8: Mean similarity computation times using di�erent
encodings for = vectors in 3 dimensions (3 = 128, 768 on the
left and right).We use a sequential access pattern tominimize
any memory side e�ects. In each case, the curve in�exion
marks the point where the vectors do not �t in the L2 cache.
When vectors �t in cache, distances with �oat16 values are
2x faster than those with LVQ-4. When vectors exceed the
cache size, LVQ quickly becomes 2.12x faster than �oat16
due to the reduced number of fetched cache lines.

unroll loops in the similarity function kernel more extensively. We
observe up to a 32% performance speedup when using static versus
dynamic dimensionality. All in all, this implementation achieves
~2x faster computation performance, as shown in Figure 8.

Advanced prefetching. Prefetching involves proactively mov-
ing data that will be accessed soon into the CPU cache. This can
either be done automatically in hardware, or manually through soft-
ware instructions. If done well, it can improve application through-
put by lowering memory latency when data is �nally accessed and
by overlapping computation with memory access. Due to the ran-
dom data access pattern in graph-based search, hardware prefetch-
ers are ine�ective. This leaves software prefetching.

When computing distances between a query and all neighbors
of a vertex, we introduce two tunable parameters for prefetching
data vectors: prefetch-o�set that controls the lookahead o�set in the
list of vectors to prefetch, and prefetch-step that sets the number of
vectors to prefetch in each iteration.

In Figure 7(a), we observe that our scheme provides up to a 2x
speedup over the no-prefetch case (baseline) where both param-
eters are zero. A simple prefetch strategy (prefetch-step=1) which
simply prefetches the immediate next vector shows no performance
gain over the baseline. However increasing prefetch-o�set boosts
performance (red bars). Furthermore, schemes with prefetch-step > 1
show similar performance. Although there is not a universally best
combination, we found that prefetch-o�set=0 and prefetch-step=2
works well in many cases. Last, to account for cache-unaligned
dimensionality 3 , we selectively bring additional cache lines with
no negative impact on the performance for aligned 3 .

Optimizing graph search.We now analyze opportunities for
optimizing the overall implementation for Algorithm 1. We use a
sorted linear bu�er to implement the queue Q, storing whether a
node has been explored inline with the node id and distance from
the query. For values of, common in our datasets (a few dozens),
we found this to be faster than using a heap-like data structure due
to its hardware friendliness. Common implementations of graph
search use an associative data structure to track whether a node has
been visited to avoid unnecessary memory accesses and compute.
With our optimized similarity computations and smart prefetcher
in hand, keeping a visited set carries a performance regression.

The overall advantage of disabling the visited set depends both on
the dimensionality 3 and the CPU micro-architecture. For example,
with deep-96-100M on a Cascade Lake server CPU, disabling the
visited set can improve throughput by 15-20% whereas on an Ice
Lake server, the improvement is capped at 2-3%. We observe no
performance di�erence for the DPR-768-10M dataset (Table 2) with
its larger dimensionality (3 = 768).

Finally, we parallelize the search across queries with each thread
being responsible for a subset of the query batch, running a single-
thread search routine for each query in the batch. This is a common
pattern for graph-based similarity search implementations. Paral-
lelizing the search for an individual query [43], and understanding
whether it presents actual bene�ts, remains as future work.

Memory layout and allocation. Modern computer systems
use virtual memory [26] to provide process isolation and address
space independence. Virtual memory addresses used by programs

3439



are translated to physical addresses through the use of page tables,
a process that is accelerated in hardware using a Translation Look-
aside Bu�er (TLB) to cache recently used translations.

For billion-scale datasets, a TLB miss for each random access in
Algorithm 1 is nearly certain when using typical 4096 kB pages.
Because the probability of the corresponding page table entry being
resident in cache is nearly zero, this miss requires another access to
main memory, which degrades performance. Using 2 MB or 1 GB
huge pages greatly increases the probability that the missed page-
table entry is in the cache [47]. To that end, we avoid graph layouts
that involve memory indirections (such as CSR or a list of lists),
which further decrease the cache hit rate.

Consequently, we use large contiguous block allocations and
implement explicit huge-page allocators. Figure 7(b) demonstrates
a 20% and 90% performance gain by using huge pages at 0.90 recall
in deep-96-100M and deep-96-1B, respectively.

System utilization. Our algorithm and its implementation
achieve high system bandwidth and scale well with the number of
cores. Our system’s peak read-only memory bandwidth, measured
with Intel®’s Memory Latency Checker [53], is 174GB/s per socket.
As shown in Figure 7(c), the average memory bandwidth achieved
by our implementation during the search is 160GB/s and 135GB/s
utilizing more than 90% and 78% of the peak bandwidth for �oat16-
valued and LVQ-8 vectors, respectively. This high bandwidth uti-
lization is the product of the system optimizations described above.

Next, we present the performance scaling with the number of
hardware threads used. Our system has 40 cores per socket with
2-way hyper-threading enabled (maximum 80 threads per socket).
Figure 7(d) shows that the QPS increases up to 40 threads in both
�oat16 and LVQ-8 data types. In �oat16, however, the performance
scaling slows down between 30 and 40 threads and saturates at 40
threads as the required memory bandwidth approaches the system
peak. On the other hand, LVQ-8 reduces the memory bandwidth
pressure and scales beyond 40 threads reaching its maximum value
at 80 threads, fully utilizing the hyper-threading capabilities. As a
result, our technique gains 23.5x and 33x performance over single-
thread in �oat16 and LVQ-8, respectively. In both data types, the
performance drops immediately after 40 threads due to hyperthread-
ing. As a result, the threads sharing a core are slower and cap the
overall search performance in batch mode. However, increasing the
thread usage further leads to higher throughput outweighing the
individual thread latency.

6 EXPERIMENTAL RESULTS
In this section, we present di�erent empirical results clarifying the
following topics. We �rst discuss an exhaustive evaluation show-
ing that our optimized graph-based search and LVQ, subsequently
denoted as OG-LVQ, establishes a new SOTA for both small and
large scale datasets. We also show that this performance bene�ts
also come with memory savings. Then, we address the bene�ts of
LVQ over the standard Product Quantization. Finally, we present
an ablation study, where we compare di�erent quantizers under
our optimized graph-based search. In all cases, LVQ-compressed
vectors are padded to half cache lines (? = 32, see Section 3). We
report the best out of 5 runs for each method [6].

Table 2: Evaluated datasets, where = (=@) represent the num-
ber of vectors (queries) and 3 their dimensionality. The space
ismeasured in GiB.We generated DPR-768-10M from [34, 46]
(reproducibility details in Section C of the supp. material).

Dataset 3 = Encoding Similarity =@ Space

Sm
al
ls
ca
le

gist-960-1M [29] 960 1M �oat32 L2 103 3.6
sift-128-1M [29] 128 1M �oat32 L2 104 0.5
deep-96-10M [10] 96 10M �oat32 cos sim. 104 3.6
deep-96-1M [10] 96 1M �oat32 cos sim. 104 0.4
glove-50-1.2M [44] 50 1.2M �oat32 cos sim. 104 0.2
glove-25-1.2M [44] 25 1.2M �oat32 cos sim. 104 0.1

La
rg
e
sc
al
e DPR-768-10M 768 10M �oat32 inner prod. 104 28.6

t2i-200-100M [9] 200 100M �oat32 inner prod. 104 74.5
deep-96-100M [10] 96 100M �oat32 cos sim. 104 35.8
deep-96-1B [10] 96 1B �oat32 cos sim. 104 257.6

6.1 Datasets
To cover a wide range of use cases, we evaluate our method on
standard datasets of diverse dimensionalities (3 = 25 to 3 = 768),
number of elements (= = 106 to= = 109), data types andmetrics (see
Table 2). In addition, we introduce a new dataset containing 10 mil-
lion 768-dimensional embeddings generated with the dense passage
retriever (DPR) [34] model. This dataset allows us to benchmark
our method in a very high-dimensional setting, that has become
ubiquitous in retrieval enhanced deep learning and most tasks that
make use of large language models. We use text snippets from
the C4 dataset [46] to generate: 10 million context DPR embed-
dings (base set) and 10000 question DPR embeddings (query set).
We refer the reader to Appendix C [1] for reproducibility details
about this dataset. For deep-96-100M and deep-96-1B, as the vectors
have norm one, we compute the cosine similarity using Euclidean
distance.

6.2 System setup
We run our experiments on two 2-socket systems. Those in Sec-
tion 6.3 run on 3rd generation Intel®Xeon® 8360Y@2.40GHz CPUs
with 36 cores and 256GB DDR4 memory (@2933MT/s) per socket.
All other experiments run on 3rd generation Intel® Xeon® Plat-
inum 8380 @2.30GHz CPUs with 40 cores and 1TB DDR4 memory
(@3200MT/s) per socket. Both systems run Ubuntu 22.04.3

We ran all experiments in a single socket to avoid introducing
performance regressions due to remote NUMA memory accesses.

We use the hugeadm Linux utility to preallocate a su�cient
number of 1GB huge pages for each algorithm. Our implementation
uses huge pages natively to reduce virtual memory overheads (see
Section 5). For a fair comparison, we run other methods with system
�ags enabled to automatically use huge pages for large allocations.

3Performance varies by use, con�guration and other factors. Learn more at www.Intel.
com/PerformanceIndex. Performance results are based on testing as of dates shown
in con�gurations and may not re�ect all publicly available updates. No product or
component can be absolutely secure. Your costs and results may vary. Intel technologies
may require enabled hardware, software or service activation. ©Intel Corporation.
Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.
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6.3 Performance on small scale search
We adopt the standard ANN-benchmarks [6] protocol and consider
small scale datasets of diverse dimensionality (3=25, 50, 96, 128,
960) and number of vectors (= = 106, . . . , 107). See details in Table 2.
We compare OG-LVQ to the SOTA algorithms for each dataset4, as
well as to other widely adopted approaches, for two query batch
sizes: one query at a time (single query mode) and full batch (total
number of queries in the dataset). The evaluated algorithms are:
Vamana [28], HNSWlib [39], FAISS-IVFPQfs [31]), NGT-qg [24]
and ScaNN [21]. NGT-qg is not included in the query batch mode
evaluation because the available implementation did not support
multi-query processing. Following ANN-benchmarks, we generate
Pareto curves of QPS vs. recall for a series of parameter settings.
For the graph-based methods (Vamana, HNSWlib and OG-LVQ), we
build graphs with ' = 32, 64, 1285. For IVFPQfs, ScaNN and NGT-
qg we use the provided con�guration settings [7]. For OG-LVQ,
we include various LVQ settings (LVQ-8, LVQ-4x4, LVQ-4x8, and
LVQ8x8). As explained in Section 6.2, our implementation explicitly
uses huge pages when available. However, system �ags to automat-
ically use huge pages did not work in the ANN-benchmarks [6]
Docker image. Therefore, huge pages were not allocated during
these experiments to ensure equal conditions for all methods. When
using cosine similarity, we follow the standard approach of normal-
izing the vectors and running the search using Euclidean distance.

In Table 3, we observe that OG-LVQ outmatches the competition
in full query batch mode, where it supersedes its closest competitor
by 1.15x to 5.49x across all datasets with their unique sizes and
dimensionalities. In single query mode, OG-LVQ still wins in 3 out
5 cases and NGT-qg takes the other two. The performance gains
of OG-LVQ are consistent across the entire recall range, as shown
in Figure 9 for the deep-96-10M and glove-50-1.2M datasets (all
datasets are included in Figure 17 in the supplementary material
[1]). Figures 18 and 19 in the supplementary material [1] show
similar results for 50 recall@50 and 100 recall@100, respectively.

6.4 Performance on large scale search
We adopt the big-ann-benchmarks [52] framework to run our
large-scale studies in full batch query mode. For this study, we
consider the datasets in Table 2 with a large footprint. We com-
pare OG-LVQ to four widely adopted approaches: Vamana [28],
HNSWlib [39], FAISS-IVFPQfs [31], and ScaNN [21]. We use the
following parameter setting to build Vamana graphs for all the
datasets: ' = 128 (we use ' = 126 for deep-96-1B), U = 1.2 and
U = 0.95 for L2 distance and inner product, respectively. For OG-
LVQ, we include various LVQ settings (LVQ-8, LVQ-4x4, LVQ-4x8,
and LVQ8x8). For HNSWlib, we build all graphs with a window
search size of 200 and ' = 1286, except deep-96-1B for which
we must reduce ' to 96 to �t the working set size in 1TB mem-
ory. For FAISS-IVFPQfs, as the build-time is long for deep-96-1B,
we pre-build an index with nlist = 32768 and bins = 3/2. While
for t2i-200-100M and DPR-768-10M, indices are built on the �y
with combinations of nlist = {512, 1024, 4096, 8192} and nbins =

4We consider the SOTA results for single query mode, as those are the ones reported
by ANN-benchmarks [7]. Last accessed on Feb. 15 2023.
5This corresponds to" = 16, 32, 64 in HNSW parameter notation.
6This corresponds to" = 64 in HNSW parameter notation.

{3/4,3/2,3}. To achieve higher recall rates, we enable re-ranking
in FAISS-IVFPQfs and sweep nprobe = {1, 5, 10, 50, 100, 200} and
k for re-ranking = {0, 10, 100, 1000}, at runtime. For ScaNN, we use
the parameters setting recommended by the authors (n_leaves =p
=, avq_threshold = 0.2, dims_per_block = 2), as that was the best

among several evaluated settings, and vary the runtime parame-
ters (leaves_to_search = 2 � 1000, reorder = 20 � 1000). Finally,
we did not include NGT [24] in the evaluation as the algorithm
designed for large-scale datasets (NGT-QBG) achieves low accuracy
saturating at 0.86 recall even for a small 1-million vectors dataset.

Figure 10 shows OG-LVQ’s signi�cant performance advantage
across recall values for deep-96-1B, with a 6.5x higher throughput
over the closest competitor for 10-recall@10 of 0.9. For the datasets
that use inner product, the advantage is still present for recall val-
ues below 0.97 for t2i-200-100M and 0.95 for DPR-768-10M. There,
OG-LVQ achieves 2.0x and 1.8x higher throughput than the closest
competitor for 10 recall@10 of 0.9 on t2i-200-100M and DPR-768-
10M, respectively. In this case, the OG-LVQ performance for very
high recall values is on par with the alternatives. This phenome-
non is not due to the quantization error, as it is also present in the
graph search with full-precision vectors (not shown in the �gure).
Understanding this phenomenon will require further studies. Sim-
ilar results are observed for 50 recall@50 and 100 recall@100 in
Figure 20 in the supplementary material [1].

6.5 LVQ: Fast graph search with small footprint
We now show that combining a highly optimized graph-based
method (see Section 5) with LVQ provides high search performance
with a fraction of thememory. Figure 1 shows the search throughput
as a function of the memory footprint (measured as the maximum
resident main memory usage during search) of di�erent algorithms
for deep-96-1B at 0.9 10-recall@10 (similar results are shown in
Figure 21(a) in the supplementary material [1] for deep-96-100M).
In the case of the graph-based methods (OG-LVQ, Vamana, HN-
SWlib), the memory footprint increases with the graph size given
by the maximum number of outbound neighbors ' = {32, 64, 128}.
In the case of FAISS-IVFPQfs, the memory footprint remains al-
most constant for all combinations of the considered parameters
(nlist={4096, 8192,16384}, nbins={48,96}, nprobe={1,5,10,50,100,200},
k={0,10,100,1000} for re-ranking), increasing by only 7% (from 42GiB
to 45GiB for deep-96-100M) when using 48 or 96 PQ segments
(nbins), respectively. A similar behavior is observed for ScaNN, as
it uses the same index design. LVQ-compressed vectors are padded
to half cache lines (? = 32, see Section 3 for details), as it improves
performance and has a low impact on the overall memory footprint
(e.g., 5% larger footprint for deep-96-1B with '=128).

These results show that OG-LVQ can use a much smaller graph
(' = 32) and still outperform its competitors: (A) for deep-96-1B by
2.3x, 2.2x, 20.7x, and 43.6x in throughput with 3x, 3.3x, 1.7x, and 1.8x
less memory (Figure 1), and (B) for deep-96-100M by 3.2x, 2.7x, 7.4x,
and 11.5x in throughput with 3.1x, 3.3x, 1.8x and 1.9x less memory
(Figure 21(a) in the supplementary material [1]), with respect to
Vamana, HNSWlib, FAISS-IVFPQfs, and ScaNN, respectively. OG-
LVQ’s superiority in QPS and memory footprint is consistent across
all recall values (see Figure 21(b) in the supplementary material [1]).
OG-LVQ, with a memory footprint of 24GiB (LVQ-8 and ' = 32),
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Table 3: The proposed OG-LVQ shows signi�cant gains in small scale datasets at 0.90 10-recall@10, clearly winning 8 out the 10
tested cases (the best throughput in each case is shaded). Note that the alternative with the second-highest throughput is not
consistently the same, showing the versatility of OG-LVQ. For the other schemes, we include their raw throughput and the
ratio between ours and theirs. The geometric mean across all datasets highlights the overall superiority of OG-LVQ.

Full query batch Single query

OG-LVQ Vamana HNSWlib FAISS-IVFPQfs ScaNN OG-LVQ Vamana HNSWlib FAISS-IVFPQfs ScaNN NGT-qg

QPS QPS Ratio QPS Ratio QPS Ratio QPS Ratio QPS QPS Ratio QPS Ratio QPS Ratio QPS Ratio QPS Ratio

deep-96-10M 648 122 75 543 8.58 118 053 5.49 89 550 7.24 95 266 6.80 18 440 6643 2.78 6347 2.91 1895 9.73 3881 4.75 9600 1.92
gist-960-1M 56 717 14 586 3.89 11 313 5.01 34 640 1.64 16 588 3.42 1857 992 1.87 725 2.56 827 2.24 883 2.10 4420 0.42
glove-25-1.2M 1 224 266 1 062 091 1.15 418 850 2.92 703 996 1.74 443 237 2.76 34 118 29 382 1.16 13 304 2.56 7993 4.27 28 230 1.21 25 902 1.32
glove-50-1.2M 558 606 246 095 2.27 117 585 4.75 148 793 3.75 313 337 1.78 17 268 9151 1.89 3237 5.33 3564 4.85 12 582 1.37 15 676 1.10
sift-128-1M 852 705 323 014 2.64 200 634 4.25 464 048 1.84 189 196 4.51 21 969 13 807 1.59 9100 2.41 6852 3.21 4856 4.52 23 117 0.95

Geometric mean 2.97 4.38 2.70 3.42 1.78 3.00 4.29 2.37 1.02

Figure 9: Benchmarking results for small scale datasets (deep-96-10M and glove-50-1.2M). In batch mode (�rst and third plots),
OG-LVQ prevails by a large margin. In single-query mode (second and fourth plots), OG-LVQ takes the lead in one and is second
on the other one. Numerical comparisons for 10-recall@10 of 0.9 are shown in Table 3.

Figure 10: For large scale datasets, the proposed OG-LVQ outperforms its competitors across all datasets and almost across
the entire recall range. For a 10-recall@10 of 0.9, the performance of OG-LVQ is 1.8x to 6.5x better than the alternatives.
Furthermore, notice that, for larger dimensionalities (second and third plots), the second-best method is not the same in both
cases. This highlights the versatility of our approach.

outperforms all its competitors up to recall 0.97. In the high accuracy
regime, OG-LVQ with LVQ-4x8 is on par with the competition with
a 2.5x smaller footprint than the best alternative.

6.6 LVQ versus PQ for exhaustive search
Product quantization (PQ) [33] is the most popular compression
technique for similarity search. PQ is often used at high compres-
sion ratios, and is combined with re-ranking using full-precision
vectors to achieve a reasonable recall [31]. Subramanya et al. [28]
use PQ in this fashion for graphs stored in SSDs. When working
with in-memory indices, we have a tough choice: either keep the

full-precision vectors in memory (in addition to the compressed
codes) and defeat compression altogether, or discard them and
experience a severely degraded accuracy. Note that keeping the
full-precision vectors in a less expensive storage (e.g., SSD), is not
an option as it would severely degrade search throughput. This
limits the usefulness of PQ for in-memory graph-based search.

Figure 11 shows the recall achieved by running an exhaustive
search with vectors compressed using PQ, OPQ [18] (a PQ variant),
LVQ and global quantization for the deep-96-1M dataset (a similar
behavior is observed for other datasets). PQ and OPQ perform
better for smaller footprints. This occurs because only 1 to 3 bits
can be allocated in LVQ to each value, presenting an overly coarse
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(a) All compression ratios. (b) Zoom on smaller ratios.

Figure 11: Exhaustive search accuracy with di�erent vec-
tor compression approaches for the deep-96-1M dataset. At
lower compression ratios (<6x), see detail on the right, where
PQ [33] and OPQ [18] may not require re-ranking, LVQ
achieves higher accuracy than both of them (their curves
overlap). LVQ comes with the additional advantage of having
much faster similarity calculations. At higher compression
ratios, re-ranking with full-precision vectors is required to
reach a reasonable accuracy, defeating the original purpose
of compression. The compression ratio for LVQ is de�ned in
Equation (5), with the same formula for PQ and OPQ, de�n-
ing their footprint as their number of segments (using 256
centroids per segment).

encoding. On the other hand, PQ and OPQ can exploit correlations
across di�erent dimensions, making a better use of the available bits.
However, the achieved recall (below 0.7) is not acceptable in modern
applications, requiring re-ranking and thus limiting the usefulness
of PQ as stated above. At higher footprints, where re-ranking can
be avoided, our vector quantization achieves higher accuracy, while
introducing almost no overhead for distance computations.

6.7 An ablation study comparing quantizers
We now analyze the search performance advantage that stems
from LVQ and compare it to PQ. To assess the quality of vector
compression for graph-search, we integrate PQ into our optimized
graph-based search and compare the search performance of both
compression techniques under the same implementation. We set
the number of PQ segments to 96, with 8 bits per segment, as that
is the only setting that achieves high enough search recall without
the need of re-ranking (see Section 6.6). We also evaluate one and
two-level compression schemes using global scalar quantization.
For LVQ, we consider three settings: LVQ-8 (one-level with 8 bits),
LVQ-4x4 (two-levels with 4 bits each) and LVQ-4x8 (two-levels
with 4 and 8 bits). We also evaluate one and two-level compression
schemes using global scalar quantization. Finally, we also tried the
quantization method by Ko et al. [35], using the suggested parame-
ter settings. This scheme saturates at 0.85 10-recall@10 for deep-
96-100M, never reaching our standard of 0.9. At 0.80 10-recall@10,
LVQ-8 is 56% faster. We thus omit it from further comparisons.

LVQ achieves higher throughput and higher recall than global
scalar quantization. As shown in Figure 12 for the deep-96-100M
dataset, the maximum recall achieved by global quantization is
0.96 whereas LVQ goes over 0.98. Note that, with a larger memory
footprint, LVQ-4x8 reaches higher accuracy as shown in Figure 13
for deep-96-1B. A similar behavior is observed for other datasets.

Figure 12: LVQ outcompetes the alternatives for vector com-
pression for deep-96-100M (graph with out-degree ' = 128).
Both variants of LVQ are superior to global quantizationwith
non-vector speci�c parameters (see Section 3). We use the
standard full-precision (i.e., �oat32-valued) vectors and the
ubiquitous Product Quantization (PQ) [33] with 96 segments
as our baselines (only this number of segments does not war-
rant a re-ranking with full-precision vectors at the end of the
search). LVQ is clearly superior up to the very high recall of
0.98 (higher recall is achieved with LVQ-4x8, with a slightly
higher footprint, as shown in Figure 13). OG-LVQwith LVQ-8
has a 5% larger memory footprint (its vectors are padded to
half cache lines) than global quantization with 8 bits and PQ.

Moreover, the storage overhead of using local constants is small
for most datasets (e.g., 4% for deep-96-100M). These two aspects
con�rm the advantage of LVQ over global quantization.

For deep-96-100M, LVQ-4x4 performs slightly worse than LVQ-
8, showing that the residual encoding is not the best option in
this case (Figure 12). However, as shown in Figure 13 and Table 4,
this depends on the dataset. As expected, using two levels has an
advantage for higher dimensional datasets as seen for DPR-768-10M.
Depending on the dataset, LVQ gives OG-LVQ a QPS boost ranging
from 2.6x to 4.7x, vector storage reductions of up to 3.8x and total
memory-footprint reduction (considering the space occupied by
the graph and the vectors) of up to 2.7x. Table 4 includes �oat16
encoding as well, con�rming the large advantage of LVQ over this
compression. For smaller and larger dimensionalities, one or two-
level LVQ takes the lead, respectively.

In Figure 12, LVQ-8 outperforms PQ at all recall values with 5.2x
more QPS at 0.9 recall for similar compression ratios (4x for PQ vs.
3.84 for LVQ-8). See Section 7 for a detailed explanation.

7 RELATEDWORK
The literature on similarity search is vast [36, 49]. Research on
the topic evolves quickly, trying to keep up with ever-increasing
requirements: more data with larger dimensionality, higher speeds,
and a high recall. Trees [13, 41, 51] su�er from the curse of dimen-
sionality. Hashing [23, 27] and learning-to-hash [54] techniques
often struggle to simultaneously achieve high accuracy and high
speeds. Graph-based methods [5, 14, 17, 25, 28, 39] o�er a better
latency-accuracy trade-o� than other types of algorithms [55].

Product Quantization (PQ) [33] and other related methods [3, 4,
8, 18, 21, 32, 35, 40, 56, 60] were introduced to handle large datasets
in settings with limited memory capacity [e.g., 28]. However, when
used for high-throughput graph-search, these quantizers do not
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Figure 13: The proposed LVQ increases the performance
of graph-baseed search when compared to standard full-
precision vectors for deep-96-1B (left) and DPR-768-10M
(right). The choice of one vs. two-level LVQ depends on the
dimensionality of the dataset. For smaller dimensionalities
(3 = 96), where there is not such a bandwidth pressure, LVQ-8,
with its faster compute prevails, see Section 6.6. For larger
dimensionalities (3 = 768), the additional bandwidth reduc-
tion vastly compensates for the extra compute.

Table 4: The performance of graph search bene�ts signif-
icantly from LVQ. The use of LVQ easily beats the stan-
dard baseline of using full-precision (i.e., �oat32-valued) vec-
tors and even �oat16-valued vectors, which have recently
shown to provide competition-winning performances [52].
The memory-footprint ratio (MR) measures the space occu-
pied by the graph (' = 128) and the �oat32-valued vectors
relative to the space occupied by the graph and the LVQ-
compressed vectors. For larger dimensionalities (3 = 768),
LVQ highly reduces the memory requirements achieving a
large MR, and the additional bandwidth reduction from LVQ-
4x4 and LVQ-4x8 provides a meaningful performance boost
over LVQ-8. The compression ratio (CR) for LVQ is de�ned in
Equation (5). LVQ achieves up to 3.8x vector compression (for
improved performance, LVQ-compressed vectors are padded
to half-cache lines). The largest QPS, CR, and MR improve-
ments in each case are shaded.

deep-96-1B t2i-200-100M DPR-768-10M

w.r.t. �oat32 QPS CR MR QPS CR MR QPS CR MR

�oat16 2.1x 2.0x 1.3x 1.9x 2.0x 1.4x 1.7x 2.0x 1.8x
LVQ-8 2.6x 3.0x 1.4x 2.9x 3.6x 1.8x 3.1x 3.8x 2.7x
LVQ-4x4 2.3x 3.4x 1.4x 2.2x 3.5x 1.8x 4.3x 3.8x 2.7x
LVQ-4x8 2.5x 2.4x 1.3x 3.1x 2.4x 1.6x 4.7x 2.6x 2.1x

enable extremely fast similarity computations in a predominantly
random memory access pattern.

For inverted indices [31], the setup for which PQ was designed,
the similarity between partitions of the query and each correspond-
ing centroid is generally precomputed to create a look-up table
of partial similarities. The computation of the similarity between
vectors essentially becomes a set of indexed gather and accumu-
late operations on this table, which are generally quite slow [42].
This is exacerbated with an increased dataset dimensionality: the
lookup table does not �t in L1 cache, which slows down the gather

operation. In no small part, the success of recent PQ-based meth-
ods [21] can be attributed to Quicker ADC [3], with its optimized
lookup operations using AVX shu�e and blend instructions to com-
pute the distance between a query and multiple dataset elements
simultaneously. This is enabled by storing these elements in a trans-
posed fashion. This transposition and Quicker ADC by extension
are not compatible with the random memory access pattern we see
in graph-based similarity search.

Scalar quantization is used for low-precision inference in neural
networks [15] to compress the parameter tensors, quantizing each
SIMD-sized vector within a tensor individually. They also propose
compressing the quantization parameters themselves instead of
the residuals as in LVQ. These techniques have not been used for
similarity search.

There is existing art in two-level quantization. In [28] the index
resides in an SSD instead of in main memory, which enables the
use of full-precision vectors. However, SSD indices cannot achieve
the performance of their in memory counterparts. In [58], PQ is
used for both levels, inheriting the aformentioned issues with PQ.
Additionally, both levels are jointly optimized using PQ, which is
prohibitive at billion scale.

Dimensionality reduction [2, 59] is an appealing alternative for
vector compression that provides an orthogonal reduction to LVQ:
they can be combined for stacked gains.

8 CONCLUSIONS
We presented new techniques for creating faster and smaller indices
for similarity search. We introduced a novel vector compression
method, Locally-adaptive Vector Quantization (LVQ), that simul-
taneously reduces memory footprint and improves search perfor-
mance, with minimal impact on search accuracy. LVQ is designed to
work optimally in conjunction with graph-based indices, reducing
their e�ective bandwidth while enabling random-access-friendly
fast similarity computations. LVQ, combinedwith key optimizations
for graph-based indices in modern datacenter systems, establishes
the new state of the art in terms of performance and memory foot-
print, outcompeting the second-best alternatives for billion scale
datasets: (1) in the low-memory regime, by up to 20.7x in through-
put with up to a 3x memory footprint reduction, and (2) in the
high-throughput regime by 5.8x with 1.4x less memory.

For future work, we plan on studying the impact of LVQ on
dynamic similarity search, dimensionality reduction [59] as a pre-
processing step, and intra-query parallelism [43].
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