
Equitable Data Valuation Meets
the Right to Be Forgotten in Model Markets

Haocheng Xia

Zhejiang University

xiahc@zju.edu.cn

Jinfei Liu
∗

Zhejiang University

jinfeiliu@zju.edu.cn

Jian Lou

Zhejiang University

jian.lou@zju.edu.cn

Zhan Qin

Zhejiang University

qinzhan@zju.edu.cn

Kui Ren

Zhejiang University

kuiren@zju.edu.cn

Yang Cao

Hokkaido University

yang@ist.hokudai.ac.jp

Li Xiong

Emory University

lxiong@emory.edu

ABSTRACT
The increasing demand for data-driven machine learning (ML) mod-

els has led to the emergence of model markets, where a broker

collects personal data from data owners to produce high-usability

ML models. To incentivize data owners to share their data, the

broker needs to price data appropriately while protecting their pri-

vacy. For equitable data valuation, which is crucial in data pricing,

Shapley value has become the most prevalent technique because

it satisfies all four desirable properties in fairness: balance, sym-

metry, zero element, and additivity. For the right to be forgotten,
which is stipulated by many data privacy protection laws to allow

data owners to unlearn their data from trained models, the sharded
structure in ML model training has become a de facto standard to

reduce the cost of future unlearning by avoiding retraining the en-

tire model from scratch. In this paper, we explore how the sharded

structure for the right to be forgotten affects Shapley value for

equitable data valuation in model markets. To adapt Shapley value

for the sharded structure, we propose S-Shapley value, a sharded

structure-based Shapley value, which satisfies four desirable prop-

erties for data valuation. Since we prove that computing S-Shapley

value is #P-complete, two sampling-based methods are developed

to approximate S-Shapley value. Furthermore, to efficiently update

valuation results after data owners unlearn their data, we present

two delta-based algorithms that estimate the change of data value

instead of the data value itself. Experimental results demonstrate

the efficiency and effectiveness of the proposed algorithms.

PVLDB Reference Format:
Haocheng Xia, Jinfei Liu, Jian Lou, Zhan Qin, Kui Ren, Yang Cao, and Li

Xiong. Equitable Data Valuation Meets the Right to Be Forgotten in Model

Markets. PVLDB, 16(11): 3349 - 3362, 2023.

doi:10.14778/3611479.3611531

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ZJU-DIVER/ValuationMeetsRTBF.

∗
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611531

1 INTRODUCTION
In the era of big data, machine learning (ML) models are being

applied in an ever-growing number of businesses and governments

to promote financial gains and social welfare [26, 27, 47]. Enormous

model buyers seek MLmodels for their demands. High-usability ML

models are powered by large amounts of high-quality training data,

which indicates that the data is valuable. Nowadays, personal data

has become one of the most significant data sources [17], but high-

quality data is sparsely distributed among different data owners [3,

12]. To bridge the gap between data owners and model buyers,

model markets have emerged [2, 31]. A model market consists

of three entities: data owners, a broker, and model buyers. The

broker collects data frommultiple data owners, then builds and sells

various ML models to interested model buyers. To incentivize more

data owners to join model markets and share their data, pricing

their data properly [8, 9] and protecting their privacy adequately

are essential [29, 42].

Equitable data valuation is one of the most desirable abilities

in model markets, which is pivotal for data pricing. An equitable

data valuation strategy helps the broker assign more payoff to data

owners whose data contributes to better model performance [29].

To approach the equitability goal, many data valuation strategies

are developed, including leave-one-out (LOO) score [22], Shapley
value [15], reinforcement learning-based value [35], etc. Among

these, Shapley value has become the most prevalent strategy by

virtue of its unique four properties for equitable payoff allocation:

balance, symmetry, zero element, and additivity [31, 34]. Despite

being an intriguing equitable valuation strategy, one shortfall of

Shapley value is that it may not best suit all desiderata of specific

data valuation tasks rising in their particular application scenar-

ios. Consequently, various desiderata have given birth to different

Shapley variants at the expense of partial properties [24, 33, 35].

For example, Beta Shapley [24] value better captures the influence

of individual data points by removing the balance property. From

another perspective, the intensive computing workload is a major

hurdle for the application of Shapley value. Specifically, the naïve

calculation’s computational complexity is exponential in the num-

ber of data owners, so numerous approaches have been proposed

to improve efficiency by sampling approximation [15, 43, 46] or

task-specific simplification [22, 30].

The right to be forgotten, which is stipulated by data privacy

protection laws including GDPR [13], CCPA [20], and PIPL [7], has

become a mandatory part of the personal data protection standard.

The right to be forgotten mandates that data owners shall have

3349

https://doi.org/10.14778/3611479.3611531
https://github.com/ZJU-DIVER/ValuationMeetsRTBF
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611531
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Constituent
models…

Aggregating

Final model ℳ′

Sharded data
organization

Training over
all data

Training over each
data shard isolatedly

… …

Traditional model training Sharded model training for machine unlearning

Plain data
organization

Final model ℳ

Figure 1: Comparison between traditional model training and
sharded model training for machine unlearning – Model M is trained

directly on all data while model M′ is aggregated from the constituent

models trained on corresponding disjoint shards.

the right to erasure their personal data from service providers (e.g.,

companies and institutions). Recent research argues that deleting

personal data from databases is not enough to promise the removal

of personal data [32]. For example, ML models trained on the pre-

vious dataset are also regulated because these models can be used

to infer the training data [45]. To make ML models satisfy the

right to be forgotten with less overhead than the naïve baseline of

“retraining-from-scratch”, a new research direction “machine un-

learning” [5] has emerged and quickly garnered growing research

interest recently. A common idea in machine unlearning is limiting

the impact of a data point on the model in the training process

to support efficient updates in the future. Following this idea, the

authors [4, 16, 32] adopt a sharded structure in model training. As

an example shown in Figure 1, the training process of Model M′

applies the sharded structure. Unlike modelM trained by the tradi-

tional training approach, the training data of modelM′ is divided
into several disjoint shards. Different constituent models on the

corresponding shard are aggregated for the final model. For exam-

ple, the aggregation strategy can be a simple label-based majority
vote [4] for classification problems. Only the shards involving the

data to be forgotten need to retrain their constituent models.

Since the broker builds ML models with the personal data of

data owners, these ML models in model markets are regulated

by the right to be forgotten naturally. However, existing model

markets have not incorporated the right to be forgotten. In this

paper, to enable model markets to respect this widely enforced

regulation, we explore the right to be forgotten in model markets
from the perspective of data valuation.

Gaps and Challenges. Though efforts have been made to develop

different variants of Shapley value [24, 33, 35], how Shapley value

for equitable data valuation should respond to the sharded struc-

ture for the right to be forgotten is still understudied. It is therefore

tempting to ask: how can we design a variant of Shapley value,

which can simultaneously satisfy the equitable data valuation and

suit the sharded structure for the right to be forgotten? We summa-

rize the gaps and challenges as follows.

• Shapley value over the sharded structure. When data owners co-

operate with a sharded structure in model markets, traditional

Shapley value faces a dilemma in payoff allocation. Consider

an ML task that has applied the sharded structure in a model

market, each data shard contains the data of one or several data

owner(s). We refer to a player as either a single data owner or a

data shard consisting of several data owners to compute Shapley

value. Consequently, Shapley value of a data shard is not equal

to the sum of its data owners’ Shapley values. This inequality

creates complexities and conflicts for payoff allocation. As data

owners are profit-driven, they tend to choose a payoff allocation

that can obtain more profit. If a data shard’s Shapley value is

more (resp. less) than the sum of its data owners’ Shapley value,

the data owners in this shard may request to adopt data shards’

(resp. data owners’) Shapley value to allocate payoff. Therefore,

the challenge is: How to design a variant of Shapley value for
equitable data valuation over the sharded structure?

• Efficient computation and update. Computing Shapley value or

existing variants including Beta-Shapley value, CS-Shapley value,

and Data Banzhaf value is known to be #P-complete [15, 33,

39]. What is more, the right to be forgotten guarantees data

owners the freedom to exit the model market upon their removal

requests. Once data owners exit and request to remove their

data, the previous valuations become inapplicable since the data

distribution changed. Shapley value computation requires large

amounts of utility function evaluations (e.g., model accuracy in

ML) whose number is exponential in the number of players (e.g.,

data owners or data shards). The time-consuming training of

machine learning models will further increase the computational

resource overhead. Therefore, blindly reevaluating the data value

for each data owner from scratch is inefficient. The challenge to

be addressed is: How to efficiently compute the initial data value
and update it when data removal requests occur?

Contributions. In this paper, we address the identified challenges

by proposing the Sharded structure-based Shapley (S-Shapley)

value, combined with a series of efficient approximation algorithms

for estimating initial S-Shapley value and updating S-Shapley value.

For the first challenge, we extend and define four desirable prop-

erties (Section 3.3) for equitable data valuation given the sharded

structure. Then we propose the sharded structure-based Shap-

ley (S-Shapley) value, as a metric to quantify the value of data

given the sharded structure. S-Shapley value satisfies the four de-

sirable properties. We prove that computing S-Shapley value is #P-

complete. Moreover, we perform an evaluation using two classifiers,

six datasets, and five baseline methods. The results demonstrate

that S-Shapley value gives more insights into the data importance in

learning performance than other existing data valuation strategies

under sharded structures.

For the second challenge, we develop two algorithms to approx-

imate the initial S-Shapley value and two algorithms to update it

in polynomial time. For approximating initial S-Shapley value: (i)

we develop a simple algorithm with Monte Carlo simulation as

the baseline; (ii) to achieve higher efficiency, we develop a utility

sampling-based algorithm to reuse the evaluated utilities. For up-

dating S-Shapley value: (i) we develop an algorithm to estimate

the change of utility as the change of S-Shapley value when a data

owner exits; (ii) for the case of multiple data owners exiting, we

introduce a batched algorithm to reduce asymptotic error. Both

algorithms reduce the time cost by at least an order of magnitude.

We briefly summarize our contributions as follows.

• We present four desirable properties for the data valuation with

the sharded structure and propose S-Shapley value to measure

the contribution of data. In addition, we theoretically show that

computing S-Shapley value is #P-complete.

3350

• We develop two approximation algorithms for efficiently esti-

mating S-Shapley value with Monte Carlo simulation and utility

evaluation reuse.

• We present two efficient algorithms for updating S-Shapley value

on the new datasets when one or multiple data owners exit,

respectively.

• Our experimental studies show that S-Shapley value gives more

insights than existing methods in the importance of data under

the sharded structure. The effectiveness and efficiency of our

proposed algorithms for approximating and updating S-Shapley

value are demonstrated.

2 RELATEDWORK
In this section, we discuss related work on data valuation and the

right to be forgotten, respectively.

Data valuation. In model markets, a common way for payoff

allocation is based on the importance of the data. Data valuation

methods quantize the importance of data by assigning a larger value

to data that is more important for a given task, e.g, improving the

performance of ML models [15].

Some existing data valuation strategies in ML such as LOO

score [22], influence-function-basedmethod [31], and reinforcement-

learning-based value [35], have simple intuition and do not de-

pend on the concept of Shapley value. Compared with Shapley-

value-based methods, these methods are usually more computa-

tionally efficient as they require less or even no training of models

but cannot provide theoretical guarantees of fairness desired in

data valuation [15]. Shapley-value-based methods include Shapley

value [15] and its variants with the partially relaxed Shapley proper-

ties [14, 24, 33, 35, 39]. Ghorbani and Zou [15] first utilized Shapley

value to quantify the contributions of data points. Subsequent work

has tried to design variants of Shapley value according to different

scenarios, such as D-Shapley [14] based on stable data distributions,

Beta Shapley [24] highlighting the importance of individual data,

CS-Shapley [33] for classifiers, and Data Banzhaf [39] for robust

value ranking. However, directly applying existing Shapley-value-

based methods under the sharded structure to facilitate machine

unlearning for the right to be forgottenmay introduce unfairness. In

contrast, S-Shapley value builds on the sharded structure to ensure

desirable properties for data valuation. The most related work [44]

delved into the computation of Shapley value over dynamic datasets.

Under the new cooperation structure (i.e., the sharded structure),

not all coalitions (subsets of data owners) can be used for computing

S-Shapley value, hence existing approximation algorithms cannot

be directly applied. In contrast to existing works on data valuation

in federated learning [40, 41], S-Shapley value differs significantly

in several ways: (i) it focuses on record-level valuation rather than

client-level valuation; (ii) it performs a continuous valuation over

dynamic datasets due to the requirement of the right to be forgotten

rather than a one-time valuation; and (iii) since all participants are

trusted, the broker has direct access to all data from data owners.

The right to be forgotten. Recent laws (e.g., Article 17 of GDPR)
stipulated the right to be forgotten [13] which require companies

and institutions to delete user data upon request. In model markets,

the right to be forgotten protects the right of data owners to exit

markets and cancel data transactions. Cao and Yang [5] initiated the

study of the right to be forgotten in ML and came up with a strict

definition of machine unlearning which can entirely remove certain

sensitive data from trained statistical query learning models [23].

Moreover, researchers further consider the unlearning problem

for other prevalent ML models, such as 𝑘-means clustering [16],

decision trees [32], and even neural networks [4]. To update the ML

model and avoid retraining the model from scratch after removing

the data to be forgotten, they coincidentally applied the idea of

the sharded structure which only requires retraining of the model

for the corresponding shard and updating the aggregated model.

Specifically, Ginart et al. [16] identified the principle of modularity

in unlearning which restricts the model parameters depending on

specific partitions of the dataset. Schelter et al. [32] developed un-

learning algorithms on Extremely Randomised Trees [36] by learn-

ing an ensemble representation. Bourtoule et al. [4] introduced the

SISA training framework and systematically explored the impact

of the sharded structure on model performance and unlearning

speed-up. Recently, Chen et al. [10] extended the sharded structure

into graph unlearning by employing balanced graph partitioning

algorithms. Ginart et al. [16] introduced approximate unlearning

without model retraining using the influence function under a re-

laxed unlearning definition. However, recent studies [18, 19] on

influence-function-based machine unlearning methods are mostly

limited to linear models or fine-tuning settings, making it chal-

lenging to apply them to more general models such as deep neural

networks. In contrast, shard-based unlearning surpasses in terms

of applicability. Our target application scenario is a model market

that utilizes existing shard-based machine unlearning methods to

ensure the right to be forgotten of data owners.

3 PRELIMINARIES
In this section, we review the concept of Shapley value in Section

3.1 and describe the sharded structure in Section 3.2. We list four

desiderata for data valuation based on the sharded structure in

Section 3.3. Table 1 summarizes the frequently used notations.

Table 1: The summary of frequently used notations.
Notation Definition

𝑛 the number of data owners

𝑚 the number of data shards

U(·) utility function

𝐷𝑖 the 𝑖𝑡ℎ data owner

𝒛𝑖 the 𝑖𝑡ℎ data set

𝑑 𝑗 the 𝑗𝑡ℎ data shard

S a coalition of data sets

L sharded structure

𝐿𝑘 the partitions in 𝑘𝑡ℎ level of L
SV Shapley value

SSV S-Shapley value

𝜏 the total number of samples

3.1 Shapley Value
Consider 𝑛 data owners 𝐷1, . . . , 𝐷𝑛 such that data owner 𝐷𝑖 owns

data set 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛). They aim to solve a task by training an

ML model with a joint effort. To quantify the contribution of each

data owner towards solving the task, we assume a utility function

U(S) (S ⊆ {𝒛1, . . . , 𝒛𝑛}) that evaluates the utility of a coalition S,
which consists of data sets from multiple data owners. The utility

of coalition S can be the performance of the ML model trained over

3351

S. Shapley value is a measure that can be used to evaluate data

importance for payoff allocation, which uniquely satisfies four eq-

uitable properties, including balance, symmetry, zero element, and

additivity. Shapley value of data owner 𝐷𝑖 measures the marginal
utility improvement (i.e., marginal contribution) contributed by 𝒛𝑖
averaged over all possible 𝑛! permutations𝔖𝑛 on {1, . . . , 𝑛}.

SV𝑖 =
1

𝑛!

∑︂
𝜋∈𝔖𝑛

[︁
U

(︁
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︁
−U

(︁
S𝒛𝑖𝜋

)︁]︁
, (1)

where 𝜋 is a permutation in 𝔖𝑛 and S𝒛𝑖𝜋 is the coalition of data

set(s) whose index before 𝑖 in permutation 𝜋 (S𝒛𝑖𝜋 = ∅ if 𝑖 is the first
element in 𝜋). Computing the exact Shapley value has to enumerate

all coalitions’ utilities and thus is prohibitively expensive. More

precisely, computing Shapley value is #P-complete [15].

3.2 Sharded Structure
Under the regulation of the right to be forgotten, to reduce the

computational overhead of data removal, data points are sharded

to train constituent models correspondingly, and then these mod-

els are ensembled by model aggregation (e.g., majority vote). We

represent the sharded structure with a sequence of partitions over

{𝒛1, . . . , 𝒛𝑛}, L = {𝐿0, 𝐿1, 𝐿2} such that 𝐿0 = {{𝒛1, . . . , 𝒛𝑛}}, 𝐿1 =

{𝑑1, . . . , 𝑑𝑚} (𝑑 𝑗 ⊆ {𝒛1, . . . , 𝒛𝑛} and
⋂︁𝑚

𝑗=1 𝑑 𝑗 = ∅), and 𝐿2 = {{𝒛1},
. . . , {𝒛𝑛}}. We call 𝐿𝑘 (0 ≤ 𝑘 ≤ 2) the partitions in the 𝑘𝑡ℎ level.

Partitions of a level are coarser than the partitions of the next

level, which indicates that one partition in a level consists of the

partition(s) in the next level. We note that each partition in 𝐿1,

𝑑 𝑗 (1 ≤ 𝑗 ≤ 𝑚), is called a data shard which is a given coalition of

data owners. An example of the sharded structure is shown below.

Figure 2: Sharded structure.

Example 3.1. Consider three data owners 𝐷1, 𝐷2, 𝐷3 such that 𝐷1 and 𝐷2 co-

operate to train a constituent model while 𝐷3 trains a constituent model indepen-

dently. The sharded structure can be represented with L = {𝐿0, 𝐿1, 𝐿2 }, where
𝐿0 = {{𝒛1, 𝒛2, 𝒛3 }}, 𝐿1 = {{𝒛1, 𝒛2 }, {𝒛3 }}, and 𝐿2 = {{𝒛1 }, {𝒛2 }, {𝒛3 }} as shown
in Figure 2. Utility of each coalition S, U(S) , is the performance of the final model

trained over S with sharded structure L.

Following the existing work in machine unlearning [4, 10, 16],

we assume the sharded structure is given by the specific sharding

mechanisms. How to design the sharded structure is beyond the

scope of this paper.

3.3 Desiderata for Data Valuation
Following the celebrated properties of Shapley value (A1-A4), we

list four desirable properties (P1-P4) under the constraints of the

sharded structure. P1-P4 will be the design guidance to S-Shapley

value for equitable data valuation over the sharded structure.

A1. Balance: The sum of the payoff to data owners should be equal

to the utility of all the data owners. That is, the total payoff

is fully distributed to all data owners. Formally,

∑︁𝑛
𝑖=1 SV𝑖 =

U({𝒛1, . . . , 𝒛𝑛}).

P1. Sharded balance: The total payoff should be fully distributed

to all data owners and each data shard’s payoff should be fully

distributed to its data owners. Formally, S-Shapley value of a

data shard𝑑 𝑗 ∈ 𝐿1,SSV𝑑 𝑗
, should be the sum of the S-Shapley

value of data owners in 𝑑 𝑗 , that is SSV𝑑 𝑗
=
∑︁
𝒛𝑖 ∈𝑑 𝑗

SSV𝑖 ,

and

∑︁𝑛
𝑖=1 SSV𝑖 = U({𝒛1, . . . , 𝒛𝑛}), where SSV𝑖 is the S-

Shapley value of 𝒛𝑖 .

Comparison: The intuition is that if any data shard fails to meet

the balance property, it will result in a conflict in the distribution

of the payoff. If SV𝑑 𝑗
≠
∑︁
𝒛𝑖 ∈𝑑 𝑗

SV𝑖 , where 𝑑 𝑗 is a data shard in

𝐿1 and SV𝑑 𝑗
is Shapley value of 𝑑 𝑗 , data owners tend to choose

the higher one which brings more payoff. The difference between

A1 and P1 is that in addition to following Shapley value’s balance

property, P1 further introduces the balance property for each shard,

which requires that the payoff of each data shard should be equal

to the total payoff of its data owners.

A2. Symmetry: The same contribution brings the same payoff.

Formally, for two data owners 𝒛𝑖 and 𝒛𝑖′ and any subset of

data owners S ⊆ {𝒛1, . . . , 𝒛𝑛}\{𝒛𝑖 , 𝒛𝑖′ }, if U(S ∪ {𝒛𝑖 }) =

U(S ∪ {𝒛𝑖′ }), then SV𝑖 = SV𝑖′ .

P2. Sharded symmetry: Two shards with the same contributions

receive the same payoff; two data owners with the same con-

tributions within a shard receive the same payoff. Formally,

for two data shards 𝑑 𝑗 and 𝑑 𝑗 ′ and any coalition of data shards

DS ⊆ 𝐿1\{𝑑 𝑗 , 𝑑 𝑗 ′ }, ifU(DS ∪ {𝑑 𝑗 }) = U(DS ∪ {𝑑 𝑗 ′ }), then
SSV𝑑 𝑗

= SSV𝑑 𝑗 ′ ; for two data sets 𝒛𝑖 and 𝒛𝑖′ in the same data

shard𝑑 𝑗 ∈ 𝐿1 and any coalition of data ownersS ∈ 𝑑 𝑗\{𝒛𝑖 , 𝒛𝑖′ },
ifU(S ∪ {𝒛𝑖 }) = U(S ∪ {𝒛𝑖′ }), then SSV𝑖 = SSV𝑖′ .

Comparison: The intuition is that even the same data may have

considerably different contributions when belonging to different

shards. Therefore, symmetry for data owners is defined on individ-

ual shards in P2 rather than globally in A2.

A3. Zero element: No contribution, no payoff. Formally, for a data

owner 𝒛𝑖 and any subset of data owners S ⊆ {𝒛1, . . . , 𝒛𝑛}\{𝒛𝑖 },
ifU(S ∪ {𝒛𝑖 }) = U(S), then SV𝑖 = 0.

P3. Sharded zero element: No contribution for the overall model,

no payoff for the data shard; no contribution in the data shard,

no payoff for the data owner. Formally, for a data shard 𝑑 𝑗
and any coalition of data shards DS ⊆ 𝐿1\{𝑑 𝑗 }, if we have
U(DS ∪ {𝑑 𝑗 }) = U(DS), then SSV𝑑 𝑗

= 0; for a data set

𝒛𝑖 in data shard 𝑑 𝑗 and any subset S ⊆ 𝑑 𝑗\{𝒛𝑖 }, if we have

U(S ∪ {𝒛𝑖 }) = U(S), then SSV𝑖 = 0.

Comparison: The intuition is that when a data set has no contribu-

tion to the corresponding data shard it will also have no contribution

to the final model. The difference between A3 and P3 is that when

judging whether a data owner has no contribution, we examine

all possible subsets in the corresponding data shard rather than all

possible subsets of data owners.

A4. Additivity: If data owners’ data can be used for two ML tasks

𝑇1 and 𝑇2 with payoff SV1 and SV2, respectively, then the

payoff to complete both tasks 𝑇1 +𝑇2 is SV1 + SV2.

P4. Additivity: The same as A4.

Comparison: Additivity property is independent of data’s coopera-

tion structure, so it remains unchanged with a sharded structure.

3352

Compared to Shapley value, S-Shapley value has more favorable

properties when applied to sharded data by additionally requiring

balance property within each data shard (P1), reducing the scope

of symmetry property and zero element property to each of data

shard (P2 & P3), and preserving additivity property (P4). Since the

shared structure has limited the combination of data owners, it will

be more efficient to compute S-Shapley value.

4 S-SHAPLEY VALUE
In this section, we define S-Shapley value based on four desir-

able properties (P1-P4) in Section 3.3 for equitable data valuation

over the sharded structure and prove the problem of computing

S-Shapley value is #P-complete.

S-Shapley value. Sharded balance (P1) can be expressed as that

the total payoff should be fully distributed to all data shards and

then each data shard’s payoff should be fully distributed to its data

owners. It follows the idea of top-down allocation, which is broadly

applied in allocating investments and budgets. We first consider

the payoff allocation from 𝐿0 to 𝐿1. For each data shard’s SSV ,

the requirements of sharded balance (P1), sharded symmetry (P2),

sharded zero element (P3), and additivity (P4) at these two lev-

els will degenerate to the same requirements of Shapley value’s

corresponding properties. Therefore, all possible coalitions of data
shards need to be considered to measure contribution. When we al-

locate payoff from 𝐿1 to 𝐿2, sharded balance, sharded symmetry,

sharded zero element, and additivity become the Shapley value’s

corresponding properties restricted to each data shard. Therefore,

we need to further consider all possible coalitions of data owners in
their corresponding data shards to measure contribution based on the

previous coalitions of data shards.

𝒛𝟏 𝒛𝟐 𝒛𝟑

𝒛𝟏 𝒛𝟐𝒛𝟑

𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟐 𝒛𝟏 𝒛𝟑

𝒛𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟐 𝒛𝟏

Contribution of {𝐳𝟏, 𝐳𝟐} is
divided between 𝐳𝟏 and 𝐳𝟐

Contribution of {𝐳𝟏, 𝐳𝟐, 𝐳𝟑} is
divided between {𝐳𝟏, 𝐳𝟐} and {𝐳𝟑}

𝒛𝟏 𝒛𝟐 𝒛𝟑

1 2

Figure 3: Illustration of top-down allocation.

Example 4.1. Consider Example 3.1’s setting. For payoff allocation from 𝐿0 to

𝐿1 , we evaluate the average marginal contribution of data shards as Shapley value

does by considering all permutations over {{𝒛1, 𝒛2 }, {𝒛3 }} (i.e., [{𝒛1, 𝒛2 }, {𝒛3 }] and
[{𝒛3 }, {𝒛1, 𝒛2 }]). For payoff allocation from 𝐿1 to 𝐿2 , we measure average marginal

contribution of the data owners inside {𝒛1, 𝒛2 } by consider all permutations over

{𝒛1, 𝒛2 } in permutations [{𝒛1, 𝒛2 }, {𝒛3 }] and [{𝒛3 }, {𝒛1, 𝒛2 }] in Figure 3.

Compared to all 𝑛! permutations𝔖𝑛 over {1, . . . , 𝑛} that need
to be considered in computing Shapley value, some permutations

cannot be involved in computing S-Shapley value. Given sharded

structure L, we refer to the permutations for computing S-Shapley

value as𝔖𝑛 (L).
𝔖𝑛 (L) = {𝜋 ∈ 𝔖𝑛 : for all data shard 𝑑 𝑗 ∈ 𝐿1,∀𝒛𝑖 , 𝒛𝑖′ ∈ 𝑑 𝑗 ,

if 𝜋. idx(𝑖) < 𝜋. idx(𝑖′′) < 𝜋. idx(𝑖′) then 𝒛𝑖′′ ∈ 𝑑 𝑗 },
where 𝜋. idx(𝑖) is the index of element 𝑖 in 𝜋 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤
𝜋. idx(𝑖) ≤ 𝑛).

While Equation 1 computes Shapley value by averaging a data

owner’s marginal contribution in all permutations of𝔖𝑛 , SSV is

computed by averaging a data owner’s marginal contribution in all

permutations of𝔖𝑛 (L), so we have the following formulation.

Proposition 4.2. SSV𝑖 uniquely satisfies sharded balance, sharded
symmetry, sharded zero element, and additivity (P1-P4) in Section 3.3.

SSV𝑖 =
1

|𝔖𝑛 (L)|
∑︂

𝜋∈𝔖𝑛 (L)

(︁
U

(︁
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︁
−U

(︁
S𝒛𝑖𝜋

)︁)︁
, (2)

where S𝒛𝑖𝜋 = {𝒛𝜋 (1) , . . . , 𝒛𝜋. idx(𝑖) }\{𝒛𝑖 }.

Proof. Due to the limited space, please see our technical re-

port [1] for detailed proof. The same to the following theorems. □

Example 4.3. According to Equation 2, we evaluate the data owners’ data in Example

3.1. Firstly, generate the permutation set 𝔖𝑛 (L) . Then we average the marginal

contribution of 𝒛𝑖 over the permutations in𝔖𝑛 (L) shown in Table 2 to compute

SSV𝑖 . The yielded SSV for (𝒛1, 𝒛2, 𝒛3) is
(︁
1

4
× (2 + 8 + 0 + 2) = 3, 1

4
× (8 +

2 + 10 + 8) = 7, 1
4
× (2 + 2 + 2 + 2) = 2

)︁
, which is different from Shapley value(︁

1

6
× (2+2+8+2+0+2) = 8

3
,
1

6
× (8+10+2+2+10+8) = 20

3
,
1

6
× (2+0+2+8+2+2) = 8

3

)︁
for (𝒛1, 𝒛2, 𝒛3) .

Table 2: Marginal contribution.
𝔖𝑛 𝔖𝑛 (L) 𝒛1 𝒛2 𝒛3

[1, 2, 3] [1, 2, 3] 2 8 2

[1, 3, 2] [1, 3, 2] 2 10 0

[2, 1, 3] [2, 1, 3] 8 2 2

[2, 3, 1] [2, 3, 1] 2 2 8

[3, 1, 2] [3, 1, 2] 0 10 2

[3, 2, 1] [3, 2, 1] 2 8 2

Interpretation of S-Shapley value. SSV𝑖 can be interpreted as

the average marginal contribution of 𝒛𝑖 in permutations of𝔖𝑛 (L).
Besides, SSV𝑖 is the average marginal Shapley value contribution

of 𝒛𝑖 to the corresponding data shard. An example to compute

SSV𝑖 started with precomputed Shapley value is shown as follows.

Example 4.4. Following Example 4.3, the standard Shapley value for (𝒛1, 𝒛2, 𝒛3) is
(8
3
,
20

3
,
8

3
) . Shapley value for the data shards in𝐿1 , ({𝒛1, 𝒛2 }, {𝒛3 }) , is (1

2
×(10+10) =

10, 1
2
× (2 + 2) = 2) . Then we can calculate SSV correspondingly. SSV3 inherits

Shapley value of {𝒛3 } in 𝐿1 , thus SSV3 = 2. We determine SSV1 and SSV2 .

There are two possible permutations within the data shard {𝒛1, 𝒛2 }, i.e., [𝒛1, 𝒛2] and
[𝒛2, 𝒛1]. Averaging 𝒛1’s marginal contribution for Shapley value in these permutations,

we have SSV1 =
1

2
× (8

3
− 0 + 10 − 20

3
) = 3. Similarly, we have SSV2 = 7.

Theorem 4.5. Computing S-Shapley value with an arbitrary sharded
structure L is #P-complete in 𝑛-person weighted voting [28] games.

Proof Sketch. Consider a𝑛-personweighted voting game (WVG)

given L and an instance of SUBSET-SUM-EQ with a set of (𝑚+|𝑑𝑚 |-
2) non-negative integers. The reductionmaps the instance of SUBSET-
SUM-EQ to theWVG givenL. SUBSET-SUM-EQ has a solution if and

only if there is a valid coalition S where the 𝑛𝑡ℎ player’s marginal

contribution is one with L. Details appear in [1]. □

5 COMPUTING S-SHAPLEY VALUE
In this section, we propose two approximation algorithms to esti-

mate S-Shapley value in polynomial time based on sampling: Monte

Carlo sampling (Section 5.1) and utility sampling (Section 5.2).

5.1 Monte Carlo Sampling
We directly sample the marginal contribution to approximate S-

Shapley value of 𝒛𝑖 , SSV𝑖 . We rewrite Equation 2 by regarding

SSV𝑖 as the expectation of 𝒛𝑖 ’s marginal contribution. That is

SSV𝑖 = 𝑬𝜋∼Π
[︁
U

(︁
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︁
−U

(︁
S𝒛𝑖𝜋

)︁]︁
, (3)

where Π is the uniform distribution over all permutations in𝔖𝑛 (L).

3353

Algorithm 1: 𝜋 = Sample(L).
input : sharded structure L
output :a permutation 𝜋 in𝔖𝑛 (L)

1 initialize 𝜋 as an empty list;

2 let 𝜋 ′ be a random permutation from 1, . . . ,𝑚;

3 for 𝑗=1 to m do
4 𝑎 = 𝜋 ′ (𝑗) ;
5 append a random permutation of the indexes of 𝑑𝑎 ’s data

owners to 𝜋 ;

6 return 𝜋 ;

Algorithm 2:Monte Carlo Sampling Algorithm.

input :data sets from data owners {𝒛1, . . . , 𝒛𝑛 }, sharded
structure L, the number of permutations 𝜏

output :estimated S-Shapley value
̂︅SSV𝑖 for each data owner

(1 ≤ 𝑖 ≤ 𝑛)

1 ̂︅SSV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛) ;
2 for 𝑡=1 to 𝜏 do
3 𝜋𝑡 ← Sample(L);
4 for 𝑖=1 to 𝑛 do
5 ̂︅SSV𝜋𝑡 (𝑖)+ = 1

𝜏
·[︁

U({𝒛𝜋𝑡 (1) , . . . , 𝒛𝜋𝑡 (𝑖) }) − U({𝒛𝜋𝑡 (1) , . . . , 𝒛𝜋𝑡 (𝑖−1) })
]︁
;

6 return ̂︅SSV1, . . . , ̂︅SSV𝑛 ;

Given that SSV𝑖 is the expectation of marginal contribution,

Monte Carlo simulation can be used to estimate SSV𝑖 , following

previous work on Shapley value computation [15, 22]. First, we

randomly sample a permutation in𝔖𝑛 (L). Then, we scan the per-

mutation from the first element to the last element and calculate the

marginal contribution of each data owner. Repeating the same pro-

cedure over multiple permutations, the final estimation of SSV𝑖

is simply the average of all the calculated marginal contributions.

To randomly sample a permutation in𝔖𝑛(L), a multistage sam-

pling approach is employed, which first permutes all data shards

and then generates permutations for data owners within each data

shard. Algorithm 1 outlines the pseudo-code for sampling a permu-

tation in𝔖𝑛 (L). Given a sharded structureL, a permutation is first

sampled over the data shards (Line 2), followed by the sampling of

permutations of the corresponding data owners’ indexes in each

data shard (Lines 4-5), where 𝜋 ′ (𝑗) is the 𝑗𝑡ℎ element in permuta-

tion 𝜋 ′ (1 ≤ 𝜋 ′ (𝑗) ≤ 𝑚). The data owners’ indexes in different data

shards do not overlap as

⋂︁𝑚
𝑗=1 𝑑 𝑗 = ∅. We note that Algorithm 1

will be used as a fundamental module for all algorithms.

Algorithm 2 outlines the pseudo-code for estimating SSV𝑖

(1 ≤ 𝑖 ≤ 𝑛) usingMonte Carlo sampling.We randomly sample 𝜏 per-

mutations in𝔖𝑛 (L) based on Algorithm 1 (Lines 2-3) and calculate

the average marginal contribution of each data owner (Lines 4-5),

where 𝜋𝑡 (𝑖) is the 𝑖𝑡ℎ element in permutation 𝜋𝑡 (1 ≤ 𝜋𝑡 (𝑖) ≤ 𝑛).

It is worth noting that the estimation of SSV𝑖 (i.e.,
̂︅SSV𝑖) in

Algorithm 2 is unbiased.

Theorem 5.1. Algorithm 2 gives an unbiased estimation of SSV𝑖

(1 ≤ 𝑖 ≤ 𝑛), i.e., 𝑬 [̂︅SSV𝑖] = SSV𝑖 .

In practice, we can conduct Monte Carlo sampling iteratively

until the average empirically converges. The larger the number of

sample permutations, the smaller error bound between
̂︅SSV𝑖 and

SSV𝑖 according to Hoeffding’s inequality [21].

Theorem 5.2. According to Hoeffding’s inequality, given the range
of a data set’s marginal contributions 𝑟 , the number of permutations 𝜏 ,
the error |̂︅SSV𝑖 − SSV𝑖 | ≤

√︁
2𝑟2 log (2/𝛿)/𝜏 in probability 1 − 𝛿 .

5.2 Utility Sampling
AlthoughMonte Carlo sampling is simple to use, it does not fully ex-

ploit the shared utility computation between permutations. When

we sample a permutation 𝜋 with Algorithm 1 and calculate the mar-

ginal contribution of 𝒛𝜋 (𝑖) for estimating SSV𝜋 (𝑖) , i.e.,U({𝒛𝜋 (1) ,
. . . , 𝒛𝜋 (𝑖) }) − U({𝒛𝜋 (1) , . . . , 𝒛𝜋 (𝑖−1) }), we evaluate the utilities of
two coalitions {𝒛𝜋 (1) , . . . , 𝒛𝜋 (𝑖) } and {𝒛𝜋 (1) , . . . , 𝒛𝜋 (𝑖−1) }. Since
these utilities are also parts of other data owners’ S-Shapley value,

they can be reused for efficient computation as in Example 5.3.

Example 5.3. Consider Example 3.1’s setting. When we scan 𝒛3 in a sampled

permutation of data sets [𝒛2, 𝒛1, 𝒛3], U({𝒛1, 𝒛2 }) and U({𝒛1, 𝒛2, 𝒛3 }) are evalu-
ated for estimating SSV3 . U({𝒛1, 𝒛2 }) can be reused for estimating SSV2 with

U({𝒛1, 𝒛2 }) − U({𝒛1 }) .

In order to estimate S-Shapley value of multiple data owners

simultaneously, we can treat S-Shapley value as the difference of

two utility expectations and reuse utilities accordingly.

Theorem 5.4. Given a sharded structure L, the S-Shapley value
of 𝒛𝑖 is formed by two expectations of utilities SSV+𝑖 and SSV−𝑖 .
That is,

SSV𝑖 = 𝑬𝜋∼Π
[︂
U

(︂
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︂]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

SSV+
𝑖

− 𝑬𝜋∼Π
[︂
U

(︂
S𝒛𝑖𝜋

)︂]︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

SSV−
𝑖

. (4)

We note that permutation 𝜋 inU
(︁
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︁
is not necessary the

same as 𝜋 inU
(︁
S𝒛𝑖𝜋

)︁
.

With Theorem 5.4, we estimate two utility expectations (i.e.,

SSV+𝑖 and SSV−𝑖) separately instead of directly estimating one

marginal contribution expectation (i.e., SSV𝑖) with Monte Carlo

sampling. The range of utilities is generally larger than the range

of marginal contributions which are differences between paired

utilities. The more spread the data samples, the larger the variance

is concerning the mean. Thus, although it enables us sufficiently

reuse utilities, Theorem 5.4 enlarges the variance in estimation. To

reduce the variance, we apply stratified sampling which divides

utilities into homogeneous subgroups whose range is smaller in

each subgroup and estimates them respectively.

Stratification. To appropriately stratify the utilities in SSV+𝑖 or

SSV−𝑖 into homogeneous subgroups, we investigate the distri-

bution of utilities. In traditional Shapley value computation, the

strata are determined only by the number of data owners in a given

coalition [6]. However, when computing S-Shapley value, using

the same stratification approach leads to imbalanced strata and bi-

ased estimation. To this end, we considered not only the number of

data owners but also the number of data shards in the coalition for

stratification. To compute SSV+𝑖 or SSV−𝑖 , a valid coalition must

include the data of one or several data shards, and only the data

shard containing 𝒛𝑖 , denoted as 𝑑 [𝒛𝑖], can be incomplete. Thus, we

can categorize utilities into different strata based on the number of

3354

involved data shards in the corresponding coalition and the number

of involved data owners in 𝑑 [𝒛𝑖].

Definition 5.5. Given a sharded structure L, denote by 𝑑 [𝒛𝑖] the
data shard containing 𝒛𝑖 . If a coalition S involving 𝑏 data shards

contains 𝒛𝑖 , for any data shard 𝑑 𝑗 (𝑑 𝑗 ≠ 𝑑 [𝒛𝑖]), 𝑑 𝑗 ∩ S = 𝑑 𝑗 or ∅,
and |𝑑 [𝒛𝑖] ∩ S| = 𝑐 (1 ≤ 𝑐 ≤ |𝑑 [𝒛𝑖] |), then S is called a (𝒛𝑖 , 𝑏, 𝑐)-
coalition, where |𝑑 [𝒛𝑖] ∩ S| is the number of common data owners

in 𝑑 [𝒛𝑖] and S, and |𝑑 [𝒛𝑖] | is the number of data owners in 𝑑 [𝒛𝑖].
Denote by 𝑅𝒛𝑖 ,𝑏,𝑐 the set of all (𝒛𝑖 , 𝑏, 𝑐)-coalitions,SSV+𝒛𝑖 ,𝑏,𝑐 the ex-
pected utilities of (𝒛𝑖 , 𝑏, 𝑐)-coalitions, and SSV−𝒛𝑖 ,𝑏,𝑐 the expected
utilities of (𝒛𝑖 , 𝑏, 𝑐)-coalitions excluding 𝒛𝑖 . That is,

SSV+𝒛𝑖 ,𝑏,𝑐 =
∑︂

S∈𝑅𝒛𝑖 ,𝑏,𝑐

U(S)(︁𝑚−1
𝑏−1

)︁ (︁ |𝑑 [𝒛𝑖] |−1
𝑐−1

)︁ , (5)

SSV−𝒛𝑖 ,𝑏,𝑐 =
∑︂

S∈𝑅𝒛𝑖 ,𝑏,𝑐

U(S\{𝒛𝑖 })(︁𝑚−1
𝑏−1

)︁ (︁ |𝑑 [𝒛𝑖] |−1
𝑐−1

)︁ . (6)

We use Definition 5.5 to reformulate Equation 4.

Theorem 5.6. Given a sharded structureL,SSV+𝑖 = 1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1∑︁ |𝑑 [𝒛𝑖] |

𝑐=1
SSV+𝒛𝑖 ,𝑏,𝑐 andSSV

−
𝑖 = 1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁ |𝑑 [𝒛𝑖] |
𝑐=1

SSV−𝒛𝑖 ,𝑏,𝑐 .

According to Theorem 5.6, approximating SSV+𝑖 (similarly for

SSV−𝑖) becomes a stratified sampling process. The stratification

design is to divide all utilities in SSV+𝑖 into𝑚 |𝑑 [𝒛𝑖] | strata such
that utilities of all (𝒛𝑖 , 𝑏, 𝑐)-coalitions are in the (𝑏 |𝑑 [𝒛𝑖] | +𝑐)𝑡ℎ stra-

tum. Then, to approximate SSV+𝑖 , we can first estimate SSV+𝒛𝑖 ,𝑏,𝑐
by sampling with replacement. Let U+

𝒛𝑖 ,𝑏,𝑐
be a random variable

with uniform distribution on set {U(S)|S ∈ 𝑅𝒛𝑖 ,𝑏,𝑐 }. The ex-

pectation ofU+
𝒛𝑖 ,𝑏,𝑐

is SSV+𝒛𝑖 ,𝑏,𝑐 . Given 𝜏+
𝒛𝑖 ,𝑏,𝑐

samples ofU+
𝒛𝑖 ,𝑏,𝑐

,

{U(S1), . . . ,U(S𝜏+𝒛𝑖 ,𝑏,𝑐
)}, whereS1, . . . ,S𝜏+𝒛𝑖 ,𝑏,𝑐

∈ 𝑅𝒛𝑖 ,𝑏,𝑐 , the mean

overU(S1), . . . ,U(S𝜏+𝒛𝑖 ,𝑏,𝑐
) is an estimation ofSSV+𝒛𝑖 ,𝑏,𝑐 ,

̂︅SSV+𝒛𝑖 ,𝑏,𝑐
= 1

𝜏+𝒛𝑖 ,𝑏,𝑐

∑︁𝜏+𝒛𝑖 ,𝑏,𝑐
𝑡=1

U(S𝑡). Then, an estimation of SSV+𝑖 is
̂︅SSV+𝑖 =

1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁ |𝑑 [𝒛𝑖] |
𝑐=1

̂︅SSV+𝒛𝑖 ,𝑏,𝑐 . Finally, we get an estimation of

SSV𝑖 by
̂︅SSV+𝑖 −̂︅SSV−𝑖 .

Algorithm 3 outlines the pseudo-code for estimating SSV𝑖

(1 ≤ 𝑖 ≤ 𝑛) using utility sampling. The first step is to randomly

generate a coalition S, calculate the corresponding utility 𝑢, assign

the value𝑢 to the relevantSSV+𝒛𝑖 ,𝑏,𝑐 (resp.SSV
−
𝒛𝑖 ,𝑏,𝑐

), and update

the associated counts of 𝜏+
𝒛𝑖 ,𝑏,𝑐

(resp. 𝜏−
𝒛𝑖 ,𝑏,𝑐

) (Lines 3-23). After 𝜏

samples have been drawn, the estimation ofSSV+𝑖 orSSV−𝑖 is ob-

tained as the average of the corresponding utility means. The final

estimation of SSV is obtained as the difference between
̂︅SSV+𝑖

and
̂︅SSV−𝑖 (Lines 24-25). It is worth noting that the estimation of

SSV𝑖 in Algorithm 3 is unbiased.

Theorem 5.7. Algorithm 3 gives an unbiased estimation of SSV𝑖

(1 ≤ 𝑖 ≤ 𝑛), i.e., 𝑬 [̂︅SSV𝑖] = SSV𝑖 .

Theorem 5.8. According to Hoeffding’s inequality, given the range
of utilities 𝑟 , the minimum value of sample size for utility in different
strata 𝜏 , the error |̂︅SSV𝑖 − SSV𝑖 | ≤ 2

√︁
2𝑟2 log (2/𝛿)/𝜏 in proba-

bility 1 − 𝛿 .

Algorithm 3: Utility Sampling Algorithm.

input :data sets from data owners {𝒛1, . . . , 𝒛𝑛 }, sharded
structure L, the number of permutations 𝜏

output :estimated S-Shapley value
̂︅SSV𝑖 for each 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛)

1 ̂︅SSV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛);̂︅SSV+𝒛𝑖 ,𝑏,𝑐 , ̂︅SSV−𝒛𝑖 ,𝑏,𝑐 , 𝜏+𝒛𝑖 ,𝑏,𝑐 , 𝜏−𝒛𝑖 ,𝑏,𝑐 ← 0

(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑏 ≤ 𝑚, 1 ≤ 𝑐 ≤ |𝑑 [𝒛𝑖] |);
2 for 𝑡=1 to 𝜏 do
3 𝜋𝑡 ← Sample(L);
4 let 𝑖 be a random value drawn from 1, . . . , 𝑛;

5 S ← {𝒛𝜋𝑡 (1) , . . . , 𝒛𝜋𝑡 (𝑖) }; 𝑢 ← U(S) ; 𝑏 ← 0;

6 for 𝑗=1 to𝑚 do
7 if S ∩ 𝑑 𝑗 ≠ ∅ then 𝑏+=1 ;

8 𝑐 ← |S ∩ 𝑑 [𝒛𝜋𝑡 (𝑖)] |;
9 if 𝑐 = |𝑑 [𝒛𝜋𝑡 (𝑖)] | then
10 for 𝑖′=1 to n do
11 if 𝒛𝑖′ ∈ S then ̂︅SSV+𝒛𝑖′ ,𝑏,|𝑑 [𝒛𝑖′] |+ = 𝑢;

𝜏+
𝒛𝑖′ ,𝑏,|𝑑 [𝒛𝑖′] |

+ = 1 ;

12 else ̂︅SSV−𝒛𝑖′ ,𝑏+1,1+ = 𝑢; 𝜏−𝒛𝑖′ ,𝑏+1,1
+ = 1;

13 else
14 foreach 𝒛𝑖′ ∈ 𝑑 [𝒛𝜋𝑡 (𝑖)] do
15 if 𝒛𝑖′ ∈ S then ̂︅SSV+𝒛′

𝑖
,𝑏,𝑐+ = 𝑢; 𝜏+

𝒛′
𝑖
,𝑏,𝑐
+ = 1 ;

16 else ̂︅SSV−𝒛′
𝑖
,𝑏,𝑐+1+ = 𝑢; 𝜏−

𝒛′
𝑖
,𝑏,𝑐+1+ = 1;

17 for i=1 to n do
18 ̂︅SSV𝑖 =

1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1(︂̂︅SSV+𝒛𝑖 ,𝑏,𝑐/𝜏+𝒛𝑖 ,𝑏,𝑐 −̂︅SSV−𝒛𝑖 ,𝑏,𝑐/𝜏−𝒛𝑖 ,𝑏,𝑐)︂ ;

19 return ̂︅SSV1, . . . , ̂︅SSV𝑛 ;

6 UPDATING S-SHAPLEY VALUE UPON
UNLEARNING

In this section, we propose two approximation algorithms to update

the S-Shapley value when one (Section 6.1) or multiple data owners

exit the model market (Section 6.2), respectively.

6.1 Single Data Owner Exit
Once a data owner wants to exit the model market and unlearn her

own data, S-Shapley value needs to be updated to reflect the latest

contributions of the remaining data owners. Rather than straight-

forwardly recomputing S-Shapley value from scratch by Algorithm

2 or 3, which can be time-consuming upon each unlearning re-

quest, we introduce a method that requires a smaller sample to

achieve the same accuracy. Specifically, we represent the difference

between the new SSV+𝑖 (resp. new SSV−𝑖) and the precomputed

SSV+𝑖 (resp. precomputed SSV−𝑖) using the differential utility.

Notably, the absolute value of the differential utility (i.e, the change

of utility) is smaller than that of the utility, which allows us to

achieve stability with a smaller sample size, as predicted by Hoeffd-

ing’s inequality [21]. In other words, we can get the same accurate

approximation with fewer samples.

Given the precomputed SSV𝑖 (1 ≤ 𝑖 ≤ 𝑛) which is the differ-

ence of SSV+𝑖 and SSV−𝑖 , the key idea is to compute the relative

3355

changes of SSV+𝑖 and SSV−𝑖 , respectively. The difference be-

tween the precomputed SSV+ (resp. SSV−) and the new SSV+
(resp. SSV−) can be represented formally as Lemma 6.1.

Lemma 6.1. Given a sharded structure L, suppose that 𝒛𝑝 is the data of exited

data owner. Defining 𝑅𝒛𝑖 ,𝑏,𝑐
−𝒛𝑝 = {S |S ∈ 𝑅𝒛𝑖 ,𝑏,𝑐 , 𝒛𝑝 ∉ S} (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑝) , the

difference between the new SSV+𝑖 and the precomputed SSV+𝑖 of 𝒛𝑖 is

ΔSSV+𝑖 =

{︄
1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚

𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑐
|𝑑 [𝒛𝑖] |−1

ΔSSV+𝒛𝑖 ,𝑏,𝑐 if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖],
1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚

𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑏
𝑚−1ΔSSV

+
𝒛𝑖 ,𝑏,𝑐

otherwise,

where

ΔSSV+𝒛𝑖 ,𝑏,𝑐 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︁
S∈𝑅𝒛𝑖 ,𝑏,𝑐−𝒛𝑝

U(S)−U(S∪{𝒛𝑝 })

(𝑚−1𝑏−1) (
|𝑑 [𝒛𝑖] |−2

𝑐−1)
if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖],

∑︁
S∈𝑅𝒛𝑖 ,𝑏,𝑐−𝒛𝑝

U(S∪𝑑 [𝒛𝑝]\{𝒛𝑝 })−U(S∪𝑑 [𝒛𝑝])

(𝑚−2𝑏−1) (
|𝑑 [𝒛𝑖] |−1

𝑐−1)
otherwise.

The difference between the new SSV− and the precomputed SSV− of 𝒛𝑖 is

ΔSSV−𝑖 =

{︄
1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚

𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑐
|𝑑 [𝒛𝑖] |−1

ΔSSV−𝒛𝑖 ,𝑏,𝑐 if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖],
1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚

𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑏
𝑚−1ΔSSV

−
𝒛𝑖 ,𝑏,𝑐

otherwise,

where

ΔSSV−𝒛𝑖 ,𝑏,𝑐 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑︁
S∈𝑅𝒛𝑖 ,𝑏,𝑐−𝒛𝑝

U(S\{𝒛𝑖 })−U(S\{𝒛𝑖 }∪{𝒛𝑝 })

(𝑚−1𝑏−1) (
|𝑑 [𝒛𝑖] |−2

𝑐−1)
if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖],

∑︁
S∈𝑅𝒛𝑖 ,𝑏,𝑐−𝒛𝑝

U(S∪𝑑 [𝒛𝑝]\{𝒛𝑖 ,𝒛𝑝 })−U(S∪𝑑 [𝒛𝑝]\{𝒛𝑖 })

(𝑚−2𝑏−1) (
|𝑑 [𝒛𝑖] |−1

𝑐−1)
otherwise.

According to Lemma 6.1, approximating ΔSSV+𝑖 (similarly

for ΔSSV−𝑖) becomes a stratified sampling process. The strat-

ification design is to divide all differential utilities in ΔSSV+𝑖
into 𝑚 |𝑑 [𝒛𝑖] | strata such that the utility changes from 𝒛𝑝 leav-

ing (𝒛𝑖 , 𝑏, 𝑐)-coalitions are in the (𝑏 |𝑑 [𝒛𝑖] | + 𝑐)𝑡ℎ stratum. Then,

to approximate ΔSSV+𝑖 , we can first estimate ΔSSV+𝒛𝑖 ,𝑏,𝑐 by

sampling a permutation in 𝔖𝑛 (L) and enumerating all possible

positions of 𝒛𝑝 . Let ΔU+𝒛𝑖 ,𝑏,𝑐 be a random variable with uniform

distribution on the set {U(S) − U(S ∪ {𝒛𝑝 }) |S ∈ 𝑅
𝒛𝑖 ,𝑏,𝑐
−𝒛𝑝 }. The

expectation of ΔU+
𝒛𝑖 ,𝑏,𝑐

is ΔSSV+𝒛𝑖 ,𝑏,𝑐 . Given 𝜏+
𝒛𝑖 ,𝑏,𝑐

samples of

ΔU+
𝒛𝑖 ,𝑏,𝑐

, {U(S1) − U(S1 ∪ {𝒛𝑝 }), . . . ,U(S𝜏+𝒛𝑖 ,𝑏,𝑐
) − U(S𝜏+𝒛𝑖 ,𝑏,𝑐

∪

{𝒛𝑝 })}, where S1, . . . ,S𝜏+𝒛𝑖 ,𝑏,𝑐
∈ 𝑅

𝒛𝑖 ,𝑏,𝑐
−𝒛𝑝 , the mean over U(S1) −

U(S1 ∪ {𝒛𝑝 }), . . . ,U(S𝜏+𝒛𝑖 ,𝑏,𝑐
) − U(S𝜏+𝒛𝑖 ,𝑏,𝑐

∪ {𝒛𝑝 }) is an estima-

tion of ΔSSV+𝒛𝑖 ,𝑏,𝑐 ,
̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐 = 1

𝜏+𝒛𝑖 ,𝑏,𝑐

∑︁𝜏+𝒛𝑖 ,𝑏,𝑐
𝑡=1

[U(S𝑡)−U(S𝑡 ∪
{𝒛𝑝 })]. Then, if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖] (resp. 𝒛𝑝 ∉ 𝑑 [𝒛𝑖]), an estimation of

ΔSSV+𝑖 is ̂︆ΔSSV+𝑖 = 1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁ |𝑑 [𝒛𝑖] |
𝑐=1

𝑐
|𝑑 [𝒛𝑖] |−1

̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐
(resp.

̂︆ΔSSV+𝑖 = 1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁ |𝑑 [𝒛𝑖] |
𝑐=1

𝑏
𝑚−1

̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐). Finally,
we get an estimation of ΔSSV𝑖 by

̂︆ΔSSV+𝑖 − ̂︆ΔSSV−𝑖 . The
precomputed SSV𝑖 can be updated by adding the estimation of

ΔSSV𝑖 .

Algorithm 4 outlines the pseudo-code for estimating the change

of SSV𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑝) to update SSV𝑖 when a single data

owner with data set 𝒛𝑝 exits. The first step is to randomly gener-

ate a coalition S excluding 𝒛𝑝 , calculate the corresponding differ-
ential utility Δ𝑢, assign the value Δ𝑢 to the relevant ΔSSV+𝒛𝑖 ,𝑏,𝑐
(resp. ΔSSV−𝒛𝑖 ,𝑏,𝑐), and update the associated counts of 𝜏

+
𝒛𝑖 ,𝑏,𝑐

(resp.

𝜏−
𝒛𝑖 ,𝑏,𝑐

) (Lines 3-9). After 𝜏 samples have been drawn, the estimation

of ΔSSV+𝑖 or ΔSSV−𝑖 is obtained as the weighted average of the

corresponding utility means. The final estimation of ΔSSV𝑖 is

Algorithm 4: Delta-based Algorithm.

input :data sets of data owners {𝒛1, . . . , 𝒛𝑛 }, the index of exited
data owner 𝑝 , sharded structure L, the number of

permutations 𝜏

output : ̂︆ΔSSV𝑖 for each 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑝)
1 ̂︆ΔSSV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛);̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐 , ̂︆ΔSSV−𝒛𝑖 ,𝑏,𝑐 , 𝜏+𝒛𝑖 ,𝑏,𝑐 , 𝜏−𝒛𝑖 ,𝑏,𝑐 ← 0

(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑏 ≤ 𝑚, 1 ≤ 𝑐 ≤ |𝑑 [𝒛𝑖] |);
2 for 𝑡=1 to 𝜏 do
3 𝜋𝑡 ← Sample(L) removing 𝑝 ;

4 let 𝑖 be a random value drawn from 1, . . . , 𝑛 − 1;

5 S ← {𝒛𝜋𝑡 (1) , . . . , 𝒛𝜋𝑡 (𝑖) };
6 if 𝒛𝑝 ∈ 𝑑 [𝒛𝜋𝑡 (𝑖)] then Δ𝑢 = U(S) − U(S ∪ {𝒛𝑝 }) ;
7 else Δ𝑢 = U(S ∪ 𝑑 [𝒛𝑝]\{𝒛𝑝 }) − U(S ∪ 𝑑 [𝒛𝑝]) ;
8 compute 𝑏 and 𝑐 as Algorithm 3;

9 add Δ𝑢 to the corresponding stratum of U(S) in Algorithm 3

and update associated counts;

10 for i=1 to n do
11 if 𝒛𝑝 ∈ 𝑑 [𝒛𝑖] then
12 ̂︆ΔSSV𝑖 =

1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑐
|𝑑 [𝒛𝑖] |−1(︃ ̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐

𝜏+
𝒛𝑖 ,𝑏,𝑐

−
̂︆ΔSSV−𝒛𝑖 ,𝑏,𝑐

𝜏−
𝒛𝑖 ,𝑏,𝑐

)︃
;

13 else
14 ̂︆ΔSSV𝑖 =

1

𝑚 |𝑑 [𝒛𝑖] |
∑︁𝑚
𝑏=1

∑︁|𝑑 [𝒛𝑖] |
𝑐=1

𝑏
𝑚−1(︃ ̂︆ΔSSV+𝒛𝑖 ,𝑏,𝑐

𝜏+
𝒛𝑖 ,𝑏,𝑐

−
̂︆ΔSSV−𝒛𝑖 ,𝑏,𝑐

𝜏−
𝒛𝑖 ,𝑏,𝑐

)︃
;

15 return ̂︆ΔSSV1, . . . , ̂︆ΔSSV𝑛 ;

obtained as the difference between
̂︆ΔSSV+𝑖 and

̂︆ΔSSV−𝑖 (Lines

10-15). It is worth noting that the estimation of ΔSSV𝑖 in Algo-

rithm 4 is unbiased.

Theorem 6.2. Given the exited data owner with 𝒛𝑝 , Algorithm
4 gives an unbiased estimation of ΔSSV𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑝), i.e.,
𝑬 [̂︆ΔSSV𝑖] = ΔSSV𝑖 .

Corollary 6.3. Given the precomputed S-Shapley value, Algo-
rithm 4 can provide an unbiased estimation of the updated S-Shapley
value and preserve P1-P4 in Section 3.3 in expectation.

Theorem 6.4. According to Hoeffding’s inequality, given the range
of differential utilities 𝑟 , the minimum value of sample size for differ-
ential utility in different strata 𝜏 , the error |̂︆ΔSSV𝑖 − ΔSSV𝑖 | ≤
2𝑚 |𝑑 [𝒛𝑖] |−2
𝑚 |𝑑 [𝒛𝑖] |

√︁
2𝑟2 log (2/𝛿)/𝜏 in probability 1 − 𝛿 .

6.2 Multi Data Owners Exit
Another common practice in machine unlearning is that multiple

data deletion requests within a certain period are responded to

together by a single machine unlearning execution (also known as

batch unlearning) since data owners will not always exit the model

market one by one. Moreover, applying the delta-based algorithm

(Algorithm 4) progressively to update S-Shapley value can be more

time-consuming and inaccurate with more data owners’ exit. To

this end, we propose a solution to update the S-Shapley value in

one batch when multiple data owners exit the model market.

3356

Algorithm 5: Batched Delta-based Algorithm.

input :data sets of data owners {𝒛1, . . . , 𝒛𝑛 }, the index of exited
data owners {𝑝1, . . . , 𝑝𝑞 }, sharded structure L, the
number of permutations 𝜏

output : ̂︆ΔSSV𝑖 for each 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ∉ {𝑝1, . . . , 𝑝𝑞 })
1 ̂︆ΔSSV𝑖 , ̂︆ΔSSV+𝑖 , ̂︆ΔSSV−𝑖 , 𝜏+𝑖 , 𝜏−𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛);

2 for t=1 to 𝜏 do
3 𝜋𝑡 ← Sample(L);
4 let 𝑖 be a random value drawn from 1, . . . , 𝑛;

5 S ← {𝒛𝜋𝑡 (1) , . . . , 𝒛𝜋𝑡 (𝑖) };
6 Δ𝑢 ← U(S\{𝒛𝑝1 , . . . , 𝒛𝑝𝑞 }) − U(S) ;
7 if S ∩ 𝑑 [𝒛𝜋𝑡 (𝑖)] = 𝑑 [𝒛𝜋𝑡 (𝑖)] then
8 for 𝑖′=1 to n do
9 if 𝒛𝑖′ ∈ S then ̂︆ΔSSV+𝑖′+ = Δ𝑢; 𝜏+

𝑖′+ = 1 ;

10 else ̂︆ΔSSV−𝑖′+ = Δ𝑢; 𝜏−
𝑖′+ = 1;

11 else
12 foreach 𝒛𝑖′ ∈ 𝑑 [𝒛𝜋𝑡 (𝑖)] do
13 if 𝒛𝑖′ ∈ S then ̂︆ΔSSV+𝑖′+ = Δ𝑢; 𝜏+

𝑖′+ = 1 ;

14 else ̂︆ΔSSV−𝑖′+ = Δ𝑢; 𝜏−
𝑖′+ = 1;

15 for i=1 to n do
16 ̂︆ΔSSV𝑖 = ̂︆ΔSSV+𝑖 /𝜏+𝑖 − ̂︆ΔSSV−𝑖 /𝜏−𝑖 ;
17 return ̂︆ΔSSV1, . . . , ̂︆ΔSSV𝑛 ;

The difference between the precomputed SSV+𝑖 (resp. SSV−𝑖)
and the new SSV+𝑖 (resp. SSV−𝑖) can be represented formally as

Lemma 6.5. And they consist of the difference of SSV𝑖 .

Lemma 6.5. Given a sharded structure L, suppose that there are
𝑞 data owners exiting with {𝒛𝑝1 , . . . , 𝒛𝑝𝑞 } (1 ≤ 𝑞 ≤ 𝑛). We have the
difference between the new SSV𝑖 and the precomputed SSV𝑖 of 𝒛𝑖

ΔSSV𝑖 = 𝑬𝜋∼Π
[︂
U

(︂
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }\{𝒛𝑝1 , . . . , 𝒛𝑝𝑞 }

)︂
− U

(︂
S𝒛𝑖𝜋 ∪ {𝒛𝑖 }

)︂]︂
⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

ΔSSV+
𝑖

− 𝑬𝜋∼Π
[︂
U

(︂
S𝒛𝑖𝜋 \{𝒛𝑝1 , . . . , 𝒛𝑝𝑞 }

)︂
− U

(︂
S𝒛𝑖𝜋

)︂]︂
⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞

ΔSSV−
𝑖

,

where 𝑖 ∉ {𝑝1, . . . , 𝑝𝑞}.

According to Lemma 6.5, we estimate two differential utility

expectations (i.e., ΔSSV+𝑖 and ΔSSV−𝑖) separately to estimate

the change of S-Shapley value (i.e., ΔSSV𝑖). Algorithm 5 outlines

the pseudo-code for estimating the change of SSV𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ∉

{𝑝1, . . . , 𝑝𝑞}) to update SSV𝑖 when a coalition of multiple data

owner {𝒛𝑝1 , . . . , 𝒛𝑝𝑞 } exits. The first step is to randomly generate

a coalition S, calculate the corresponding differential utility Δ𝑢,
assign the value Δ𝑢 to the relevant ΔSSV+𝑖 (resp. ΔSSV−𝑖), and
update the associated counts of 𝜏+

𝑖
(resp. 𝜏−

𝑖
) (Lines 3-18). After 𝜏

samples have been drawn, the estimation of ΔSSV+𝑖 or ΔSSV−𝑖
is obtained as the average of the corresponding utilities. The final

estimation ofΔSSV is obtained as the difference between
̂︆ΔSSV+𝑖

and
̂︆ΔSSV−𝑖 (Lines 19-20). The stratification design in Section 5.2

is applicable for Algorithm 5. It is worth noting that the estimation

of ΔSSV𝑖 in Algorithm 5 is unbiased.

Theorem 6.6. Given the exited data owners with {𝒛𝑝1 , . . . , 𝒛𝑝𝑞 },
algorithm 5 gives an unbiased estimation of ΔSSV𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ∉

{𝑝1, . . . , 𝑝𝑞}), i.e., 𝑬 [̂︆ΔSSV𝑖] = ΔSSV𝑖 .

Corollary 6.7. Given the precomputed S-Shapley value, Algo-
rithm 5 can provide an unbiased estimation of the updated S-Shapley
value and preserve P1-P4 in Section 3.3 in expectation.

Theorem 6.8. According to Hoeffding’s inequality, given the range
of differential utilities 𝑟 , the minimum value of sample size for differ-
ential utility in different strata 𝜏 , the error |̂︆ΔSSV𝑖 − ΔSSV𝑖 | ≤
2

√︁
2𝑟2 log (2/𝛿)/𝜏 in probability 1 − 𝛿 .

7 EXPERIMENTS
In this section, we conduct comprehensive experiments to evaluate

the effectiveness of S-Shapley value (SSV) and the efficiency of the

proposed algorithms.

7.1 Experiment Setup
Experiments are conducted on a machine with two Intel

®
Xeon

®

Platinum 8383C @ 2.70GHz, 256GB memory, running Ubuntu 20.04.

7.1.1 Datasets and Models. we employ four real-world datasets:

Iris, Car Evaluation, Phoneme, and Credit Card from OpenML [37].

The experiments employ two representative ML models: logistic re-

gression and Support Vector Machines (SVMs) with the Radial Basis

Function (RBF) kernel. Due to page limits, the experimental results

for logistic regression are available in our technical report [1].

7.1.2 Compared Methods. In Section 7.2, we provide a detailed

comparison of SSV’s effectiveness in evaluating data importance

against five baselines. These include Shapley Value (SV), Leave-One-

Out Score (LOO), Random Valuation (Random), and two variants

of Beta Shapley Value (BV1 and BV2) [24] with respective hyper-

parameters (1,16) and (16,1).

In Section 7.3, we conduct an efficiency analysis between the

utility sampling algorithm (US) and the Monte Carlo sampling

algorithm (MCS) used as a baseline. Moreover, we introduce the

paired utility sampling algorithm (PUS), which seamlessly applies

the paired sampling strategy [11] to US. This entails sampling a

coalition S along with its complementary coalition {𝒛1, . . . , 𝒛𝑛}\S.
In Section 7.4, we delve into the efficiency comparison of the

Delta-based algorithm (Delta) and the batched Delta-based algo-

rithm (BDelta), employing the stratification design of Algorithm 3

with MCS, US, and PUS recomputing from scratch.

7.1.3 Metrics. In Sections 7.3 and 7.4, we employ the following

metrics to measure the quality of the estimated S-Shapley value.

Average error ratio. Given the benchmark S-Shapley value SSV𝑖

and the estimated S-Shapley value
̂︅SSV𝑖 (1 ≤ 𝑖 ≤ 𝑛), the average

error ratio 𝐸𝑅 of the estimated S-Shapley value compared to the

benchmark S-Shapley value is

𝐸𝑅 =
1

𝑛

𝑛∑︂
𝑖=1

|︁|︁|︁|︁|︁̂︅SSV𝑖 − SSV𝑖

SSV𝑖

|︁|︁|︁|︁|︁ .
Computing the exact S-Shapley value is prohibitively expensive

because it grows exponentially with the number of data owners.

3357

Therefore, we use the estimated S-Shapley value computed by Al-

gorithm 2 with 100k permutations as the benchmark S-Shapley

value.

Average coefficient of variation. Given a set of estimated S-

Shapley value {̂︅SSV1

𝑖 , . . . ,
̂︅SSV𝑘

𝑖 } (1 ≤ 𝑖 ≤ 𝑛) obtained by com-

puting 𝑘 times under the same setting, the average coefficient of

variation 𝐶𝑉 of the estimated S-Shapley value is

𝐶𝑉 =
1

𝑛

𝑛∑︂
𝑖=1

√︃
1

𝑘

∑︁𝑘
𝑗=1

(︂̂︅SSV 𝑗

𝑖 − 1

𝑘

∑︁𝑘
𝑗=1

̂︅SSV 𝑗

𝑖

)︂
2|︁|︁|︁ 1

𝑘

∑︁𝑘
𝑗=1

̂︅SSV 𝑗

𝑖

|︁|︁|︁ ,

where
̂︅SSV 𝑗

𝑖 denotes the 𝑗𝑡ℎ estimated S-Shapley value of 𝒛𝑖 . A
lower 𝐶𝑉 indicates better convergence.

7.2 Effectiveness
Weexperimentally study the effectiveness of the proposed S-Shapley

value by conducting point removal experiments to compare the sig-

nificance of high-value data in various valuation methods. Initially,

we evaluate the data value of each data owner using S-Shapley

value and several baseline methods. Subsequently, we progressively

eliminate data owners from highest to lowest value and retrain

the classifier at each step. The predictive performance on the test

dataset is then evaluated. We quantify the impact of each removal

by measuring the accuracy drop, as higher value estimates are ex-

pected to positively influence the model performance. The accuracy

drop is plotted for removing up to 50% of the training data, follow-

ing prior work [24]. We randomly sample 60%, 20%, and 20% of

the total data as the training dataset, validation dataset, and test

dataset, respectively. However, for datasets with more than 1k data

points (Car Evaluation, Phoneme, and Credit Card), Beta Shapley, as

suggested by Wang and Jia [39], is not applicable due to numerical

issues. To address this, we adapt by randomly sampling 1k data

points from the training dataset instead. We utilize SVM as the con-

stituent model and set the utility function to the accuracy score of

the final aggregated model on the validation dataset. The training

dataset is divided into five data shards, except for Iris, which is

divided into three data shards.

Figures 4 (a)(b)(c)(d) investigate the accuracy drop for up to 50%

train data removed. The data removal with SSV outperforms all

baselines, especially on Car Evaluation and Credit Card datasets.

In Figures 4 (c)(b), we observe a progressive decline in accuracy,

eventually followed by a pronounced and substantial drop in the

S-Shapley value scheme’s performance. This behavior manifests

when specific data is eliminated from the training dataset, especially

concerning relatively straightforward learning tasks. Initially, the

model may experience a slight decrease in its ability to generalize

to new data, resulting in a gradual or negligible decline in accuracy.

However, if a substantial portion of data is removed, the model

might become overfitted to the remaining data, causing a sudden

and significant plummet in accuracy.

Impact of Data Sharding. In machine unlearning, it is widely

recognized that increasing the number of shards enhances expected

unlearning efficiency. Here, we investigate the influence of sharding

on S-Shapley valuation outcomes. Figures 5(a)(b)(c)(d) depict the

Data removed (%)

A
c
c
u
r
a
c
y

Data removed (%)

A
c
c
u
r
a
c
y

Data removed (%)

A
c
c
u
r
a
c
y

Data removed (%)

A
c
c
u
r
a
c
y

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card

SSV SV BV1 BV2 LOO Random

0 10 20 30 40 50

0.4

0.6

0.8

1

0 10 20 30 40 50

0.7

0.75

0.8

0.85

0 10 20 30 40 50

0.7

0.75

0.8

0 10 20 30 40 50

0.6

0.7

Figure 4: The effectiveness of SSV computation.

2 4 6 8 10

−0.2
0

0.2

0.4

0.6

2 4 6 8 10

−0.1

0

0.1

2 4 6 8 10

0

0.2

0.4

2 4 6 8 10

0

0.1

0.2

0.3

of data shards

A
c
c
u
r
a
c
y
d
r
o
p

of data shards

A
c
c
u
r
a
c
y
d
r
o
p

of data shards

A
c
c
u
r
a
c
y
d
r
o
p

of data shards

A
c
c
u
r
a
c
y
d
r
o
p

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card
Figure 5: The impact of data sharding.

Table 3: The impact of removing different data types.

Data type Accuracy change SSV change

Outliers -6.7567e-03 -2.2522e-03

Boundary data points -4.7297e-02 -2.0270e-02

Random data points -3.3783e-03 -9.0090e-03

accuracy drops with varying numbers of data shards when remov-

ing 50% of the data. Generally, the accuracy drop decreases as the

number of data shards increases. SSV, SV, and BV1, i.e., Beta Shap-

ley value whose hyper-parameters are (1,16), consistently exhibit

strong performance, surpassing other methods. Particularly, SSV

consistently outperforms most methods across cases, highlighting

its superior effectiveness in evaluating data importance.

Impact of Removing Different Data Types. Using the Lympho

dataset [25] known for outlier detection, we analyze the impact of

removing outliers and boundary data points on model performance

and the S-Shapley value of data partitioning. We train an SVM and

consider its support vectors as boundary data points. The dataset

is randomly divided into three shards, and five data points are

removed from each data type. The results in Table 3 reveal that

removing outliers improves the model’s performance and the S-

Shapley value of the corresponding data shard while removing

boundary data points leads to a significant decrease in both metrics.

7.3 Efficiency of Computation
We experimentally study the efficiency of the proposed algorithms

in approximating S-Shapley value. For Car Evaluation, Phoneme,

3358

2
0

4
0

6
0

8
0

1
0
0

0

200

400

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
2

10
3

10
4

10
5

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
3

10
4

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
1

10
2

10
3

10
4

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card

MCS US PUS

Figure 6: The efficiency of SSV computation.

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0

0.1

0.2

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0

0.1

of samples

𝐶
𝑉

of samples

𝐶
𝑉

(a) Phoneme (b) Credit Card

Figure 7: The scalability of SSV computation.

and Credit Card datasets (resp. Iris dataset), we create different data

owners by randomly sampling 200, 400, 600, 800, and 1k (resp. 20,

40, 60, 80, and 100) data subsets. The SVM model’s accuracy on

a test dataset of size 500 (resp. 50) is used as the utility function.

In Figures 6(a)(b)(c)(d), we investigate the time required for the

algorithms to achieve 𝐸𝑅 ≤ 10%. The baseline MCS exhibits a

sharp increase in time cost with an increasing number of data

owners. In contrast, both US and PUS require significantly less

time to achieve the same approximation error ratio, demonstrating

the efficiency of the utility sampling strategy that reuses utilities

between permutations. The paired sampling strategy in PUS further

accelerates convergence by reducing variance. For detailed proof

of PUS’s advantage in yielding an estimated S-Shapley value with

smaller variance than US with high probability, refer to [1].

It is hard to obtain a sufficiently accurate S-Shapley value as the

benchmark Shapley value for comparison in tolerable time on large

datasets like Phoneme and Credit Card. To verify the scalability of

the proposed algorithms, we analyze different algorithms using𝐶𝑉 .

We randomly sample 10k data subsets to create data owners and

compute S-Shapley value. Additionally, 1k data points are randomly

sampled as the validation dataset. SVM serves as the constituent

model, and the utility function is set to the accuracy score of the final

model on the validation dataset. In Figures 7(a)(b), we investigate

𝐶𝑉 of MCS, US, and PUS with 2k𝑛, 4k𝑛, 6k𝑛, 8k𝑛, and 10k𝑛 samples,

where 𝑛 represents the number of data subsets. Notably, 𝐶𝑉 of

US and PUS are significantly smaller than MCS, confirming the

convergence of the estimated S-Shapley value computed by US.

Impact of Data Sharding. Experimental results on the proposed

algorithms for computing and updating reveal that the time costs

initially decrease with an increasing number of data shards. How-

ever, in most cases, the time costs start to increase again as the

number of shards continues to grow. For more details, refer to [1].

2
0

4
0

6
0

8
0

1
0
0

0

100

200

300

400

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
2

10
4

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
1

10
2

10
3

10
4

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
2

10
4

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card

MCS US PUS Delta BDelta

Figure 8: The efficiency of SSV update (single).

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0

0.1

0.2

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0

0.1

of samples

𝐶
𝑉

of samples

𝐶
𝑉

(a) Phoneme (b) Credit Card

Figure 9: The scalability of SSV update (single).

2
k
×1
0
0

4
k
×1
0
0

6
k
×1
0
0

8
k
×1
0
0

1
0
k
×1
0
0

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

of samples

𝐸
𝑅

of samples

𝐸
𝑅

of samples

𝐸
𝑅

of samples

𝐸
𝑅

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card
Figure 10: The quality of SSV update (single).

7.4 Efficiency of Update
7.4.1 Single Data Owner Exit. We experimentally study the effi-

ciency of the proposed algorithms in updating S-Shapley value

when a single data owner exits on Iris, Car Evaluation, Phoneme,

and Credit Card datasets. Utilizing the precomputed benchmark S-

Shapley value on these datasets, Figures 8(a)(b)(c)(d) investigate the

time cost for the algorithms to update S-Shapley value and achieve

𝐸𝑅 ≤ 10%when removing a data set from the corresponding dataset.

Delta and BDelta both outperform all baselines significantly, with

Delta being the fastest, confirming the efficiency of our algorithms.

We verify the scalability of the proposed algorithms on Phoneme

and Credit Card datasets. Figures 9(a)(b) show𝐶𝑉 of MCS, US, PUS,

Delta, and BDelta with varying numbers of samples. Notably, 𝐶𝑉

of Delta and BDelta is smaller than MCS, US, and PUS, indicating

faster convergence when estimating the change of S-Shapley value.

Update Quality.We experimentally study the approximation qual-

ity of the updated S-Shapley value with varying numbers of samples.

For Car Evaluation, Phoneme, and Credit Card datasets (resp. Iris

3359

2
0

4
0

6
0

8
0

1
0
0

0

100

200

300

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
1

10
3

10
5

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
3

10
4

2
0
0

4
0
0

6
0
0

8
0
0

1
k

10
1

10
2

10
3

10
4

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

of data owners

T
i
m
e
(
s
)

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card

MCS US PUS Delta BDelta

Figure 11: The efficiency of SSV update (multiple).

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0.1

2
k
×1
0
k

4
k
×1
0
k

6
k
×1
0
k

8
k
×1
0
k

1
0
k
×1
0
k

0

0.1

of samples

𝐶
𝑉

of samples

𝐶
𝑉

(a) Phoneme (b) Credit Card

Figure 12: The scalability of SSV update (multiple).

2
k
×1
0
0

4
k
×1
0
0

6
k
×1
0
0

8
k
×1
0
0

1
0
k
×1
0
0

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

2
k
×1
k

4
k
×1
k

6
k
×1
k

8
k
×1
k

1
0
k
×1
k

10
−1

of samples

𝐸
𝑅

of samples

𝐸
𝑅

of samples

𝐸
𝑅

of samples

𝐸
𝑅

(a) Iris (b) Car Evaluation

(c) Phoneme (d) Credit Card
Figure 13: The efficiency of SSV update (multiple).

dataset), we randomly sample 1k (resp. 100) data subsets to create

different data owners. We adopt the accuracy of the SVM model

on the test dataset of size 500 (resp. 50) as the utility function. In

Figures 10(a)(b)(c)(d), we investigate 𝐸𝑅 of MCS, US, PUS, Delta, and

BDelta with 2k𝑛, 4k𝑛, 6k𝑛, 8k𝑛, and 10k𝑛 samples when removing a

data subset, where 𝑛 is the number of data subsets. The results show

that 𝐸𝑅 of Delta and BDelta are significantly smaller than MCS, US,

and PUS, demonstrating that the proposed algorithms, especially

Delta, can yield better approximation in updating S-Shapley value

when a single data owner exits.

7.4.2 Multiple Data Owners Exit. We experimentally study the ef-

ficiency of the proposed algorithms in updating S-Shapley value

when multiple data owners exit on Iris, Car Evaluation, Phoneme,

and Credit Card datasets. 5% of the data subsets are removed. MCS,

US, and PUS recomputed S-Shapley value, while Delta and BDelta

update S-Shapley value step by step or estimate the change directly.

In Figures 11(a)(b)(c)(d), we investigate the time cost for the algo-

rithms to achieve 𝐸𝑅 ≤ 10% compared to the benchmark S-Shapley

value on the remaining data. Some results of Delta are omitted

due to poor performance. Remarkably, BDelta exhibits significantly

lower time costs than the baselines.

We verify the scalability of the proposed algorithms on Phoneme

and Credit Card datasets. Figures 12(a)(b) show 𝐶𝑉 of MCS, US,

PUS, and BDelta with varying numbers of samples. The results of

Delta are excluded due to its high level of instability. We find that

𝐶𝑉 of BDelta is smaller than all baselines, affirming its effectiveness

in estimating the change of S-Shapley value.

Update Quality.We experimentally study the approximation qual-

ity of the updated S-Shapley value with varying numbers of samples

when 5% data subsets are removed as shown in Figure 13. Delta’s

performance suffers due to time cost and error accumulation in pro-

gressive updates. On the other hand, 𝐸𝑅 of BDelta is significantly

smaller than other methods, confirming that the batched Delta-

based algorithm can provide superior approximation in updating

S-Shapley value when multiple data owners exit.

7.4.3 Data Shard Exit. We examine the proposed algorithms’ effi-

ciency when a data shard fully exits. We randomly sample 1k (100

for Iris) data subsets to form different owners. Table 4 shows the

time cost for algorithms to achieve 𝐸𝑅 ≤ 10% on remaining data.

Delta’s time cost is notably lower.

Table 4: The efficiency of SSV update (a data shard exits). The time
unit is second here.

Dataset MCS US PUS Delta BDelta

Iris 1.358e02 7.741e01 6.867e01 2.603e01 2.975e01

Car Evaluation 2.119e04 2.041e03 2.210e03 6.637e02 7.695e02

Phoneme 1.239e04 1.942e03 1.842e03 1.027e03 1.074e03

Credit Card 5.126e04 8.593e03 8.368e03 3.681e03 4.350e03

8 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of equitable data valuation

in the context of the sharded structure for the right to be forgot-

ten. By adhering to four desirable properties for data valuation, we

introduced the sharded structure-based Shapley value, S-Shapley

value, to assess data contribution fairly considering the sharded

structure. We demonstrated the #P-completeness of computing S-

Shapley value and presented two sampling-based approximation

algorithms. Additionally, we proposed two efficient algorithms to

estimate the change of S-Shapley value, facilitating the efficient up-

dating of S-Shapley value when data owners exit. Our experiments

on real-world datasets validate the effectiveness of S-Shapley value

and the computational efficiency of the proposed algorithms. For

future work, an intriguing direction would be to extend S-Shapley

value to the federated unlearning setting [38], where the global

model needs to be dynamically updated as data owners exercise

"the right to be forgotten" and may request to revoke their data.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

helpful comments. This work was supported in part by the Na-

tional Key RD Program of China (2021YFB3101100), NSFC grants

(62102352), NSF grants (CNS-2124104, CNS-2125530), andNIH grants

(R01LM013712, UL1TR002378).

3360

REFERENCES
[1] 2023. Technical Report. https://github.com/ZJU-DIVER/ValuationMeetsRTBF/

TR.pdf

[2] Magdalena Balazinska, Bill Howe, and Dan Suciu. 2011. Data Markets in the

Cloud: An Opportunity for the Database Community. Proc. VLDB Endow. 4, 12
(2011), 1482–1485. http://www.vldb.org/pvldb/vol4/p1482-balazinska.pdf

[3] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. SAQE:

Practical Privacy-Preserving Approximate Query Processing for Data Federa-

tions. Proc. VLDB Endow. 13, 11 (2020), 2691–2705. http://www.vldb.org/pvldb/

vol13/p2691-bater.pdf

[4] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.

Machine Unlearning. In 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021. IEEE, 141–159. https://doi.org/10.1109/

SP40001.2021.00019

[5] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget with

Machine Unlearning. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 463–480. https:

//doi.org/10.1109/SP.2015.35

[6] Javier Castro, Daniel Gómez, Elisenda Molina, and Juan Tejada. 2017. Improving

polynomial estimation of the Shapley value by stratified random sampling with

optimum allocation. Comput. Oper. Res. 82 (2017), 180–188. https://doi.org/10.

1016/j.cor.2017.01.019

[7] Jihong Chen and Jiabin Sun. 2021. Understanding the Chinese Data Security

Law. International Cybersecurity Law Review 2, 2 (2021), 209–221.

[8] Lingjiao Chen, Paraschos Koutris, and Arun Kumar. 2019. Towards Model-based

Pricing for Machine Learning in a Data Marketplace. In SIGMOD, Peter A. Boncz,
Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.).

ACM, 1535–1552. https://doi.org/10.1145/3299869.3300078

[9] Lingjiao Chen, HongyiWang, Leshang Chen, Paraschos Koutris, and Arun Kumar.

2019. Demonstration of Nimbus: Model-based Pricing for Machine Learning

in a Data Marketplace. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,

Amol Deshpande, and Tim Kraska (Eds.). ACM, 1885–1888. https://doi.org/10.

1145/3299869.3320231

[10] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,

and Yang Zhang. 2022. Graph Unlearning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and

Elaine Shi (Eds.). ACM, 499–513. https://doi.org/10.1145/3548606.3559352

[11] Ian Covert and Su-In Lee. 2021. Improving KernelSHAP: Practical Shapley

Value Estimation Using Linear Regression. In The 24th International Conference
on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event (Proceedings of Machine Learning Research), Arindam Banerjee and Kenji

Fukumizu (Eds.), Vol. 130. PMLR, 3457–3465. http://proceedings.mlr.press/v130/

covert21a.html

[12] Raul Castro Fernandez, Pranav Subramaniam, and Michael J. Franklin. 2020. Data

Market Platforms: TradingData Assets to SolveData Problems. Proc. VLDB Endow.
13, 11 (2020), 1933–1947. http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf

[13] GDPR.eu. 2018. Article 17: Right to be forgotten. (2018). https://gdpr.eu/article-

17-right-to-beforgotten

[14] Amirata Ghorbani, Michael P. Kim, and James Zou. 2020. A Distributional

Framework For Data Valuation. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of
Machine Learning Research), Vol. 119. PMLR, 3535–3544. http://proceedings.mlr.

press/v119/ghorbani20a.html

[15] Amirata Ghorbani and James Y. Zou. 2019. Data Shapley: Equitable Valuation of

Data for Machine Learning. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan

Salakhutdinov (Eds.), Vol. 97. PMLR, 2242–2251. http://proceedings.mlr.press/

v97/ghorbani19c.html

[16] Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. 2019. Mak-

ing AI Forget You: Data Deletion in Machine Learning. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

Emily B. Fox, and Roman Garnett (Eds.). 3513–3526. https://proceedings.neurips.

cc/paper/2019/hash/cb79f8fa58b91d3af6c9c991f63962d3-Abstract.html

[17] Behzad Golshan, Alon Y. Halevy, George A. Mihaila, and Wang-Chiew Tan.

2017. Data Integration: After the Teenage Years. In Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017,
Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van den Bussche, and

Floris Geerts (Eds.). ACM, 101–106. https://doi.org/10.1145/3034786.3056124

[18] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2021. Amnesiac Machine

Learning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI

2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 11516–11524. https:

//ojs.aaai.org/index.php/AAAI/article/view/17371

[19] Chuan Guo, Tom Goldstein, Awni Y. Hannun, and Laurens van der Maaten. 2020.

Certified Data Removal fromMachine Learning Models. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event (Proceedings of Machine Learning Research), Vol. 119. PMLR, 3832–3842.

http://proceedings.mlr.press/v119/guo20c.html

[20] Elizabeth Liz Harding, Jarno J Vanto, Reece Clark, L Hannah Ji, and Sara C

Ainsworth. 2019. Understanding the scope and impact of the California Consumer

Privacy Act of 2018. Journal of Data Protection & Privacy 2, 3 (2019), 234–253.

[21] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. In The collected works of Wassily Hoeffding. Springer, 409–426.
[22] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gürel, Bo

Li, Ce Zhang, Costas J. Spanos, and Dawn Song. 2019. Efficient Task-Specific

Data Valuation for Nearest Neighbor Algorithms. Proc. VLDB Endow. 12, 11
(2019), 1610–1623. https://doi.org/10.14778/3342263.3342637

[23] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Gold-

berg. 2016. ActiveClean: Interactive Data Cleaning For Statistical Modeling. Proc.
VLDB Endow. 9, 12 (2016), 948–959. https://doi.org/10.14778/2994509.2994514

[24] Yongchan Kwon and James Zou. 2022. Beta Shapley: a Unified and Noise-reduced

Data Valuation Framework for Machine Learning. In International Conference on
Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event
(Proceedings of Machine Learning Research), Gustau Camps-Valls, Francisco J. R.

Ruiz, and Isabel Valera (Eds.), Vol. 151. PMLR, 8780–8802. https://proceedings.

mlr.press/v151/kwon22a.html

[25] Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier de-

tection. In Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24,
2005, Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett (Eds.). ACM,

157–166. https://doi.org/10.1145/1081870.1081891

[26] Guoliang Li and Xuanhe Zhou. 2022. Machine Learning for Data Management:

A System View. In 38th IEEE International Conference on Data Engineering, ICDE
2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 3198–3201. https://doi.org/

10.1109/ICDE53745.2022.00297

[27] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo

Li, Tianqing Wang, and Shifu Li. 2021. openGauss: An Autonomous Database

System. Proc. VLDB Endow. 14, 12 (2021), 3028–3041. https://doi.org/10.14778/

3476311.3476380

[28] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei

Han. 2014. A Confidence-Aware Approach for Truth Discovery on Long-Tail Data.

Proc. VLDB Endow. 8, 4 (2014), 425–436. https://doi.org/10.14778/2735496.2735505
[29] Jinfei Liu, Jian Lou, Junxu Liu, Li Xiong, Jian Pei, and Jimeng Sun. 2021. Dealer:

An End-to-End Model Marketplace with Differential Privacy. Proc. VLDB Endow.
14, 6 (2021), 957–969. http://www.vldb.org/pvldb/vol14/p957-liu.pdf

[30] Xuan Luo, Jian Pei, Zicun Cong, and Cheng Xu. 2022. On Shapley Value in

Data Assemblage Under Independent Utility. Proc. VLDB Endow. 15, 11 (2022),
2761–2773. https://www.vldb.org/pvldb/vol15/p2761-luo.pdf

[31] Jian Pei. 2021. A Survey on Data Pricing: from Economics to Data Science. IEEE
Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2020.3045927

[32] Sebastian Schelter, Stefan Grafberger, and Ted Dunning. 2021. HedgeCut: Main-

taining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 1545–1557. https://doi.org/10.1145/3448016.3457239

[33] Stephanie Schoch, Haifeng Xu, and Yangfeng Ji. 2022. CS-Shapley: Class-wise

Shapley Values for Data Valuation in Classification. In Advances in Neural Infor-
mation Processing Systems 36 [Neural Information Processing Systems, NIPS 2022,
Nov 29th - Dec 1st, 2022, New Orleans, USA]. https://neurips.cc/Conferences/

2022/ScheduleMultitrack?event=53147

[34] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory
of Games 2, 28 (1953), 307–317.

[35] Rachael Hwee Ling Sim, Xinyi Xu, and Bryan Kian Hsiang Low. 2022. Data

Valuation in Machine Learning: "Ingredients", Strategies, and Open Challenges.

In Proceedings of the Thirty-First International Joint Conference on Artificial Intel-
ligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org,
5607–5614. https://doi.org/10.24963/ijcai.2022/782

[36] Ikkyun Song, Yicheng Yang, Jongho Im, Tong Tong, Halil Ceylan, and In Ho Cho.

2020. Impacts of Fractional Hot-Deck Imputation on Learning and Prediction

of Engineering Data. IEEE Trans. Knowl. Data Eng. 32, 12 (2020), 2363–2373.

https://doi.org/10.1109/TKDE.2019.2922638

[37] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:

networked science in machine learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198

[38] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. 2022. Federated Unlearning

via Class-Discriminative Pruning. In WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël

Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and

3361

https://github.com/ZJU-DIVER/ValuationMeetsRTBF/TR.pdf
https://github.com/ZJU-DIVER/ValuationMeetsRTBF/TR.pdf
http://www.vldb.org/pvldb/vol4/p1482-balazinska.pdf
http://www.vldb.org/pvldb/vol13/p2691-bater.pdf
http://www.vldb.org/pvldb/vol13/p2691-bater.pdf
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1016/j.cor.2017.01.019
https://doi.org/10.1016/j.cor.2017.01.019
https://doi.org/10.1145/3299869.3300078
https://doi.org/10.1145/3299869.3320231
https://doi.org/10.1145/3299869.3320231
https://doi.org/10.1145/3548606.3559352
http://proceedings.mlr.press/v130/covert21a.html
http://proceedings.mlr.press/v130/covert21a.html
http://www.vldb.org/pvldb/vol13/p1933-fernandez.pdf
https://gdpr.eu/article-17-right-to-beforgotten
https://gdpr.eu/article-17-right-to-beforgotten
http://proceedings.mlr.press/v119/ghorbani20a.html
http://proceedings.mlr.press/v119/ghorbani20a.html
http://proceedings.mlr.press/v97/ghorbani19c.html
http://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.neurips.cc/paper/2019/hash/cb79f8fa58b91d3af6c9c991f63962d3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/cb79f8fa58b91d3af6c9c991f63962d3-Abstract.html
https://doi.org/10.1145/3034786.3056124
https://ojs.aaai.org/index.php/AAAI/article/view/17371
https://ojs.aaai.org/index.php/AAAI/article/view/17371
http://proceedings.mlr.press/v119/guo20c.html
https://doi.org/10.14778/3342263.3342637
https://doi.org/10.14778/2994509.2994514
https://proceedings.mlr.press/v151/kwon22a.html
https://proceedings.mlr.press/v151/kwon22a.html
https://doi.org/10.1145/1081870.1081891
https://doi.org/10.1109/ICDE53745.2022.00297
https://doi.org/10.1109/ICDE53745.2022.00297
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.14778/3476311.3476380
https://doi.org/10.14778/2735496.2735505
http://www.vldb.org/pvldb/vol14/p957-liu.pdf
https://www.vldb.org/pvldb/vol15/p2761-luo.pdf
https://doi.org/10.1109/TKDE.2020.3045927
https://doi.org/10.1145/3448016.3457239
https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=53147
https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=53147
https://doi.org/10.24963/ijcai.2022/782
https://doi.org/10.1109/TKDE.2019.2922638
https://doi.org/10.1145/2641190.2641198

Lionel Médini (Eds.). ACM, 622–632. https://doi.org/10.1145/3485447.3512222

[39] Tianhao Wang and Ruoxi Jia. 2023. Data Banzhaf: A Robust Data Valuation

Framework for Machine Learning (Oral). In International Conference on Artificial
Intelligence and Statistics, AISTATS 2023, 25-27 April 2023, Palau de Congressos,
Valencia, Spain (Proceedings of Machine Learning Research). PMLR.

[40] Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. 2020.

A Principled Approach to Data Valuation for Federated Learning. In Federated
Learning - Privacy and Incentive, Qiang Yang, Lixin Fan, and Han Yu (Eds.).

Lecture Notes in Computer Science, Vol. 12500. Springer, 153–167. https://doi.

org/10.1007/978-3-030-63076-8_11

[41] Shuyue Wei, Yongxin Tong, Zimu Zhou, and Tianshu Song. 2020. Efficient and

Fair Data Valuation for Horizontal Federated Learning. In Federated Learning -
Privacy and Incentive, Qiang Yang, Lixin Fan, and Han Yu (Eds.). Lecture Notes

in Computer Science, Vol. 12500. Springer, 139–152. https://doi.org/10.1007/978-

3-030-63076-8_10

[42] Jiayao Zhang, Qiongqiong Lin, Jinfei Liu, Kui Ren, Jian Lou, Junxu Liu, Li Xiong,

Jian Pei, and Jimeng Sun. 2021. Demonstration of Dealer: An End-to-End Model

Marketplace with Differential Privacy. Proc. VLDB Endow. 14, 12 (2021), 2747–
2750. http://www.vldb.org/pvldb/vol14/p2747-zhang.pdf

[43] Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. 2023.

Efficient Sampling Approaches to Shapley Value Approximation. Proc. ACM
Manag. Data 1, 1 (2023), 48:1–48:24. https://doi.org/10.1145/3588728

[44] Jiayao Zhang, Haocheng Xia, Qiheng Sun, Jinfei Liu, Li Xiong, Jian Pei, and

Kui Ren. 2023. Dynamic Shapley Value Computation. In 39th IEEE International
Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023.
IEEE, 639–652. https://doi.org/10.1109/ICDE55515.2023.00055

[45] Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. 2022. Protect-

ing Decision Boundary of Machine Learning Model With Differentially Private

Perturbation. IEEE Trans. Dependable Secur. Comput. 19, 3 (2022), 2007–2022.

https://doi.org/10.1109/TDSC.2020.3043382

[46] Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa. 2023. Secure Shapley

Value for Cross-Silo Federated Learning. Proc. VLDB Endow. 16, 6 (2023).
[47] Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2022. Database Meets

Artificial Intelligence: A Survey. IEEE Trans. Knowl. Data Eng. 34, 3 (2022),

1096–1116. https://doi.org/10.1109/TKDE.2020.2994641

3362

https://doi.org/10.1145/3485447.3512222
https://doi.org/10.1007/978-3-030-63076-8_11
https://doi.org/10.1007/978-3-030-63076-8_11
https://doi.org/10.1007/978-3-030-63076-8_10
https://doi.org/10.1007/978-3-030-63076-8_10
http://www.vldb.org/pvldb/vol14/p2747-zhang.pdf
https://doi.org/10.1145/3588728
https://doi.org/10.1109/ICDE55515.2023.00055
https://doi.org/10.1109/TDSC.2020.3043382
https://doi.org/10.1109/TKDE.2020.2994641

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Shapley Value
	3.2 Sharded Structure
	3.3 Desiderata for Data Valuation

	4 S-Shapley Value
	5 Computing S-Shapley Value
	5.1 Monte Carlo Sampling
	5.2 Utility Sampling

	6 Updating S-Shapley Value Upon Unlearning
	6.1 Single Data Owner Exit
	6.2 Multi Data Owners Exit

	7 Experiments
	7.1 Experiment Setup
	7.2 Effectiveness
	7.3 Efficiency of Computation
	7.4 Efficiency of Update

	8 Conclusion and Future Work
	Acknowledgments
	References

