
Choose Wisely: An Extensive Evaluation of Model Selection for
Anomaly Detection in Time Series

Emmanouil Sylligardos

ICS-FORTH

sylligardo@ics.forth.gr

Paul Boniol

Université Paris Cité

boniol.paul@gmail.com

John Paparrizos

The Ohio State University

paparrizos.1@osu.edu

Panos Trahanias

ICS-FORTH

trahania@ics.forth.gr

Themis Palpanas

Université Paris Cité; IUF

themis@mi.parisdescartes.fr

ABSTRACT
Anomaly detection is a fundamental task for time-series analytics

with important implications for the downstream performance of

many applications. Despite increasing academic interest and the

large number of methods proposed in the literature, recent bench-

mark and evaluation studies demonstrated that no overall best

anomaly detection methods exist when applied to very heteroge-

neous time series datasets. Therefore, the only scalable and viable

solution to solve anomaly detection over very different time series

collected from diverse domains is to propose a model selection

method that will select, based on time series characteristics, the

best anomaly detection method to run. Existing AutoML solutions

are, unfortunately, not directly applicable to time series anomaly

detection, and no evaluation of time series-based approaches for

model selection exists. Towards that direction, this paper studies

the performance of time series classification methods used as model

selection for anomaly detection. Overall, we compare 17 different

classifiers over 1800 time series, and we propose the first extensive

experimental evaluation of time series classification as model selec-

tion for anomaly detection. Our results demonstrate that model se-

lectionmethods outperform every single anomaly detectionmethod

while being in the same order of magnitude regarding execution

time. This evaluation is the first step to demonstrate the accuracy

and efficiency of time series classification algorithms for anomaly

detection, and represents a strong baseline that can then be used to

guide the model selection step in general AutoML pipelines.

PVLDB Reference Format:
Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias,

and Themis Palpanas. Choose Wisely: An Extensive Evaluation of Model

Selection for Anomaly Detection in Time Series. PVLDB, 16(11): 3418 -

3432, 2023.

doi:10.14778/3611479.3611536

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/boniolp/MSAD.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611536

Figure 1: Summary of our evaluation on the TSB-UAD bench-
mark [83] of model selection methods (best in blue) when compared
to 12 anomaly detection methods and the Avg Ens (in orange).

1 INTRODUCTION
Extensive collections of time-dependent measurements are a real-

ity in every scientific domain [8, 65, 75–77, 84]. The recording of

these measurements results in an ordered sequence of real-valued

data points, commonly referred to as time series [9, 79, 81, 82, 88].
Analyzing time series data is becoming increasingly important in

virtually every scientific and industrial domain [31–33, 42, 54, 55,

63, 70, 80, 85–87, 91, 104]. Anomaly detection, in particular, has

received ample academic and industrial attention [38, 74], finding

applications across a wide range of domains and situations. These

applications share the same goal [10, 99, 109]: analyzing time se-

ries to identify observations that do not correspond to expected

behavior. In practice, anomalies can correspond to [2]: (i) noise or

erroneous data (e.g., broken sensors); or (ii) actual data of interest

(e.g., abnormal behavior of the observed system). In both cases,

detecting such types is crucial for many applications [6, 46].

In recent years, many techniques have been proposed for time-

series anomaly detection. Multiple surveys and benchmarks sum-

marize and analyze the state-of-the-art proposed methods [11, 52,

53, 58, 60, 78, 83, 94, 106]. Such surveys and benchmarks provide a

holistic view of anomaly detection methods and how they perform.

Unfortunately, these benchmark and evaluation studies demon-

strated that no overall best anomaly detection methods exist when

3418

https://doi.org/10.14778/3611479.3611536
https://github.com/boniolp/MSAD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611536
https://www.acm.org/publications/policies/artifact-review-and-badging-current

applied to very heterogeneous time series (i.e., coming from very

different domains). In practice, we observe that some methods out-

perform others on specific time series with either specific charac-

teristics (e.g., stationary or non-stationary time series) or anomalies

(e.g., point-based or sequence-based anomalies).

To overcome the above limitation, ensembling solutions have

been proposed [4] that consist of running all existing anomaly

detectionmethods and averaging all anomaly scores. Figure 1 shows

that this solution (in orange) is outperforming all individual existing

techniques in the TSB-UAD benchmark [17, 83]. Nevertheless, as

shown in Figure 1, such solutions require running all methods,

resulting in an excessive cost that is not feasible in practice.

Therefore, the only scalable and viable solution to solve anom-

aly detection over very different time series is to propose a model

selection method that will select, based on time series character-

istics, the best anomaly detection method to run. This topic has

been tackled in several recent research works related to AutoML

(Automated Machine Learning) for the general case of anomaly de-

tection [111, 113]. Nevertheless, existing AutoML solutions require

(i) a universal objective function among models, which is not appli-

cable to anomaly detection methods; (ii) a predefined set of features,

which is difficult to obtain for time series due to varying lengths

and the lack of standardized featurization solutions; (iii) running

multiple anomaly detection methods several times, which is pro-

hibitively expensive in practice; or (iv) labeled anomalies, which

(in contrast to classification tasks) are difficult to obtain. There-

fore, more work is needed in order to render AutoML solutions

applicable to time-series anomaly detection.

The objective is to train a time series classification model on

time series for which we know in advance which anomaly detection

method is the best. However, the lack of a benchmark with labeled

time series has been a limiting factor for training robust model selec-

tion models (this only changed very recently [56, 83, 94]). Therefore,

there exists no experimental evaluation that measures the effective-

ness of classification methods for the task of model selection for

time series anomaly detection. Though, such an evaluation is very

important for determining which time series classification meth-

ods are accurate as model selection methods, and which solutions

should be considered in unsupervised settings (i.e., using model

selection approaches on time series from domains that were not

included in the training set). These results would help the design

and effectiveness of general AutoML pipelines for time series.

Thus, in this paper, we evaluate the performance of time series

classification methods used as model selection for anomaly detec-

tion in time series. To do so, we propose a pipeline that enables any

kind of time series classifier to be used for any univariate time series

with different lengths. We then compare the execution time and

accuracy for feature-based, traditional time series classifiers and

deep learning classification algorithms. We also measure how these

models perform when trained on time series of a given domain (e.g.,

electrocardiogram [71]) and tested on time series from a different

domain (e.g., robotics sensors measurements [92]).

Overall, we compare 16 different classifiers over 1980 time series

and 12 anomaly detection methods from the recent anomaly de-

tection benchmark TSB-UAD. Thus, we propose the first extensive

experimental evaluation of time series classification as model selec-

tion for anomaly detection. Our results demonstrate that model se-

lectionmethods outperform every single anomaly detectionmethod

while being in the same order of magnitude regarding execution

time. Figure 1 shows a summary of our experimental evaluation,

where the best model selection method (in blue in Figure 1) is up

to 2.8× more accurate than the best anomaly detection method in

the TSB-UAD benchmark and 1.9× more accurate than the ensem-

bling solution mentioned above. This evaluation is the first step to

demonstrate the accuracy and efficiency of time series classification

algorithms for anomaly detection. It represents a strong baseline

that can then be used to guide the choice of approaches for the

model selection step in more general AutoML pipelines.

Our contributions can be summarized as follows:

• We cast the model selection problem for time-series anomaly

detection methods into a time-series classification problem. We

describe and study the need to evaluate time series classification

methods for model selection (Section 3).

• We introduce our novel pipeline for model selection applied to

anomaly detection in time series. As this pipeline is generic, we

describe how it can be usedwith both feature-based classification

methods, traditional time series classification methods, and deep

learning-based methods (Section 4).

• We describe our experimental framework (on top of the recent

anomaly detection benchmark TSB-UAD [83]), and provide de-

tails on both anomaly detection methods and time series classi-

fication methods considered in this paper (Section 5). We make

all our material publicly available online [20] and provide an

interactive WebApp [21] for exploring our results.

• We present an extensive experimental evaluation, measuring the

anomaly detection accuracy and execution time (both training

and inference) of model selection algorithms (Section 5.1). We

evaluate the influence of important parameters and the rela-

tionship between classification and anomaly detection accuracy

(Sections 5.2, 5.3, and 5.4). Moreover, we measure the transfer-

ability of model selection algorithms to new types of time series

by testing multiple combinations of train and test datasets that

do not contain the same kinds of time series (Section 5.5).

Finally, we conclude with the implications of our work and discuss

possible future directions that could help improve both the accuracy

and the execution time of our proposed pipeline (Section 6).

2 BACKGROUND AND RELATEDWORK
We first introduce notations useful for the rest of the paper (Sec-

tion 2.1). Then, we review existing time-series anomaly detection

methods (Section 2.2), and discuss their limitations when applied

to large heterogeneous sets of time series (Section 2.3).

2.1 Time-Series and Anomaly Score Notations
Time Series: A time series 𝑇 ∈ R𝑛 is a sequence of real-valued

numbers𝑇𝑖 ∈ R [𝑇1,𝑇2, ...,𝑇𝑛], where 𝑛 = |𝑇 | is the length of𝑇 , and

𝑇𝑖 is the 𝑖
𝑡ℎ

point of𝑇 . We are typically interested in local regions of

the time series, known as subsequences. A subsequence𝑇𝑖,ℓ ∈ Rℓ of
a time series 𝑇 is a continuous subset of the values of 𝑇 of length ℓ

starting at position 𝑖 . Formally,𝑇𝑖,ℓ = [𝑇𝑖 ,𝑇𝑖+1, ...,𝑇𝑖+ℓ−1]. A dataset

D is a set of time series. Note that the time series contained in D
can be of diverse lengths. We define the size of D as |D|.

3419

Figure 2: Accuracy of 12 anomaly detection methods on 4 datasets.

Anomaly Score Sequence: For a time series 𝑇 ∈ R𝑛 , an anom-

aly detection method (or detector) 𝐷 returns an anomaly score

sequence 𝑆𝑇 . For point-based approaches (i.e., methods that return

a score for each point), we have 𝑆𝑇 ∈ R𝑛 . For subsequence-based ap-
proaches (i.e., methods that return a score for each subsequence of a

given length ℓ), we have 𝑆𝑇 ∈ R𝑛−ℓ and 𝑆𝑇 = [𝑆𝑇 1
, 𝑆𝑇 2

, ..., 𝑆𝑇 𝑛−ℓ]
with 𝑆𝑇 𝑖 ∈ [0, 1]. In most applications, the anomaly score has to

be the same length as the time series. Thus, for subsequence-based

approaches, we define 𝑆𝑇 = [𝑆𝑇 1
]𝑖∈[0,ℓ/2] + [𝑆𝑇 1

, 𝑆𝑇 2
, ..., 𝑆𝑇 𝑛−ℓ] +

[𝑆𝑇 𝑛−ℓ]𝑖∈[0,ℓ/2] with |𝑆𝑇 | = |𝑇 |.
Anomaly Detection Accuracy: For a time series 𝑇 ∈ R𝑛 , an

anomaly detection method (or detector) 𝐷 that returns an anomaly

score sequence 𝐷 (𝑇) = 𝑆𝑇 and labels 𝐿 ∈ [0, 1]𝑛 that indicated

with 0 or 1 if the points in 𝑇 are normal or abnormal respectively,

we define 𝐴𝑐𝑐 : R𝑛, {0, 1}𝑛 → [0, 1] as an accuracy function for

which 𝐴𝑐𝑐 (𝐷 (𝑇), 𝐿) indicates how 𝐷 is accurate (i.e., and produce

an anomaly score close to 1 when the label is equal to 1) when

applied on 𝑇 and accordingly to 𝐿. The closer to one, the better.

2.2 Anomaly Detection Methods for Time Series
Several different methods (for diverse types of time series, or appli-

cations) have been proposed in the literature. One type of anomaly

detection method is discord-based methods. These methods focus

on the analysis of subsequences for the purpose of detecting anom-

alies in time series, mainly by utilizing nearest neighbor distances

among subsequences [24, 40, 57, 62, 66, 96, 109].

Instead of measuring nearest neighbor distances, proximity-based
methods focus on estimating the density of particular types of sub-

sequences in order to either extract a normal behavior or isolate

anomalies. As a subsequence can be seen as a multidimensional

point (with the number of dimensions corresponding to the subse-

quence length), general outlier detection methods can be applied for

time series anomaly detection [23, 64, 68]. Among them, Isolation

Forest [64] has been shown to work particularly well for time se-

ries anomaly detection task [16]. Moreover, recent proximity-based

methods dedicated to identifying abnormal subsequences in time

series have been proposed. For instance, NormA, a proximity-based

method that first clusters data to obtain the normal behavior [12–

14, 18, 19], has been shown to achieve strong performance.

Furthermore, forecasting-based methods, such as recurrent neu-

ral network-based [69] or convolutional network-based [72], have

been proposed for this task. Such methods use the past values as

input, predict the following one, and use the forecasting error as

an anomaly score. Such methods are usually trained on time series

without anomalies, or make the assumption that the anomalies are

significantly less frequent than the normal behaviors.

Finally, reconstruction-based methods, such as autoencoder ap-

proaches [93], are trained to reconstruct the time series and use the

reconstruction error as an anomaly score. As both forecasting and

reconstruction-based categories detect anomalies using prediction

errors (either forecasting or reconstruction error), we can group

them into prediction-based methods.

2.3 Limitations of Anomaly Detection Methods
Recent benchmarks and experimental evaluations have been pro-

posed in the literature [56, 78, 94]. Such benchmarks provide a

large collection of time series from various domains and evaluate

multiple methods belonging to the categories mentioned above.

However, these experimental evaluations led to the same conclu-

sion: no method exists that outperforms all the others on all time

series from various domains. Figure 2, which depicts the accuracy of

12 diverse anomaly detection methods
1
on four time series datasets,

illustrates the conclusion above. In Figure 2 (a.2), we observe that

NormA is the most accurate model on the ECG dataset [71] (a time

series example is depicted in Figure 2 (a.1)). However, Local Outlier

Factor (LOF) [23], and Matrix profile (MP) [109] are significantly

outperforming NormA on the MGAB dataset [100] (see Figure 2

(b.2)), whereas CNN [72] is outperforming NormA, LOF, and MP on

the YAHOO dataset [59] (see Figure 2 (d.2)). The following two rea-

sons explain this large difference in performance among datasets.

2.3.1 Heterogeneity in anomaly types. First, There are three
types of time-series anomalies: point, contextual, and collective
anomalies. Point anomalies refer to data points that deviate re-

markably from the rest of the data. Similarly, Contextual anomalies

refer to data points within the expected range of the distribution

(in contrast to point anomalies) but deviate from the expected data

distribution, given a specific context (e.g., a window). For instance,

Figure 2 (d.1) illustrates a time series from the YAHOO dataset

with a Contextual anomaly. The value of the anomalies is inside

the range of normal values, but is abnormal in the context of the

distribution of values of the surrounding point. For this particular

types of anomalies, reconstruction and forcasting-based methods

are particularly accurate (as shown in Figure 2 (d.2))

Collective anomalies refer to sequences of points that do not

repeat a typical (previously observed) pattern. The first two cate-

gories, namely, point and contextual anomalies, are referred to as

point-based anomalies, whereas collective anomalies are referred to

as subsequence anomalies. For instance, Figure 2 (a.1), (b.1), and (c.1)

show three time series with sequence anomalies. However, even

for time series belonging to the same anomaly type categories, we

observe that the most accurate models are all different.

1
We use 12 methods that have been employed in previous studies [78, 83]. Note that

other methods and variations exist that may lead to improved results.

3420

2.3.2 Heterogeneity in time series structures. This diversity
in model accuracy can be explained by other factors related to the

time series structures. Indeed, on top of these categories mentioned

above, the combination of them also matters. First, we need to dif-

ferentiate time series containing single anomalies from time series

containing multiple anomalies. Last, the multiple time series cate-

gory has to be divided into two subcategories, namely time series

containing multiple different and multiple similar anomalies. For

instance, methods based on neighbor distance computation such

as LOF are very accurate in detecting single or multiple different
anomalies, but less accurate for multiple similar. To illustrate this

point, Figure 2 (a.2) depicts the results of 12 anomaly detection

methods on the ECG dataset (that contains multiple similar anom-

alies), for which LOF accuracy is low. On the contrary, Figure 2 (b.2)

depicts the results of the same 12 anomaly detection methods on

the MGAB dataset (that contains multiple different anomalies), for

which LOF accuracy is high.

On top of the large variety of time series and anomaly charac-

teristics mentioned above, time series can have distinct statistical

characteristics, resulting in an even larger variability in the accu-

racy of anomaly detectionmethods. The latter can be the differences

between stationary (i.e., with a constant distribution of values over

time) and non-stationary (i.e., with a changing distribution of values

over time) time series, or single normality (i.e., time series contain-

ing only one normal behavior) and multiple normalities (i.e., time

series containing multiple normal behaviors) time series.

3 MOTIVATION AND PROBLEM
In this section, we describe solutions that can be applied to solve

the limitations mentioned above, and we motivate the benefits of

these solutions. We finally formally define the problem.

3.1 Ensembling Detectors
The first solution is to ensemble the anomaly scores produced

by all the detectors. Multiple ensembling techniques have been

proposed in the literature [4] fromwhich twomainmethods arise: (i)

Averaging: the average of the anomaly scores for each timestamp, (ii)

Maximizing: the maximum anomaly score for each timestamp (iii)

Average of Maximum: the average of the maximum for a randomly

selected subset of detectors. Averaging strategy is proven to be the

more robust and low-risk strategy compared to the other two [4].

Formally, the Averaging strategy is defined as follows:

Definition 1. Given time series𝑇 of length𝑛 and a set of detectors
B, Averaging strategy is defined as𝐴𝑣𝑔 𝐸𝑛𝑠 = [𝐴𝑣𝑔1, 𝐴𝑣𝑔2, ..., 𝐴𝑣𝑔𝑚]
with 𝐴𝑣𝑔𝑖 (for 𝑖 ∈ [𝑖,𝑚]) equals to 𝐴𝑣𝑔𝑖 = (1/|B|)𝐷∈B 𝐷 (𝑇)𝑖 .

In the rest of the paper, we call the Averaging strategy Averaging
Ensemble (Avg Ens). As depicted in Figure 1 (a), which shows the

accuracy of detectors (in grey) and the Averaging Ensemble (in

orange), we observe that such a strategy already outperforms all

existing approaches. Nonetheless, such a method requires running

all detectors to produce one ensembled anomaly score, resulting in

a costly execution time (see Figure 1 (b)). In a scenario with very

long time series and an increasing number of detectors to consider,

such an approach is not sustainable and feasible in practice.

3.2 Model Selection
A solution to tackle the limitations mentioned above is to apply

model selection based on the characteristics of the time series. The

main idea is to train a model to automatically select the best detec-

tor (anomaly detection method) for a given time series. In such a

case, the user only has to run one model, drastically limiting the ex-

ecution time required. This topic has been tackled in several recent

papers related to AutoML (Automatic Machine Learning). Recent

approaches, such as MetaOD [111, 113], explored meta-learning to

identify the best outlier detection algorithm on tabular datasets.

These research works rely on pre-computed models’ performances

on a subset of datasets to learn a mapping from the dataset’s charac-

teristics to the detectors’ performance. Methods have been proposed

to select models in an unsupervised way [44], but require running

multiple models in advance, which (like Averaging Ensemble) limit

the applicability due to high cost.

3.3 Classification for Model Selection
In general, for the specific case of time series, most of the work de-

scribed above and future AutoML methods will rely on time series

classification methods for the model selection step. In such a case,

the method aims to classify time series into classes corresponding

to the available anomaly detection methods. One time series must

be classified into the detector class that maximizes anomaly detec-

tion accuracy. However, no existing guidelines indicate which time

series classification approach can be used as model selection. Thus,

there is a need to evaluate and measure the benefit that time series

classification approaches can bring to the anomaly detection task.

The first step is to evaluate the potential gain in accuracy that

model selection could bring. To do this, recent time series anomaly

benchmarks [83, 94] can be used. We can evaluate the accuracy up-

per bound that model selection methods reach on such benchmarks.

Thus, we define a hypothetical model called 𝑂𝑟𝑎𝑐𝑙𝑒 , which, for a

given time series, always selects the correct anomaly detector to

use (i.e., the most accurate). Formally, 𝑂𝑟𝑎𝑐𝑙𝑒 is defined as follows:

Definition 2. Given a dataset D composed of time series 𝑇 and
labels 𝐿 (with the length of the time series |𝑇 | = 𝑛 non-constant for
all time series in D), and a set of detectors B = {𝐷1, 𝐷𝑖 , ..., 𝐷𝑚}
with the number of detectors defined as |B| = 𝑚, 𝑂𝑟𝑎𝑐𝑙𝑒 (𝑇) =

argmax𝐷∈B

𝐴𝑐𝑐


𝐷 (𝑇), 𝐿


In the rest of the paper, we call 𝑂𝑟𝑎𝑐𝑙𝑒 , the hypothetical model

𝑂𝑟𝑎𝑐𝑙𝑒 (𝑇) applied to all 𝑇 in a given benchmark. For example, fig-

ure 1 shows inwhite the accuracy of𝑂𝑟𝑎𝑐𝑙𝑒 applied to the TSB-UAD

benchmark [83] and demonstrates that a perfect model selection

method outperforms the best detector in TSB-UAD and the Averag-

ing Ensemble by a factor of 2.5. This large improvement in accuracy

and execution time confirms the potential benefits of model selec-

tion applied for time series anomaly detection. Thus, there is a need

to evaluate the performances of existing time series classification

methods when used as model selection algorithms and how close

such methods can get to the 𝑂𝑟𝑎𝑐𝑙𝑒 .

3.4 Problem Formulation
Therefore, based on the limitations and the motivation listed above,

we can formalize the problem of model selection as follows:

3421

Figure 3: Proposed pipeline for the method selection

Problem 1. Given a dataset D composed of time series 𝑇 (with
the length of the time series |𝑇 | = 𝑛 non-constant for all time series
in D) and a set of detectors B = {𝐷1, 𝐷2, ..., 𝐷𝑚} with the number
of detectors defined as |B| =𝑚, we want to build a model selection
method M that takes a time series 𝑇 ∈ D and returns a detector
𝐷 ∈ B (formally M : D → B) such that, for a given time series 𝑇
and corresponding label 𝐿:

M(𝑇) = 𝑂𝑟𝑎𝑐𝑙𝑒 (𝑇) = argmax

𝐷∈B


𝐴𝑐𝑐


𝐷 (𝑇), 𝐿


Moreover, as the input of themodelM is a time series (of variable

length) and the output is a detector 𝐷 among a finite number of

detectors B, the problem can be seen as a time series classification

problem for which the classes are the detectors in B. Therefore,

the only requirement is to have computed all 𝐴𝑐𝑐 (𝐷 (𝑇), 𝐿) for all
𝑇 ∈ D and all 𝐷 ∈ B and use it as a training set.

3.5 Objectives
In summary, our goal is to answer the following questions:

• Classification as Model selection: How do classification meth-

ods compare to individual detectors and the 𝑂𝑟𝑎𝑐𝑙𝑒?

• Ensembling or selecting: Is selecting detectors automatically

more accurate than ensembling them?

• Features or Raw values: Should we use time series features or

the raw time series values to predict which detector to use?

• Out-Of-Distribution: What happens when the model selection

approach is trained on some datasets and tested on entirely new

datasets? Are all the answers from the previous questions valid?

We now describe our pipeline and experimental evaluation to an-

swer the questions listed above.

4 PROPOSED PIPELINE
In the following section, we provide a comprehensive explanation

of the proposed pipeline. This pipeline corresponds to a sequence

of preprocessing and postprocessing steps such that the inputs of

the model selection algorithms are equal in length. The proposed

pipeline, illustrated in Figure 3, is composed of the following steps:

(i) Preprocessing step: Extraction of the subsequences of same

lengths (Figure 3 (b)), (ii) Prediction step: Prediction of which

detector to use for each subsequence (Figure 3 (c)), and (iii) Selec-
tion step: Majority voting among all the different prediction to

select one detector only (Figure 3 (d)). In the following section, we

describe the three steps mentioned above in detail.

4.1 Preprocessing Step
Time series classification can be performed with three different

strategies: (i) treating the entire time series as one sample, (ii) divid-

ing the time series into overlapping subsequences, (iii) dividing the

time series into shifting subsequences (i.e., non-overlapping subse-

quences). The first strategy is straightforward, as each time series

is treated as a single observation. Nevertheless, not all classifiers

can handle variable-length inputs, and training such models can

be computationally intensive (i.e., batches of time series cannot be

treated in parallel). The second strategy involves dividing the time

series into overlapping subsequences (of a given window length

ℓ). Despite possible loss of information, it forces each input of the

methods to be the same length (ℓ), allowing simpler and faster com-

putation when performed in parallel. In the third strategy, we divide

time series into non-overlapping subsequences (of a given length ℓ),

removing redundant information in overlapping subsequences. The

latter might lead to separate anomalies into multiple windows, but

significantly reduces the number of inputs generated by the second

strategy and significantly accelerates the training and inference

time. For these reasons, we chose the third strategy.

Thus, the time series of length |𝑇 | are divided into T𝑙 non-

overlapping subsequences of length ℓ . When the length of the

time series is not divided evenly with the window length ℓ , the

remainder is added with an overlap between the first two windows.

Formally, T𝑙 is defined as follows:

T𝑙 =


𝑇𝑖∗ℓ,ℓ

∀𝑖 ∈ 
0,
 |𝑇 |

ℓ


, if

 |𝑇 |
ℓ


=

|𝑇 |
ℓ

𝑇0,ℓ
  

𝑇|𝑇 |−⌈ |𝑇 |
ℓ
⌉+𝑖∗ℓ,ℓ

∀𝑖 ∈ 
0,
 |𝑇 |

ℓ


, if

 |𝑇 |
ℓ


<

|𝑇 |
ℓ

We expect the length ℓ to to have an impact on the anomaly de-

tection accuracy. We thus test multiple length values and measure

their influence (on accuracy and execution time) in Section 5.

At this point, we preprocessed the time series into subsequences

of equal length. We now discuss the label (i.e., the best detector

to apply) attribution. For that matter, we use the TSB-UAD bench-

mark [83] that contains 12 different anomaly detection methods.

We compute the 12 methods for each time series and attribute the

most accurate (based on AUC-PR) detector as the label. Then, the

produced subsequences share the same label as the time series they

originate from. This labeled dataset can be used to train classifica-

tion methods and divided into the train, test, and validation sets.

It is important to note that although each time series produces

multiple samples (i.e., subsequences), these samples should not be

mixed between train, validation, and test set. Indeed, too strong

similarities between subsequences that belong to the same time

series, if contained in both the train, validation and the test, can lead

the classification model to overfit or create an illusion of accuracy.

Therefore, we guarantee that the intersection between the train, val-

idation, and test set, regarding which time series the corresponding

subsequences originate from, is empty.

4.2 Time Series Classification Approaches
In this section, we describe the time series classifier approaches

that we use as model selection methods. As many approaches have

been proposed in the literature, we restrict our experimental evalu-

ation to two main categories: (i) feature-based and (ii) raw-based

methods. In addition, the second category can be divided into two

3422

sub-categories: (i) convolutional-based and (ii) transformer-based.

Figure 4 illustrates a simplified taxonomy of the methods consid-

ered, and we describe them in the following section.

4.2.1 Feature-based classification. Themain idea regarding feature-

based classification is to use the dataset of time series (or subse-

quences of time series) to create a dataset whose samples are de-

scribed by features common to all samples. Using the feature-based

dataset, we then employ traditional machine learning classifiers to

classify each time series. We use the TSFresh [26] (Time Series Fea-

ture extraction based on scalable hypothesis tests) to extract each

subsequence’s features. The latter is used for automated time series

feature extraction and selection based on the FRESH algorithm [27].

More specifically, it automatically selects relevant features for a

specific task. This is achieved using statistical tests, time series

heuristics, and machine learning algorithms. The TSFresh package

provides three options for automated feature extraction, namely, (i)

comprehensive, (ii) efficient, and (iii) minimal. The first two options
provide 700 hundred features and the latter provides only 9. For

scalability reasons (the dataset transformation can reach millions

of subsequences), we consider the minimal option in this paper.

Moreover, the objective is not to evaluate Feature-based classi-

fiers per se, but rather to evaluate the ability of TSFresh to extract

meaningful features for time series classification (and model selec-

tion for anomaly detection, in particular). In this paper, we consider

the following classification approaches.

[SVC] A Support Vector Classifier (SVC) [22] is a classifier that

maps instances in space in order to maximize the width of the gap

between the classes. New instances are mapped into the same space

and classified according to which side of the gap they fall.

[Bayes] The naive Bayes classifier [112] uses Bayes’ theorem to

predict the class of a new instance based on prior probabilities and

class-conditional probabilities. The prediction is made by comput-

ing the posterior probabilities for each class.

[MLP] A Multi Layer Perceptron (MLP) [48] is a fully connected

(connections between every neuron) neural network.

[QDA] A Quadratic Discriminant Analysis (QDA) [41] Classifier is

a linear discriminant analysis algorithm. The prediction is made by

computing the discriminant functions for each class.

[AdaBoost] AdaBoost [39] is a boosting ensemble machine learn-

ing algorithm for solving classification problems. It creates a se-

quence of weak classifiers, where each classifier is trained on a

weighted sample of the dataset. The prediction is made by combin-

ing the predictions of all classifiers, weighted by their accuracy.

[Decision Tree] A Decision Tree Classifier [50] is a tree-based

method that represents a sequence of decisions based on the features

of the dataset. To classify a new instance, the algorithm follows the

decisions in the tree to reach a leaf node associated with a class.

[Random Forest] A Random Forest Classifier [49] is an ensemble

machine learning algorithm that combines multiple decision trees,

where each tree is built using a random subset of the features and

a random sample of the data. The final class prediction for a new

instance results from the aggregation of the predictions of all trees.

[kNN] A kNN classifier [37] is a method that classifies instances

based on their distance to other instances in a training set. The

algorithm assigns the new instances to the class with the most

number of closest neighbors among the 𝐾 nearest data points.

4.2.2 Raw-based classification. Instead of using features to per-

form classification, the raw values of the time series can be used.

Indeed, whereas features are efficient for homogenizing time series

datasets (e.g., setting a constant number of features for variable

length time series), it might hide important information in the shape

of consecutive values. Thus, many approaches that use raw-values

time series have been proposed.

[Rocket] Among the recent raw-values methods, MiniRocket [29]

is one of the state-of-the-art time series classification methods. The

latter consists of a feature extraction step and a classification step.

More specifically, MiniRocket works by transforming input time

series using a small, fixed set of convolutional kernels and using the

transformed features to train a logistic regression classifier (using

stochastic gradient descent). We refer to MiniRocket as Rocket.

4.2.3 Convolutional-based classification. Convolutional-based ap-

proaches take as input raw-values of time series and have been

shown to be accurate for time series classification [15].

[ConvNet] A Convolutional Neural Network (CNN) [73] is a type

of deep learning neural network widely used in image recognition

that is specially designed to extract patterns through data with

a grid-like structure, such as images, or time series. A CNN uses

convolution, where a filter is applied to a sliding window over

the time series. The ConvNet architecture proposed in [105] is

composed of three stacked Convolutional blocks followed by Global

Average Pooling (GAP), and a Softmax activation function. Each

Convolutional block is composed of a convolutional layer (used

with a kernel length of 3) followed by a batch normalization layer,

followed by a ReLU activation function is applied.

[ResNet] The Residual Network (ResNet) architecture [47] was in-

troduced to address the gradient vanishing problem encountered in

large CNNs [97]. A ResNet is composed of several blocks connected

together with residual connections (i.e., identity mapping). For

time series classification, a ResNet architecture has been proposed

in [105], and has demonstrated strong classification accuracy [34].

It is the same architecture as the previously described ConvNet,

with additional residual connections between convolutional blocks.

[InceptionTime] The model consists of a network using resid-

ual connections and convolutional layers with kernels of variable

lengths [35]. Such a network uses three Inception blocks that re-

place the traditional residual blocks that we can find in a ResNet

architecture. Each Inception block consists of a concatenation of

convolutional layers using different sizes of filters. For each block,

the time series is fed to three different 1D convolutional layers with

different kernel sizes (10, 20, and 40) and one Max-Pooling layer

with kernel size 3. The last step consists of concatenating the previ-

ous four layers along the channel dimension and applying a ReLU

activation function to the output, followed by batch normalization.

The convolutional layers have 32 filters and a stride parameter of 1.

4.2.4 Transformer-based classification. Transformer-based ap-

proaches were initially introduced for Natural Language Process-

ing [101]. Suchmethods can easily be adapted for time series classifi-

cation tasks, and in this paper we propose SiT (Signal Transformer),

an extension of a recent computer vision transformer approach [30].

SiT first starts by projecting the input to the latent space with an

embedding step. After the embedding step, the input is mapped

3423

Figure 4: Taxonomy of time series classification approaches used as
model selection methods. We use the same color code for each class
in all figures in the paper.

to a 𝐷 dimensional space (we use 𝐷 = 256 in the rest of the pa-

per) that serves as input to an encoder. For SiT, we use an encoder

originally proposed for computer vision tasks [101] that consists

of multiple blocks. Each block has an alternating multi-headed

self-attention block and a feed-forward layer, both preceded by a

normalization step and a residual connection. We now describe the

different embedding steps in detail in the following paragraphs. In

the experimental evaluation, we consider the SiT architecture with

the four embeddings as four different methods.

[SiT-conv] This embedding uses a single convolutional layer

to map the time series into the latent space. The convolutional

layer has a kernel and stride of the same length (we use a length

of 16 throughout the rest of the paper), essentially taking non-

overlapping steps over the time series. Finally, the convolutional

layer has 𝐷 filters to match the input dimension of the SiT encoder.

[SiT-linear] The linear embedding [30] splits the input time-series

into non-overlapping subsequences of length 𝑙𝑆𝑖𝑇 (we use 𝑙𝑆𝑖𝑇 = 16

in the rest of the paper). Then, each patch is linearly projected into

𝐷 dimensions to match the input dimension of the SiT encoder.

[SiT-stem] The stem embedding [107] consists of 3 convolutional

layers with a kernel length of 3, a stride length of 2, and a number

of filters equal to 3, 5, and 7, respectively. These three convolutional

layers are then followed by a last convolutional layer with 𝐷 dimen-

sions and a kernel and stride length equal to 1. This embedding was

initially proposed to overcome unstable behavior while training

because of its early visual processing step.

[SiT-stem-ReLU] Similarly to the previous embedding, the stem-

ReLU embedding [103] consists of 4 convolutional layers with ker-

nel lengths of 7, 3, 3, 8, stride lengths of 2, 1, 1, 8, and padding of 3, 1,

1, 0. The number of filters for each convolutional layer is 3, except

the last one with 𝐷 filters to match the SiT encoder’s dimension.

4.3 Selecting the Detector
We train the time series classification methods mentioned in the

previous section to predict the best detector for each subsequence

(as shown in Figure 3 (c)). However, there is no guarantee that the

classification model selects the same detector for all subsequences.

Therefore, we choose the best detector for one time series by doing a

majority voting step between the predictions for every subsequence,

such that the most voted detector is selected as the detector of the

time series. Formally, given a classification modelM𝑐𝑙 applied on

a given time series 𝑇 subsequences Tℓ , we defineM𝑐𝑙 (Tℓ) the set
of model selected for each subsequence in Tℓ . Therefore, we define

Table 1: Summary of datasets, methods, and measures.
Datasets Description

Dodgers [51] unusual traffic after a Dodgers game (1 time series)
ECG [71] standard electrocardiogram dataset (52 time series)
IOPS [1] performance indicators of a machine (58 time series)

KDD21 [56] composite dataset released in a recent SIGKDD 2021 (250 time series)
MGAB [100] Mackey-Glass time series with non-trivial anomalies (10 time series)
NAB [5] Web-related real-world and artificial time series (58 time series)

SensorScope [108] environmental data (23 time series)
YAHOO [59] time series based on Yahoo production systems (367 time series)
Daphnet [7] acceleration sensors on Parkinson’s disease patients (45 time series)
GHL [36] Gasoil Heating Loop telemetry (126 time series)

Genesis [102] portable pick-and-place demonstrator (6 time series)
MITDB [71] ambulatory ECG recordings (32 time series)

OPPORTUNITY [92] motion sensors for human activity recognition (465 time series)
Occupancy [25] temperature, humidity, light, and CO2 of a room (10 time series)

SMD [98] Server Machine telemetry (281 time series)
SVDB [45] ECG recordings (115 time series)

Anomaly Detection Description

IForest [64]

constructs binary trees based on random space splitting. The nodes (i.e.,

subsequences) with shorter paths to the root are more likely to be anomalies.

IForest1 [64] same as IForest, but each point (individually) are used as input.

LOF [23] computes the ratio of the neighboring density to the local density.

MP [110] detects abnormal subsequences with the largest nearest neighbor distance.

NormA [14]

identifies normal patterns using clustering and calculates each subsequence

weighted distance (with statistical criteria) to the normal patterns.

PCA [3]

projects data to a lower-dimensional hyperplane, and data points

with a significant distance from this plane can be identified as outliers.

AE [93]

projects data to the lower-dimensional latent space and reconstructs the

data, and outliers are expected to have larger reconstruction errors.

LSTM-AD [69]

use an LSTM network that from the current subsequence tries to predict the

following value. The error prediction is then used to identify anomalies.

POLY [61]

fits a polynomial model that tries to predict the time series values from the

previous subsequences. The outliers are detected with the prediction error.

CNN [72]

builds, using a convolutional neural network, a correlation between current

and previous subsequences. The anomaly score is the prediction deviation.

OCSVM [95]

is a support vector method that fits the normal training dataset and finds

the normal data’s boundary.

HBOS [43]

builds a histogram for the time series. The anomaly score is the inverse

of the height of the bin.

Model Selection Description
SVC [22] maps instances to points in space to maximize the gap between classes.

Bayes [112] uses Bayes’ theorem to classify a point using each class posterior probabilities.

MLP [48] consists of multiple layers of interconnected neurons

QDA [41] is a discriminant analysis algorithm for classification problems

AdaBoost [39] is a meta-algorithm using boosting technique with weak classifiers

Decision Tree [50] is an approach that splits data points into separate leaves based on features

Random Forest [49] is a set of Decision Trees fed with random samples and features.

kNN [37] assigns the most common class among its k nearest neighbors.

Rocket [29]

transforms time series using a set of convolutional kernels, creating

features used to train a linear classifier

ConvNet [105] uses convolutional layers to learn spatial features from the input data.

ResNet [105] is a ConvNet with residual connections between convolutional block

Inception Time [35] is a combination of ResNets with kernels of multiple sizes

SiT-conv [30] is a transformer architecture with a convolutional layer as input

SiT-linear [30]

is a transformer architecture for which time series are divided into

non-overlapping patches and linearly projected into the embedding space

SiT-stem [107]

is a transformer architecture with convolutional layers with increasing

dimensionality as input

SiT-stem-ReLU [103] is similar to SiT-stem but with Scaled ReLU.

the majority voting function as follows:

𝑓𝑀𝑉 (𝑇,M𝑐𝑙) = argmax

𝐷∈M𝑐𝑙 (Tℓ)

∑︁
𝑇𝑖,ℓ ∈Tℓ

1[M𝑐𝑙 (𝑇𝑖,ℓ)=𝐷]

Majority voting serves the pipeline with two significant factors,

(i) it does not depend on the design of the detector and makes

the pipeline easily usable for multiple different types of anomaly

detection methods, and (ii) majority voting averages the predictions

and reduces the impact of misclassified subsequences. To conclude,

in our pipeline, the model selection method introduced in Problem 1

is the output of 𝑓𝑀𝑉 (𝑇,M𝑐𝑙).

5 EXPERIMENTAL EVALUATION
We now describe in detail our experimental analysis. For additional

information, we make all our material publicly available online [20]

and provide an interactive WebApp [21] for navigating and explor-

ing the experimental results.

3424

Technical setup: We implemented the deep learning-based model

selection methods in Python 3.5 using the PyTorch library [89].

For the feature-based approach, we used the TSFresh [26] and

scikit-learn [90] libraries. We then used sktime [67] for the rocket

algorithm implementation. For the anomaly detection methods, we

used the implementation provided in the TSB-UAD benchmark [83].

The evaluation was conducted on a server with Intel Core i7-8750H

CPU 2.20GHz x 12, with 31.3GB RAM, and Quadro P1000/PCle/SSE2

GPU with 4.2GB RAM, and on Jean Zay cluster with Nvidia Tesla

V100 SXM2 GPU with 32 GB RAM.

Datasets: For our evaluation purposes, we use the public datasets

identified in the TSB-UAD benchmark [83]. The latter corresponds

to datasets (described in Table 1) proposed in the literature contain-

ing multiple time series with labeled anomalies. Specifically, each

point in every time series is labeled as normal or abnormal.

Anomaly Detection Methods: For the experimental evaluation,

we select 12 different anomaly detection methods, summarized in

Table 1. Out of these, 8 are fully unsupervised (i.e., they require no

prior information on the anomalies to be detected): IForest, IForest1,

LOF, MP, NormA, PCA, HBOS, and POLY. The remaining 4 methods

are semi-supervised (i.e., they require some information related

to normal behaviors), namely, OCSVM, AE, LSTM-AD, and CNN.

For all these anomaly detection baselines, we set the parameter as

described in the TSB-UAD benchmark [83].

Method Selection baselines: We then consider the method se-

lection baseline described in Section 4 and summarized in Table 1.

We first consider feature-based methods, that extract features using

TSFresh [26] library to select the correct anomaly detection method.

We then consider rocket, state-of-the-art time series classifier. We

also include two types of deep learning classifiers; (i) Convolutional-
based neural networks and (ii) Transformer-based neural networks.
Table 1 summarizes the different model selection methods (i.e.,

classifiers). In total, we consider 16 methods, trained with window

lengths ℓ equal to 16, 32, 64, 128, 256, 512, 768, and 1024. In total,

we trained 128 models. In the following section, we refer to a model

𝑀 trained using a window length ℓ as𝑀-ℓ .

Parameter settings: We use the same 70/30 split of the benchmark

for all the classification models. Therefore, we can compare models

trained on the same training set and evaluated on the same set

of time series. Then, for the feature-based methods, we set the

hyperparameters of the models based on the default parameters of

scikit-learn. Moreover, for rocket, we use 10000 kernels to extract

the features and the logistic regression with stochastic gradient

descent (computed in batches) for the classification step. Finally, for

Convolutional and Transformer-based methods, we use a learning

rate of 10
−5

, with a batch size of 256 and an early stopping strategy

with a maximum of 50 epochs without improvement. Moreover, we

use the weighted cross-entropy loss and set the maximum number

of epochs to 10,000 (with a training time limit of 20 hours).

Evaluation measures: We finally use four evaluation measures.

For model selection accuracy, we use the classification accuracy

(i.e., the number of anomaly detectors correctly selected divided by

the total number of time series). For anomaly detection accuracy,

we use both AUC-PR [28] and VUS-PR [78] (with a buffer length

equal to 10 points). For execution time, we measure the training
time (i.e., the time required to train a model selection algorithm),

the selection time (i.e., the time a model selection approach needs to

Figure 5: VUS-PR andDetection time (seconds) for allmodel selection
approaches (showing only the window length that maximizes VUS-
PR for each model) over a test set of 497 series from TSB-UAD.

predict which detector to use), and the detection time (i.e., the time

required to predict which detector to use, and to execute it).

5.1 Overall Evaluation
We first evaluate accuracy (classification and anomaly detection)

and execution time for all model selection methods over the entire

benchmark. We split the benchmark into a train and test set with

1404 and 496 time series, respectively. Both sets contain time series

from all datasets. Thus, the models have examples of all available

domains. In Section 5.5, we evaluate the performance of the models

when applied to unseen (i.e., not used in the training set) datasets.

5.1.1 Accuracy Evaluation. We first analyze the accuracy of all

model selection methods (using all window lengths) and compare

them to the Oracle, the Averaging Ensemble method (Avg Ensem-

ble), and anomaly detection methods in the TSB-UAD benchmark.

Figure 5 (a) depicts the overall VUS-PR over the entire TSB-UAD

benchmark (i.e., each box-plot corresponds to 497 accuracy values

for the 497 time series into the test set). The Convolutional-based

3425

Figure 6: Distribution of the selected models for five models (the
best for each category) compared to the distribution of the labels (in
black). Difference of distributions between time series containing (b)
sequence and point anomalies, and (c) unique or multiple anomalies.

approaches are in dark blue, the Transformer-based approaches are

in yellow, the Feature-based approaches are in light blue, Rocket

models are in violet, and the anomaly detection methods of the TSB-

UAD benchmark are in light grey. The oracle is the top box plot (in

white), and the Avg Ensemble is the orange box plot. The box-plot

are sorted based on the median value. In total, we compare 142

models on 497 time series. In Figure 5, we depict only the models

with the window length that leads to the best VUS-PR.

First, almost all model selection methods outperform the existing

anomaly detection methods. We also see that most model selection

methods outperform the Avg Ensemble approach. Thus, we can con-

clude that model selection using time series classifiers significantly

improves the state-of-the-art methods.

More interestingly, we observe a partition in the ranking of the

methods. First, Convolutional and Transformer-based approaches

produce equivalent accuracy values and represent the top-48 meth-

ods. However, whereas all the Convolutional-based methods are in

the top-48, a few of the Transformer-based approaches are further

away in the ranking. Moreover, the first non-deep learning method

is 𝑟𝑜𝑐𝑘𝑒𝑡-128 (ranked 49), followed closely by 𝑘𝑛𝑛 models. We also

observe that the 𝑟𝑜𝑐𝑘𝑒𝑡 approaches are very spread across the rank-

ing (𝑟𝑜𝑐𝑘𝑒𝑡-128 is ranked 50, and 𝑟𝑜𝑐𝑘𝑒𝑡-16 is ranked 124). This

implies that the choice of window length strongly impacts accuracy.

Overall, the best selection model is 2.8 times more accurate than

the best anomaly detection method in TSB-UAD.

Then, we also note that all the model selection methods are

significantly less accurate than the Oracle. For example, in Figure 5

(a), there is a gap of 0.2 VUS-PR between the Oracle and the best

model selection method. Such a significant gap indicates a large

margin of improvement for future work. We also note that all model

selection approaches produce accuracy values between 0 and 1 (as

shown by each box-plot in Figure 5 (a)). This is caused by the

large heterogeneity of individual detectors’ performances (for some

Figure 7: Execution time vs. length of model selection methods.

datasets and time series, none of the detectors are accurate). This

means that no model selection method is guaranteed to perform

above a given accuracy value. Making model selection more stable

and robust is essential for several use cases.

5.1.2 Model selected distribution. We then inspect the predic-

tion and the detector chosen by the model selection approaches. In

this section, we consider only 𝑟𝑒𝑠𝑛𝑒𝑡-1024, 𝑐𝑜𝑛𝑣𝑛𝑒𝑡-128, 𝑠𝑖𝑡-𝑠𝑡𝑒𝑚-

512, 𝑟𝑜𝑐𝑘𝑒𝑡-128, and 𝑘𝑛𝑛-1024. These approaches are the best mod-

els (using either AUC-PR or VUS-PR) based on the analysis con-

ducted in Section 5.1 (you may find additional information on AUC-

PR evaluation in our website [21]).

Figure 6 (a) depicts the distribution of the chosen detectors by the

5 model selection approaches mentioned above for the entire TSB-

UAD benchmark. The black bar corresponds to the true labels (i.e.,

the best detectors). We observe from Figure 6 (a) that 𝑟𝑜𝑐𝑘𝑒𝑡-128

and 𝑘𝑛𝑛-1024 are significantly overestimating the detector NormA

(as well as LOF for 𝑟𝑜𝑐𝑘𝑒𝑡-128 and HBOS for 𝑘𝑛𝑛-1024), whereas

𝑟𝑒𝑠𝑛𝑒𝑡-1024, 𝑐𝑜𝑛𝑣𝑛𝑒𝑡-128, and 𝑠𝑖𝑡-𝑠𝑡𝑒𝑚-512 arematching the correct

distribution of detectors (we observe a slight underestimation of

LOF, IFOREST1 and an overestimation for POLY).

Moreover, we measure the prediction distribution differences for

time series containing sequence anomalies (Figure 6 (b.1)) and point

anomalies (Figure 6 (b.2)), and for time series containing only one

anomaly (Figure 6 (c.1)) and multiple anomalies (Figure 6 (c.1)). We

first observe that predictions of model selection methods are signif-

icantly different for time series with sequence and point anomalies.

More specifically, 𝑟𝑒𝑠𝑛𝑒𝑡-1024, 𝑐𝑜𝑛𝑣𝑛𝑒𝑡-128, and 𝑠𝑖𝑡-𝑠𝑡𝑒𝑚-512 are

correctly selecting the method CNN, whereas 𝑟𝑜𝑐𝑘𝑒𝑡-128 and 𝑘𝑛𝑛-

1024 are over selecting LOF and NormA for time series containing

point anomalies. However, for sequence anomaly, as it represents

most of the TSB-UAD benchmark, the prediction distribution is

similar to the one over the entire benchmark. Moreover, the correct

predictions of 𝑟𝑒𝑠𝑛𝑒𝑡-1024, 𝑐𝑜𝑛𝑣𝑛𝑒𝑡-128, and 𝑠𝑖𝑡-𝑠𝑡𝑒𝑚-512 for time

series containing point anomalies are interesting, as this informa-

tion is not provided in the training step. Therefore, these models

found discriminant features in the time series that indicate whether

it might contain a point or a sequence anomaly.

We, finally, measure the differences between the prediction distri-

bution of model selection methods between time series containing

unique and multiple anomalies. The true labels (black bars in Fig-

ure 6 (c.1) and (c.2)) indicate that, for unique anomalies, the best

detectors are LOF, NormA, and HBOS and for multiple anomalies,

the best detector is NormA. We observe that all model selection

approaches correctly select LOF, NormA, and HBOS for time series

3426

Figure 8: (a) Accuracy ((a.1) classification accuracy, (a.2) VUS-PR
and (a.3) AUC-PR) and (b) execution time ((b.1) training time, (b.2)
selection time and (b.3) detection time) versus window length ℓ .

containing a unique anomaly. The latter indicates that model selec-

tion methods can extract discriminant features that indicate if one

time series is more likely to have multiple anomalies.

5.1.3 Execution Time Evaluation. We now discuss the execu-

tion time of model selection methods. In this section, we focus

only on the detection time (i.e., the number of seconds required

by a method to predict the detector to use and to run it). Figure 5

(b) depicts the detection time (in log scale) for each method and

detector in the TSB-UAD benchmark. We first observe that the Avg

Ensemble required to run all detectors is significantly slower than

the rest. Then, all model selection methods are of the same order

of magnitude as the detectors. We also observe that all the deep

learning methods are slower than the feature-based approaches.

This is surprising because the detection time mainly depends on

the chosen detector. Overall, we conclude that method selection

is the only viable solution that outperforms the existing anomaly

detection methods and can be executed in the same order of magni-

tude of time. Finally, we depict in Figure 7 the scalability of model

selection methods versus individual detectors and the Avg Ensem-

ble approach when the time series length increases. We observe

that, on average, the execution time of model selection approaches

increases similarly to the execution time of individual detectors

when the time series length increases. We also observe that the

time series length significantly impacts the Avg Ensemble approach

execution time. The latter shows the scalability issue of the Avg

Ensemble approach for very large time series.

5.2 Influence of the Window Length
In this section, we analyze the influence of the window length

on classification accuracy (Figure 8 (a.1)), anomaly detection ac-

curacy (Figure 8 (a.2) and (a.3)) and execution time (Figure 8 (b)).

We perform the analysis per group of methods (i.e., average for

Convolutional, Transformer, rocket, and Feature-based methods).

We first observe in Figure 8 (a) that Convolutional-based and

Transformer-based methods outperform the best anomaly detection

Figure 9: Correlation between accuracy and time series characteris-
tics vs. the window length used to train themodel selectionmethods.

methods (green dashed line in Figure 8 (a.2) and (a.3)), the Avg

Ensemble approach (orange dotted line in Figure 8 (a.2) and (a.3)),

Rocket and Feature-based methods, whatever the length used with

regard to the classification accuracy, VUS-PR, and AUC-PR. We

also observe that Transformer-based approaches are less accurate

for shorter lengths (less than 100 points), whereas the accuracy of

Convolutional-based approaches is stable regardless of the window

length. Overall, Transformer and Convolutional-based approaches

converge to the same anomaly detection accuracy (both for VUS-PR

and AUC-PR) when the window length increases.

Furthermore, we observe that both rocket and Feature-based

approaches are significantly faster to be trained than Convolutional

and Transformer-based approaches (Figure 8 (b.1)). We make the

same observation for selection time ((Figure 8 (b.2))). For the detec-

tion time, we observe that rocket execution time is very unstable

when compared to the other approaches. The latter means that the

choice of length strongly impacts the model selection performed

by rocket, leading to very diverse selection and execution times.

In the general case, we can make the following two statements:

(i) Large window length leads to faster selection time for the

model selection process and better accuracy for Convolutional

and Transformer-based approaches. (ii) Feature-based approaches

are significantly faster but less accurate than Convolutional-based

and Transformer based approaches, whatever the length used.

5.3 Influence of Datasets and Anomaly Types
In this section, we evaluate the influence of datasets and anom-

aly characteristics on model selection accuracy. We perform the

analysis per group of methods (i.e., average performances for Con-

volutional, Transformer, Rocket, and Feature-based methods).

For this experiment, we evaluate the dataset and anomaly char-

acteristics (i.e., the number of time series, the average length of

the time series, the average number of anomalies and the aver-

age anomaly length). Figure 9 depicts these characteristics (x-axis)

versus the average increase of accuracy (VUS-PR of the model selec-

tion method subtracted by VUS-PR of the best anomaly detection

method for each dataset) for each model selection method using a

given window length. For instance, if a point (one model selection

method on one dataset) is positive (above the black dotted line), then

this model is more accurate on the corresponding dataset than the

best anomaly detection method selected on this same dataset. We

generally observe low correlations between dataset and anomaly

characteristics (i.e., −0.6 < 𝑟 < 0.6). With such correlation values,

we cannot conclude any factual statement on the impact of these

characteristics and the model selection methods’ performances.

However, we can make the following observations.

3427

First, Figure 9 (a) shows that the number of time series is im-

pacting more substantially Convolutional and Transformer-based

approaches with large window lengths. For the average time series

length, only Feature-based approaches are positively impacted. On

the contrary, Convolutional and Transformer-based approaches

are less accurate when the average time series length is increasing.

These observations imply that Convolutional and Transformer-

based are more affected by the number of examples in the dataset

rather than the length of each instance. In contrast, Feature-based

approaches benefit from both more and large instances.

Then, Figure 9 (b) shows that Feature-based approach accuracy

is increasing with the anomaly characteristics, whereas these char-

acteristics either do not or negatively impact Convolutional and

Transformer-based methods. More specifically, we observe that

Feature-based approaches (regardless of the window length) are

more accurate with time series containing large anomalies, and

Convolutional-based approaches are less accurate (irrespective of

the window length) when the number of anomalies increases.

We note that Rocket’s correlation with the dataset and the anom-

aly characteristics is unstable. The latter is explained by the fact

that the model prediction of Rocket is very sensitive to the window

length (as described in Section 5.2). Thus, it is impossible to make a

conclusion on Rocket’s performances, datasets, and anomalies.

5.4 Detection vs Classification Accuracy
In this section, we analyze the relationship between the model

selection methods’ classification accuracy and the resulting anom-

aly detection accuracy. In this experiment, we consider VUS-PR as

anomaly detection measures. For this experiment, we extend the

definition of 𝑂𝑟𝑎𝑐𝑙𝑒 (introduced in Section 3) as follows:

Definition 3. We define𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑗 as a hypothetical model selec-
tion method that has a classification accuracy of 𝑘 ∈ [0, 1] and selects
the 𝑗𝑡ℎ best detector (among𝑚 detectors) in cases of misclassifica-
tion. Thus, 𝑂𝑟𝑎𝑐𝑙𝑒1,1 always selects the best detector, and 𝑂𝑟𝑎𝑐𝑙𝑒0,𝑚
always selects the worst detector. Finally, we define 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑅 as the
model selection method with a classification accuracy of 𝑘 ∈ [0, 1]
and that randomly selects a detector in misclassification cases.

Figure 10 depicts the latter comparison for all datasets (Figure 10

(a)), and two specific datasets (Figure 10 (b)). We first observe a

strong correlation between classification accuracy and anomaly

detection accuracy for each specific dataset and, on average, all

datasets. However, methods belonging to different families (e.g.,

Feature-based or Transformer-based) are not performing the same.

For instance, Figure 10 (a) shows that Feature-based approaches are

not accurate for YAHOO but are the best models for KDD21. Overall,

we observe that Convolutional and Transformer-based are more

accurate in classification and anomaly detection (Figure 10(b)).

We also depict in Figure 10 (a) the lines corresponding to

𝑂𝑟𝑎𝑐𝑙𝑒𝑘,2, 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,3, 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,4, 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑅 , and 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑚 . For a

given classification accuracy, 𝑘 , 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,2, and 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑚 corre-

spond to the upper and lower bounds. The latter means that model

selection approaches with a given classification accuracy will be

within the previously mentioned upper and lower bounds for VUS-

PR (i.e., in the grey zone in Figure 10 (a)). Thus, any model selec-

tion method that has a classification accuracy above 0.53 (intersec-

tion between the two dashed red lines) is better than the current

Figure 10: Classification accuracy versus anomaly detection accuracy
(VUS-PR) for (a) all datasets and (b) two specific datasets.

best anomaly detection method in TSB-UAD (i.e., red dashed line

in Figure 10 (b)). This is true only for a few Convolutional- and

Transformer-based methods in our experiments.

Moreover, we compare the positions of the model selection meth-

ods with regard the𝑂𝑟𝑎𝑐𝑙𝑒𝑘,3,𝑂𝑟𝑎𝑐𝑙𝑒𝑘,4, and𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑅 . We observe

in Figure 10 (b) that almost all methods are above 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,𝑅 . The

latter means that the model selection methods do not randomly

select detectors when the wrong detector is selected. Moreover,

most models follow the 𝑂𝑟𝑎𝑐𝑙𝑒𝑘,4 line. The latter indicates that the

models averagely select the third-best in case of misclassification.

Finally, the observations discussed above demonstrate three impor-

tant statements: (i) classification accuracy can be used as a proxy for

anomaly detection accuracy, and without computing the anomaly

detection accuracy, we can provide an anomaly detection accuracy

lower and upper bounds; (ii) the gap between the best model se-

lection and the top right corner of the grey zone shows that there

is a significant margin for improvement for future work; (iii) the

vertical gap between the models and the upper bound (𝑂𝑟𝑎𝑐𝑙𝑒𝑘,2)

shows that there is an important margin of improvement in the

prediction rank: a model with the same classification accuracy can

gain up to 0.1 VUS-PR if it better selects models.

5.5 Out-of-Distribution Experiments
At this point, we tested the performances of the model selection

methods when trained on a subset of the benchmark with examples

from all 16 datasets available. In some cases, though, we may want

to analyze time series that are not similar to any of those in the

3428

Figure 11: Out-of-distribution experiment, when model selection algorithms are trained on all but one dataset. (a) results for each dataset
(when not included in the training set) and (b) average results.

benchmark. Therefore, in this section, we measure the ability of

the model selection methods to be used in an unsupervised manner

(i.e., used for datasets that are not similar to the one used in the

training set). We run the following experiment. We train the model

selection methods on 15 datasets (70% of the time series for training

and the other 30% for validation), and we test on the remaining

one. We try all 16 possible test partitions, and (for brevity) report

4 of these tests in Figure 11 (a). We only show the results for the

best-performing model selection methods listed in Section 5.1.2.

Figure 11 (a) depicts the normalized VUS-PR (noted𝑉𝑈𝑆-𝑃𝑅) for

all 16 tests: VUS-PR of 1 corresponds to the VUS-PR of the Oracle
on each test, while 0 corresponds to the worst anomaly detection

methods on each test. This figure shows that, in the unsupervised

case, the Avg Ensemble outperforms all model selection methods,

as well as the best anomaly detection method based on the accuracy

performance measured on the train set (dotted green line in Fig-

ure 11 (a)). The latter means that, for unknown datasets, it is safer

to run all existing anomaly detection methods and average their

scores. Knowing that such ensembling methods are not scalable (as

shown in Figure 5), Figure 11 (a) shows that ConvNet or ResNet

is still a better choice than choosing the best anomaly detection

method selected on train data (i.e., known data). However, kNN,

Rocket, and SiT-stem are only slightly more accurate than the best

anomaly detection method.

Figure 11 (b) depicts the average accuracy for 8 out of the 16

tests (i.e., dataset not included in the training set and used for the

test). We observe very different results. First, for Electrocardiograms

(SVDB), none of the model selection methods and the Avg. Ensem-

ble outperforms the best anomaly detection method (selected on the

training set). But, most model selection methods or Avg. Ensenble

outperform the best anomaly detection method for sensor data of

different kinds (GHL and Occupancy) on the train. The latter can be

explained by the fact that ECGs contain less heterogeneous behav-

iors (i.e., repetitive normal behavior and similar anomalies) than

other sensor data, and it is more likely to have in the benchmark

one method that would perform well on all time series.

These observations lead to the following remarks: (i) there is a

significant margin of improvement when using the existing time

series classifiers as model selection methods in the unsupervised

case; (ii) when a new dataset arrives, it is safer in the general case to

use an ensembling method such as the simple average of all anom-

aly scores; and (iii) for heterogeneous datasets (without known

and repetitive normal or abnormal patterns), classifiers as model

selection (mainly convolutional-based classifiers) can be used even

though similar time series are not in the training set.

6 CONCLUSIONS
Time series anomaly detection is a challenging problem and an

important area of research with many applications. Despite the

multitude of solutions proposed in the literature, we observe that

there exists no method that outperforms all others when measured

on large heterogeneous benchmarks. Based on our experimental

evaluation (cf. questions of Section 3.5):

(1) Classification as Model selection: We observe that time se-

ries classification methods accurately select anomaly detection

models. Overall, Transformer and Convolutional-based model

selection methods outperform each individual detector. Never-

theless, there is a large gap between the best method and the

𝑂𝑟𝑎𝑐𝑙𝑒 , motivating future work toward that direction.

(2) Ensembling or selecting: We observe that model selection is

significantly more accurate than the Ensembling method.

(3) Features or Raw values: We observe that raw-based methods

are more accurate on average than feature-based approaches.

(4) Out-Of-Distribution: (1) and (3) hold. However, for (2), we

observe that ensembling is more accurate than model selection

when applied to time series very different from those in the

training benchmark.

The above observations point to promising directions for future

work in AutoML frameworks that rely on model selection. Improv-

ing the rank prediction could significantly improve the anomaly

detection accuracy. Moreover, model selection could be trained to

choose the best compromise between accuracy and execution time,

improving the overall inference time of model selection.

ACKNOWLEDGMENTS
Work partly supported by Meta Research and GENCI-IDRIS (Grants

2020-101471, 2021-101925, 2022-AD011012641R1).

3429

REFERENCES
[1] [n.d.]. http://iops.ai/dataset_detail/?id=10.

[2] Charu C Aggarwal. 2017. An introduction to outlier analysis. In Outlier analysis.
Springer, 1–34.

[3] Charu C. Aggarwal. 2017. Outlier Analysis (2 ed.). Springer International

Publishing. https://doi.org/10.1007/978-3-319-47578-3

[4] Charu C. Aggarwal and Saket Sathe. 2015. Theoretical Foundations and Algo-

rithms for Outlier Ensembles. SIGKDD Explor. Newsl. 17, 1 (sep 2015), 24–47.

https://doi.org/10.1145/2830544.2830549

[5] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsu-

pervised real-time anomaly detection for streaming data. Neurocomputing 262

(2017), 134–147. https://doi.org/10.1016/j.neucom.2017.04.070

[6] Jérôme Antoni and Pietro Borghesani. 2019. A statistical methodology for the

design of condition indicators. Mechanical Systems and Signal Processing 114

(2019), 290–327. https://doi.org/10.1016/j.ymssp.2018.05.012

[7] Marc Bachlin, Meir Plotnik, Daniel Roggen, Inbal Maidan, Jeffrey M. Hausdorff,

Nir Giladi, and Gerhard Troster. 2010. Wearable Assistant for Parkinson’s

Disease Patients With the Freezing of Gait Symptom. IEEE Transactions on
Information Technology in Biomedicine 14, 2 (2010), 436–446. https://doi.org/10.

1109/TITB.2009.2036165

[8] Anthony Bagnall, Richard L. Cole, Themis Palpanas, and Kostas Zoumpatianos.

2019. Data Series Management (Dagstuhl Seminar 19282). Dagstuhl Reports 9, 7
(2019), 24–39. https://doi.org/10.4230/DagRep.9.7.24

[9] Mohini Bariya, Alexandra von Meier, John Paparrizos, and Michael J Franklin.

2021. k-shapestream: Probabilistic streaming clustering for electric grid events.

In 2021 IEEE Madrid PowerTech. IEEE, 1–6.
[10] V. Barnet and T. Lewis. 1994. Outliers in Statistical Data. John Wiley and Sons,

Inc.

[11] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. 2021. A

Review on outlier/Anomaly Detection in Time Series Data. ACM Computing
Surveys (CSUR) 54, 3 (2021), 1–33.

[12] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.

Automated Anomaly Detection in Large Sequences. In 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE). 1834–1837. https://doi.org/10.

1109/ICDE48307.2020.00182

[13] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.

SAD: An Unsupervised System for Subsequence Anomaly Detection. In ICDE.
https://doi.org/10.1109/ICDE48307.2020.00168

[14] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed

Meftah, and Emmanuel Remy. 2021. Unsupervised and scalable subsequence

anomaly detection in large data series. The VLDB Journal (March 2021). https:

//doi.org/10.1007/s00778-021-00655-8

[15] Paul Boniol, Mohammed Meftah, Emmanuel Remy, and Themis Palpanas. 2022.

dCAM: Dimension-wise Class Activation Map for Explaining Multivariate Data

Series Classification. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati,

and Amr El Abbadi (Eds.). ACM, 1175–1189. https://doi.org/10.1145/3514221.

3526183

[16] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-Based Subse-

quence Anomaly Detection for Time Series. Proc. VLDB Endow. 13, 12 (July

2020), 1821–1834. https://doi.org/10.14778/3407790.3407792

[17] Paul Boniol, John Paparrizos, Yuhao Kang, Themis Palpanas, Ruey S Tsay,

Aaron J Elmore, and Michael J Franklin. 2022. Theseus: navigating the labyrinth

of time-series anomaly detection. Proceedings of the VLDB Endowment 15, 12
(2022), 3702–3705.

[18] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.

SAND in action: subsequence anomaly detection for streams. Proceedings of
the VLDB Endowment 14, 12 (2021).

[19] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.

SAND: streaming subsequence anomaly detection. Proceedings of the VLDB
Endowment 14, 10 (2021), 1717–1729.

[20] P. Boniol and E. Sylligardos. 2023. Our open-source code for this paper. https:

//github.com/boniolp/MSAD.

[21] P. Boniol and E. Sylligardos. 2023. Ourwebsite. https://adecimots.streamlit.app/.

[22] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A Training

Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory (Pittsburgh, Pennsylvania, USA)

(COLT ’92). Association for ComputingMachinery, New York, NY, USA, 144–152.

https://doi.org/10.1145/130385.130401

[23] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: Identifying Density-based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’00). ACM,

New York, NY, USA, 93–104. https://doi.org/10.1145/342009.335388

[24] Yingyi Bu, Oscar Tat-Wing Leung, Ada Wai-Chee Fu, Eamonn J. Keogh, Jian Pei,

and Sam Meshkin. 2007. WAT: Finding Top-K Discords in Time Series Database.

In SDM.

[25] Luis M. Candanedo and Véronique Feldheim. 2016. Accurate occupancy de-

tection of an office room from light, temperature, humidity and CO2 measure-

ments using statistical learning models. Energy and Buildings 112 (2016), 28–39.
https://doi.org/10.1016/j.enbuild.2015.11.071

[26] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr.

2018. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests

(tsfresh – A Python package). Neurocomputing 307 (2018), 72–77. https:

//doi.org/10.1016/j.neucom.2018.03.067

[27] Maximilian Christ, Andreas W Kempa-Liehr, and Michael Feindt. 2016. Dis-

tributed and parallel time series feature extraction for industrial big data appli-

cations. arXiv preprint arXiv:1610.07717 (2016).

[28] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-

Recall and ROC Curves. In Proceedings of the 23rd International Conference on
Machine Learning (ICML ’06). Association for Computing Machinery, New York,

NY, USA, 233–240. https://doi.org/10.1145/1143844.1143874

[29] Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. 2021. Minirocket:

A very fast (almost) deterministic transform for time series classification. In

Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data
mining. 248–257.

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

[31] Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, and Michael

Franklin. 2019. Band-limited training and inference for convolutional neural

networks. In International Conference on Machine Learning. PMLR, 1745–1754.

[32] Karima Echihabi, Themis Palpanas, and Kostas Zoumpatianos. 2021. NewTrends

in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed.

Proc. VLDB Endow. 14, 12 (2021), 3198–3201. https://doi.org/10.14778/3476311.

3476407

[33] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. Big Se-

quence Management: Scaling up and Out. In Proceedings of the 24th Inter-
national Conference on Extending Database Technology, EDBT 2021, Nicosia,
Cyprus, March 23 - 26, 2021, Yannis Velegrakis, Demetris Zeinalipour-Yazti,

Panos K. Chrysanthis, and Francesco Guerra (Eds.). OpenProceedings.org, 714–

717. https://doi.org/10.5441/002/edbt.2021.91

[34] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. 2019. Deep learning for time series classification: a

review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[35] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,

Daniel F Schmidt, JonathanWeber, Geoffrey IWebb, Lhassane Idoumghar, Pierre-

Alain Muller, and François Petitjean. 2020. Inceptiontime: Finding alexnet for

time series classification. Data Mining and Knowledge Discovery 34, 6 (2020),

1936–1962.

[36] Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. 2016. Multivariate

Industrial Time Series with Cyber-Attack Simulation: Fault Detection Using an

LSTM-based Predictive Data Model. arXiv:1612.06676 [cs.LG]

[37] Evelyn Fix and Joseph L. Hodges. 1989. Discriminatory Analysis - Nonparamet-

ric Discrimination: Consistency Properties. International Statistical Review 57

(1989), 238.

[38] Anthony J Fox. 1972. Outliers in time series. Journal of the Royal Statistical
Society: Series B (Methodological) 34, 3 (1972), 350–363.

[39] Yoav Freund and Robert E. Schapire. 1995. A Decision-Theoretic Generalization

of on-Line Learning and an Application to Boosting. In Proceedings of the
Second European Conference on Computational Learning Theory (EuroCOLT ’95).
Springer-Verlag, Berlin, Heidelberg, 23–37.

[40] Ada Wai-chee Fu, Oscar Tat-Wing Leung, Eamonn Keogh, and Jessica Lin. 2006.

Finding Time Series Discords Based on Haar Transform. In Proceedings of the
Second International Conference on Advanced Data Mining and Applications
(Xi’an, China) (ADMA’06). Springer-Verlag, Berlin, Heidelberg, 31–41. https:

//doi.org/10.1007/11811305_3

[41] Seymour Geisser. 1964. Posterior Odds for Multivariate Normal Classifications.

Journal of the royal statistical society series b-methodological 26 (1964), 69–76.
[42] Rahul Goel, Sandeep Soni, Naman Goyal, John Paparrizos, Hanna Wallach,

Fernando Diaz, and Jacob Eisenstein. 2016. The social dynamics of language

change in online networks. In Social Informatics: 8th International Conference,
SocInfo 2016, Bellevue, WA, USA, November 11-14, 2016, Proceedings, Part I 8.
Springer, 41–57.

[43] Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score

(hbos): A fast unsupervised anomaly detection algorithm. KI-2012: poster and
demo track 9 (2012).

[44] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, and An-

drey Kan. 2022. Unsupervised Model Selection for Time-series Anomaly Detec-

tion. https://doi.org/10.48550/ARXIV.2210.01078

[45] Scott David Greenwald. 1990. Improved detection and classification of arrhyth-
mias in noise-corrupted electrocardiograms using contextual information. Thesis.
Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/

3430

http://iops.ai/dataset_detail/?id=10
https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1016/j.ymssp.2018.05.012
https://doi.org/10.1109/TITB.2009.2036165
https://doi.org/10.1109/TITB.2009.2036165
https://doi.org/10.4230/DagRep.9.7.24
https://doi.org/10.1109/ICDE48307.2020.00182
https://doi.org/10.1109/ICDE48307.2020.00182
https://doi.org/10.1109/ICDE48307.2020.00168
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1007/s00778-021-00655-8
https://doi.org/10.1145/3514221.3526183
https://doi.org/10.1145/3514221.3526183
https://doi.org/10.14778/3407790.3407792
https://github.com/boniolp/MSAD
https://github.com/boniolp/MSAD
https://adecimots.streamlit.app/
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/342009.335388
https://doi.org/10.1016/j.enbuild.2015.11.071
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.14778/3476311.3476407
https://doi.org/10.14778/3476311.3476407
https://doi.org/10.5441/002/edbt.2021.91
https://arxiv.org/abs/1612.06676
https://doi.org/10.1007/11811305_3
https://doi.org/10.1007/11811305_3
https://doi.org/10.48550/ARXIV.2210.01078
https://dspace.mit.edu/handle/1721.1/29206

29206 Accepted: 2005-10-07T20:45:22Z.

[46] Medina Hadjem, Farid Naït-Abdesselam, and Ashfaq Khokhar. 2016. ST-segment

and T-wave anomalies prediction in an ECG data using RUSBoost. In 2016 IEEE
18th International Conference on e-Health Networking, Applications and Services
(Healthcom). 1–6. https://doi.org/10.1109/HealthCom.2016.7749493

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. https://doi.org/10.48550/ARXIV.1512.03385

[48] Geoffrey E. Hinton. 1989. Connectionist Learning Procedures. Artif. Intell. 40
(1989), 185–234.

[49] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, Vol. 1. 278–282 vol.1. https:

//doi.org/10.1109/ICDAR.1995.598994

[50] Earl B. Hunt, J Marin, and Philip J. Stone. 1966. Experiments in induction.

[51] Alexander Ihler, Jon Hutchins, and Padhraic Smyth. 2006. Adaptive Event

Detection with Time-Varying Poisson Processes. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(Philadelphia, PA, USA) (KDD ’06). Association for Computing Machinery, New

York, NY, USA, 207–216. https://doi.org/10.1145/1150402.1150428

[52] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime

Tatbul. 2020. Exathlon: A Benchmark for Explainable Anomaly Detection over

Time Series. arXiv preprint arXiv:2010.05073 (2020).
[53] Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime

Tatbul. 2021. Exathlon: A Benchmark for Explainable Anomaly Detection over

Time Series. Proc. VLDB Endow. 14, 11 (oct 2021), 2613–2626.
[54] Hao Jiang, Chunwei Liu, Qi Jin, John Paparrizos, and Aaron J Elmore. 2020. Pids:

attribute decomposition for improved compression and query performance in

columnar storage. Proceedings of the VLDB Endowment 13, 6 (2020), 925–938.
[55] Hao Jiang, Chunwei Liu, John Paparrizos, Andrew A Chien, Jihong Ma, and

Aaron J Elmore. 2021. Good to the last bit: Data-driven encoding with codecdb.

In Proceedings of the 2021 International Conference on Management of Data.
843–856.

[56] E. Keogh, T. Dutta Roy, U. Naik, and A Agrawal. 2021. Multi-dataset Time-

Series Anomaly Detection Competition 2021. https://compete.hexagon-ml.com/

practice/competition/39/.

[57] Eamonn J. Keogh, Stefano Lonardi, Chotirat Ratanamahatana, Li Wei, Sanghee

Lee, and John C. Handley. 2006. Compression-based data mining of sequential

data. Data Mining and Knowledge Discovery 14 (2006), 99–129.

[58] Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon.

2021. Towards a Rigorous Evaluation of Time-series Anomaly Detection. In

AAAI Conference on Artificial Intelligence.
[59] N. Laptev, S. Amizadeh, and Y. Billawala. 2015. S5 - A Labeled Anomaly Detection

Dataset, version 1.0(16M). https://webscope.sandbox.yahoo.com/catalog.php?

datatype=s&did=70

[60] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly

Detection Algorithms – The Numenta Anomaly Benchmark. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA). 38–44.
https://doi.org/10.1109/ICMLA.2015.141

[61] Zhi Li, Hong Ma, and Yongbing Mei. 2007. A Unifying Method for Outlier

and Change Detection from Data Streams Based on Local Polynomial Fitting.

In Advances in Knowledge Discovery and Data Mining (Lecture Notes in Com-
puter Science), Zhi-Hua Zhou, Hang Li, and Qiang Yang (Eds.). Springer, Berlin,

Heidelberg, 150–161. https://doi.org/10.1007/978-3-540-71701-0_17

[62] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2020. Matrix

profile goes MAD: variable-length motif and discord discovery in data series.

DataMin. Knowl. Discov. 34, 4 (2020), 1022–1071. https://doi.org/10.1007/s10618-
020-00685-w

[63] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J Elmore. 2021. Decom-

posed bounded floats for fast compression and queries. Proceedings of the VLDB
Endowment 14, 11 (2021), 2586–2598.

[64] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In

2008 Eighth IEEE International Conference on Data Mining. 413–422. https:

//doi.org/10.1109/ICDM.2008.17 ISSN: 2374-8486.

[65] Shinan Liu, Tarun Mangla, Ted Shaowang, Jinjin Zhao, John Paparrizos, San-

jay Krishnan, and Nick Feamster. 2023. AMIR: Active Multimodal Interaction

Recognition from Video and Network Traffic in Connected Environments. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
7, 1 (2023), 1–26.

[66] Yubao Liu, Xiuwei Chen, and Fei Wang. 2009. Efficient Detection of Discords

for Time Series Stream. Advances in Data and Web Management (2009), 629–634.
http://www.springerlink.com/index/n546h380446p95r7.pdf

[67] Markus Löning, A. Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines,

and Franz J. Király. 2019. sktime: A Unified Interface for Machine Learning

with Time Series. ArXiv abs/1909.07872 (2019).

[68] Haoran Ma, Benyamin Ghojogh, Maria N. Samad, Dongyu Zheng, and Mark

Crowley. 2020. Isolation Mondrian Forest for Batch and Online Anomaly De-

tection. In 2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). 3051–3058. https://doi.org/10.1109/SMC42975.2020.9283073

[69] Pankaj Malhotra, L. Vig, Gautam M. Shroff, and Puneet Agarwal. 2015. Long

Short Term Memory Networks for Anomaly Detection in Time Series. In

ESANN.
[70] Kathy McKeown, Hal Daume III, Snigdha Chaturvedi, John Paparrizos, Kapil

Thadani, Pablo Barrio, Or Biran, Suvarna Bothe, Michael Collins, Kenneth R

Fleischmann, et al. 2016. Predicting the impact of scientific concepts using full-

text features. Journal of the Association for Information Science and Technology
67, 11 (2016), 2684–2696.

[71] G.B. Moody and R.G. Mark. 2001. The impact of the MIT-BIH Arrhythmia

Database. IEEE Engineering in Medicine and Biology Magazine 20, 3 (2001),

45–50. https://doi.org/10.1109/51.932724

[72] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep

Learning Approach for Unsupervised Anomaly Detection in Time Series. IEEE
Access 7 (2019), 1991–2005. https://doi.org/10.1109/ACCESS.2018.2886457

[73] Keiron O’Shea and Ryan Nash. 2015. An Introduction to Convolutional Neural

Networks. CoRR abs/1511.08458 (2015). arXiv:1511.08458 http://arxiv.org/abs/

1511.08458

[74] ES Page. 1957. On problems in which a change in a parameter occurs at an

unknown point. Biometrika 44, 1/2 (1957), 248–252.
[75] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence

Analytics. SIGMOD Rec. 44, 2 (Aug. 2015), 47–52. https://doi.org/10.1145/

2814710.2814719

[76] Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second

Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3
(Dec. 2019), 36–40. https://doi.org/10.1145/3377391.3377400

[77] Ioannis Paparrizos. 2018. Fast, Scalable, and Accurate Algorithms for Time-Series
Analysis. Ph.D. Dissertation. Columbia University.

[78] John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S. Tsay, Aaron Elmore,

and Michael J. Franklin. 2022. Volume under the Surface: A New Accuracy

Evaluation Measure for Time-Series Anomaly Detection. Proc. VLDB Endow. 15,
11 (2022).

[79] John Paparrizos, Ikraduya Edian, Chunwei Liu, Aaron J Elmore, and Michael J

Franklin. 2022. Fast adaptive similarity search through variance-aware quanti-

zation. In 2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2969–2983.

[80] John Paparrizos and Michael J Franklin. 2019. Grail: efficient time-series repre-

sentation learning. Proceedings of the VLDB Endowment 12, 11 (2019), 1762–1777.
[81] John Paparrizos and Luis Gravano. 2015. k-shape: Efficient and accurate clus-

tering of time series. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 1855–1870.

[82] John Paparrizos and Luis Gravano. 2017. Fast and accurate time-series clustering.

ACM Transactions on Database Systems (TODS) 42, 2 (2017), 1–49.
[83] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas,

and Michael J. Franklin. 2022. TSB-UAD: An End-to-End Benchmark Suite for

Univariate Time-Series Anomaly Detection. Proc. VLDB Endow. 15, 8 (2022).
[84] John Paparrizos, Chunwei Liu, Bruno Barbarioli, Johnny Hwang, Ikraduya

Edian, Aaron J Elmore, Michael J Franklin, and Sanjay Krishnan. 2021. VergeDB:

A Database for IoT Analytics on Edge Devices.. In CIDR.
[85] John Paparrizos, Chunwei Liu, Aaron J Elmore, and Michael J Franklin. 2020.

Debunking four long-standing misconceptions of time-series distance measures.

In Proceedings of the 2020 ACM SIGMOD international conference on management
of data. 1887–1905.

[86] John Paparrizos, Ryen W White, and Eric Horvitz. 2016. Detecting devastating

diseases in search logs. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 559–568.

[87] John Paparrizos, RyenWWhite, and Eric Horvitz. 2016. Screening for pancreatic

adenocarcinoma using signals from web search logs: Feasibility study and

results. Journal of oncology practice 12, 8 (2016), 737–744.
[88] John Paparrizos, Kaize Wu, Aaron Elmore, Christos Faloutsos, and Michael J

Franklin. 2023. Accelerating Similarity Search for Elastic Measures: A Study

and New Generalization of Lower Bounding Distances. Proceedings of the VLDB
Endowment 16, 8 (2023), 2019–2032.

[89] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In NeurIPS, Vol. 32.
[90] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,

Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research 12, 85 (2011),
2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html

[91] Adrien Petralia, Philippe Charpentier, Paul Boniol, and Themis Palpanas. 2023.

Appliance Detection Using Very Low-Frequency Smart Meter Time Series. In

Proceedings of the 14th ACM International Conference on Future Energy Systems,

3431

https://dspace.mit.edu/handle/1721.1/29206
https://doi.org/10.1109/HealthCom.2016.7749493
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1145/1150402.1150428
https://compete.hexagon-ml.com/practice/competition/39/
https://compete.hexagon-ml.com/practice/competition/39/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://doi.org/10.1109/ICMLA.2015.141
https://doi.org/10.1007/978-3-540-71701-0_17
https://doi.org/10.1007/s10618-020-00685-w
https://doi.org/10.1007/s10618-020-00685-w
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
http://www.springerlink.com/index/n546h380446p95r7.pdf
https://doi.org/10.1109/SMC42975.2020.9283073
https://doi.org/10.1109/51.932724
https://doi.org/10.1109/ACCESS.2018.2886457
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1145/2814710.2814719
https://doi.org/10.1145/2814710.2814719
https://doi.org/10.1145/3377391.3377400
http://jmlr.org/papers/v12/pedregosa11a.html

e-Energy 2023, Orlando, FL, USA, June 20-23, 2023. ACM, 214–225. https://doi.

org/10.1145/3575813.3595198

[92] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian

Förster, Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois

Ferscha, Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo

Chavarriaga, Hesam Sagha, Hamidreza Bayati, Marco Creatura, and José del R.

Millàn. 2010. Collecting complex activity datasets in highly rich networked

sensor environments. In 2010 Seventh International Conference on Networked
Sensing Systems (INSS). 233–240.

[93] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoen-

coders with Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast,

Australia QLD, Australia) (MLSDA’14). Association for Computing Machinery,

New York, NY, USA, 4–11. https://doi.org/10.1145/2689746.2689747

[94] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly

Detection in Time Series: A Comprehensive Evaluation. Proc. VLDB Endow. 15,
9 (jul 2022), 1779–1797.

[95] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and

John Platt. 1999. Support vector method for novelty detection. In Proceedings
of the 12th International Conference on Neural Information Processing Systems
(NIPS’99). MIT Press, Cambridge, MA, USA, 582–588.

[96] Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P. Boedi-

hardjo, Crystal Chen, and Susan Frankenstein. 2015. Time series anomaly

discovery with grammar-based compression. In EDBT.
[97] K Simonyan and A Zisserman. 2015. Very deep convolutional networks for large-

scale image recognition. 3rd International Conference on Learning Representations
(ICLR 2015), 1–14.

[98] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019.

Robust Anomaly Detection for Multivariate Time Series through Stochastic

Recurrent Neural Network. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (Anchorage, AK,

USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA,

2828–2837. https://doi.org/10.1145/3292500.3330672

[99] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos.

2006. Online Outlier Detection in Sensor Data Using Non-Parametric Models.

In Proceedings of the 32nd International Conference on Very Large Data Bases
(Seoul, Korea) (VLDB ’06). VLDB Endowment, 187–198.

[100] Markus Thill, Wolfgang Konen, and Thomas Bäck. 2020. MarkusThill/MGAB:
The Mackey-Glass Anomaly Benchmark, https://doi.org/10.5281/zenodo.3762385.
https://doi.org/10.5281/zenodo.3762385

[101] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. Advances in neural information processing systems 30 (2017).
[102] Alexander von Birgelen and Oliver Niggemann. 2018. Anomaly Detection and

Localization for Cyber-Physical Production Systems with Self-Organizing Maps.
Springer Berlin Heidelberg, Berlin, Heidelberg, 55–71. https://doi.org/10.1007/

978-3-662-57805-6_4

[103] PichaoWang, XueWang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, FanWang, Hao

Li, and Rong Jin. 2022. Scaled relu matters for training vision transformers. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 2495–2503.
[104] Qitong Wang, Stephen Whitmarsh, Vincent Navarro, and Themis Palpanas.

2022. iEDeaL: A Deep Learning Framework for Detecting Highly Imbalanced

Interictal Epileptiform Discharges. Proc. VLDB Endow. 16, 3 (2022), 480–490.
https://www.vldb.org/pvldb/vol16/p480-wang.pdf

[105] Zhiguang Wang, Weizhong Yan, and Tim Oates. 2017. Time series classification

from scratch with deep neural networks: A strong baseline. 2017 International
Joint Conference on Neural Networks (IJCNN) (2017), 1578–1585.

[106] Renjie Wu and Eamonn J Keogh. 2020. Current Time Series Anomaly Detection

Benchmarks are Flawed and are Creating the Illusion of Progress. arXiv preprint
arXiv:2009.13807 (2020).

[107] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross

Girshick. 2021. Early convolutions help transformers see better. Advances in
Neural Information Processing Systems 34 (2021), 30392–30400.

[108] Yuan Yao, Abhishek Sharma, Leana Golubchik, and Ramesh Govindan. 2010.

Online anomaly detection for sensor systems: A simple and efficient approach.

Performance Evaluation 67, 11 (2010), 1059–1075. https://doi.org/10.1016/j.peva.

2010.08.018 Performance 2010.

[109] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn

Keogh. 2016. Matrix Profile I: All Pairs Similarity Joins for Time Series: A

Unifying View That Includes Motifs, Discords and Shapelets. In 2016 IEEE 16th
International Conference on Data Mining (ICDM). 1317–1322. https://doi.org/10.

1109/ICDM.2016.0179

[110] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Zachary Zimmerman, Diego Furtado Silva, Abdullah

Mueen, and Eamonn Keogh. 2018. Time series joins, motifs, discords and

shapelets: a unifying view that exploits the matrix profile. Data Mining and
Knowledge Discovery 32, 1 (Jan. 2018), 83–123. https://doi.org/10.1007/s10618-

017-0519-9

[111] Yuanxiang Ying, Juanyong Duan, Chunlei Wang, Yujing Wang, Congrui Huang,

and Bixiong Xu. 2020. Automated Model Selection for Time-Series Anomaly

Detection. https://doi.org/10.48550/ARXIV.2009.04395

[112] Harry Zhang. 2004. The Optimality of Naive Bayes. In The Florida AI Research
Society.

[113] Yue Zhao, Ryan Rossi, and Leman Akoglu. 2021. Automatic Unsupervised

Outlier Model Selection. In Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan

(Eds.), Vol. 34. Curran Associates, Inc., 4489–4502.

3432

https://doi.org/10.1145/3575813.3595198
https://doi.org/10.1145/3575813.3595198
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.5281/zenodo.3762385
https://doi.org/10.5281/zenodo.3762385
https://doi.org/10.1007/978-3-662-57805-6_4
https://doi.org/10.1007/978-3-662-57805-6_4
https://www.vldb.org/pvldb/vol16/p480-wang.pdf
https://doi.org/10.1016/j.peva.2010.08.018
https://doi.org/10.1016/j.peva.2010.08.018
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1109/ICDM.2016.0179
https://doi.org/10.1007/s10618-017-0519-9
https://doi.org/10.1007/s10618-017-0519-9
https://doi.org/10.48550/ARXIV.2009.04395

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Time-Series and Anomaly Score Notations
	2.2 Anomaly Detection Methods for Time Series
	2.3 Limitations of Anomaly Detection Methods

	3 Motivation and Problem
	3.1 Ensembling Detectors
	3.2 Model Selection
	3.3 Classification for Model Selection
	3.4 Problem Formulation
	3.5 Objectives

	4 Proposed Pipeline
	4.1 Preprocessing Step
	4.2 Time Series Classification Approaches
	4.3 Selecting the Detector

	5 Experimental Evaluation
	5.1 Overall Evaluation
	5.2 Influence of the Window Length
	5.3 Influence of Datasets and Anomaly Types
	5.4 Detection vs Classification Accuracy
	5.5 Out-of-Distribution Experiments

	6 Conclusions
	Acknowledgments
	References

