
TSM-Bench: Benchmarking Time Series Database Systems for
Monitoring Applications

Abdelouahab Khelifati

University of Fribourg

Switzerland

abdelouahab.khelifati@unifr.ch

Mourad Khayati

University of Fribourg

Switzerland

mourad.khayati@unifr.ch

Anton Dignös

Free University of Bozen-Bolzano

Italy

dignoes@inf.unibz.it

Djellel Difallah

NYU Abu Dhabi

United Arab Emirates

djellel@nyu.edu

Philippe Cudré-Mauroux

University of Fribourg

Switzerland

pcm@unifr.ch

ABSTRACT
Time series databases are essential for the large-scale deployment of

many critical industrial applications. In infrastructure monitoring,

for instance, a database system should be able to process large

amounts of sensor data in real-time, execute continuous queries,

and handle complex analytical queries such as anomaly detection

or forecasting. Several benchmarks have been proposed to evaluate

and understand how existing systems and design choices handle

specific use cases and workloads. Unfortunately, none of them

fully covers the peculiar requirements of monitoring applications.

Furthermore, they fall short of providing an automated way to

generate representative real-world data and workloads for testing

and evaluating these systems.

We present TSM-Bench, a benchmark tailored for time series

database systems used in monitoring applications. Our key contri-

butions consist of (1) representative queries that meet the require-

ments that we collected from a water monitoring use case, and (2)

a new scalable data generator method based on Generative Adver-

sarial Networks (GAN) and Locality Sensitive Hashing (LSH). We

demonstrate, through an extensive set of experiments, how TSM-

Bench provides a comprehensive evaluation of the performance of

seven leading time series database systems while offering a detailed

characterization of their capabilities and trade-offs.

PVLDB Reference Format:
Abdelouahab Khelifati, Mourad Khayati, Anton Dignös, Djellel Difallah,

and Philippe Cudré-Mauroux. TSM-Bench: Benchmarking Time Series

Database Systems for Monitoring Applications. PVLDB, 16(11): 3363 - 3376,

2023.

doi:10.14778/3611479.3611532

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/eXascaleInfolab/TSM-Bench.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611532

1 INTRODUCTION
Time series database systems (TSDBs) are specialized systems de-

signed to store, manage, and query large volumes of time-series data

fast and efficiently [29]. The growing need for real-time analytics

in various applications such as financial analysis and the Internet

of Things (IoT) has made TSDBs essential for stream processing

and monitoring. The development of TSDBs has been driven by

significant research efforts in devising novel methods to process,

compress, and store time series data. Due to the diversity and so-

phistication of these systems, it is difficult for end users to pick the

most suitable system for their particular use case.

Benchmarking provides a systematic way to understand the ca-

pabilities of TSDBs by comparing their performance using a dataset,

a set of queries, and predefined workloads. Several TSDB bench-

marks have been proposed in this context, but unfortunately, little

is known about systems’ trade-offs, as existing benchmarks focus

on static queries and utilize a narrow set of real-world datasets and

workloads [25, 28, 60, 66, 68]. Moreover, ingestion and querying

are often evaluated in isolation from each other, which mischar-

acterizes the streaming requirements that accompany time series

monitoring. Those issues make the results of existing evaluations

difficult to generalize and motivate the need for a new comprehen-

sive benchmark.

We argue that a TSDB benchmark should provide insights that

validate the choice for a system deployment by offering at least

three desiderata. First, the benchmark should implement a variety

of performance metrics, such as query latency and throughput,

data ingestion rate, and scalability. Second, it should be able to

efficiently generate a large stream of data representative of real-

world datasets. Third, it should help debug the root performance

results and causes of bottlenecks in the system. We describe below

a real-world application for such functionalities.

Motivating Example. Our work is motivated by the challenges

we faced when evaluating and selecting systems for the monitoring

of data from hydrometric stations in Swiss watercourses [13, 22, 31,

38, 41, 50]. After consultations with hydrologists and data analysts

at the Federal Office for the Environment in Switzerland (FOEN)
1
,

we identified a set of requirements that must be covered when

developing a benchmark for real-time monitoring systems to help

practitioners analyze sensor data. These requirements include data

1
https://www.bafu.admin.ch/bafu/en/home/topics/water.html
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exploration [49, 72], anomaly detection [39, 52, 59], predictive mod-

eling [18, 64], trend analysis [18, 42], missing value recovery [35–

37], and data metrics comparison [16, 17, 51]. The outcomes of our

study are applicable beyond our use case as they reflect the data

management needs of a wider variety of monitoring applications

such as the IoT [25, 32, 57], healthcare analytics [12, 20, 70], or

power grid management [1, 56, 68].

In this paper, we introduce a new evaluation benchmark, which

we call TSM-Bench, specifically designed for time series data used

in monitoring applications. TSM-Bench packs several salient fea-

tures into a comprehensive framework that includes: (1) A suite

of fundamental queries found in common workloads, serving as

building blocks for more complex time series analytical operations;

(2) Various realistic workloads that support dynamic query variabil-

ity; (3) Generation mechanism of large and multiple realistic time

series based on seed data collected from real-world applications.

We apply TSM-Bench to perform a wide range of tests to eval-

uate the capabilities and trade-offs of seven leading time series

database systems. Our experiments analyze the performance of

these systems and provide extensive insights into their characteris-

tics. Moreover, to promote reproducibility and future extensions,

we follow the general guidelines of benchmark design, including

portability, scalability, and simplicity [14, 24]. In summary, we make

the following contributions:

• We introduce a comprehensive time series benchmark for moni-

toring applications that features temporal workloads, realistic

data, and configurable query variability.

• We propose a novel and efficient data generation method that

augments seed real-world time series datasets enabling realistic

and scalable benchmarking.

• We perform an extensive analysis to evaluate the impact of syn-

thetic data quality on time series benchmarking.

• We provide a detailed examination of seven TSDB systems, ac-

companied by practical recommendations for understanding and

navigating their architectural designs.

The rest of this paper is organized as follows. Section 2 gives

an overview of the related work and discusses the key differences.

Section 3 introduces our benchmark application, its architecture,

the new data generation method, and the benchmark queries. The

experimental setup is detailed in Section 4 and the results are pre-

sented in Section 5. Section 6 provides a general discussion of the

findings and guidelines for system selection and architecture con-

siderations. Finally, we conclude in Section 7.

2 RELATEDWORK
In this section, we present a review of existing time series database

benchmarks and their associated data generators. Table 1 provides

a comparative summary of existing benchmarks, highlighting how

TSM-Bench complements the time series benchmarking landscape.

The columns “use-case”, “workload tier”, and “query variation” char-

acterize each benchmark by its application domain, the type of its

loading process (bulk or batch), the evaluation of querying and

ingestion (with ’offline’ denoting separate query execution from

insertion, and ’online’ indicating concurrent operations), and the

support of variation in the number of sensors and dynamic changes

in predicate ranges. We describe each benchmark briefly below.

2.1 Time series benchmarks
SciTS [28] is a recent benchmark for TSDBs that focuses onmonitor-

ing time series recorded in scientific instrumentation. It implements

queries to retrieve and sample data frommultiple experimental runs

and compares their query latency and data ingestion. The list of

supported systems includes three TSDBs—ClickHouse, InfluxDB,

and TimescaleDB—and one RDBMS—PostgresDB. SciTS evaluates

the queries on randomly generated time series using a static num-

ber of sensors and time range. The queries are run in an offline

manner where reads and writes are executed asynchronously.

In [68], Hao et al. present TS-Benchmark, a benchmark designed

for monitoring electricity data collected from wind turbines. They

evaluate fetching and aggregating from multiple sensors that pro-

duce anomalous time series data. The benchmark compares bulk

loading, data ingestion, and query latency of four TSDBs—Druid,

InfluxDB, TimescaleDB, and OpenTSDB. It generates synthetic time

series that have akin properties to real-world electricity data. Simi-

larly to SciTS, TS-Benchmark evaluates only the offline setup with

static query parameters.

SmartBench [25] is a benchmark that focuses on smart buildings.

The implemented queries retrieve various types of dependencies

(e.g., correlation, co-evolution, etc.) across different sensors. It evalu-

ates seven systems; only two are TSDBs—InfluxDB and GridDB—on

seed time series contaminated with noise and duplicates. Smart-

Bench evaluates insertion and query times and studies the impact

of time ranges and hard disk types on the performance of the eval-

uated systems. Queries are executed both in an offline and online

manner, computing query performance for the former and insertion

throughput for the latter.

IoTDB-Benchmark [44] is a benchmark for heterogeneous IoT

devices (different frequencies, out-of-order, etc.). It evaluates data

retrieval queries, ingestion throughput, and resource usage. It com-

pares four TSDB systems—InfluxDB, OpenTSDB, KairosDB, and

TimescaleDB. The benchmark evaluates the queries in an offline

setup by varying the number of sensors. The authors provide a tool

that generates cyclic time series of different data distributions.

YCSB [11] is a collection of micro-benchmarks with a workload

that contains various combinations of read/write operations (both

random and sequential) and access distributions. Those workloads

are run on distributed key-value storage systems. YCSB-TS [66] is

a test suite that builds on top of YCSB by adding time functions

to evaluate TSDBs. The implemented workloads consist only of

simple aggregation queries.

Some commercial TSDB systems have conducted benchmarks for

their products. InfluxDB-comparison [27] and its fork Time Series

Benchmark Suite (TSBS) [60] compare several systems by comput-

ing storage size, loading performance, and aggregation runtime.

ClickBench [10] is another benchmark tool proposed by ClickHouse

that evaluates several systems optimized for time series, includ-

ing TimescaleDB, InfluxDB, Druid, and MonetDB. The queries im-

plemented by those benchmarks resort to simple selections and

aggregations, which are applied on randomly generated data.

To our knowledge, none of the existing benchmarks evaluates

TSDB systems using offline and online workloads with variable

query parameters. Including those features in a new benchmark

leads to more nuanced results and a realistic system evaluation.
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Table 1: Comparison of existing benchmarks. ✓: Supported. (✓): Requires non-trivial extension. ✕: Not supported.

Benchmark Use-case

Workload Tier Query Variation Data Generation

Bulk Offline Online # Sensors Time Range Realistic Scalable

Sci-TS [28] instrumentation (✓) ✓ ✕ ✕ ✕ ✕ ✓
TS-Benchmark [68] wind turbines ✓ ✓ ✕ ✕ ✕ ✓ ✕

SmartBench [25] smart building (✓) ✓ (✓) ✕ ✓ ✕ ✓
IoTDB-Benchmark [44] IoT ✕ ✓ ✕ ✓ ✕ ✕ ✓

TSM-Bench hydrology ✓ ✓ ✓ ✓ ✓ ✓ ✓

2.2 Data Generation Methods
Some of the benchmarks we described above provide tools to gen-

erate large datasets. The “Data Generation” column in Table 1 sum-

marizes the main features of data generation techniques associated

with existing systems’ benchmarks. It describes their ability to

generate real-like time series and to efficiently process seed data.

The authors of TS-Benchmark propose the most similar data

generator to ours. They introduce a graph-based model, which we

refer to as TS-Graph, that uses Generative Adversarial Network

(GAN) [19, 26, 53, 54] to generate long time series. The proposed

method takes as input time series segments generated by GAN and

constructs a graph, where the segments represent nodes and the

edges indicate the transition probability between different nodes. A

random walk is then performed on the constructed graph to gener-

ate new time series. The graph construction time is quadratic with

the size of the segments making the processing of large seed time

series time-consuming. We show in Section 5 that our generation

outperforms TS-Graph not only in efficiency but also in quality.

IoTAbench [5] introduces a data generation model that uses a

HiddenMarkovModel (HMM) to generate synthetic time series data

that mimics device power consumption. The method assumes that

the data follows the Markov property, which is not representative of

real-world time series complexity. SmartBench introduces another

data generation tool that augments the data duration and frequency

by adding noise to the original data. The produced data has a low

variability and resembles the input data, which leads to the same

limitations as using a random data generator.

In addition to those generators, various categories of standalone

time series generation techniques exist. Decomposition methods [6,

23, 34, 62] extract underlying patterns from the dataset, such as

trend or independent components, and adapt them to generate

new patterns. Those methods can only augment the number of

time series. Model-based augmentation methods [2, 7, 33, 69] build

a statistical model of the real data and then use it to generate

new time series. Methods from this category are typically used for

forecasting and can only augment the length of the series. Time-

domain methods [21, 63] transform the original time series using

simple techniques such as adding noise or advanced ones such as

computing a weighted average of time series [46]. Such techniques

require highly correlated time series, which is not representative

of many real-world datasets.

We seek a new generation technique able to efficiently augment

both the length and the number of time series without mischarac-

terizing the properties of the data.

3 THE TSM-BENCH BENCHMARK
As mentioned earlier, our work is motivated by the challenges we

encountered when evaluating and selecting systems for monitoring

data from hydrometric stations in Swiss watercourses. Stations for

water surfaces, such as rivers and lakes, are equipped with tele-

metric sensors that measure a wide range of water metrics. Each

station collects its sensor records and transmits them to a database

system where data is ingested and made available for analytical

queries. Stations can incorporate up to hundreds of sensors that

portray different water metrics and locations within the station.

After consultations with hydrologists and data scientists, we iden-

tified a number of recurrent requirements related to hydrometric

time series data monitoring:

(R1) Data exploration. Basic data analysis involves fetching
data within a certain time range from certain sensors and

stations and exploring the result, for example, by visualizing

it on a dashboard.

(R2) Anomaly detection. Identifying sensor anomalies by fetch-

ing readings that exceed a specified threshold is a routine

operation done during data exploration.

(R3) Prediction models. Hydrologists are interested in fore-

casting data behaviors by computing statistical metrics and

using them in building predictive models.

(R4) Data trends analysis. Hydrologists also need to analyze

data trends over extended time periods, which requires

downsampling the data while preserving the most salient

properties of the time series.

(R5) Recovery of missing values. Failures in power, communi-

cation, or interference in sensors can cause missing values

in the collected data. For many tasks, such as the recovery

of missing values, it is necessary to first fill the missing

values with linear interpolation.

(R6) Metrics comparison. Hydrologists often need to compare

data from various sensors. A frequently used method is to

compute similarity metrics between time series.

3.1 Architecture
The architecture of the TSM-Bench is illustrated in Figure 1. Our

data generation module, TS-LSH, uses sample data to generate a

large realistic data stream that is fed into the target TSDB before

or during the evaluation. We discuss in detail our generator in

the next section. The benchmark Executor launches configurable

workload tiers with queries such as data loading, data fetching, and

complex analytical queries. The statistics collection module records

the performance of the TSDB and a variety of system metrics.
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etc.
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Figure 1: The Architecture of TSM-Bench.

Our framework adopts a conventional time series format where

each station has a single entry for each timestamp including values

for multiple sensors from the station. Figure 1 shows an example of

such a wide-format data model, where each column of ts_table
represents a sensor from a given station.

3.2 TS-LSH Generation Technique
A comprehensive benchmark requires access to a large amount of

data. Unfortunately, existing real-world time series are often limited

in size and/or number. Synthetic data can be a viable option but

can lead to biased benchmark results when the properties of the

original and synthetic data are dissimilar. Moreover, synthetic data

should be generated efficiently because the benchmark needs high

throughput data to simulate realistic scenarios.

We introduce TS-LSH, a new scalable data generator that closely

emulates the properties of real-world time series. One of the bene-

fits of this tool is to facilitate data sharing for benchmarking tasks,

particularly when datasets are non-public due to privacy issues.

Our method relies on Generative Adversarial Network (GAN) to

create large volumes of time series data. GAN takes an input time

series, partitioned into segments of the same length, and generates

new segments that look real. It does so by playing an adversarial

game: a generator creates new segments to fool a discriminator

and the latter tries to distinguish between the real segments and

fake ones [61]. At the end of the GAN training phase, the gener-

ator produces segments akin to the real ones, which cannot be

distinguished by the discriminator.

Given a time series partitioned into segments𝑋 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}
and a random noise 𝑧 ∈ R𝑧 , the generator produces fake segments

𝐺 (𝑧), while the discriminator 𝐷 (𝑥) determines whether 𝐺 (𝑧) is
real or not. The adversarial game G and D play is expressed as a

minmax function: min𝐺 max𝐷 𝑉 (𝐺,𝐷) = E𝑠∈𝑝𝑠𝑒𝑔 (𝑠 ) [log𝐷 (𝑠)] +
E𝑧∈𝑝𝑧 (𝑧 ) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧))], where 𝑝𝑠𝑒𝑔 is the distribution of the

real segments transformed from our original time series and 𝑝𝑧
is the distribution of the input noise 𝑧. In other words, 𝐺 tries to

minimize the distance between the generated segments and the

real ones while 𝐷 tries to maximize it.

One possible way to create larger time series is to increase the

length of the GAN’s produced segments. This is, however, prohib-

itive in time as GAN consists of two deep neural networks each

with an exponential complexity with the size of the segments [45].

Instead, we propose to concatenate the generated segments using

the original data as a reference. This allows us to capture the global
properties of the data such as trends or order without the need to

change GAN’s internals. We adopt Locality Sensitive Hashing (LSH)

to identify the synthetic segments that are similar to the original

ones and concatenate them to produce new series. Figure 2 depicts

the generation pipeline, where the input of the process consists of

real time series collected from multiple stations.

                   

L(X) seg_id

1001 1,21,17,…
1111 11,32,6,… 
1101 67,4,15,…

HTt

DCGAN (2) Generate
Synthetic 

Segments

(1) Train GAN

(3) LSH Tables and 
Indexing

Synthetic Segment

(5) Segment Query and Merge
(4) LSH Lookup

Query Segment

Original Data (seed time series)

Synthetic Data (multiple and/or longer time series)

iterations
                   

L(X) seg_id

1001 1,21,17,…
1111 11,32,6,… 
1101 67,4,15,…

HT2
                   

L(X) seg_id

1001 1,21,17,…
1111 11,32,6,… 
1101 67,4,15,…

HT1

(3) LSH Tables and 
Indexing

Figure 2: Time Series Generation using TS-LSH.

(Step 1 and 2) Train the GAN and Generate Segments. In
TS-LSHwe use DCGAN [55], a deep convolutional generative adver-

sarial model frequently used for time series augmentation [30, 71].

We train a new GAN model for a given seed dataset by splitting

the original time series into short and overlapping segments used

by the discriminator. The length of seed segments and the window

shift values are commonly set to 3k and 10, respectively [55]. Once

the adversarial training is finished, the generator is able to produce

new synthetic time series segments with the properties of real data.

The obtained model is then used to generate a high number of

synthetic seed segments that capture the local data properties.

(Step 3) LSH Tables and Indexing. We build LSH hash tables

from the generated segments to locate synthetic candidates similar

to the original data. We aim to achieve a high similarity between the

generated segments and the original ones while making room for

novelty in the generation. The number of hash tables can impact this

goal. We empirically find that using 10 hash tables provides an order

of magnitude speedup with a marginal loss in accuracy compared

to using a larger number of tables [58]. Another aspect that impacts

the indexing result is the similarity measure. There are a number of

distance metrics for time series [15] including Euclidean Distance

(ED) and its variants [8, 47], Dynamic Time Warping (DTW) [9, 67],

Longest Common Subsequence (LCSS) [67]. Using the Euclidean

Distance as a similaritymeasure between segment codes is sufficient

for our application, as it can easily handle our highly correlated

and generally time-aligned hydrological time series, where similar

segments are in phase.

In our example, synthetic segment 21 is mapped to code 1001

in the first hash table. Thanks to the hashing function, similar

segments will have a high probability of sharing the same hash

bucket. For example, segments with ids 17 and 1 will be stored in

the same bucket as segment 21 since they share the same code.
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(Step 4) LSHLookup. The generation process starts by selecting
synthetic segments that (when combined) have the same properties

as the original data. This helps preserve the global trends in the

time series by sequentially extracting the codes of the original

segments for each hash table. Next, these codes are used to look up

similar synthetic segments in the corresponding hash tables. For

each hash table, only the bucket corresponding to the segment’s

code is accessed, which significantly reduces the lookup time.

(Step 5) Segment Query and Merge. Each lookup returns

multiple synthetic segments as candidates to represent the original

segment. In our example, segments 1, 21, and 17 are candidates to

represent the original segment with the code 1001. One of these

segments is randomly selected and appended to the generated time

series. Selected segments are removed from the LSH tables to avoid

using identical segments repeatedly in the generation. Following

TS-Graph [68], once the next segment is selected, a fitting function

is used to smoothly append it to the generated data. The fitting

function is applied at the end of the last segment and the start of

the selected segment, resulting in a smooth transition.

The generation process continues by iteratively performing the

querying process. When half of the synthetic segments are used

or a particular entry of the hash tables is depleted, we execute an

update that reconstructs the hash tables using new GAN-generated

segments. We show that this iterative generation is efficient. Specif-

ically, we prove that it is sub-linear with the size of the input series.

Lemma 3.1. Let 𝐷 be a dataset of𝑚 datapoints. The complexity of
TS-LSH to augment 𝐷 to a larger size 𝑛 is O(𝑚𝜌 ·𝑛) where 𝜌 < 1.

Proof. The runtime complexity of TS-LSH is dominated by the

construction and lookup times of the hash tables. LSH construction

is performed on ℎ hash tables using 𝑛𝑠 = 𝑚
𝑠 synthetic segments,

where 𝑠 is the length of the shifting window used to create segments.

It follows that LSH construction has the cost of O(ℎ·𝑛𝑠 ).
TS-LSH uses the similarity between series to determine which

segments are stored in the same bucket. LSH query time depends on

the probability of two segments being hashed to the same bucket,

i.e., 𝜌 = log𝑝1/log 𝑝2, where 𝑝1 and 𝑝2 refer to the lower bound and
the upper bound probabilities of the hashing tables, respectively

[3]. The cost for querying or deleting one segment in ℎ hash tables

containing𝑛𝑠 segments each is O(ℎ·𝑛𝜌𝑠 ) [4]. The iterative process of
hash tables construction and querying is performed

𝑛
𝑛𝑠

times. The

total complexity is therefore O((ℎ·𝑛𝑠 +2·ℎ·𝑛𝜌𝑠 ·𝑛𝑠 )· 𝑛𝑛𝑠 ) = O(ℎ·𝑛·𝑛𝜌𝑠 ).
By substituting 𝑛𝑠 with

𝑚
𝑠 and using the fact that ℎ and 𝑠 are two

small constants, we obtain a total time complexity of O(𝑚𝜌 ·𝑛). □

3.3 TSM-Bench Queries
Our benchmark focuses on fundamental queries, typically found

in common workloads, which underpin most of the complex time

series analytics operations. Those queries allow us to isolate single

performance dimensions, such as the impact of input and output

size, data access, and the number of operations.

Since most systems support a pseudo-SQL-like language, we use

SQL to describe our queries. However, the query implementation

may vary from one system to another. Our queries are executed

on a list of stations <st_list>, a list of sensors <s_list>, and in a

time range [?timestamp - ?range, ?timestamp].

Q1: Data Fetching. This query selects intervals of time series

data from given sensors and stations. It is typically used to compare

multiple series through data exploration (R1) and aims to evaluate

the performance of data access and output.

SELECT time, st_id, <s_list> Q1

FROM ts_table
WHERE st_id in <st_list>
AND time < ?timestamp
AND time >= ?timestamp - ?range;

Q2: Data Fetching with Filter. This query selects from a sensor

the values that exceed a threshold within a time interval. In our

use case, hydrologists commonly use it to detect anomalous values

(R2). The filter condition is applied to one sensor, and the condition

value is sampled from the data distribution to output 5% from the

sensor. This number represents the percentage of out-of-bound

values for the data. Q2 evaluates the systems’ efficiency for filtering

and outputting the results.

SELECT time, st_id, <s_list> Q2

FROM ts_table
WHERE st_id in <st_list>
AND time < ?timestamp
AND time >= ?timestamp - ?range
AND s_k > ?value; /* s_k in <s_list> */

Q3: Data Aggregation. This query calculates the average value

recorded by some sensors from multiple stations and groups them

by station. The aggregation operation is often applied for computing

statistical values used to build hydrological prediction models (R3).
Q3 returns very small-sized results and aims to evaluate data access

and aggregation computation.

SELECT st_id, AVG(s_i)...AVG(s_j) Q3

FROM ts_table
WHERE st_id in <st_list>
AND time < ?timestamp
AND time >= ?timestamp - ?range
GROUP BY st_id;

Q4: Downsampling. The downsampling operation reduces the

granularity of time series by executing multiple aggregations along

the time dimension and using the results to create a new time

series with a lower frequency. This operation is frequently used to

reduce the size of the data while preserving its main trends (R4).
For example, Q4 can downsample the values of sensors and stations

from 10 seconds to a 1-hour granularity. It evaluates the systems’

performance to handle window operations.

SELECT time, st_id, AVG(s_i)...AVG(s_j) Q4

FROM ts_table
WHERE st_id in (<st_list>)
AND time < ?timestamp
AND time >= ?timestamp - ?range
GROUP BY st_id, time
SAMPLE BY 1H;
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Q5: Upsampling. This operation increases the frequency of time

series. This is done by generating new timestamps and using a

replacement strategy (e.g., interpolation, previous value, etc.) to

construct time-aligned data with a higher frequency. Hydrologists

apply such an operation to recover missing values in their series

(R5). Note that this query is not supported by some systems, such

as Druid and MonetDB, and that eXtremeDB does not support

interpolation, instead, it fills the surrogate values with zeros.

SELECT time, st_id, <s_list> Q5

FROM ts_table
WHERE st_id in <st_list>
AND time < ?timestamp
AND time >= ?timestamp - ?range
SAMPLE BY 5s
FILL(LINEAR);

In addition to the five simple temporal queries, we identify two

advanced analytical queries that combine basic operations from the

previous workload. The two queries operate on multiple sensors

at a time. The first one returns large-sized data, while the second

returns small-sized results.

Q6: Cross Average. This query computes the average values of

sensors within a station (R6). The output of this query has the same

size as the original time series.

SELECT time, s_i, s_j, AVG(s_i, s_j) Q6

FROM ts_table
WHERE st_id = st_k
AND time < ?timestamp
AND time >= ?timestamp - ?range;

Q7: Correlation. This query computes the Pearson correlation [43]

between two time series (R6). We use a built-in primitive for Click-

House, eXtremeDB, and TimescaleDB and combine the SUM() and

COUNT() operators for the remaining systems. The output of this

query is a scalar.

SELECT CORR(s_i, s_j) Q7

FROM ts_table
WHERE st_id = st_k
AND time < ?timestamp
AND time >= ?timestamp - ?range;

We also considered additional queries with a higher complexity

as well as User Defined Functions (UDFs). Our results [40] show

that the behavior of the best-performing systems on those queries

showed similar trends to the ones we include in the paper.

3.4 TSM-Bench Workload Tiers
We propose three benchmark tiers to effectively evaluate the ability

of a database system to fulfill the requirements of our water-sensing

use case. These tiers have been designedwith the intention of assess-

ing query complexity, data volume, and scalability. Additional tiers

can be easily added to TSM-Bench to assess alternative scenarios

such as real-time stream processing.

Bulk-Loading Workload is intended to evaluate the efficiency

of data loading into the system, which is done separately from

query processing. This involves taking a large amount of historical

data and inserting the data into the system in batch mode.

OfflineWorkload consists of queries that run on historical data

without concurrent insertions. It evaluates two types of queries,

basic queries [Q1-Q5] that use built-in operators, and complex

queries [Q6-Q7] that combine these operators to perform a time

series downstream task.

Online Workload consists of concurrent workloads for both

insertion and querying. This involves continuously streaming data

into the system, and running simple queries [Q1-Q5] on both his-

torical and new data.

4 EXPERIMENTAL SETUP
4.1 Setup Notes
The machines we used in the following have an Intel(R) Xeon(R)

CPU E5-2620 v4 @ 2.10GHz (32cores), 128GB of memory, 4TB

TOSHIBA Hard disk operating under Ubuntu 20.04 LTS and con-

nected over a 10 Gbit/sec Ethernet switch. Each system is deployed

on one dedicated machine. We use a separate client machine to

launch the workloads and collect the results from each system. We

use the following TSDB versions: ClickHouse v22.6.1, Druid v0.24.1,

eXtremeDB v8.2, InfluxDB v1.7.10-1, MonetDB v11.43.9, QuestDB

v6.2.1 and TimescaleDB v2.6.0. The default configuration was used

for each system. We consulted with systems support teams in cases

where a system’s behavior was unexpected such as poor resource

utilization or inefficient data ingestion/query performance. Our

data generator is built using Python 3.10 and PyTorch 2.0.

4.2 Datasets
To evaluate the systems on large datasets, we apply TS-LSH to

generate two new datasets, D-LONG and D-MULTI, that include

a small number of long time series and a large number of short

time series, respectively. We use as seed a real-world dataset of

water temperature and level time series recorded using multiple

hydrometric sensors. Temperature series contain duplicates and

similar consecutive values while level series are erratic and contain

abrupt changes. We augment the seed dataset by scaling i) the

number of time series—we increase the number of stations and/or

sensors—and ii) the length of time series—we increase their duration.

Table 2 summarizes the main properties of the two datasets.

Table 2: Datasets used in TSM-Bench. The sensors have a
10-second frequency.

Dataset # Stations # Sensors Range # Datapoints

Original 1 10 5 days 430K

D-LONG 10 100 60 days 518M

D-MULTI 2000 100 10 days 17.2B

4.3 Evaluated TSDB Systems
The selection of the evaluated systems is based on the following

criteria: (a) their popularity, (b) their performance in other bench-

marks, (c) the support of the necessary operators to implement the

queries, and (d) the results of pre-evaluation experiments.
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The first step of the selection process consists in picking the top

ten TSDBs based on their popularity according to DB-Engines and

OSS Insight and their performance in previous benchmarks. We

conduct preliminary experiments on the pre-selected systems using

a subset of queries with fixed parameters. Our results led to the se-

lection of four systems as top competitors—InfluxDB, TimescaleDB,

Druid, and QuestDB. In addition to the popularity criterion, our

goal was to strike a good balance between the systems evaluated in

other benchmarks and the differences in the underlying architec-

ture. For this reason, we complemented the initial list with three

additional systems—eXtremeDB, ClickHouse, and MonetDB.

ClickHouse is an open-source column-store DBMS that, while

not specialized for time series, supports temporal analytics. It uses

a MergeTree as its engine, which stores series separately in parts

indexed and sorted by a sparse primary key based on time. When

data is queried, the relevant ranges are located from the primary key

and the offset files. During insertions, new parts are created from

the incoming records after being sorted by the primary key. The

new parts are periodically selected and merged by the MergeTree.

ClickHouse supports vectorized query execution by processing data

as columns, which allows SIMD CPU instructions usage.

Druid is an open-source OLAP DBMS that stores the data by

time natively. Each record in Druid consists of three column types:

timestamp, metrics, and additional attributes to the data records

called dimensions. Druid partitions the data by time and supports

additional partitioning based on other dimensions. It uses bitmap

indexes to perform filtering and searching across multiple columns.

During query execution, Druid first identifies which rows to select,

decompresses them, and pulls out the relevant rows.

eXtremeDB is a commercial TSDB that supports hybrid tables

where each table can have vertical and horizontal fields. It imple-

ments a new data type for time series stored vertically as sequences.
The remaining data types (e.g., float, string, etc.) are kept in a

traditional horizontal (n-ary) fashion. The sequences type allows

eXtremeDB to access the data using the indices of the start and

end of the queried series. eXtremeDB includes additional opera-

tions such as user-defined indexes and collations that can further

optimize access to vertical data.

InfluxDB is an open-source column-store TSDB where each

datapoint consists of a timestamp, a value, and one or multiple

tags. The latter are key-value pairs used to add data to the record.

InfluxDB does not require building a schema before ingesting data.

The schema is instead inferred from the tags and fields following the

data ingestion. InfluxDB uses a Time-Structured Merge Tree (TSM

Tree) [48] as a storage format. It indexes the data using timestamps

and tags and it organizes time series into shards when storing data

on disk. A shard contains encoded and compressed time series data

for a given time range.

MonetDB is an open-source column-store relational DBMS that,

albeit not specialized for time series, is optimized for temporal an-

alytics. It stores each time series as a separate table called BAT

(Binary Association Table). During query processing, MonetDB

generates a logical plan, expressed in the MonetDB Assembly Lan-

guage (MAL), then optimizes it through various modules before

execution. MonetDB supports manual partitioning of time series

data horizontally by time using a merge table.

QuestDB is an open-source column-store TSDB. It stores data

by time natively and partitions the data by intervals of time, where

data for each interval is stored in separate sets of files. Columns in

QuestDB are append-only, allowing insertions in the most recent

partition only. QuestDB supports SIMD instructions to perform

multiple filtering and aggregation operations simultaneously.

TimescaleDB is an open-source row-store TSDB built on top of

PostgreSQL. It stores time series data using hypertables that parti-

tion the data by time into several chunks while making it similarly

accessible as a PostgreSQL table. TimescaleDB supports a compact

storage format that groups multiple records into a single array.

During query execution, it selects chunks containing targeted data

based on the query’s time range. During insertion, TimescaleDB

compresses each inserted row before storing it within its respective

chunk. Periodically, it recompresses the new chunks, combining

the newly inserted rows with the previously compressed ones in a

more compact format.

5 EXPERIMENTAL EVALUATION
Before reporting the results of our experiments, we first describe

how we calibrate the systems. We then delve into our three work-

loads, and lastly, evaluate the performance of our data generation

and show its impact on the systems.

To reduce disk IOs, computations, and seek times, TSDBs use

partitioning by time, which physically separates data files. The

partition time range is a critical parameter that has to be manually

set. Its optimal value depends on many factors, including data

cardinality, data granularity, and typical queries. We evaluate the

impact of partitioning by varying the partition time range (Hour,

Day, Week, and Month) for each system and comparing the query

runtime using our two datasets.

Our results (described as a technical report in [40]) show that

partitioning by week represents the optimal choice. This is the

smallest partition size that would invoke, in our setting, single

partition access for these systems minimizing both inter-partition

and intra-partition costs. We also found that ClickHouse is the

only system that is not noticeably impacted by the variation of

the partition size. Thanks to its sparse indexing, ClickHouse can

directly access the data within a partition, even for large partitions.

5.1 Data Bulk Loading
We evaluate systems performance using their bulk loading utility

to import datasets files. Table 3 compares the performance in terms

of throughput and storage size. The reported loading times consist

of the time to ingest the data and to make it available to queries.

Note that we do not report the performance of InfluxDB on D-

MULTI as its loading takes a significant amount of time (i.e., over a

couple of days). Unlike the other systems, InfluxDB does not have

a bulk-loading utility.

The results in Table 3 show that ClickHouse achieves the best

throughput on both datasets reaching 18M data points per second

in the first dataset and 11.9M in the second one. ClickHouse copies

data in bulk upon insertion and then performs merging and sorting

using its MergeTree. Moreover, it uses the maximum number of

available CPU cores, which further improves the loading rates.

MonetDB achieves the second-best throughput reaching 7.5M and
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Table 3: Loading and compression performance. Throughput
the higher the better and storage the lower the better.

Dataset System Avg.

Throughput

(datapoints/s)

Loading

Time (s)

Storage

(GB)

D-LONG

ClickHouse 18’386’867 28 1.97

Druid 903’135 574 3.52

eXtremeDB 2’368’378 218 4.10

InfluxDB 692’122 749 3.50

MonetDB 7’526’460 68 4.00

QuestDB 2’938’892 176 4.00

TimescaleDB 2’627’138 197 4.31

D-MULTI

ClickHouse 11’933’701 1’448 65.50

Druid 616’702 28’020 118.81

eXtremeDB 2’415’877 7’152 138.74

InfluxDB - - -

MonetDB 5’760’000 3’000 137.00

QuestDB 1’920’000 9’000 132.00

TimescaleDB 1’749’976 9’874 134.00

5.7M data points for the two datasets. The low loading times of

both systems confirm their superiority.

The results also show that QuestDB, TimescaleDB and eX-

tremeDB achieve comparable throughputs of over 2M data points

per second, despite having different loading mechanisms. For in-

stance, QuestDB maps column files into a memory page and per-

forms a column append as a memory write. Once the memory page

is exhausted, it is unmapped and a new page is used. TimescaleDB,

on the other hand, uses its loading tool (timescaledb-parallel-copy)

to map the dataset file directly into a table. This loading tool uses

more resources by importing data in parallel. We notice that eX-

tremeDB achieves similar throughputs for the two datasets.

Finally, the results in Table 3 show that ClickHouse outperforms

all the systems in terms of compression. It implements both time

series and general-purpose compression schemes and uses sparse

indexing, storing one index entry for each part (a partition in Mer-

geTree engine). Druid and InfluxDB implement similar compression

schemes but their indexes use one entry per row, which yields ad-

ditional disk storage consumption. Row-based systems, such as

TimescaleDB, achieve lower compression ratios because they can-

not leverage the similarity between values within each column.

5.2 Offline Workload
In this section, we evaluate the systems’ performance on our two

datasets and report the average query execution time (in millisec-

onds). For each query, we create 100 query instances with randomly

generated parameters. We run several random queries before eval-

uation to guarantee that they are not executed on a cold cache.

5.2.1 Evaluation with Long Series. We begin evaluating the systems

for queries on D-LONG by varying the number of stations/sensors

and the time interval for each query. When we vary each dimension,

the remaining ones are set to their default values, i.e., one station,

three sensors, and one day.
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Figure 3: Runtime of Queries Q1 and Q2 on D-LONG.

Q1: Data Fetching. The results in Figure 3a show that ClickHouse

is the best contender in most cases. It achieves high efficiency by

grouping column values into granules (a set of rows) that are in-

dexed and read jointly. This means that instead of reading individual

rows, ClickHouse outputs granules, making it particularly efficient

for high selectivity range queries. The results also show that eX-

tremeDB handles very well queries with low selectivity that involve

only one sensor or cover one hour range. Thanks to its vertical

sequences format, fetching queries in eXtremeDB returns the first

and the last elements’ positions (index) of the selected subsequence,

which is then materialized into memory, making it highly efficient

for short subsequences.

TimescaleDB and QuestDB achieve comparable runtimes in most

cases. The former uses hypertables that partition the data by the

time dimension into several chunks where each chunk is a Post-

greSQL table. Indexing the table by chunks that can fit in memory

reduces query runtimes. QuestDB, on the other hand, partitions the

data by intervals of time, where data from each interval is stored

in separate sets of files, which reduces disk reads for range queries.

Q2: Data Fetching with Filter. The results in Figure 3b show that

eXtremeDB achieves the fastest execution time for most configura-

tions. Filtering queries are executed in eXtremeDB by traversing a

B-tree without materializing the full sequence into memory, signif-

icantly improving the query execution time. In queries with high

selectivity, ClickHouse achieves the fastest query execution as it

processes data within partitions in parallel.

We can observe that QuestDB is the second-fastest system in

multiple configurations. QuestDB supports SIMD instructions that

allow executing a filter query for multiple rows simultaneously.

This allows QuestDB to reach a high level of parallelization. Also,

InfluxDB is noticeably fast for small-range queries. InfluxDB’s TSM

index uses binary search to find data blocks, making InfluxDB fast

for short-range queries where a few blocks are retrieved.

Q3: Data Aggregation. The results in Figure 4a show that the

fastest runtime for Q3 is achieved by eXtremeDB and TimescaleDB,

respectively. Both systems store data values by grouping them

into a single array, making aggregations possible in a single read.

TimescaleDB is the fastest for queries with a high number of sensors
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Figure 4: Runtime of Queries Q3, Q4 and Q5 on D-LONG.

while being less efficient in high-range queries because it has to

access multiple chunks.

We notice that, unlike the two previous queries, TimescaleDB

and QuestDB show different results. This is because QuestDB scans

data rows to perform the aggregation, whereas TimescaleDB per-

forms one read per sensor to compute the aggregation due to its

array-like format. We notice also that MonetDB shows similar run-

time for short and long queries. MonetDB’s BAT representation

makes it better suited for aggregate operations on a few columns,

even for long time series.

Q4: Downsampling. Figure 4b shows the query runtimes for Q4.

Similarly to Q3, eXtremeDB achieves the fastest runtime for most

query parameters. eXtremeDB performs downsampling by manipu-

lating the timestamps at an hourly granularity and aggregating the

values in each window. Because of its array format, eXtremeDB is

able to efficiently perform multiple aggregations for each sensor.

ClickHouse provides the second-best performance for most con-

figurations. It creates a new time column with the reduced fre-

quency by manipulating the timestamp and performing the aggre-

gation for each window. Because aggregations are performed on

neighboring rows, ClickHouse can efficiently downsample large

data ranges. MonetDB and Druid show a reasonable performance

for all configurations as the output of this query is relatively small.

Q5: Upsampling. Figure 4c shows the query runtimes for Q5.

ClickHouse and QuestDB achieve the best runtimes for most pa-

rameters. Both systems perform upsampling by creating new times-

tampsmatching the higher granularity series and then interpolating

in parallel sensor values. TimescaleDB achieves the best runtime for

short-range queries but is less efficient for higher ranges because

more data is sequentially processed.

eXtremeDB and InfluxDB achieve a decent performance in

highly selective queries, but their efficiency significantly decreases

for lowly selective queries. eXtremeDB performs upsampling by

stretching the timestamps into a new array matching the higher

granularity. It copies elements from the original series into the new

ones by matching their timestamps before filling the intermediary

values. InfluxDB shows a reduced performance for queries with

high selectivity because more blocks need to be processed.

Q6: Cross Average. Figure 5a shows that eXtremeDB and

TimescaleDB provide the best runtime results for short window

ranges while eXtremeDB and ClickHouse provide the best results

for query ranges over 1 day. As expected, this query shows similar

performance trends to data fetching in Q1. This shows that data

output impacts the runtime more than executing the operations.

Q7: Correlation. Note that InfluxDB is not evaluated for this query

as it does not support advanced combinations of aggregate func-

tions. Figure 5b shows that eXtremeDB is the fastest for short ranges

up to 1 hour starting from which QuestDB and TimescaleDB are

the fastest. ClickHouse and MonetDB are the fastest for high-range

queries thanks to their parallel computation ability. eXtremeDB

shows a slowdown for higher ranges because of the increasing

query cost for long sequences. This query shows that the perfor-

mance of the systems heavily depends on the query’s computational

cost, even for small outputs.
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Figure 5: Runtime of Queries Q6 and Q7 on D-LONG.

5.2.2 Evaluation with a High Number of Time Series. In this ex-

periment, we evaluate the systems’ performance using the second

dataset D-MULTI. To assess the impact of the number of time series,

we vary, for each query, the number of stations and keep the num-

ber of sensors and range to their default values. Figure 6 depicts

the results for all queries but Q6 and Q7, which are performed on

one station only. We do not report the numbers for InfluxDB in

D-MULTI for the same reasons as above.

We observe that ClickHouse and QuestDB become the fastest for

this dataset. Both systems process multiple time series simultane-

ously, with each series represented as a vector. This results in fast

query runtimes, even for high-selectivity queries (i.e., 100 stations).

In queries with large output, such as Q1 or Q5, the two systems

behave in different ways. Similarly to the other dataset, ClickHouse

is efficient for large output queries. QuestDB, on the other hand,

shows a slowdown due to the additional data outputting overhead.

The results also show unexpected trends. For example, the run-

time of Druid plateaus when the number of stations increases. This
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Figure 6: Runtime of Queries Q1-Q5 on D-MULTI.

is visible for a number of stations above 10. Druid processes the

queried data segments in parallel, generates partial results for each

segment, and then merges the partial results into the final result

set. Such parallelization explains the good performance of Druid

when querying multiple stations.

MonetDB shows another interesting trend. It performs well for

highly selective queries involving fewer than ten stations and as

the output increases, we notice a substantial decrease in its per-

formance. During query execution, MonetDB requires that the

inputs and outputs of each single MAL operation fit in memory.

Subsequently, queries involving a high number of time series are

processed sequentially, leading to a slowdown.

Unlike the other systems, eXtremeDB and TimescaleDB show a

slowdown both in data output and data access. eXtremeDB performs

a join on its hybrid table and then sequentially loads the time

series into memory causing high runtimes for a large number of

series, even for highly selective queries. In TimescaleDB, the time-

partitioned chunks become significantly large for this dataset as

each chunk contains data from all the stations. This slows down its

loading and query execution times.

5.3 Online Workloads
In the previous set of experiments, we assumed an offline setup

where queries are executed separately from data ingestion. In mon-

itoring applications, however, data is often received in an online

manner, making queries and insertions happen simultaneously.

We ran an experiment to compare systems performance on on-

line queries. Before reporting the online results, we describe how

we set the window size during continuous insertion. We do so by

evaluating the impact of the window size on systems insertion

latency. Figure 7 depicts the results where each box plot describes

the insertion time distribution (i.e., median, quartiles, and outliers).
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Figure 7: Insertion Latency by Varying Window Size.

The online results reveal two key trends. For the point-by-point
insertion, all systems can properly handle streaming. eXtremeDB

shows the best latency, but the performance gap between all the

systems is marginal. We also notice that as the window gets bigger,

ClickHouse becomes the fastest because it uses MergeTree to write

directly to storage. We set the maximum window size to 10K rows

to ensure a reasonable insertion latency ratio for all systems.

We now move to describe the online experiment. We first load

two months of historical data and then vary the insertion rate

between 10K and 1.4M data points per second. The queries are

run in parallel on recent data after ensuring the insertion rates

are properly reached. We report the results only for the D-LONG

dataset, as it takes considerable time to produce the results for D-

MULTI. Note that Druid does not support short frequent insertions.

Also, since QuestDB does not support multi-connection insertions,

we insert the whole rate using one connection. Figure 8 reports the

runtime by varying the insertion rates.

The results show that queries do not block writes for all systems.

For slow insertion rates, B-tree-based systems such as QuestDB

provide the best runtimes. They also show that slow insertion rates

have a significant impact on array-based systems. In eXtremeDB,

for instance, the insertion is done by appending new elements to the

end of sequences, which incurs a query slowdown and instability in

the runtime of queries. In TimescaleDB, the slowdown is due to the

newly inserted data remaining uncompressed. As such, the system

cannot benefit from IO optimization of its compressed format as

it needs to load the uncompressed data from the disk. We observe

similar trends for the medium insertion rates for most systems,

with the exception of eXtremeDB, which cannot process more than

20K data points per second.

The results of the fast insertion rates—over 1M data points per

second—show that only InfluxDB, MonetDB, and ClickHouse are

able to reach high rates. In this case, ClickHouse becomes slower

than InfluxDB and MonetDB. This is attributed to the fact that a

significant portion of the new data has to be merged, surpassing

the system’s parallelization ability. InfluxDB and MonetDB append

new data into their storage directories, which allows them to query

the new data efficiently without any additional merging overhead.

5.4 Generation Performance and Impact
In this section, we evaluate the performance of TS-LSH in terms of

efficiency and data quality and compare it to the state-of-the-art

baseline TS-Graph (see Section 2.2). We also examine the impact of

data quality on storage using different generation methods.
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Figure 8: Online Workload: Runtime Results on D-LONG by Varying Insertion Rate (x10K/s).

5.4.1 Generation Performance. We begin by evaluating the quality

of the generated data by computing the similarity between an

original time series and a synthetic one of the same length. We use

standard similarity metrics: (1) the Pearson correlation coefficient—
Pearson (for shape), where higher values are better, (2) Normalized
Mutual Information—NMI (for the amount of shared information),

where higher values are better, and (3) Root Mean Squared Error—
RMSE (for distance), where lower values are better.
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Figure 9: Data Generation Performance.

The results in Figure 9a show that TS-LSH outperforms the base-

line on all metrics. It achieves 0.8 in Pearson correlation being 6x

higher than TS-Graph, indicating that it better preserves the global

trends of the time series. TS-Graph relies on smooth transitions

between segments, hindering the learning of both the local and

global properties of the data. The synthetic time series produced

by this technique are shifted in time, which explains the low cor-

relation and NMI values. Comparatively, TS-LSH achieves better

results using both metrics.

Next, we compare the generation efficiency by varying the size of

the seed data used to generate our D-LONG dataset. The results in

Figure 9b show that the size of the seed data has a marginal impact

on the runtime of TS-LSH. This is because the hash tables are

constructed less frequently for higher inputs. Unlike our solution,

TS-Graph generates a graph, which is quadratic in the length of the

original series. The runtime difference between the two techniques

grows with the size of the dataset.

Lastly, we report the runtimes to generate the two datasets used

for our experiments, D-LONG (518M data points) and D-MULTI

(17.2B data points). Figure 9c shows that both techniques scale

linearly with the length of the generated series. Our technique is,

on average, 5.7x faster than TS-Graph. This difference is due to the

faster construction of LSH tables compared to graph generation.

5.4.2 Compression Performance . In this section, we evaluate how

effectively the systems utilize time series properties. We generate

time series with different features and measure their impact on the

systems’ compression performance. We consider three different

features from a recent benchmark of data encoding techniques [65].

The features include i) repeated values, ii) missing values, and (iii)

mean of delta between consecutive values.

In Figure 10, we incrementally increase the intensity of each fea-

ture and compute the resulting storage size. We report the results

only for the systems where we could observe some impact. The

results show three different trends. First, all reported systems can

benefit from the existence of repeats to further compress the time

series. ClickHouse and Druid show the best performance. The for-

mer system applies delta encoding and Run-length encoding (RLE)

to store the difference between consecutive values. The latter uses

bitmap encoding where a bit represents the presence or absence of

each unique value.
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Figure 10: Impact of Data Characteristics on Systems Storage.

Second, we observe that only ClickHouse and Druid can take

advantage of the existence of missing values. Their storage size de-

creases for datasets with a high missing rate. Both systems support

nullable data types to represent missing values allowing them to

not allocate additional space for those values.

Finally, the results in Figure 10c show a different trend from the

two previous experiments. Increasing the delta between consecu-

tive values yields a higher storage size. When the delta between

consecutive values is small, compression algorithms such as delta

encoding or run-length encoding can use the similarity between

adjacent data points to reduce storage. When the delta is large, this

similarity is weaker and the compression algorithms are less able

to reduce the storage size effectively.

3373



6 RESULTS DISCUSSION
6.1 Performance Summary
To simplify the interpretation of the results and enable a more ac-

tionable comparison, we identify seven discriminative dimensions

for comparing the performance of TSDBs (see Figure 11). Using

these dimensions, we articulate a performance summary through

a Kiviat diagram. Each system’s performance for different query

types is ranked along these dimensions on a 0-5 scale, with 5 repre-

senting the best performance. To assign the scores, the runtimes

are normalized to [0, 1] and then log scaled.
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Online Queries

Under High Rates

Large

Output
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Performance

Large input

TimescaleDB

QuestDB

InfluxDB

eXtremeDB

ClickHouse

Figure 11: Characterization of the Performance of the Five
Best Systems Under Various Workload Dimensions.

From Figure 11, we observe several performance patterns across

the various systems. Most notably, some systems excel in specific

categories, while others present a balanced trade-off across several

dimensions. For example, ClickHouse stands out for queries with

large output, data loading, and on datasets with many time series

thanks to its parallelization ability. eXtremeDB leverages its se-

quence storage format to be best-in-class in filtering, aggregations,

and window operations. InfluxDB is best suited for queries under

fast insertion rates as they support data appending without any

additional merging step. TimescaleDB can produce competitive

results in all query types, while QuestDB is a reliable system in all

queries except those which involve window operations.

6.2 Architecture Impact
Our empirical findings indicate that no single architecture domi-

nates all the workload tiers. Some design choices, however, excel for

specific workloads. Those results show also that the performance

of those architectures depends on whether the workload is offline

or online. Figure 12 showcases two decision matrices that illustrate

the best design to use for a given workload query and mode.

The results of the offline workloads show that the query selectiv-

ity and the size of the data determine the choice of the appropriate

architecture. For queries with low selectivity that involve small

datasets, sequence-based systems, such as eXtremeDB, are likely to

perform the best. When increasing the dataset size, using a parti-

tioning mechanism is highly recommended. Other systems’ designs

can better handle queries with high selectivity. In smaller datasets,

the array format is best suited for aggregations and window oper-

ations, whereas sparse indexing is recommended for upsampling.

Systems that adopt SIMD, such as ClickHouse, can easily handle

large datasets when executing queries with high selectivity.
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Figure 12: Design Choices.

For online workloads, where queries and data ingestion are exe-

cuted concurrently, the insertion rate and the query selectivity are

the determining factors. Our results show that systems implement-

ing B-Tree, such as QuestDB, achieve the best results in queries

with low selectivity and insertion rate. Similarly to the offline mode,

we notice that the query type has an impact only on queries with

high selectivity. As such, sparse indexing is particularly suited for

data fetching and upsampling queries while systems that imple-

ment column-store representation such as InfluxDB or MonetDB

are best suited for filtering and aggregation queries. InfluxDB’s

Log-Structured Merge (LSM) tree yields the best overall query per-

formance under high insertion rates.

7 CONCLUSION
This work aims to fill an important gap in the time series databases

(TSDB) system benchmarking space. It presents a new benchmark,

called TSM-Bench, designed to evaluate the performance of TS-

DBs used in monitoring applications. TSM-Bench implements a

new time series generator that can efficiently augment the size of

seed real-world time series using GANs and LSH. We conducted

a comprehensive study on seven leading TSDBs to evaluate their

performance and capabilities using the generated data. Our results

provide valuable insights into how these systems work and offer

useful guidance in selecting the best system.

Future development plans for TSM-Bench include evaluating

TSDB systems with mixed-queries workloads and multitenancy sce-

narios using a load-generating framework. Also, new performance

metrics such as energy consumption or cloud costs of the TSDBs

can be added as a recommendation axis.
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