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ABSTRACT

Users often want to augment and enrich entities in their datasets

with relevant information from external data sources. As many ex-

ternal sources are accessible only via keyword-search interfaces, a

user usually has tomanually formulate a keyword query that extract

relevant information for each entity. This approach is challenging

as many data sources contain numerous tuples, only a small fraction

of which may contain entity-relevant information. Furthermore,

di�erent datasets may represent the same information in distinct

forms and under di�erent terms (e.g., di�erent data source may use

di�erent names to refer to the same person). In such cases, it is

di�cult to formulate a query that precisely retrieves information

relevant to an entity. Current methods for information enrichment

mainly rely on lengthy and resource-intensive manual e�ort to

formulate queries to discover relevant information. However, in

increasingly many settings, it is important for users to get initial

answers quickly and without substantial investment in resources

(such as human attention). We propose a progressive approach to

discovering entity-relevant information from external sources with

minimal expert intervention. It leverages end users’ feedback to

progressively learn how to retrieve information relevant to each

entity in a dataset from external data sources. Our empirical evalu-

ation shows that our approach learns accurate strategies to deliver

relevant information quickly.
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1 INTRODUCTION

There is a recognized need to collect and connect information

from a variety of data sources [14, 18, 23]. As an example, we have
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recently worked in a large-scale NIH-funded project to augment the

information of biomedical entities by querying other biomedical

data sources [49]. The main focus of this project is to repurpose

current drugs to treat or mitigate the symptoms of diseases for

which there is insu�cient time or resources to develop e�ective

treatments (e.g., new or rare diseases) [2]. Biomedical researchers

often have some local dataset of available drugs (e.g., a dataset of

FDA-approved uses of drugs). Given a drug in the local dataset, a

researcher usually needs to query external data sources to �nd

additional information about the drug (e.g., its o�-label uses).

Due to a lack of access or resources, external information often

must be retrieved through querying [14, 47]. Many data sources

are only accessible via query interfaces or APIs. Even with access,

it may require too much of a resource (e.g., storage space, time) to

download and maintain an up-to-date copy of the external dataset.

Thus, information relevant to some local entity must often be gath-

ered on a as-needed basis by querying external data sources. For

example, as many biomedical data sources are available only via

query APIs, the users of the aforementioned drug repurposing data

collection system must often query the information relevant to

their current drug of interest through query APIs.

However, formulating a query that extracts speci�c information

can be troublesome. Di�erent data sources often represent the same

concept in distinct forms [12, 15] such that one needs to tailor their

query to speci�c external data sources. Figure 1 illustrates a case

where users have a local dataset of FDA-approved uses of drugs,

named FDA-Approved Uses, and would like to query an external

data source that contains the o�-label uses of those drugs, named

O�-Label Uses. A drug that is identi�ed by one of its brand names

(e.g., Zoloft) in FDA-Approved Uses is referred to by its generic name

(e.g., Sertraline) in O�-Label Uses. Because of heterogeneities, one

may not know how to query for a speci�c external entity prior to

investigating the content and structure of the data in the external

source. Consider a biomedical researcher who seeks additional in-

formation about the drug Zoloft in their local dataset. Since they

are only aware of the structure and content of their local dataset,

they query the external data source for Zoloft, but that elicits no

results. They try again using a much more general description of

Zoloft (i.e., being a serotonin reuptake inhibitor). However, their

under-speci�ed query produces many results, most of which are

irrelevant (i.e., contain information about drugs that are not Zoloft).

After additional trial-and-error, they �nd a query that retrieves Ser-

traline. More work is required to then merge the local and external

entities into one coherent representation.
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Query Policy 𝜋

Featurization Φ

Brand Drug Class Approved Use Description

Provigil
wake-promoting 

central nervous agent
Narcolepsy

affects attention areas 

in the brain

Zoloft
selective serotonin 

reuptake inhibitor

Clinical 

depression

increases serotonin, 

controls mood & panic

Paxil
selective serotonin 

reuptake inhibitor

Obsessive-

compulsive 

disorder

boosts serotonin, 

reduces stress

Mediator generates keyword query2

User selects a local entity 
and passes it to mediator1 User

Example Local Datasource: FDA-Approved Uses

“serotonin 

depression 
panic”

Example External Datasource: Off-Label Uses

User provides relevance feedback; 
used to update query policy4

RewardFeedback
Response

Entity

Generic M. Formula Off-Label Use How Works

Sertraline 𝐶𝐻𝐶𝑙𝑁 Fibromyalgia

raises serotonin levels in 

the brain, stops panic, 

may reduce depression

Paroxetine 𝐶𝐻𝐹𝑁𝑂 IBS

raises serotonin levels in 

the brain, improves 

mood, controls stress

Quetiapine 𝐶𝐻𝑁𝑂 Anxiety

decreases serotonin & 

dopamine in the brain, 

improves thinking and

Query Interface

External returns top 
results for the generated 

query to the user
3

Query

Figure 1: An example of our framework for a single user and single external data source. The user selects (by query, GUI, etc,.)

the local entity Zolo�. The mediator uses its learned query policy to extract the relevant entity (Sertraline) from the external

source. The user provides relevance feedback on the results, which is then used to further re�ne the mediator’s querying policy.

Manually querying for speci�c external entities takes too much

time and �nancial resources. Continuing our example, if the re-

searcher needs additional information for another drug in their

local dataset, they will need to repeat the entire process. Moreover,

if they need information from additional external data sources, then

the work required to query for each drug is greatly exacerbated.

Furthermore, any other researcher with a similar information need

must repeat the same such work themselves.

To alleviate the burden, one can use a shared system that

automates query formulation. Thismediator system acts as

a go-between for users and external data sources: a user speci�es

a local entity (e.g., Zoloft) perhaps through a query or a graphical

user interface, and the mediator maps the local entity to queries

that retrieve the relevant external entities (e.g., Sertraline) from

their respective external sources.

To the best of our knowledge, such mediators are currently cre-

ated bymanually writing programs that generate queries for speci�c

external sources to retrieve relevant records to a given local entity.

Each program implements a set of manually written rules speci�c to

its external source. These rules cannot necessarily be reused across

data sources. Thus, the mediator requires a signi�cant amount of

labor and expert attention to build and maintain. Instead of conduct-

ing their own research, biomedical researchers in our NIH-funded

project spend most of their time writing these programs and in-

vestigating the content and structure of every external source to

ensure that the programs formulate appropriate queries.

In this paper, we examine methods for learning the mediator’s

query policy online through user interaction. As illustrated in Fig-

ure 1, after the user speci�es a local entity, the mediator formulates

a query to retrieve records from an external source according to its

query policy and shows the returned external records to the user.

The user then provides feedback on the relevance of the returned

records to the local entity. Our mediator learns to revise its query

policy and improves its performance using the user’s feedback.

An alternative to this online learning paradigm is to use o�ine

training data to learn query formulation but collecting and labeling

such data still requires considerable manual e�ort from domain

experts [14]. Particularly, it is challenging to gather useful training

data from external sources. The data collection/labeling might need

to be repeated as the external datasets evolve. In many domains

(e.g., drug repurposing for emerging viral diseases), users cannot

wait long to prepare o�ine training data.

Of course, online learning of query policies comes with its own

set of challenges. First, the mediator should learn to formulate

reasonably accurate queries over external sources early on. We

assume the mediator must be e�ective in the short run so users will

continue to provide feedback. It is particularly di�cult to meet this

goal over large local or external datasets as the amount of required

feedback for accurate learning generally grows with the number of

entities. Second, the mediator should improve its querying policy

and increase the e�ectiveness of its results in the long run. Online

learning literature indicates that a policy that is e�ective in the

short run (i.e., meets the �rst challenge) might not be accurate in

the long run as it might become biased to early observations or

decisions that do not deliver accurate results in the long run [42].

Third, due to lack of prior knowledge about the precise content

and structure of the relevant external information, the number of

candidate queries for a local entity might be enormous. This large

search space makes �nding e�ective queries di�cult.

Due to the wide-spread use of keyword query interfaces over ex-

ternal sources, we develop online learning methods for formulating

keyword queries. There are systems for automatic keyword query

formulation, but they assume returned results are always relevant,

which is not usually true and is the challenge that we address [47]

(see Section 8). Our contributions are as follows:

• We present a framework for on-demand collection of relevant

external entities only accessible via query interfaces (Section 2).

• We de�ne the problem of online query-policy learning within

the context of the aforementioned framework (Section 3).

• We present a method that learns a separate query policy for

each individual local entity. We show that this approach does

not scale to large local datasets as it might require a great deal

of user feedback (Section 4).

• We propose an entity-conditional method that learns a query

policy jointly over all local entities. This approach signi�cantly

reduces the amount of user feedback required to learn e�ective

query policies. To overcome representational heterogeneity

across the local and external sources, we propose techniques

to use features and keywords from the external results in our

model and queries, respectively (Section 5).

• If the local dataset contains many diverse entities, it might not

be possible to learn e�ective queries for many entities using a

shared model. Hence, we propose an approach that gradually
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replaces a shared model with entity-speci�c ones based on the

e�ectiveness of the shared model. The resulting models will

retain the desirable properties of the shared model in the short

run and learn more e�ective queries in the long run (Section 6).

• We explore whether the broad language understanding capa-

bilities of state-of-the-art large language models can improve

query generation. We train a neural network over features ex-

tracted by large-scale pretrained Longformer [5] and LLaMA

[44] models to serve as our query policy (Section 6).

• We perform extensive empirical studies using six pairs of real-

world datasets from di�erent domains, including biology, prod-

ucts, and news. Our studies indicate that our proposed methods

learn reasonably e�ective queries quickly and improve their

accuracy in the long run over large datasets (Section 7).

2 GENERAL FRAMEWORK

The mediator wraps the local dataset and the query interface

over the external data source. We assume the mediator has full

access to the local dataset, but can only access external datasets

through their query interfaces. Given a user-speci�ed entity from

the local dataset, the mediator must devise and submit a query to

the interface to extract external entities relevant to the given local

entity. This framework is not tied to a particular method by which

a user speci�es the local entity (e.g., through query or GUI).

Local Dataset. To simplify our exposition, we assume the local

dataset is a single relational table where each tuple stores infor-

mation about a distinct entity. One may extend our approach to

multi-relational datasets by de�ning an entity as the join of its

related tuples. We denote the set of local dataset entities as E.
External Dataset. Like the local dataset, we model the external

dataset as a set of entities (i.e., tuples). Given local entity 4 and

external dataset � , - (4) ∈ � represents the external entity that is

relevant to the local one. The de�nition of "relevant entity" depends

on the domain. For example, a clinical trial is relevant to the drug

that it concerns. For notational convenience, we assume only one

relevant external entity exists for each local entity, however, in the

case of more than one, we can easily extend - (4) to be the set of all
relevant entities. If no relevant entities exist, then extracting - (4)
is impossible regardless of the method used. Thus, to accurately

evaluate our methods, we assume that - (4) always exists.

Example 1. Figure 1 shows excerpts of a local (left) and an exter-

nal (right) dataset. E consists of all drugs in FDA-Approved Uses. If

4 is Zoloft then the relevant tuple - (4) in O�-Label Uses is Sertra-

line. We show the content of - (4) for explanation’s sake. In a real

setting, the content of - (4) would not be known a priori.

Querying Policy.We call the queries submitted by the mediator to

the external data source mediator queries. We denote the set of all

possible mediator queries as Q. Q is a subset of the queries accepted

by the external query interface. The precise de�nition of Q varies

based on the characteristics and capabilities of the external query

interfaces. A querying policy (policy) is a mapping c : E → Q. To

our knowledge, policies are traditionally written manually.

Example 2. Given 4 = Zoloft, the mediator must devise a keyword

query to extract - (4) = Sertraline. One policy is to use the content

of the input entity (Zoloft) within the output mediator query. How-

ever, the content in Brand and Approved Use are likely unique to

the local dataset. Given this observation, assume the mediator’s

policy ignores terms from Brand and Approved Use and prefers

terms from Drug Class and Description. Thus, this policy maps

4 (Zoloft) to the keyword query "serotonin depression panic".

Query Result. External query interfaces usually return results of

query @ as a list of entities inverse sorted based on the degree by

which the query interface deems the entities relevant to @. More

precisely, the result of query @ ∈ Q, � [@], is a list of entities in � .

Query E�ectiveness. Ideally, we would like the mediator query @

submitted for local entity 4 to return the external entity relevant

to 4 , i.e., - (4) is placed in a relatively high position in � [@]. Given
mediator query @ for local entity 4 , we de�ne the e�ectiveness of

@ over external dataset � as a real-valued function 5 (- (4), � [@])
whose range is in [0, 1]. The precise mechanics of 5 depends on

the domain. For instance, there are standard metrics in information

retrieval and data management to measure how e�ectively queries

achieve this goal given their returned results [37]. For example,

precision@: is the fraction of relevant answers in the top-: returned

results. Another frequently used metric is reciprocal rank (RR) 1
A

where A is the position of the �rst relevant answer. One metric

may be more appropriate than another for a speci�c setting. For

instance, reciprocal rank may be a better indication of e�ectiveness

than precision@: if there are at most a couple relevant answers to

the query. One can choose 5 based on the domain. In this paper,

we use reciprocal rank.

Example 3. Themediator submits@ = "serotonin depression panic"

to the query interface over the external dataset in Figure 1, which

returns the ranked results � [@] = (Paroxetine, Sertraline). Since

- (4) = Sertraline, the reciprocal rank of these results would be 1
2 .

E�ectiveness of Policy. A mediator’s policy is evaluated based

on the e�ectiveness of the queries it produces. More formally, the

e�ectiveness of policy c for local dataset E and external dataset �

is � (E, �, c) = ∑

4∈E
% (4) 5 (- (4), � [c (4)]) where % (.) is the prior

probability of choosing local entities for augmentation by users.

Unless otherwise noted, we assume that P(.) is uniform.

Optimal Policy. Optimal policy delivers the maximum e�ective-

ness across the entire local dataset. More precisely, the optimal pol-

icyc∗ for local dataset E and external dataset� is argmax
c

� (E, �, c).

Problem Statement. Given local dataset E and external dataset

� , the mediator seeks to �nd the optimal policy c∗ from the set of

all possible policies. Finding the optimal policy requires a su�cient

understanding of both the representation of entities in E and how

query interface over � answers queries.

Merging Local and External Information. One might have to

merge local data with its relevant external data by performing other

steps of data integration, such as schema matching [14]. However, it

takesmore than one paper to investigate all steps of data integration.

Thus, we assume that in these settings, users leverage existing data

integration tools to create the �nal dataset and focus on the task of

collecting information from external sources e�ectively.
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3 LEARNING QUERY POLICY PROGRESSIVELY

In our online approach, themediator re�nes its querying policy over

time as users provide feedback on the e�ectiveness of its queries.

External relevant information would be presented to the user on-

demand as they identify entities of interest in the local dataset [35].

The mediator queries external information relevant to the entity of

interest using its current policy, presents the results to the user, and

collects their feedback on the quality of the results. The mediator

may then use the collected feedback to revise and improve its policy

to produce progressively better queries and results.

Though our realized system would depend on real-user interac-

tion, we focus on the fundamental question of whether e�ective

querying policies can be learned online and reserve user studies for

future work. Thus, we assume a simple user interface and feedback

scenario. After the mediator gathers the external results, they are

returned to the user. Users can inspect the external results and

provide feedback to the mediator. The feedback may be explicit

(click-through [45]) or implicit (skipping results [31]).

Our approach is meant to provide users with an additive, non-

disruptive experience that improves over time as they provide feed-

back. Users may interact with the local data source as they normally

would and either leverage the external results or ignore them al-

together. The mediator learns from the collective feedback of all

users, so no single user bears the full responsibility of training it.

Thus, as long as some users provide feedback, the mediator can

improve, providing progressively better external results for each

local entity, for all users of the system.

3.1 Objective and Challenges

Algorithm 1 Mediator (Online Query Policy Learning)

1: for t = 1, 2, 3,...,T do

2: Observe local entity 4C sampled from E
3: @C ← cC (4C )
4: d ← � [@C ] ⊲ Results over external data source �

5: Present results to user.

6: Observe degree of e�ectiveness 5C ← 5 (- (4C ), d)
7: cC+1 ← D?30C4c (5C )

Algorithm 1 describes the mediator’s general procedure for our

online query-policy learning approach. The mediator is involved

in a series of interactions with the external data source � and a

group of local data source users. An interaction at time C is initiated

by sampling a local entity for augmentation. How 4C is sampled

can re�ect one local user’s preference for augmenting that speci�c

entity at time C . The mediator uses its current policy cC to map 4C
to query @C . It then submits this query to the external data source

to obtain a ordered list of results d as explained in Section 2. Since

query interfaces often enforce top-k constraint on their returned

results [16, 29], we assume that |3 | ≤ : . The mediator presents d

to the user and evaluates its e�ectiveness 5C using user’s feedback,

where 5C depends on the unknown qualities of the external data

source (how it ranks and returns results relative to@C ). Themediator

uses !C to update its current policy and �nd progressively more

e�ective and eventually optimal policies.

Regret. The objective of Algorithm 1 is to �nd optimal policies

quickly. Thus, it is not enough that Algorithm 1 eventually �nd the

optimal policy: a successful method must also return reasonably

e�ective results as it searches for said policy. We use the concept of

regret to formalize this property. Regret is often used to evaluate

the performance of online learning algorithms [42]. Let the policy

of Algorithm 1 at time C be cC . The regret after ) interactions is

'() ) = ) × � (E, �, c∗) − E
[

)
∑

C=0

5 (- (4C ), � [cC (4C )])
]

(1)

where expectation is computed over the probability of choosing

entities and policies at time C . Regret aggregates the di�erence

between the e�ectiveness of results delivered by the algorithm’s

policy and the one of the optimal policy in interactions 0 ≤ C ≤ ) .

Problem Statement. The problem of online learning of querying

policy is to �nd policy(s) cC , 0 ≤ C ≤ ) , that minimize '() ).
Challenges. The sooner the algorithm �nds the optimal (or a

relatively e�ective) policy, the less its regret. To meet this challenge,

a mediator must accomplish two goals:

1. Balance Exploration and Exploitation. As themediator neither

knows the content of entities in the external source nor the ranking

method used by its query interface accurately, �nding e�ective

policies requires searching the space of all policies. To minimize

regret, the mediator must search the policy space intelligently: if it

exploits the best query found thus far, it may ignore queries that are

more e�ective; if it strictly explores until it has found the optimal

query for each entity, then it will accumulate a large amount of

regret in the process since, many queries are likely ine�ective. Thus,

we design methods that have the mediator balance both exploiting

what it knows and exploring the space of policies for better queries.

2. Maintain Users’ Engagement. Policy search requires user feed-

back, thus the mediator must also keep users engaged while search-

ing. Due to the large number of local entities, large set of possible

queries, and the di�erent representations of information in the local

and external, it might not be possible to �nd an e�ective policy

in just a few interactions. Nevertheless, if e�ectiveness remains

relatively low for an extended period, users might become discour-

aged and abandon the system. It is assumed that users have some

tolerance for poor policies during their initial use of the system

granted that more e�ective policies are eventually found. But users

may stop providing feedback if the policies continue to perform

poorly even after a modest amount of feedback is provided.

Hence, our objective is to design methods that minimize regret

across two phases: the short run and the long run. The short run is

the �rst )BA interactions. Within the short run, the mediator must

�nd a policy such that '()BA ) ≤ '∗ ()BA ) + n where '∗ ()BA ) is the
regret of c∗. Both = and n depend on user tolerance for sub-optimal

results. As factors that lead to user abandonment are complicated

[13], we do not establish an explicit n range for tolerance and note

that it is speci�c to the domain and the end-users. User tolerance

may be high if the alternative to providing feedback is onerous

(i.e., hand-crafting the queries themselves in a complex domain).

Furthermore, since the mediator leverages feedback from all users,

)BA also depends on the number of users. For example, for small n ,

)BA = 500 is likely unreasonable for a system with 5 users; however,

it may be reasonable for a system with 50 users. The number of

users as well as their expectations may change over time, thus both
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)BA and n also change over time. Success in the short run requires

expedient su�ciency: the model must at least meet minimal user

expectations to retain usefulness and continue gathering feedback.

In the long run, the goal is to minimize regret as C → ∞. At this

stage, user abandonment is no longer the primary concern. Rather,

the challenge is to maximize user satisfaction. In this stage, models

should be concerned with further minimizing their regret.

Keyword Query Interface and Results. A keyword query @ is a

�nite string comprised of terms (keywords). The number of terms

in each query is its length. We indicate that term : appears in query

@ with : ∈ @. Where appropriate, we denote the set of queries of

length ℓ using &ℓ . To save resources, query interfaces might limit

the number of terms in their input queries. For example, Yelp!’s

Fusion API will return no results if more than 8 terms are used

and Google.com limits queries to 32 terms. These limits are usu-

ally recorded in the query-interface documentation. We assume

that all queries submitted to an external data source � have a

given �xed length. We explain how to relax this assumption in Sec-

tion 7.2. Though they are relatively simple, keyword queries present

a unique set of challenges. Unlike formal query languages, such

as SQL, keyword queries are inherently vague [29, 37]. Moreover,

limits on the length of keyword queries often reduce the �exibility

of formulating informative queries.

3.2 Managing the Policy Space

The space of potential policies is correlated with the size of Q (i.e.,

the co-domain): the larger Q is, the more ways that local entities

can be mapped to queries. Furthermore, treating each query in Q as

producing unique results from the external data source is problem-

atic for two reasons. First, queries containing the same keywords

should produce somewhat similar results. Second, assuming each

query produces unique results makes evaluating policies more dif-

�cult. Under this uniqueness assumption, two policies that send

similar queries for any given entity will still be considered entirely

di�erent if none of their output queries are exactly the same. To

make our policy space more manageable, we both prune Q and

take a term-centric approach when mapping entities to queries.

Entity-Speci�c Pruning. For any input local entity, only a small

subset of Q will be useful. Though Q could be manually pruned

using domain expertise, we opt for general methods that do not

require this extra attention. In order to remove a large fraction of

ine�ective queries, we limit the terms considered to only those

that e�ectively express the given local entity. We de�ne an entity-

dependent co-domain Q4 ⊆ Q. Let !(4) be the set of terms that

make up the content of 4 . That is, if term : appears in the local

entity 4 , then : ∈ !(4). For every entity 4 ∈ E, Q4 contains every

possible concatenation of distinct terms from !(4). In other words,

the mediator maps 4 to a keyword query@ by concatenating a subset

of the terms in the local tuple !(4). !(4) might not contain the terms

necessary to form an optimal query, but given that relevant entities

from related domains often share terms, it is reasonable to believe

that an e�ective query could still be found in many cases. As we

will discuss in Section 5.3, Q4 can be expanded to include other

terms and more e�ective queries during the interaction.

Term E�ectiveness. In order to generalize its knowledge across

policies, themediator evaluates the e�ectiveness of keyword queries

based on their content. We take advantage of the fact that many

keyword queries overlap with respect to the terms they contain.

Intuitively speaking, if a subset of terms is shared across e�ective

queries for some entity 4 , then it is likely that same subset that has

signi�cantly in�uenced each query’s e�ectiveness. Thus, a desirable

policy would map 4 to queries containing that same subset. Follow-

ing this logic, we consider methods that track the e�ectiveness of

terms used within keyword queries rather than the e�ectiveness of

whole keyword queries. Furthermore, we assume that terms within

keyword queries are independent. This assumption allows our poli-

cies to construct output queries term-by-term based on each term’s

e�ectiveness. We call the set of terms : ∈ !(4) the candidate terms

for 4 because it consists of all of the possible terms that could be

selected one-at-a-time to form Q4 .

4 ENTITY-LEVEL LEARNING

A natural approach to learn queries is to maintain a model for each

local entity. The policy for the whole dataset would be the union

of each entity-speci�c model. Precisely, the mediator maps entities

4 ∈ E to queries @ ∈ Q4 by selecting candidate terms based on their

e�ectiveness in previous queries for the same entity.

At time C and given entity 4C , the mediator could calculate the

expected accuracy of including a candidate term : ∈ !(4C ) within
a query for 4C over � based on the previous queries used for 4C .

E[:] = 1
∑C−1

9=0 � (:, 9, C)

C−1
∑

9=0

5 (- (4 9 ), � [@ 9 ])� (:, 9, C) (2)

where � (:, 9, C) is 1 if : ∈ @ 9 , : ∈ - (4 9 ), 4 9 = 4C , and 0 otherwise.

The expected reward for a candidate term : ∈ !(4C ) would be the

mean of the rewards for those queries generated for 4C in previous

interactions [0, C − 1] where : exists in both the generated query

@ 9 and the content of the relevant external tuple - (4C ). If a term
did not appear in - (4C ) then it very likely had no positive a�ect on

extracting- (4C ), thus the reward associated with including : in the

query is assumed to have been 0. After calculating the expectation

of each candidate term, the mediator could then greedily generate a

query with the greatest mean expected reward by selecting ℓ terms

with the highest expected rewards: @C = 0A6<0G
@∈&ℓ

4

1
ℓ

∑

:∈@ E[:].

However, since these term estimates are based only on previously

sent queries, a mediator that strictly acts in a greedymanner will fail

to explore the space of possible queries. As discussed in Section 3.1,

focusing solely on exploiting its current knowledge will prevent

the mediator from �nding better policies.

Multi-Armed Bandit Formulation. Balancing exploration and

exploitation of candidate terms online can be modeled as a Stochas-

tic Multi-Armed Bandit (MAB) problem. The goal of MAB problems

is to learn, from a set of candidate arms with unknown reward

distributions, the arm with the largest mean reward [42]. In each

round, an MAB algorithm picks an arm and observes its reward.

MAB algorithms aim at minimizing regret [42]. There are asymp-

totically optimal algorithms, called Upper Con�dence Bound (UCB),

that estimate con�dence bounds on the expected reward of each

arm and pick the arm with the largest upper limits [3, 30].

It is, however, challenging to scale the entity-level approach

to large datasets with many entities. Because each entity has its
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own model, each entity also represents a distinct learning problem.

The asymptotic amount of feedback required to learn an e�ective

policy would be approximately linear in the number of entities in

the dataset: users may have to wait for thousands if not hundreds

of thousands of interactions to get relevant information in a local

dataset with hundreds of thousands of entities.

5 DATASET-LEVEL LEARNING

To reduce the amount of feedback required to �nd an e�ective

query policy, we consider an entity-conditional model of query

quality that is learned jointly over all entities. We share learning

across entities while recognizing the distinct characteristics of each

entity for generating its queries. Like the entity-level model, each

arm in this approach is a candidate term. However, the reward (i.e.,

e�ectiveness) of using each term varies based on the local entity

(i.e., context) for which the term is used. Since the reward of each

arm depends on its context, we cast our online query formulation

problem as a contextual multi-armed bandit (contextual bandit)

problem [42]. The input of a contextual bandit problem is a �nite

set of arms and contexts, where at each round only one of the

contexts is active. An arm might be used in di�erent contexts. The

reward of each arm depends on the context in which it is used.

5.1 A Linear Bandit Approach

LinUCB extends the idea of UCB to the contextual bandit problem.

It assumes the reward of each arm to be a linear function of some

vector representations of the arm and the current context [10]. The

regret of LinUCB is of order

√

)3 ln3  ) ln)
X

where ) , 3 , and  

are the number of trials, dimension of the vector representation of

arms and contexts, and number of arms, respectively. It provides

an asymptotic regret close to the lowest possible one,$ (
√
)3) [10].

We use LinUCB to learn the query model.

More precisely, we assume that the expected reward for each

term : ∈ @C is a linear function 5C parameterized by an unknown

weight vectorF∗ ∈ R3 as �C (:, 4C ) ·F∗ + nC , where �C (:, 4C ) ∈ R3
is a vectorized representation of term : and entity 4C , and nC is

Gaussian noise with mean 0 and variance 1 (i.e., nC ∼ N(0, 1)).
Our goal is to learn the weight vectorF∗ online. In this approach,

feedback on the e�ectiveness of each query is used to update the

parameters of the reward function of all terms of all queries. Hence,

the learned function can also be used to estimate the reward of

never-before-used candidate terms. Training this model amounts

to leveraging user feedback to �nd a set of weights F that most

accurately model the true reward function.

Example 4. Assume the vectorized representation of a term : ∈
!(4C ) indicates the attribute(s) for which : appears in the content of

4C . Since terms from Brand are unlikely to yield any matches from

a dataset that only knows drugs by their generic names (i.e., the

external data source in Figure 1), the mediator would quickly learn,

irrespective of local entity, that terms from Brand do not produce a

su�cient enough reward to be used in queries.

Like the entity-level model, the dataset-level model uses a term

selection strategy that balances exploration and exploitation. Let

, be the set of all possible weight vectors in R3 . At interaction C ,

LinUCB constructs a con�dence region �C ⊂, that containsF∗

with (high) probability of 1−X using the information from previous

interactions. It then picks a candidate term with the largest possible

reward over �C . The larger the observed average reward of a term

is and the fewer times it has been tried up to round C − 1, the

larger its maximum possible reward over �C will be. The degree of

exploration is controlled by input parameter U ≥ 0.

5.2 Representations of Terms & Entities

We represent�C (:, 4) using lexical, distributional, and schematic fea-

tures of terms. Lexical features are based on a term’s word type (e.g.,

noun or adjective) as indicated by WordNet [38]. The distributional

features of terms are based on the properties of terms over the en-

tire local dataset. For example, let Dataset Frequency (DF) of a term

denote the fraction of entities in the local dataset in which the term

appears. Inverse Dataset Frequency (IDF) of a term is the inverse of

its DF. The IDF of a term quanti�es how well that term identi�es

the entity within the dataset and we use it as a distributional feature

in our model. We use a combination of domain-speci�c (e.g., IDF

of a term in the local dataset) and non-domain-speci�c (e.g., word

types from WordNet) features. The non-domain-speci�c features

are meant to capture the general characteristics of terms that are

not biased to their domain-speci�c representations. To capture the

context (i.e., the local entity for which a term appears) we include

entity-speci�c features of terms, such as the frequency of : in the

content of 4 and the attribute(s) for which : appears in the content

of 4 . We normalize features, such as frequencies of terms in entities,

to ensure that they are comparable across di�erent entities.

5.3 Using External Terms & Features

A local entity and its relevant external entities might share few

to no terms. Hence, policies that only consider queries formed

from the content of a given local entity may lack the ability to

build e�ective queries for that entity. To address this problem, we

propose two methods for expanding the set of candidate terms for

certain local entities by borrowing terms from entities appearing

in external results. We distinguish these two methods based on

whether external terms are borrowed based on user feedback and

external results (supervised) or just external results (unsupervised).

Supervised Term Borrowing. For a keyword query to extract

- (4) from the external dataset, it must contain at least some terms

that appear in the content of - (4). Thus, expanding the set of

candidate terms for 4 to include those terms in- (4) would allow for

queries that more e�ectively extract - (4). After the user identi�es
- (4) within the returned results, the mediator adds the terms in

- (4) to its set of candidate terms for entity 4 . In future interactions,

when the mediator is asked to map 4 to a query, it can use these

additional terms to increase the e�ectiveness of its query. These

terms may improve the ranking of - (4) in subsequent interactions.

Unsupervised Term Borrowing. When the mediator lacks the

candidate terms to retrieve - (4), we must expand the set of can-

didate terms with something other than the content of - (4). The
added terms should have some relation to the local entity while

also re�ecting the term distribution of the external dataset. Since

the mediator’s policy is trained to map 4 to queries that extract

external entities related to 4 , those same external entities may be

transitively related to - (4). Thus, these related entities may reveal
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additional terms that can be used to retrieve - (4). For example,

similar drugs may have similar biological e�ects, meaning similar

terms in attributes like How Works in Figure 1. Unsupervised term

borrowing could saturate the candidate set with unrelated terms.

Thus, we take a conservative approach and only borrow terms

from the external entity in the top position of the returned results.

Furthermore, we only apply unsupervised term borrowing to local

entities that meet the following criteria: 1) - (4) has not been ex-

tracted yet, and 2) a su�ciently large fraction of candidate terms

from the content of 4 have been tried. Setting the aforementioned

fraction to a large value (e.g., 100%) might delay borrowing and

deliver ine�ective results for a relatively long time. Using smaller

values for this fraction might lead to borrowing terms too quickly

and before the mediator policy has collected enough information

about potentially related entities to - (4). In our experiments, we

set this to a value between the two extremes (70%) (Section 7.4).

External Features. For our candidate terms, we use external fea-

tures that re�ect how e�ectively those terms can pinpoint entities

over the external source. For example, the frequency with which a

term appears in an external entity might indicate how e�ectively

this term can pinpoint the entity in the external source. Since the

mediator does not have access to the entire external dataset, we use

only the external features that can be computed during querying

the external source using the returned results (e.g., frequency of

terms in the returned (relevant) entities). We use external features

for both borrowed external and local terms.

6 OVERCOMING ENTITY DIVERSITY

The dataset-level model learns a linear approximation of term ef-

fectiveness over all local terms using relatively few features. Thus,

it should converge to one of its most e�ective policies with few

interactions. However, the dataset-level model may lack the power

to represent the more nuanced properties of terms that determine

their e�ectiveness. Thus, its most e�ective policies will likely be

less e�ective than the entity-level model’s. As large datasets often

contain many diverse entities, the dataset-level model may lack

the capacity to su�ciently estimate rewards of candidate terms for

all entities. Thus, we propose methods that can approximate term

reward quickly while having greater representational power.

6.1 From Dataset-Level to Entity-Level Learning

In contrast to the dataset-level approach (Section 5), the entity-level

approach (Section 4) would eventually result in a (near-)optimal

policy given many interactions. To combine the strengths of these

methods, we introduce a two-stage approach called Hybrid that

quickly learns a shared model and then leverages this model to

warm-start entity-speci�c learning. This method combines the

bene�ts of shared query learning (i.e., keeping users engaged by

learning a relatively e�ective model quickly) and the entity-level

query-learning models (i.e., learning an e�ective model for each

entity in the long run). It starts with learning the shared query

model using the approach explained in Section 5. It then switches

to entity-speci�c models for entities that the shared model cannot

�nd e�ective queries for (e.g., cannot return any relevant answers)

after trying the queries learned by the shared model for those en-

tities su�ciently many times. Dividing the input space of local

entities across di�erent models can increase overall performance

by reducing under-�tting. By introducing entity-speci�c models,

Hybrid not only removes outliers that its shared model cannot �t to

but also �ts dedicated entity-speci�c models to those same outliers.

We, however, modify the entity-level method proposed in Sec-

tion 4 to 1) speed up its learning and 2) enable it to leverage the

available information in the learned shared model. As candidate

solutions in the entity-level model are terms, it may take too long

to learn e�ective policies for each entity. Thus, instead of using the

entity-level model, we use LinUCB to �nd accurate queries for each

selected entity in entity-level learning. We represent each term in

the entity as a vector of features used to train the shared model. We

train a weight vectorFBℎ0A43 until some point and then initialize

the space of solutions for each entity-speci�c model for entity 4 ,F4 ,

based on all previous feedback on queries sent for 4 . Additionally,

we subtract all previous feedback on queries sent for 4 fromFBℎ0A43 .

This way, we warm-startF4 with only the most relevant feedback

and reduce the e�ect that outlier 4 had onFBℎ0A43 . One might use

additional entity-speci�c features (e.g., the frequencies of a term

appearing in the relevant or non-relevant results for the entity) in

the feature vector for each entity-speci�c model.

Transition Details. Hybrid starts with a dataset-level model for all

entities and keeps track of two metrics: (1) the MRR in the last two

windows of = interactions each, and (2) the last RR observed for

individual local entities. For a given local entity, Hybrid will switch

to an entity-speci�c model if the dataset-level model has reached

capacity (i.e., MRR has not increased between the twowindows) and

has shown poor performance over the local entity (i.e., the previous

RR observed for it is less than threshold V). Hyper-parameter =

determines both the amount of feedback the dataset-level model

must receive before entity-speci�c models can be instantiated and

the sample size used to assess the dataset-level model’s recent

performance. If = is too small, then the mediator will instantiate

models for local entities that may have performed well under the

dataset-model. Optimally, = should be set according to the amount

of feedback it takes for the dataset-level model to reach its capacity.

The threshold V can be thought of as the lower-bound on acceptable

performance. As = shrinks (grows) and V grows (shrinks), Hybrid

approaches pure entity-level (dataset-level) learning.

6.2 Language Model Based Query Learning

The simplicity of a linear model is attractive in online learning since

it treats estimation as a convex problem, and if the features used are

good predictors of term e�ectiveness, then a linear model should

perform well even with little feedback. However, the linear model’s

simplicity is also a limitation on its ability to discover more nuanced

predictors of a terms’s quality. Hence, we also explore using a model

that leverages state-of-the-art transformers for richer representa-

tions of tuples and keywords. Speci�cally, we consider large-scale

pretrained language models (LMs) LLaMA [44] and Longformer

[5]. In contrast to linear models, LMs can encode entire tuples

jointly such that individual term quality can be predicted based

on keyword representations contextualized on high-dimensional

representations of the entire entity. This �exibility comes at the

cost of signi�cantly more parameters and non-convex optimization.

Encoding Tuples and Scoring Terms. Given an entity 4C , we

concatenate all terms :8 ∈ !(4C ) into a single string BC and pass it
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through the model after standard byte-pair-encoding tokenization.

The output of the model provides a contextualized representation

ℎ8 for each input token. Note that the byte-pair-encoding may break

candidate terms into multiple inputs or candidate terms may appear

multiple times in the entity, so to produce feature ℎ8 corresponding

to term :8 , the output encodings of all these instance are averaged.

For convenience, we write this process as: ℎ1, ..., ℎ= = LM(BC )
These representations capture information about each term

given the context of the entity. To further enrich these features

with dataset-level information, the feature vector from the linear

model �C (:8 , 4C ) is concatenated onto each corresponding repre-

sentation forming 58 = [�C (:8 , 4C ), ℎ8 ] where [·, ·] denotes concate-
nation. Vector 58 is then passed through a small fully connected

neural network to predict reward A8 for each term. In our setting,

A8 is an estimate for reciprocal rank and bounded between 0 and 1.

Selecting Queries and Updating.We apply an n-greedy approach

to query formulation [42]— selecting either the next-highest-scoring

term or, with probability n , a random term until the desired query

length is achieved. Once user feedback is received, the RR for the

query is calculated and used to supervise the network. Speci�cally,

the observed RR is recorded as a prediction target for all query terms

appearing in the returned external matches. Unobserved terms have

targets of 0 assigned. These term-entity-RR tuples are added to a

�rst-in-�rst-out bu�er of examples for the last 50 observed terms.

We train the model by stochastic gradient descent with batches of

8 samples from the bu�er at each interaction.

Implementation Details. LLaMA consists of 32 layers, 4096 hid-

den representation size, 32 attention heads, and 7 billion parame-

ters. Longformer consists of 12 layers, 768 hidden representation

size, 12 attention heads, and 125 million parameters. They both

use pretrained models from the Huggingface Transformers library,

utilizing their respective byte-pair-encoding tokenizers. Through

pretraining, they acquire strong reasoning capabilities about Eng-

lish words and sentences that are frequently used in our examined

entities. To train the fully-connected neural network, we use Py-

torch’s implementation of Adam with default hyper-parameters.

We use mean squared error as the loss function.

7 EMPIRICAL EVALUATION

7.1 Experimental Setup

Datasets.We evaluate our methods over a variety of domains using

the datasets listed in Table 1. Each dataset contains a local dataset

and an external dataset. We include the entity count for each source

along with the average number of terms per entity. Every entity in

a local dataset has at least one relevant entity in its external dataset,

but some external datasets have additional irrelevant entities that

can appear in results. For this reason, we also specify the number

of external entities that are relevant to at least one local entity.

Both DrugCentral and ChEBI are derived from datasources

used in the NIH project discussed in Section 1. For both, we use

DrugBank as the local source, which contains comprehensive molec-

ular information about drugs [48]. DrugCentral uses Drug Central

as its external source. Drug Central stores regulatory information

associated with drugs [4]. ChEBI broadly tracks molecular enti-

ties used to intervene in the processes of living organisms [27].

WDC is derived from the non-normalized English WDC Product

corpus, containing products scraped from many di�erent sites [39].

CORD-19 contains records about scienti�c papers and research

related to COVID-19 [46]. We split CORD-19 into two separate

sources: one containing abstracts (local) and one containing the

remaining attributes (external). Drugs contains drug reviews from

Drugs.com (local) [24] and descriptions of the same drugs scraped

from Wikipedia (external). News is derived from a dataset cov-

ering 38 major mass-media companies [25]. It contains titles and

summaries of articles (local) and the articles themselves (external).

Perfect MRR (ℓ = 4) in Table 1 indicates the best Mean Recip-

rocal Rank (MRR) achievable for each dataset when using queries

of length 4. This metric was calculated o�ine by searching the

entire space of queries for each local entity and keeping track of

the highest achievable RR. Due to the runtime required, we have

calculated this metric over 5% subsets of each local dataset except

for CORD-19. Due to CORD-19’s large size and high number of

candidate terms per local entity, we could only calculate this metric

over a 544 local entity sample. Though it is unrealistic to assume

that anything but computationally expensive o�ine algorithms can

achieve this performance, we include it as an indicator of dataset

di�culty and term overlap.

Interactions. We simulate a series of interactions between a medi-

ator and a query interface. Each interaction is initiated by sampling

a local entity. Given the local entity, the mediator generates a query

of length ℓ and submits it to the external data source. The external

data source returns its top-20 results based on a static ranking func-

tion (BM25), which we implement using the Whoosh package [9].

The query is assigned a reward based on the reciprocal rank of the

top-relevant result using simulated feedback (i.e., ground truth).

Evaluation Metric. To mitigate variations across entities, we com-

pute MRR as a sliding average over the previous 500 interactions.

Each graph plots this average against the current interaction. We

report MRR for our methods as the average of �ve runs each com-

prising 2000 interactions. Error bands are included around each

average (line) to show a 95% interval for standard error across the

runs. Due to lack of space, we report illustrative examples of trends

and complete results are in [7]. We omit the runtime of experiments,

but note that much of it is dedicated to external query processing:

our models take relatively little time to execute and update.

Hyperparameters. Unless speci�ed otherwise, we treat query

length as a hyperparameter and evaluate our methods using ℓ ∈
{4, 8, 16, 32}. These values re�ect limits on real interfaces (see Sec-

tion 3.1) and illustrate how query length a�ects policy performance.

Dataset-Level (Section 5) and Hybrid (Section 6.1) use LinUCB as

their exploration strategy whileLM-Based models (Section 6.2) use

n-greedy. Both strategies use a hyperparameter to control the extent

to which they explore. For LinUCB we use U = 0.2 and for n-greedy

we use n = 0.05. We evaluate how the degree of exploration a�ects

performance in Sections 7.2 and 7.3.

Static IDF Benchmark. To help contextualize the performance

of our methods, we present a naive policy for comparison. Static

IDF always produces queries using the top-ℓ terms in the content

of 4 based on their Inverse Dataset Frequency (IDF). As explained

in Section 5.2, IDF, a common measure of term speci�city [29],

quanti�es how unique a term is to an entity within a dataset.
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Table 1: Details of datasets used in our evaluation, sorted according to the number of entities within the external source.

dataset source attributes avg. terms entities #relevant Perfect MRR (ℓ = 4)

DrugCentral
Local name, description, indication, pharmacodynamics, ... 178 3,475

External formula, name, fda_labels, drug_class, active_ingredient, ... 279 4,927
3,457 0.9971

Drugs
Local drugName, condition, review 108 13,725

External page_title, wikipedia_summary 168 46,976
413 0.9822

News
Local title, article_summary 42 30,000

External article_content 547 30,000
30,000 0.9763

WDC
Local category, brand, prod_title, description, ... 67 57,109

External category, brand, prod_title, description, ... 72 55,247
55,247 0.8697

ChEBI
Local name, description, indication, pharmacodynamics, ... 178 5,483

External status, name, de�nition, charge, formula, mass, ... 73 189,467
5,753 0.8953

CORD-19
Local abstract 305 250,575

External sha, source_x, paper_title, doi, pmcid, ... 48 340,826
250,575 0.8325

7.2 Dataset-Level Model

Our �rst questions of interest are (1) can Dataset-Level outperform

the Static IDF benchmark?, (2) can Dataset-Level �nd a su�ciently

e�ective policy in the short run?, and (3) how does query length

a�ect performance and how can we set it apriori? A de�ning chal-

lenge of a newly deployed mediator is that it will have no expe-

rience generating queries for most local entities. To simulate this

challenge, we sample local entities uniformly. This setup mimics a

di�cult learning task where the mediator must generalize what it

has learned to novel entities. Figures 2 and 3 show the performance

of Dataset-Level relative to the Static IDF Benchmark (IDF ). For both

models, local entities are sampled uniformly at each interaction.

However, since IDF’s policy does not change, we calculate its MRR

over all interactions and present it as a single vertical line.

Exploration. We evaluate Dataset-level with varying degrees of

exploration U ∈ {0, .2, .5, 1, 2} and �nd that a small degree of ex-

ploration (i.e., U = .2) provides the most consistent performance,

balancing the mixed e�ects that exploration can have over dif-

ferent datasets. For some datasets, a small degree of exploration

provides marginally better performance than no exploration; for

other datasets, performance slightly degrades as the degree of ex-

ploration increases. The negative e�ect of exploration is at least

partially determined by the structure of the local source. For ex-

ample, the local source for both CHeBI and DrugCentral has the

most attributes of any dataset, resulting in many features per can-

didate term. However, few features tend to be positively correlated

with query e�ectiveness. As ℓ increases, we �nd that the e�ect

of exploration is neutralized. This is likely due to the reduced ef-

fect of exploratory terms themselves: a set of exploratory terms

will have a greater impact on the outcome of a short query than a

long query. Furthermore, a higher ℓ forces the mediator to select a

greater diversity of terms even when no exploration is used.

Dataset-Level quickly �nds policies that outperform IDF.

Early on, IDF achieves higher MRR on most datasets. However,

Dataset-Level eventually surpasses it, often within the �rst 100

interactions. One exception to this trend is News (Figures 2a/3a)

where the local IDF of terms is correlated with their e�ectiveness:

both the input local entity and its relevant external entity tend to

share distinguishing terms. This result is not too surprising, as titles

of news articles often share speci�c terms with their respective con-

tent. However, our experiments show that this trait is uncommon.

Thus, methods that learn to adapt to particular external sources are

likely to have better policies than models that stick to one heuristic

of term e�ectiveness (e.g., IDF of local terms).

Dataset-Level with small ℓ has the most reliable performance.

Performance di�erences between Dataset-Level and IDF tend to be

greatest when ℓ is small. However, there is no general correlation

between query length and model performance. In some instances,

increasing ℓ improves the performance of both models to the point

of convergence (Figure 3a). In other instances, increasing ℓ reduces

the performance of both models (Figures 3b/3c). When ℓ is small,

models use only those top few keywords with the highest predicted

e�ectiveness; but as ℓ grows, there is a higher liklihood that the

models will include noisy terms that reduce the rank of the top

relevant entity. Furthermore, long keyword queries may not be

accepted by external data sources. Given these �ndings, more dis-

criminating polices that send few terms are preferable since they

neither run the risk of degrading performance nor having their

queries outright rejected by the external source.

Dynamic Query Length (DQL). As the best value for ℓ tends to

be dataset-speci�c, we present a method for dynamically altering ℓ

based on a model’s estimate of candidate terms. Instead of selecting

the top ℓ terms, we use nucleus sampling which has been shown to

be an e�ective strategy in natural language generation [28]. The

initial candidate term estimates are normalized using the softmax

function :8 = exp(E[:8 ])/
∑

: 9 ∈! (4 ) exp(E[: 9 ]). The top : terms

are then selected based on a threshold % ∈ (0, 1] which determines

the total probability mass of terms to select. For example, if % = .8,

then the minimal number of top terms would be selected such that

their probability mass exceeds .8. To align with other experiments,

we set 32 terms as a hard cuto� point for query lengths.

For reasonable % DQL tends towards optimal query lengths.

We evaluate % ∈ {.1, .2, .4, .6, .8} and �nd that DQL adjusts query

size according to input local entities in all cases. Of the values tested

for % , we �nd [.2, .6] to be a reasonable range, thus we include DQL
with % = .4within Figures 2 and 3. Intuitively, if the threshold is too

low (.1), then informative terms will be excluded; if the threshold is

too high (.8), then many noisy terms will be included. Furthermore,

it is likely that only a relatively small portion of candidate terms

increase query e�ectiveness. For % ∈ {.2, .4, .6}, DQL tends towards

the optimal query lengths. For example, for % = .4, of all queries

sent for CORD-19 (where a large ℓ leads to better performance), at

least 50% had a length within [27, 32]. Similarly, of all queries sent

for ChEBI (where a small ℓ leads to better performance), at least

50% had a length within [10, 32].
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Figure 2: Dataset-Level and IDF (Uniform, 4/8 keys)

For reasonable % , DQL is robust to the choice of hyperparme-

ter. Even as % is pushed to the boundaries of the range [.2, .6], we
�nd that DQL maintains the observed behavior. For % = .2 and

% = .4, 50% of queries sent for CORD-19 are within the range of

[13, 21] and [32, 32] respectively. For ChEBI, we observe [4, 28] and
[16, 32]. This indicates that DQL with % ∈ [.2, .6] is a reasonable
choice when we are unsure of the optimal query length.

Averaged over all datasets, Dataset-level with ℓ = 4 �nds policies

that produce an MRR of roughly 0.5 within the �rst 250 interactions.

We consider this performance to be su�ciently e�ective in the

short run, given such limited feedback. However, it shows little

improvement with additional feedback. Thus, it is quick to hit its

capacity to account for local entity diversity.

7.3 Overcoming Entity Diversity

In the following experiments, we compare Hybrid (Section 6.1) and

LM-Based (Section 6.2) againstDataset-Level. We seek to understand

whether our methods can continue to improve their query policies

in the long run. To more accurately measure long-run performance,

we adjust our sampling strategy for local entities.

Studies suggest that entity preference follows a near-Zipf distri-

bution 1/8B where 8 is the rank of the 8′Cℎ most popular entity and

B ≈ 1 [1, 11, 22]. Thus, users request the 8′Cℎ most popular entity

approximately twice as often as the (8 + 1)′Cℎ most popular entity.

Following this evidence, we simulate user preference by sampling

local entities from a Zipf distribution (B = 1). Since our datasets

do not indicate entity popularity, we randomly assign the order of

popularity, which is held constant across di�erent models. Figures 4
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Figure 3: Dataset-Level and IDF (Uniform, 16/32 keys)

and 5 show the performance of Dataset-Level, LM-Based, and Hybrid

under a Zipf sampling of local entities.

Hybrid Hyperparameters. To avoid the risk of instantiating too

many entity-speci�c models too soon, we use = = 50 and V =
1
15 .

Hybrid improves MRR over Dataset-Level in the long run. To

better understand how the addition of entity-speci�c models a�ect

performance in the long run, we evaluate Dataset-Level and Hybrid

over the same stream of local entities for 10,000 interactions. We

compare the MRR of the two methods over three sets of local enti-

ties: 1) those that Hybrid has initialized entity-speci�c models for

thus far ("''4B ), 2) those that Hybrid uses its dataset-level model

for thus far ("''3; ), and 3) all local entities encountered thus far

("''0;; ). Generally, we �nd that Hybrid meets or exceeds Dataset-

level’s "''0;; , with the most dramatic improvement on CORD-19

with ℓ = 4. Within 3,000 interactions, we observe a 1.35 perfor-

mance increase with Hybrid at 0.2443 (± 0.03) "''0;; and Dataset-

level at 0.1808 (± 0.0179)"''0;; . By 10,000 interactions, the perfor-

mance increase is 1.55, withHybrid at 0.2896 (± 0.0396)"''0;; and

Dataset-level at 0.1861 (± 0.018)"''0;; . Furthermore, we observe a

2.12 performance increase in"''4B and a 1.2 performance increase

in"''3; with Hybrid at 0.2306 (± 0.0683)"''4B and Dataset-level

at 0.1087 (± 0.0365) "''4B and Hybrid at 0.2858 (± 0.0089) "''3;
and Dataset-level at 0.2388 (± 0.0232) "''3; respectively. This

supports our claim that entity-speci�c models can increase the

performance of the dataset-level model by reducing under-�tting

through the elimination of outlying local entities.

Exploration.We evaluate Hybrid with varying degrees of explo-

ration U ∈ {0, .2, .5, 1, 2} and �nd that a small degree of exploration
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Figure 4: Dataset, Hybrid, and LM-based (Zipf, 4/8 keys)

tends to bene�t Hybrid more than Dataset-level. LinUCB shrinks its

upper con�dence bounds on features by trying terms with those

features su�ciently enough. Thus, models with little feedback (i.e.,

newly instantiated entity-speci�c models) will explore to a high

degree. We �nd the most signi�cant bene�t on CORD-19 and Prod-

ucts, where U = 0.2 results in higher MRR in the long run. Results

over ChEBI further suggest that high degrees of exploration (i.e.,

U = 1 and U = 2) should be avoided, as the negative e�ects of ex-

ploration over this dataset tend to be exacerbated by entity-speci�c

models. For News, DrugCentral, and Drugs, we �nd that entity-

specifc models do not signi�cantly a�ect the relationship between

degree of exploration and performance.

Longformer’s rich representations increases its predictive

power but also make its performance inconsistent. Though

Longformer shows a minor improvement in performance over Hy-

brid in few instances, it also exhibits a more dramatic improvement

over Drugs with ℓ = 32 (Figures 5a). Interestingly, Drugs is another

dataset where model performance degrades as ℓ increases. This

trend suggests that Longformer’s richer representation of terms

may allow it to better identify and avoid noisy terms. On the other

hand, Longformer also exhibits some of the worst performance of

any of our models on CORD-19 (Figures 4b/5b) and ChEBI (Fig-

ures 4c/5c). Furthermore, Longformer exhibits a large standard error

over both datasets, implying a high variance in performance.

LLaMA’s extensive model size enhances its representational

power; however, it leads to decreases in performance. Our

�ndings indicate both Longformer and Dataset-level perform better
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Figure 5: Dataset, Hybrid, and LM-based (Zipf, 16/32 keys)

than LLaMA on all datasets, except for ChEBI with ℓ = 4 (Fig-

ure 4c). The intricate nature of LLaMA’s features and representa-

tions necessitates a complex non-linear function to fully exploit its

bene�ts. It is challenging to �t such a function online. While Long-

former’s smaller model size results in lower representational power,

it compensates by reducing complexity. This enables Longformer

to extract valuable information and outperform LLaMA.

Both Hybrid and Longformer show signs of improvement beyond

the capacity of Dataset-Level. Though Longformer shows promise

in overcoming capacity issues, its less-than-stable performance

indicates that it may not always converge to a su�ciently e�ectively

policy quickly. On the other hand, Hybrid shows some promise for

overcoming the capacity issue without any noticeable deterioration

in performance compared to Dataset-level.

7.4 External Terms & Features

We evaluate whether we can improve query e�ectiveness through

the use of external terms and features. We �nd external terms and

features have similar e�ects on Dataset-Level and Hybrid. Thus, for

the sake of readability, we include only the results of Hybrid.

Supervised Term Borrowing improves performance for most

datasets. External terms boost performance to varying extents for

most datasets (Figure 6a/7a). The one exception is DrugCentral at

ℓ = 4, 8, where external terms and features have no a�ect on per-

formance. This result is likely due to the models already achieving

high performance (Figure 2c/3c). By expanding the set of candidate
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Figure 6: External feature comparison (Zipf, 4/8 keys)

terms with more reliable options, Hybrid achieves the overall best

performance on some datasets (Figure 6a/7a) and uses fewer noisy

terms at high ℓ values on other datasets (Figure 6b/7b).

Unsupervised Term Borrowing helps extract relevant exter-

nal entities. Over Drugs, News, WDC, ChEBI, and CORD-19, we

�nd minor improvements in MRR for the local entities with ex-

panded candidate term sets. For example, on News with ℓ = 8,

unsupervised term borrowing boosts MRR from 0 to 0.149 (± 0.006).

Thus, unsupervised term borrowing can help extract relevant ex-

ternal entities that could not be extracted using only those terms

that appear in the content of the local entities.

8 RELATED WORK

Pay-as-you-go Data Integration. Researchers have proposed

pay-as-you-go integration systems that rely on user feedback [19,

35, 51]. Some systems use pay-as-you-go methods to construct a

uni�ed schema and query interface over multiple databases [51].

The developer of this system uses available schema-mapping and

record-linking tools to explore the schema and content of datasets,

which requires access to the entire content of external dataset. We,

however, do not have access to the entire content of external dataset.

ML for Data Integration. Researchers have used ML methods

for some data integrating tasks (e.g., schema mapping and entity

matching) [6, 14, 21, 23, 26, 43]. As opposed to our setting, these

systems require access to the entire content of integrated datasets

during training. Moreover, they usually use o�ine ML methods.

Some use active learning for schema mapping and entity match-

ing where the system selects and shows training examples (e.g..

matching candidates) to users for labeling [26, 40, 43]. This method

is di�erent from ours as it does not provide any results during

training. Also, users do not choose entities.

Data Discovery and Augmentation. Given a query table as an

input, data discovery methods seek to �nd related tables within

a large pool of tables (crawled from web, data lakes, companies
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Figure 7: External feature comparison (Zipf, 16/32 keys)

with many disparate tables across multiple data sources) quickly

[8, 17, 20, 41, 50, 53]. Our system, however, aims at �nding external

information relevant to each local entity. They often preprocess

candidate corpora, often by building indexes across (external) tables,

which requires access to the entire meta-data and content of those

tables. Such accesses do not exist in our setting.

Data Acquisition. Researchers have proposed methods to acquire

training examples from external sources to train an ML model [32].

As opposed to our setting, they assume that every query over the

external source returns accurate results.

DeepWeb Crawling & Querying.Web crawlers aim at extracting

the entire information stored in external data sources to organize

it for future use (e.g., search [16, 34, 36, 47, 52]). Many Web data

sources can be accessed only via form interfaces (i.e., deep Web).

Researchers have proposed techniques that �nd a minimal set of

queries to crawl all accessible tuples of these data sources [16,

36]. As opposed to our setting, they do not consider the notion

of relevance to a given entity. Some systems provide a uni�ed

query interface over multiple Web-form query interfaces so users

can query multiple sources via a single interface [16, 52]. They

preprocess query forms to translate the queries over the uni�ed

interface to the ones over external query interfaces. Our system,

however, �nds information relevant to local entities over keyword

query interfaces. It also does not perform any preprocessing to

understand the query answering methods of the external sources.

Keyword Query Formulation. Researchers have proposed meth-

ods to automate keyword query formulation without writing com-

plicated source-speci�c programs [47]. However, these methods

assume that the external query interface is perfectly accurate and

does not return any non-relevant answers, which is not usually true

[33, 37]. They do not consider the issue of data heterogeneity and

thus lack the ability to adjust their query formulation to account for

it. The goal of these methods are also di�erent as they aim to �nd

information related to an entire dataset rather than to an entity.
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