Tigger: A Database Proxy That Bounces With User-Bypass

Matthew Butrovich Karthik Ramanathan

mbutrovi@cs.cmu.edu
Carnegie Mellon University

William Zhang

wz2@cs.cmu.edu

Carnegie Mellon University

Justine Sherry
sherry@cs.cmu.edu

john.rollinson@westpoint.edu

Wan Shen Lim

wanshenl@cs.cmu.edu
Carnegie Mellon University

John Rollinson

Army Cyber Institute

Andrew Pavlo
pavlo@cs.cmu.edu

Carnegie Mellon University =~ Carnegie Mellon University =~ Carnegie Mellon University

ABSTRACT

Developers often deploy database-specific network proxies whereby
applications connect transparently to the proxy instead of directly
connecting to the database management system (DBMS). This indi-
rection improves system performance through connection pooling,
load balancing, and other DBMS-specific optimizations. Instead of
simply forwarding packets, these proxies implement DBMS pro-
tocol logic (i.e., at the application layer) to achieve this behavior.
Consequently, existing proxies are user-space applications that pro-
cess requests as they arrive on network sockets and forward them
to the appropriate destinations. This approach incurs inefficiencies
as the kernel repeatedly copies buffers between user-space and
kernel-space, and the associated system calls add CPU overhead.
This paper presents user-bypass, a technique to eliminate these
overheads by leveraging modern operating system features that
support custom code execution. User-bypass pushes application
logic into kernel-space via Linux’s eBPF infrastructure. To demon-
strate its benefits, we implemented Tigger, a PostgreSQL-compatible
DBMS proxy using user-bypass to eliminate the overheads of tra-
ditional proxy design. We compare Tigger’s performance against
other state-of-the-art proxies widely used in real-world deploy-
ments. Our experiments show that Tigger outperforms other prox-
ies — in one scenario achieving both the lowest transaction laten-
cies (up to 29% reduction) and lowest CPU utilization (up to 42%
reduction). The results show that user-bypass implementations like
Tigger are well-suited to DBMS proxies’ unique requirements.

PVLDB Reference Format:

Matthew Butrovich, Karthik Ramanathan, John Rollinson, Wan Shen Lim,
William Zhang, Justine Sherry, and Andrew Pavlo. Tigger: A Database
Proxy That Bounces With User-Bypass. PVLDB, 16(11): 3335 - 3348, 2023.
doi:10.14778/3611479.3611530

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/mbutrovich/tigger.

1 INTRODUCTION

Modern cloud applications often connect to database management
systems (DBMSs) over a network in a manner that is not optimal

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
do0i:10.14778/3611479.3611530

3335

for performance: either maintaining large numbers of persistent,
mostly idle connections or rapidly churning connections. Both sce-
narios cause the DBMS to squander resources on state information
for each connection or perform onerous and redundant network
operations. One standard solution to overcome this problem is to
use a proxy that acts as a middlebox [37] between the front-end
client and back-end DBMS. Examples include AWS RDS Proxy [2],
PgBouncer [19], Pgpool-II [20], MaxScale [11], and ProxySQL [23].
Although their features vary, these proxies all implement a tar-
get DBMS’s network protocol so that clients can connect to them
without needing to modify application code.

Using a DBMS proxy as the authoritative connection manager
for the back-end DBMS provides multiple benefits. The proxy main-
tains a persistent connection pool to the back-end DBMS to mul-
tiplex client requests and responses — minimizing the number of
connections talking to the DBMS. This optimization reduces the
overhead of tasks that scale linearly with the number of clients
like transaction commit. Furthermore, because the proxy’s pooled
connections only authenticate with the DBMS once, it prevents the
DBMS from repeatedly performing connection setup procedures
and frees system resources for query execution.

But the need to support DBMS network protocols imposes con-
straints on proxies’ implementations. As Application Layer (L7) [42]
middleboxes, these proxies follow the same design: they are user-
space applications that read byte streams from client sockets, ex-
tract connection state, match the client to a back-end socket, and
forward messages to the correct destination. This design incurs sig-
nificant overhead from the repeated operating system (OS) system
calls to read and write to sockets. Some high-performance systems
have previously used kernel-bypass to elide the OS networking
stack [24]. Unfortunately, this approach increases engineering and
deployment complexity. To our knowledge, no DBMS proxies em-
ploy this technique; they are inefficient user-space applications that
do not scale effectively for the most demanding applications.

Given this, we present an alternative system architecture called
user-bypass. User-bypass relies on eBPF programs that push down
DBMS-specific connection logic into the OS to create fast paths in
the Linux networking stack. User-bypass elides expensive system
calls and buffer copying without sacrificing functionality or safety.
We are not the first to embed L7 logic into the kernel using eBPF [51,
60, 72]. However, to our knowledge, we are the first to articulate
the idea of “user-bypass” instead of “kernel-bypass” and the first
to deploy this design strategy to DBMS proxies. To demonstrate
the effectiveness of this approach, we implemented a PostgreSQL-
compatible proxy called Tigger using user-bypass. It offers efficient
connection pooling and workload mirroring within kernel-space.

https://doi.org/10.14778/3611479.3611530
https://github.com/mbutrovich/tigger
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611530
https://www.acm.org/publications/policies/artifact-review-and-badging-current

©

;la

;Iﬂ

-

Clients

©

—R¥c00e006008s—]
= CEEOEEE =

DBMS Proxy DBMS

Figure 1: Connection Pooling Example — A DBMS proxy reduces the
number of connections to back-end DBMSs by multiplexing connections
from many clients to a smaller number of pooled connections.

Tigger supports the target DBMS’s network protocol and is a drop-
in replacement for other proxies.

We compare Tigger’s performance against other open-source
proxies for online transaction processing (OLTP) workloads. Our
results show that Tigger’s user-bypass architecture is the most
responsive and reduces transaction latency by up to 29%. Tigger
also minimizes CPU utilization — offering the best performance
by being 42% more efficient than the next proxy. When comparing
Tigger’s workload mirroring capabilities, it provides an average of
92% lower transaction latency while using 88% less CPU.

Our work makes the following contributions: (1) a discussion
of DBMS proxies in the context of modern cloud applications, (2)
the user-bypass method for pushing DBMS logic into kernel-space,
and (3) the design of the Tigger DBMS proxy using user-bypass.

2 BACKGROUND

We begin with motivating the need for DBMS proxies. We present
the challenges of scaling the number of persistent DBMS clients
and their overhead, and then describe how proxies use pooling to
improve DBMS efficiency. Lastly, we discuss existing proxies imple-
mentations and detail their scalability limits in cloud environments.

2.1 Connection Scaling

Modern cloud application frameworks perform horizontal scaling
in response to changes in load, creating more instances that must
communicate with the DBMS [3, 16]. Thus, a short burst of activity
can quickly generate thousands of connections. Some programming
frameworks and libraries use client-side pooling to maintain long-
lived connections (e.g., Phoenix [63], HikariCP [6], pgxpool [21]).
This scenario amplifies the scale of connections to the DBMS, as
new instances in an autoscaling group can result in thousands of
connections for their pools that may sit idle.

For multiple reasons, supporting many persistent clients is chal-
lenging for DBMSs. The first is that each new connection incurs
some fixed overhead in the DBMS even before that connection
issues a query request. To support multiple connections in parallel,
the DBMS will assign each connection a worker that is either a
lightweight thread (e.g., MySQL, Oracle, MSSQL) or a heavyweight
process (e.g., PostgreSQL, DB2, TimescaleDB). Each worker requires
a fixed amount of memory, CPU, and effort from the OS to manage
those resources. For example, PostgreSQL has a memory overhead
on the order of megabytes per connection [49, 66]. This cost is for a
new, unused connection before the DBMS populates auxiliary data
structures, such as result caches or prepared statement digests.

Second, since a DBMS provides ACID guarantees for transactions,
its concurrency control scheme requires it to perform additional

3336

EZE Noproxy KEN Tigger

—ia o |
|—[}—|
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Latency (ms)
Figure 2: Connection Pooling for Many Clients — YCSB transaction
latencies showing the effect of Tigger’s transaction pooling. The red circle
shows sample mean, and the upper whisker shows p99.

work for each connected client. For example, with optimistic con-
currency control, the DBMS performs a validation step when a
transaction commits to check whether that transaction conflicts
with the read/write sets of other clients connected to the DBMS [85].
PostgreSQL allocates memory for each possible connection, so the
conventional wisdom is to set its max_connections knob as small
as possible to keep concurrency control operations fast; otherwise,
it limits the scalability of the DBMS [48].

One approach to handle many connections is to scale the DBMS
horizontally by adding more nodes. Then, an L3/L4 proxy (e.g.,
HAProxy [10], nginx [18]) performs load balancing over TCP ses-
sions between nodes. However, these additional nodes add complex-
ity and cost to a deployment. Combined with client-side pooling,
the DBMS could waste resources supporting mostly idle connec-
tions. A better approach to address these scaling challenges is to
deploy a DBMS proxy that performs connection pooling [61]. In-
stead of connecting to the DBMS, applications connect to the proxy
using the same authentication methods. The proxy then manages
all connections between front-end clients and one or more back-
end DBMSs. With transaction pooling, the proxy multiplexes client
connections over shared back-end connections, as shown in Fig-
ure 1. The proxy temporarily allocates a server connection until
a transaction commits or rolls back. This approach improves per-
formance when many persistent connections do not continuously
submit transactions to the DBMS.

To demonstrate how transaction pooling can improve perfor-
mance, we run the YCSB workload [40] with 10,000 connections
in two configurations. The clients connect directly to the DBMS
in the first setup and through Tigger DBMS proxy in the second.
We discuss our experimental setup in Section 6. Figure 2 shows
the latency distributions from the two scenarios. YCSB’s p99 and
mean latencies are much higher than the median when many clients
connect directly to the DBMS. In contrast, using the proxy slightly
increases the minimum latency while significantly reducing the
P99 and mean latencies. We explore more workloads in this config-
uration in Section 6.2.

2.2 Connection Establishment

In addition to large numbers of persistent connections, short-lived
ephemeral clients also pose challenges for DBMSs. Ideally, appli-
cations should use client-side connection pooling, but improperly
tuned web frameworks result in short client sessions (i.e., the time
between connect and disconnect) that last only for the duration
of a transaction. Popular frameworks, such as Laravel [27] and
Django [28], do not use persistent connections by default. The ap-
plication opens a new connection to the DBMS for each request and
discards the connection upon completion. Furthermore, some cloud
software designs cannot exploit client-side connection pooling. For

E=E Noproxy KEN Tigger
g 2l =

3 4 5

Latency (ms)
Figure 3: Connection Pooling for Serverless Clients — YCSB transaction
latencies showing the effect of Tigger’s persistent connections. The red
circle shows sample mean, and the upper whisker shows p99.

example, microservices that rely on stateless serverless functions
(e.g., AWS Lambda) create a new connection on each invocation.

Short sessions are problematic in DBMSs because the connection
setup and teardown work steal CPU cycles that the DBMS could use
for executing queries. This overhead is due to how DBMSs handle
parallel connections: the system creates a new worker dedicated to
each connection. Creating a new worker incurs overhead for (1) task
creation, (2) socket allocation, (3) TCP handshakes, (4) Transport
Layer Security (TLS) handshakes, (5) client authentication, and (6)
querying DBMS settings and catalogs. These unavoidable steps take
milliseconds and waste DBMS resources when performed thousands
of times per second. Then when the connection closes, the DBMS
performs additional bookkeeping and cleanup.

Once again, DBMS proxies help with this problem. Since they
are optimized for connection management, their logic for opening
and closing connections is more efficient than DBMS workers that
have to balance many tasks (e.g., query planning/execution, log-
ging, garbage collection). Moving connection setup and teardown
execution to a different machine frees the DBMS’s CPU to focus on
these other tasks. The extra network hop introduced by the DBMS
proxy offsets costly system calls like fork() and the subsequent
page faults accompanying a new process.

To highlight these issues, we use PostgreSQL and YCSB in two
configurations representative of serverless applications where each
transaction opens a new connection. In the first setup they connect
directly to the DBMS, and in the second they connect through
the Tigger DBMS proxy. Figure 3 shows the latency improvement
at 2,000 TPS when serverless clients connect to Tigger instead of
directly to the DBMS. PostgreSQL uses processes for multitasking,
so every transaction performs the fork() and wait() system calls.
As a baseline not shown in the figure, the mean latency for YCSB
with persistent servers in this environment is 0.2 ms. Creating and
discarding a connection in PostgreSQL adds over 3.5 ms of latency.

DBMS proxies can provide partial benefits of a persistent con-
nection pool even when it is not an option. Despite introducing
extra network hops, Tigger reduces the latency overhead of short-
lived connections — dropping from an average of 3.9 ms to 1.7 ms.
For short transactions like in YCSB, a DBMS proxy halves the la-
tency in serverless environments. These results demonstrate how
connection establishment affects performance.

2.3 User-Space Proxy Design

DBMS proxies contain logic specific to a back-end DBMS’s network
protocol, thus making them L7 network applications. This behavior
contrasts with L3/L4 proxies (e.g., HAProxy [10], nginx [18]) that
transparently perform load balancing at lower layer protocols. Such
L7 logic requires processing network data in user-space (i.e., above

3337

o -] . o,

g = g a

% DBMS Proxy :‘.; [y Tigger &

& & ad) <

> =)

] (send()/recv()) 5] ; send()/recv())
o «

E' (Socket Stack) _?"’L '.‘.‘ Tigger | Socket Stack

S 3

¥ ¥

4 E3

- R ™
k3] °

Z DBMS Client Z DBMS Client

(a) User-space proxy (b) User-bypass proxy

Figure 4: User-Space and User-Bypass DBMS Proxies — User-space
proxies rely on system calls to redirect queries and results between clients
and DBMSs. Tigger employs user-bypass as a fast path in kernel-space, only
passing authentication and user settings message to user-space.

the OS networking stack) or applying deep packet inspection (DPI)
in lower levels of the network stack.

To the best of our knowledge, all existing DBMS proxies follow
the same design in Figure 4a: they are event-driven user-space appli-
cations that, after the authentication steps, (1) read client messages
from a network socket, (2) inspect the stream of bytes, (3) match the
client to a back-end server, and (4) send the data on the matched
socket. Query results follow a similar logic but with the sender
and receiver reversed. Our inspection of open-source proxies sup-
ports this belief, though implementation details vary from proxy
to proxy. PgBouncer is written in C and uses the libevent library
for notifications but is entirely single-threaded. Odyssey [14] is
also in C, directly calls epoll for event management, but uses a
bespoke coroutine library written in assembly and asynchronous
IO to enable parallelism. ProxySQL is in C++, relies on the poll
system call, and follows a more typical multi-threaded design.

These proxy implementations coordinate send() and recv()
system calls with DBMS protocol-specific control logic. This design
limits their scalability as network bandwidths increase. Research
shows that copying buffers during system calls accounts for ~50% of
the kernel’s network stack CPU cycles [36]. PostgreSQL developers
concluded that a saturated PgBouncer process spends most of its
time copying data in and out of buffers between user-space and
kernel-space [38]. As we will show in Section 6, PgBouncer’s single-
threaded design limits its throughput. Although Odyssey offers
more parallelism, its CPU demands scale with its capabilities. Ideally,
a DBMS proxy should do most of its work without copying socket
buffers to user-space via system calls.

3 USER-BYPASS

We next define our user-bypass method in the context of Linux
networking and existing kernel-bypass techniques. We also discuss
the kernel feature that enables user-bypass and its limitations.

3.1 Kernel-Bypass vs. User-Bypass

A complete overview of Linux’s networking stack is beyond the
scope of this paper; we will focus on the portion relevant to DBMS
proxies. Linux contains multiple layers for processing network
traffic. These layers handle transport (e.g., TCP), network (e.g., IP),
and link layer (e.g., Ethernet) protocols. The stack exposes a socket
interface [25] for applications to copy data between user-space and

kernel-space, along with traffic control [26] interfaces to configure
queuing disciplines and network filters.

User-space applications that prioritize performance over simplic-
ity can elide these software layers using kernel-bypass methods. In
this scenario, a user-space application receives bytes directly from
the device driver — bypassing the kernel’s network stack. Thus,
the application manages communication protocols and their asso-
ciated state machines. The most common kernel-bypass pattern for
network applications is to use Intel’s Data Plane Development Kit
(DPDK) [17] software library with user-space TCP implementations
like mTCP [56]. Other libraries (e.g., F-Stack [5] and ScyllaDB’s
Seastar [24]) attempt to simplify development by bundling DPDK
with bespoke TCP logic. In 2018, Linux added native kernel-bypass
support with AF_XDP [54], removing the dependency on out-of-
tree kernel modules such as DPDK. We discuss our (frustrating)
experiences using kernel-bypass in DBMS proxies in Section 8.

Historically, kernel-bypass was the preferred way to implement
high-performance Linux networking applications. There are sev-
eral reasons for this view: (1) the Linux networking stack was
perceived as slow and inefficient, (2) applications performed encryp-
tion in user-space using a software library (e.g., GnuTLS, LibreSSL,
OpenSSL), and (3) a lack of programmability in the networking
stack. The interfaces to program the network stack were limited to
filtering and routing decisions based on L2/L3 rules (e.g., iptables,
nftables, tc). This lack of extensibility in the kernel prevented L7
DPI necessary for a DBMS proxy. Thus, kernel-bypass remained
viable for network applications with complex user-space logic.

Kernel-bypass aims to improve performance by transferring
buffers between devices and user-space applications instead of
the kernel processing them. User-bypass is the opposite approach:
the developer pushes application logic into the kernel’s network
stack as low as possible to avoid copying data between user-space
and kernel-space, while benefiting from the kernel handling L1-
L4 networking. Until recently, if a developer wanted to embed
application logic into the kernel, they would have to either (1) load
a kernel module or (2) modify and recompile it. Such approaches are
difficult and sacrifice system reliability and safety. However, updates
to Linux make user-bypass a viable alternative to kernel-bypass.
The efficiency of the Linux networking stack has also improved: a
single CPU core can process 42 Gbps [36], and dedicated servers
can process 670 Gbps of data [29]. Next, kernel TLS (kTLS) allows
developers to move encryption into kernel-space and hardware [71].
But the key reason that user-bypass is now possible is the increased
programmability via eBPF, which is composable with kKTLS [33].

3.2 eBPF

To understand user-bypass, we now provide an overview of how
the technique embeds DBMS logic in the Linux kernel. The pri-
mary technology that enables this functionality is extended Berke-
ley Packet Filter (eBPF). This modern Linux subsystem enables
developers to write safe, event-driven programs running in kernel-
space [76]. Application developers and cloud vendors have rapidly
adopted eBPF due to its safety and features [7, 9, 12]. For example,
Meta loads over 40 eBPF programs on every server, with hundreds
more loaded on demand [77].

3338

eBPF programs run a limited instruction set in a kernel-embedded
virtual machine. Developers typically write eBPF programs in higher-
level languages like C or Rust that compile to eBPF bytecode via
LLVM. Upon loading the eBPF program, modern kernels compile
the bytecode to native machine code. eBPF program capabilities
vary based on their type and attachment point, but they attach to
predetermined functions in the OS stack for network processing.

Developers load eBPF programs into kernel-space and then asso-
ciate them with events (e.g., functions, static tracepoints) to trigger
their execution. When a running thread hits the attachment point,
it starts the execution of the eBPF program in privileged mode.
Depending on their behavior and attachment location, developers
use eBPF programs for software debugging, profiling, or modifying
data flow (e.g., network buffers) through kernel-space. Tigger at-
taches eBPF programs with DBMS protocol logic in the socket and
Traffic Control (TC) layers of the Linux networking stack.

The execution state of eBPF programs is ephemeral, meaning
that its decision-making is limited to the data available during a
single invocation of the handler. However, with eBPF maps, the
program can maintain state across events, enabling user-bypass to
support more complex application behavior.

These data structures reside in kernel-space and are the primary
mechanism for creating stateful user-bypass programs. Tigger relies
on three eBPF map types to coordinate execution across multiple
eBPF programs: the (1) stack and (2) array map types are a persis-
tent stack and array, respectively, while the (3) sockmap type is a
unique map type that attaches an eBPF program to socket activity.
Developers associate a sockmap with a single eBPF program and
then add or remove socket file descriptors to or from the map. When
activity occurs on a registered socket (i.e., updates to an ingress or
egress buffer), the kernel executes the associated eBPF program.

Because the CPU is in privileged mode when eBPF programs run,
the kernel requires them to pass a verification step before it loads
them. The eBPF verifier enforces kernel API compliance, memory
access safety, execution bounds, and instruction count. The verifier
generates a control flow graph for all possible branches of the eBPF
program and checks limits like 512 B stack size and 1m instructions.
Although these restrictions limit the complexity of application logic
with user-bypass, DBMS network protocols for the most common
message types (i.e., queries, results) are expressible in eBPF. Despite
the verifier’s guarantees, developers should consider security and
safety practices with eBPF deployment due to its close interaction
with kernel functions, especially in multi-tenant environments.

4 TIGGER DBMS PROXY

We present Tigger as a solution that relies on user-bypass to over-
come the challenges with existing DBMS proxies described in Sec-
tion 2.3. As shown in Figure 4b, Tigger employs user-bypass, result-
ing in both user-space and kernel-space components to implement
the DBMS’s network protocol.

In this section, we first show how to apply user-bypass to DBMS
proxies with our implementation for Tigger. We then detail Tigger’s
support for the PostgreSQL network protocol.

o

] 00

3 Y

§ Tigger

- .

. // \\

I

2 . =

] == Server Cllent

< Handler Handler Nl

¥ Server Idle Socket Client
Sockets Sockets States Sockets

~ -

$.

Z DBMS Client

Figure 5: Tigger’s User-Bypass Architecture - Tigger’s hybrid design
constrains user-space and kernel-space (i.e., eBPF programs and maps)
components. We describe the steps in Section 4.1

4.1 User-Bypass Proxy Design

Tigger is a modified version of PgBouncer [19] that employs user-
bypass to replace core components with eBPF-enhanced implemen-
tations. We chose PgBouncer as the foundation for Tigger because
it is the most widely deployed DBMS proxy for PostgreSQL. How-
ever, the user-bypass design in this section could be applied to a
different proxy (e.g., MaxScale for MySQL) to support other DBMSs.
User-bypass results in a hybrid software design with both user-
space and kernel-space logic, providing a fast path for the most
common proxy tasks. Tigger’s user-space component retains Pg-
Bouncer’s single-threaded design but achieves parallelism through
user-bypass because eBPF components run on kernel threads.

The user-space portion of Tigger is responsible for connection
establishment, client authentication, and settings management. This
component synchronizes the connection state with Tigger’s kernel-
space logic by reading and writing to eBPF maps. Tigger retains
these parts as the user-space component for several reasons: (1)
DBMS authentication methods (e.g., SCRAM-SHA-256, GSSAPI)
are too complex to satisfy the eBPF verifier’s limitations described
in Section 3.2, (2) these events are infrequently executed and not
part of the hot path of dispatching queries, and (3) it simplifies user-
bypass engineering by reusing an existing application. These user-
space authentication components follow the same semantics as in
PgBouncer, enabling administrators to define how front-end users
map to back-end connection pools. These settings ensure clients
cannot submit queries to the DBMS with improper credentials.

Tigger maintains two independent connection pools: (1) a user-
bypass pool (2) a user-space pool. The first is dedicated to user-
bypass links between clients and back-ends. In the typical case,
Tigger links a client to a back-end DBMS, redirects the session’s
queries and responses, and unlinks the two endpoints without
executing any user-space code. In the rare event that all user-bypass
sockets are in use, Tigger can pass a client’s session up to the
fallback connection pool managed in user-space at the cost of being
slower. Exceptional protocol operations like cancel requests also
pass to user-space and route through this pool.

When Tigger starts, it loads its eBPF maps and programs into
kernel-space. Tigger’s connection pooling relies on two eBPF han-
dler programs: one to process buffers for back-end DBMS sockets
(Server) and another for front-end client sockets (Client). Each
handler attaches to its sockmap to trigger execution, and the other

3339

[o] 89 TSELECT |Q|1213TINSERT @E

11 12 16 101102 106 Socket
States

Q| 10 TBEGIN
1 5

Figure 6: Applying DBMS Protocol Logic — Tigger performs DPI on
DBMS messages to determine types and lengths. If a message spans multiple
buffers, Tigger stores the position to start reading the next buffer in the
SocketStatesMap eBPF map. We describe the steps in Section 4.2.

two maps (IdleSocketsMap and SocketStatesMap) synchronize
the kernel-space state with the user-space components. Depend-
ing on the proxy’s configuration, Tigger may install more eBPF
handlers to provide additional features (see Section 5.2).

Most of Tigger’s handlers operate at the socket layer (i.e., above
the TCP stack) attached to sockmap events. The handlers run on
kernel worker threads responsible for software interrupts, which
is how Linux processes network events in kernel-space. Although
eBPF programs can hook into lower levels of the networking stack
(e.g., XDP, TC) it is not ideal to push DBMS protocol logic lower
than the socket layer: every layer bypassed in kernel must be re-
implemented by the proxy. For example, hooking into the network
stack below the TCP layer requires the proxy to implement the
complex TCP state machine and its associated messages (e.g., ACKs
and retries). Furthermore, eBPF programs must be attached at the
socket layer to perform DPI on encrypted content using kKTLS [33].

At the sockmap layer, Tigger benefits from the OS handling
protocols below the L7 layer. The OS arranges ingress bytes in
their correct sequence order and reliably sends egress bytes. Socket
buffers appear as they would in user-space (i.e., ready for L7 logic),
with the OS processing headers related to TCP/IP and Ethernet.
Therefore, Tigger’s eBPF handlers’ logic is similar to user-space
DBMS proxy logic. After compilation, Tigger’s Client handler
contains 267 eBPF instructions, but due to its loops and branches the
verifier evaluates 217,732 instructions. Although Client is lower
than the verifier’s 1m instruction limit, more branches or loop
iterations exponentially increases the verifier’s work.

Figure 5 shows Tigger’s hybrid design and steps through the
user-space and eBPF features that enable user-bypass. After Tigger
loads its handlers (i.e., Client and Server) and maps into kernel-
space, @ its user-space component opens and authenticates con-
nections to the back-end DBMS for pooling. Next, @ Tigger adds
the server sockets to ServerSocketsMap. This step ensures that the
Server handler runs whenever a DBMS socket buffer is ready for
processing. With the back-end socket ready to accept queries, €
Tigger adds it to the stack map of idle sockets. @ Tigger resets the
state metadata associated with the socket. Upon a new connection
request, @ the client authenticates with Tigger’s user-space com-
ponent. @ Tigger adds the client’s socket to ClientSocketsMap.
The Client handler will now execute on buffer activity from a
front-end connection. Lastly, @ Tigger resets the metadata asso-
ciated with the client socket stores in SocketStatesMap. To apply
user-bypass to a different system, developers reproduce this logic
in the user-space components of another DBMS proxy.

4.2 DBMS Protocol Logic

When a socket buffer arrives, Tigger’s Server and Client handlers
perform DPI to apply DBMS protocol logic — extracting the state
of client sessions to implement features like connection pooling.

Handler

e

Handler

g eBPF
E Maps
o
.
Z DBMS Client

Figure 7: Connection Pooling with User-Bypass — Tigger performs
pooling with two handlers and the maps shown in Figure 5. We describe
the steps in Section 5.1.

For PostgreSQL messages, processing a socket buffer involves in-
specting each message header to determine its type, length, and, if
necessary, the body. A PostgreSQL message is not guaranteed to fit
within a single buffer, so SocketStatesMap maintains metadata to
help the handlers process messages that span buffers. First, it con-
tains enough space to store a partial header in case the header spans
multiple socket buffers. Second, it has an offset into the following
buffer to find the next message.

Figure 6 shows an example of how Tigger processes multiple
PostgreSQL messages in a socket buffer containing 500 bytes. @
The Client handler reads the first message header and length and
computes the location of the next header. @ The Client handler
repeats the process and arrives at the third PostgreSQL message.
© The header indicates that the INSERT statement is 1213 bytes
long, but the socket only has 398 of its 500 bytes remaining. In
this scenario, @ Client stores the offset (i.e., 815) to look for the
following PostgreSQL message header in SocketStatesMap. When
the next client socket buffer arrives, the handler starts processing
at that offset rather than inspecting every byte.

Both the Client and Server handlers process the PostgreSQL
protocol similarly but apply different control logic. Client looks
for message headers related to the session (e.g., authentication,
disconnect). As described in Section 4.1, client messages are typ-
ically query requests, and Client redirects those to a back-end
DBMS. If the buffer contains session messages, Client passes it
to Tigger’s user-space component. Similarly, Server looks for con-
trol messages that denote transaction status (i.e., active vs. idle),
which requires reading the message body and the headers. Based on
this information, Server uses eBPF maps to coordinate transaction
pooling among multiple front-end and back-end connections.

5 TIGGER FEATURES

We now describe how Tigger implements DBMS-specific logic to
support the two most important features of proxies: pooling and
replication. Although the message protocol will differ for other
DBMSs, the way Tigger achieves user-bypass for these features
would be the same. Specifics related to the PostgreSQL protocol
could be adapted to other DBMS protocols.

5.1 Connection Pooling

As introduced in Section 2.1, connection pooling is when a proxy
shares a single server connection across one or more client collec-
tions. Tigger supports two common forms of pooling: session and
transaction pooling. These settings determine how long a front-end

3340

Handler

Handler

Kernel-space

Network

Replica
Figure 8: Workload Mirroring with User-Bypass — Tigger performs
workload mirroring with additional eBPF programs and maps, including
one attached at the TC layer. We describe the steps in Section 5.2.

client holds a pooled back-end connection. Session pooling allo-
cates a pooled connection for the duration of a client’s session, so it
is impossible to multiplex connections to reduce the peak number
of connections to the DBMS. This mode requires less work from
the DBMS proxy than transaction pooling since it does not main-
tain transaction state. Instead, the proxies only need to check for
messages that terminate the client’s session. In contrast, transac-
tion pooling releases connections back to the pool at the end of a
transaction, reducing the number of connections to the back-end
DBMS as shown in Figure 1. Tigger’s Client handler does not link
clients and servers at authentication time, instead waiting until a
query arrives. This approach minimizes how long a client holds a
connection and makes it available to other client requests as soon
as possible.

Figure 7 details Tigger’s steps when handling a client request
over a pooled connection. When an authenticated client submits
a query, @ Tigger’s Client handler executes when the buffer
arrives at the socket layer of the proxy. @ Client first checks
SocketStatesMap to see if this socket is already linked to a back-
end DBMS socket. If not, Tigger acquires the first socket available
from IdleSocketsMap. If there are no available user-bypass sock-
ets, the session passes to user-space to be handled by Tigger’s slow
path. After matching with a user-bypass socket, Client processes
the buffer (as described in Section 4.2) to determine if it is a session,
and if it is Client passes it to user-space.

In the typical case the socket buffer contains a query, so Client
redirects the buffer to the linked user-bypass socket and updates the
metadata in SocketStatesMap. @ The back-end DBMS executes
the query and sends the results back to Tigger. The Server handler
runs on buffer arrival, finding the linked front-end socket for the
back-end. @ Server processes the buffer, stores any intermediary
state in SocketStatesMap, and redirects the buffer to the linked
DBMS socket. @ occurs depending on the proxy’s pooling mode: at
transaction completion for transaction pooling or client disconnect
for session pooling. During this step, Server unlinks the client from
the DBMS and inserts the back-end socket into IdleSocketsMap.

5.2 Workload Mirroring

DBAs also deploy DBMS proxies to provide different forms of repli-
cation. Applications use such replication for load balancing, high
availability, or test environments. One important type of replica-
tion is workload mirroring, where the proxy sends the same queries
to multiple DBMSs but treats one as the authoritative primary
node [81]. With mirroring, there are no consensus protocols, result

Ethernet P TCP
dest src proto check src dest src dest seq ack
[of:af..[90:ce..|..| TcP [15445 [12.13.]19.80.. .| 44624 [5432 [15213 [15206 |..|
) '] 1]
Y au- N ; s :
i !
[s0:ce..[df:af..]..| uop [15721 [19.80..[12.13.][1138 |..|52386 |e |
dest src proto check src dest dest dest offset
Ethernet P uDP Tigger

Figure 9: Workload Mirroring Header Manipulation - Mirror clones
buffers at the TC layer, then manipulates protocol headers to send them
back to the socket layer via UDP.

set validation, or awareness between DBMS nodes of their arrange-
ment. It is helpful for prewarming replicas before adding them to
the pool of active instances, as well as facilitating the testing of
DBMS versions using live traffic during upgrades [58].

Tigger supports workload mirroring between multiple back-end
DBMSs. Tigger still performs connection pooling with the primary
DBMS, as described in Section 5.1. Replication requires an additional
handler (Mirror) to send one inbound message to multiple back-
ends. Tigger cannot perform workload mirroring in the Client
handler due to a limitation in the eBPF verifier: the API to clone
socket buffers is unavailable at the socket layer. eBPF programs can
only access the clone API at the TC interface.

As shown in Figure 8, Tigger’s Mirror handler consists of multi-
ple eBPF programs. The first program clones the necessary buffers
and attaches as a TC classifier for egress traffic — executing after
the socket, TCP, IP, and Ethernet stacks. The second eBPF program
attaches at the sockmap layer like the Client and Server handlers
and sends cloned buffers to their replicas. These two programs
cooperate in mirroring outbound traffic to replica DBMSs.

When workload mirroring is enabled, Tigger’s user-space com-
ponent adds entries in a eBPF map (MirrorSocketsMap) that asso-
ciates primary DBMS sockets to their replicas’ sockets. The user-
space component also creates a separate pool of connections for
replicas but does not place them into the IdleSocketsMap to avoid
linking them directly to clients.

Step @ in Figure 8 picks up after @ in Figure 7 (see Section 5.1).
At this point, Client bypassed user-space and redirected a query
from the client to the primary DBMS. Any new messages arriving
at Client now respond with “not ready” until all backends are
ready. As the outbound message leaves the proxy for the primary,
@ Mirror checks the destination port in MirrorSocketsMap, and
then @ clones the buffer to be sent to a replica.

However, the replica’s buffer contains Ethernet, IP, and TCP head-
ers for the primary’s session. At the TC layer, manually changing
the cloned buffer’s headers is not possible: permuting the headers
requires Tigger to maintain its own TCP state machines for replicas.
Not only is this too complex to implement in eBPF, it is also impos-
sible to use the OS’s network stack for any further communication
on that socket due to mismatches with OS’s TCP logic.

To overcome this problem, Mirror uses a eBPF program at the
sockmap layer to redirect the cloned buffer to the replica, similar to
Client and Server. This program allows the OS to manage all com-
munication with replicas, but the cloned buffer still resides at the
TC layer. To get it back to the Mirror handler at the sockmap layer,
@ Mirror’s TC program manually changes the cloned buffer’s mes-
sage type from egress TCP to ingress UDP, as shown in Figure 9.

3341

Table 1: AWS EC2 Instance Details - Hardware configurations and pric-
ing for the c6i family of AWS EC2 instances.

Instance vCPUs RAM (GB) Cost ($/hr)
coi.large 2 4 0.085
co6i.xlarge 8 0.17
c6i.2xlarge 8 16 0.34
c6i.4xlarge 16 32 0.68
c6i.8xlarge 32 64 1.36
c6i.12xlarge 48 96 2.04

To change all the necessary headers, Mirror first swaps the
Ethernet header’s addresses, which does not change the header’s
checksum. Similarly, Mirror switches the IP header’s addresses
and changes the protocol to UDP. The latter operation requires
updating the IP header checksum, but the change from TCP to UDP
is a compile-time constant, so this is a fast operation. The final
header update completely overwrites the old egress TCP header
with an ingress UDP header. Mirror’s TC component then writes
two pieces of metadata in the buffer after the UDP header. Since
TCP headers are larger than UDP, Tigger uses these unused bytes
to store (1) the replica’s socket for this buffer and (2) the offset to
application data. TCP headers are variable length, so Tigger must
explicitly track where the DBMS message begins.

When the cloned buffer arrives at the socket layer, @ Mirror ex-
tracts the stored replica socket and trims the excess bytes from the
original TCP header. Keeping the destination socket in the buffer is
an optimization that enables Mirror’s sockmap program to redirect
buffers without retrieving additional map data. Lastly, Mirror redi-
rects the buffer to the replica DBMS, and updates SocketStatesMap
so that Client can synchronize with all the responses.

6 EVALUATION

We evaluate Tigger’s using PostgreSQL (v14.5) DBMS, and config-
ure the shared_buffers knob so that working sets fit in memory.
We compare Tigger against three other open-source PostgreSQL-
compatible proxies:

e PgBouncer (v1.17): With decades of development, PgBouncer
is the most popular proxy for connection pooling with Post-
greSQL. Due to its popularity and maturity, we use PgBouncer
as the reference implementation for user-space DBMS proxies.
Odyssey (v1.3): Yandex developed Odyssey as a modern re-
placement for PgBouncer. It uses multiple workers and corou-
tines to support parallelism across connections. We use Odyssey
as an example of a high-performance user-space DBMS proxy.
Pgpool-II (v4.3.3): This proxy predates PostgreSQL’s native
replication features, and was commonly deployed to provide
high availability for PostgreSQL clusters. Pgpool-II does not
support transaction pooling, so we omit it from most of the
evaluation. Instead, we only compare Pgpool-II's workload mir-
roring against Tigger’s since PgBouncer and Odyssey do not
support that feature.

We do not compare against RDS Proxy because it is a fully man-
aged service. This design makes it impossible to control RDS Proxy’s
instance size or investigate its performance characteristics.

Unless otherwise specified, all experiments run as follows. We
evaluate Tigger using AWS EC2 c6i instances running Ubuntu Linux

Table 2: Connection Pooling for Many Clients — Transaction latencies (ms) of DBMS proxies compared to connecting directly to PostgreSQL.

No-op SmallBank TATP TPC-C Twitter YCSB
‘ X p50 p99 ‘ X p50 p99 ‘ X p50 p99 ‘ X p50 P99 ‘ X p50 p99 ‘ X p50 p99
No proxy | 0.18 0.15 0.32|2.10 1.84 414|090 0.48 2.60|13.92 574 224.84|0.72 0.47 2.07 |0.62 0.36 1.72
PgBouncer | 0.34 032 0.52|2.16 2.16 3.58|0.84 0.63 2.16|19.55 7.44 339.95|0.66 0.62 1.48|0.50 0.47 0.90
Odyssey | 035 0.28 0.48|2.19 2.12 3.38|0.88 0.59 2.13|52.24 7.76 1259.11|0.59 0.48 1.29|0.60 0.46 1.08
Tigger | 0.24 0.22 0.39|1.96 1.99 3.20|0.71 0.50 1.96 |16.08 7.15 258.00 [0.52 0.48 1.29|0.40 0.37 0.76
22.04 LTS in the same availability zone [1]. Table 1 summarizes the EZ8 PgBouncer EEE Odyssey NI Tigger
resources and pricing for these instances. We use separate instances 5. 52250 A
for each system component: (1) 12xlarge for PostgreSQL, (2) 12xlarge § Eﬂ 125 <96 98 Lower is better
for application servers, and (3) and xlarge for DBMS proxies. We =g B 3 4 40l 16
use a smaller instance for the proxies to reflect how users provision x5 07 702 s 20 o
proxies in real-world deployments. To better compare user-bypass, No-op SmallBank TATP TPC-C Twitter ~ YCSB
we reduce the proxy server’s number of receive queues to one to > 100 L0 -
eliminate kernel parallelism for network processing [4]. 5 Lower is better
Each experiment runs at least five times. Latency evaluations Lj %D 50 42 3 03, B » 27
use a fixed submission rate of 2000 transactions per second (TPS). 25 1705 5
This setup ensures all systems perform the same work to compare 0~ No-op SmallBank TATP TPC-C Twitter YCSB
latency and CPU efficiency. Throughput evaluations run with an > = 400 450
unlimited submission rate. § % Lower is better
In all box plots, the lower whisker shows the minimum data B @200 ” 51 e .
point, and the upper whisker shows the 99th percentile (p99) data %_ % o == _ TS T T St
point. We plot p99 instead of the maximum for two reasons: (1) No-op SmallBank TATP TPC-C Twitter YCSB

p99 is a standard metric when evaluating the latency of software
systems, and (2) write-heavy workloads generate latency outliers
due to DBMS resource conflicts (e.g., locks, fsync()) that do not
reflect the performance of DBMS proxies.

6.1 Workloads

In these experiments, we only consider OLTP workloads; OLAP
workloads (e.g., TPC-H) are bottlenecked by query execution at
the DBMS (e.g., scans, aggregations), which makes them unsuitable
for demonstrating the benefits of Tigger’s user-bypass design. In
a serverless OLAP scenario, connection establishment overhead
will not be the bottleneck compared to query execution. Customers
deploy DBMS proxies for OLAP for reasons other than performance
(e.g., security) outside this evaluation’s scope.

All queries execute over JDBC using the BenchBase framework [8,
43]. We turn off automatically prepared statements in the JDBC dri-
ver to avoid naming contamination when the back-end connections
are shared across client connections. This problem occurs when
drivers prepare different statements under the same name, so DBAs
turn off this feature when deploying a DBMS proxy.

o No-op: The workload contains a single transaction that exe-
cutes an empty query string (i.e., “;”). The DBMS returns an
empty query result. This workload is ideal for measuring DBMS
proxy overhead because it minimizes the work that the client
and DBMS execute.

SmallBank: This workload models a banking application where
transactions perform short read and update operations [30, 35].
The database contains three tables which we scale to ~3.4 GB.
TATP: This benchmark simulates a cellphone caller location
system [84]. It has nine transaction types, and we scale the
database to ~1.9 GB stored across four tables.

3342

Figure 10: Connection Pooling for Many Clients — Percent change of
Table 2 comparing different DBMS proxies against connecting directly to
PostgreSQL.

e TPC-C: This order-processing application contains nine tables
and five transaction types [79]. For our experiments, we use a
20-warehouse database (~2.1 GB).

Twitter: This workload models the troubled social media web-
site where users post messages and follow others. We scale the
database to ~4.4 GB.

YCSB: The Yahoo! Cloud Serving Benchmark models cloud
service workloads [40]. We run read-only transactions to reduce
bottlenecks from EBS writes. The database contains a single
table, 1 KB tuples, and a total database size of ~2.3 GB.

6.2 Connection Pooling for Many Clients

We begin our evaluation by exploring the scenario from Section 2.1
in more detail. The workload represents a typical cloud-native
application. We use 25 application servers, each with 400 clients,
for 10,000 database connections. The DBMS utilization is low, with
each of the 25 application servers submitting 80 TPS distributed
across their connections, for a total of 2,000 TPS arriving at the
back-end DBMS.

Table 2 shows summary statistics of transaction latencies for
the six workloads. To more easily quantify overheads and benefits,
Figure 10 shows the percent change for each DBMS proxy compared
to the scenario with no proxy. Due to its user-bypass design, Tigger
offers the lowest latencies of any DBMS proxy in every workload.
Compared to running without a proxy, Tigger lowers the mean and
p99 latencies in every workload except No-op and TPC-C.

No-op does not benefit from using a DBMS proxy. Even at a high
connection count, PostgreSQL performs minimal work for No-op,

Table 3: Connection Pooling for Many TPC-C Clients — Transaction latencies (ms) of DBMS proxies compared to connecting directly to PostgreSQL.

Delivery NewOrder OrderStatus Payment StockLevel
x p50 P99 x p50 p99 X p50 P99 X p50 p99 X p50 P99
No proxy | 8.68 8.02 26.42| 957 755 4299 1.85 1.22 7.31121.05 3.25 562.54| 3.60 3.08 6.36
PgBouncer | 14.04 10.84 143.69|14.15 9.82 157.60 | 4.71 1.42 128.15|28.41 3.69 756.52| 5.42 2.22 128.59
Odyssey | 36.47 11.57 824.07 | 39.52 10.28 887.05 | 26.97 1.44 824.11|71.46 3.79 1578.33|29.43 2.25 881.82
Tigger | 10.42 10.15 24.04 |10.85 936 31.28| 1.46 1.26 3.77 | 24.77 3.54 691.03| 2.27 2.06 4.53
EZE Noproxy EZE PgBouncer EEE Odyssey [NEN Tigger E=3 Pgpool-ll KEN Tigger
el = —d@l !
HIZIZ8l ! Ll
Houo® ! 0 1 2 3 4 5 6
HXENe} J Latency (ms)
0 1 2 3 4 5 6 7 8 9

Latency (ms)
Figure 11: Connection Pooling for Serverless Clients - YCSB transac-
tion latencies showing the effect of proxies’ persistent connections. The red
circle shows sample mean, and the upper whisker shows p99.

so reducing the number of connections with a DBMS proxy provides
no benefit. However, as a microbenchmark for proxies’ protocol
efficiency, we see that Tigger offers up to 31% lower latency than
the other proxies. The size of the ingress query and egress results
are essentially zero, so we are seeing the benefits of user-bypass
eliding system calls and user-space thread scheduling.

The diversity of TPC-C’s transactions makes it difficult to sum-
marize its performance, as in Table 2. For example, Delivery includes
more queries and thus round-trips to the DBMS. OrderStatus and
StockLevel are short and read-only. NewOrder and Payment experience
more contention, especially when the number of clients exceeds
the number of warehouses. These characteristics and non-uniform
transaction profile submission rates result in a multimodal latency
distribution. For that reason, we provide per-transaction summary
statistics.

Table 3 shows that while Tigger reduces the p99 latency in four
out of five TPC-C transactions, Payment’s higher submission rate
and latency hide this in Table 2. Tigger’s user-bypass design offers
the best performance of the three proxies again, though we cannot
explain Odyssey’s poor performance. TPC-C’s performance sub-
tleties demonstrate the trade-offs in deploying a DBMS proxy. For
example, deploying Tigger may be a good decision if reduced tail
latencies are worth the slight increase in average latency.

6.3 Connection Pooling for Serverless Clients

We next revisit the YCSB experiment from Section 2.2 that eval-
uates the latency impact of short-lived connections — this time
with more proxies than Tigger. We aim to measure the proxies’
connection creation overhead and assess the benefits of Tigger’s
user-bypass design. Because BenchBase opens a connection at the
start of a transaction and closes the connection at the end, we con-
figure the proxies to use session pooling for this experiment. Thus
the results from Figures 3 and 11 are not directly comparable to
other transaction pooling experiments. The effect is the same (i.e.,
connections are released to the pool at the end of the transaction),
but this configuration requires the proxies to perform less work to
track transaction status.

Figure 11 shows the same data as Figure 3 but with latency mea-
surements for Odyssey and PgBouncer. As discussed in Section 2.2,

3343

Figure 12: Workload Mirroring - Transaction latencies through DBMS
proxies configured for workload mirroring. The red circle shows sample
mean, and the upper whisker shows p99.

DBMS proxies provide performance improvements in serverless
environments by maintaining a connection pool. Figure 11 shows
how allocating a connection from a persistent pool is about 2 ms
faster than going to the DBMS for a new connection.

Tigger outperforms the other two proxies, offering the low-
est minimum, mean, and median latencies. Tail latency is slightly
higher for Tigger because this scenario is ill-suited to Tigger’s user-
bypass design. As described in Section 4.1, Tigger passes client
authentication to its user-space components, which ultimately do
more work than PgBouncer’s because Tigger has to maintain meta-
data in eBPF maps. Tigger handling subsequent queries with user-
bypass makes up for the authentication overhead to provide the
best performance on average for serverless clients.

6.4 Workload Mirroring

We now evaluate Tigger’s workload mirroring as described in Sec-
tion 5.2. For this experiment, we deploy PostgreSQL with two nodes:
(1) primary and (2) replica. We configure Pgpool-II [20] to use its
“native replication” clustering mode that routes queries to connec-
tion pools for both the primary and the replica DBMSs. The proxy
returns results to the client from the primary, and there is no vali-
dation that both servers produced the same results. The proxy only
ensures that both servers are ready for the following query before
allowing the client to proceed. This scenario mimics simultaneously
sending an actual workload to a production and staging DBMS. We
configure Tigger’s mirroring logic to behave like Pgpool-II. Pgpool-
II does not support transaction pooling, so we use session pooling
and lower the number of client connections to 20.

Figure 12 shows the mean latencies of YCSB in the mirroring
scenario described above. On average, Tigger produces transaction
latencies that are 92% lower than those with Pgpool-II. Mirroring
is expensive to implement in user-space because for each replica, a
user-space proxy must copy the queries and results from the kernel,
which is the most costly part of the Linux networking stack. In
contrast, Tigger’s user-bypass design benefits from eliding system
calls and zero-copy socket buffer duplication in the Linux kernel to
enable mirroring. Comparing Tigger’s performance from another
YCSB experiment in Table 2 without mirroring and much more
connections, we see that Tigger maintains <1 ms transaction latency
in both scenarios.

[EZ3 PgBouncer (TCP) B PgBouncer (Unix)

EEE Odyssey (TCP) EEE Odyssey (Unix)
196

T Tigger

191

[@ 165 169
E 152 £ 150

< =

z 2100

e ®

g g 50

= =

(a) Transaction pooling (b) Session pooling

Figure 13: Protocol Efficiency — No-op throughput to compare transaction
against session pooling, and TCP against Unix sockets.

6.5 Protocol Efficiency

We next evaluate the proxies’ efficiency at applying DBMS proto-
col logic and explore the overheads associated with TCP and Unix
sockets. We configure the proxies for both session and transaction
pooling, as detailed in Section 5.1. We reduce the number of termi-
nals to 20 because we are using session pooling and do not want
the number of back-end DBMS connections to get too large. This
experiment evaluates how efficiently proxies apply knowledge of
the DBMS’s network protocol to find transaction boundaries in
messages and maintain state about connection status.

To avoid unnecessary overhead from the DBMS and exercise
proxies’ logic as much as possible, we run the No-op workload. We
also run the proxies on the same server as the DBMS to reduce
network hops. This configuration also allows us to evaluate Odyssey
and PgBouncer with TCP and Unix socket connections to the DBMS.
Unix sockets are more efficient than TCP networking, so we enable
this optimization to quantify their benefit.

The results in Figure 13a show the throughput of the proxies in
transaction pooling mode. As a baseline, No-op throughput when
BenchBase connects to PostgreSQL without a proxy is 214k TPS.
PgBouncer performs the worst, with 71% and 67% reductions in No-
op throughput over TCP and Unix sockets, respectively. Odyssey’s
throughput drops 29% and 24% over TCP and Unix sockets. Unix
sockets perform better for both proxies because it is a more efficient
form of interprocess communication than going through the entire
TCP stack. In comparing these results to Figure 13b, we see that
Tigger experiences no throughput degradation when performing
extra logic for transaction pooling. The other proxies do not per-
form as poorly with the simpler task of session pooling, but Tigger
offers consistently better performance and pushes the bottleneck
to communication overhead elsewhere.

These results also show the benefit of Tigger’s user-bypass, as it
outperforms the other proxies, reducing the throughput by only 8%
compared to the baseline performance. No-op’s messages are small
(i.e., fewer than 64 bytes), so the primary benefit of user-bypass is
reducing system call overhead. Unix sockets between the DBMS
and proxy yield little benefit over TCP sockets.

6.6 CPU Efficiency

We next evaluate the CPU efficiency of Tigger’s user-bypass ap-
proach compared to other DBMS proxies using YCSB. We mea-
sure the proxy server’s CPU utilization using sysstat [13], which
attributes time spent in user-space, kernel-space, and software
interrupts. We are interested in the latter because Tigger’s eBPF

3344

E=E % User

8 % Kernel A % Software Interrupts

g g 60 50

s s

F40

E 20

2 2 -

© [}
PgBouncer Odyssey Tigger Pgpool-II Tigger
(a) Transaction pooling (b) Workload mirroring

Figure 14: CPU Efficiency - Breakdown of CPU utilization for YCSB in
Table 2 and Figure 12. % Software Interrupts is distinct from % Kernel to
emphasize Tigger’s user-bypass execution.

programs attached at the sockmap layer run on kernel threads
queued as software interrupts (see Section 4.1).

Figure 14a shows the CPU utilization for the YCSB experiment in
Table 2. PgBouncer again serves as the baseline. Although Odyssey
provides lower latencies than PgBouncer, it increases the CPU
overhead by 54%. Odyssey’s complex user-space logic for corou-
tines incurs high overhead to perform the same amount of work
as PgBouncer. Lastly, Tigger requires the fewest CPU cycles while
providing the best performance of the three proxies. As expected,
Tigger’s user-bypass design shows almost no CPU time spent in
user-space, and reduces the time spent in the kernel by not repeat-
edly copying socket buffers in system calls.

Figure 14b shows the CPU utilization for the YCSB experiment
in Figure 12. Tigger uses 88% less CPU than Pgpool-II to perform
workload mirroring. Pgpool-II must copy buffers and duplicate sys-
tem calls to perform mirroring, which incurs significant overhead.
Tigger benefits from zero-copy socket buffer cloning and redirects
these buffers to mirrors without system calls.

6.7 Large Data Transfer

Although large data transfers through DBMS proxies are not as
common as transactional workloads, we evaluate the overhead of
performing such a task. In this scenario, we run the pg_dump utility
that creates a backup of a PostgreSQL database over the network.
pg_dump connects to the DBMS like any client, communicates over
the PostgreSQL protocol, and extracts database contents data using
the COPY SQL command. We run pg_dump on a dedicated application
server, create a PostgreSQL database with 20 tables, and insert 50m
single-column INTEGER tuples into each table. The overall database
size is 34 GB.

Figure 15 shows the elapsed time for pg_dump to complete a
backup in different proxy scenarios. All three proxies complete the
copy without overhead (i.e., pg_dump’s efficiency is the bottleneck).
This experiment demonstrates a workload where the bottleneck
exists at the client or the DBMS, rather than the proxy. In this
scenario, a DBMS proxy adds no measurable overhead.

6.8 Proxy Instance Size

To complete our evaluation, we now measure the maximum through-
put of the proxies with varying EC2 instance sizes. While customers
typically deploy proxies on weak servers, we aim to investigate their
performance benefits when allocated more resources. For Odyssey
and Tigger, this offers opportunities to express parallelism, while
PgBouncer only supports a single worker. We run No-op, TPC-C,
and YCSB with unlimited submission rates.

206 206 207 205

No proxy PgBouncer Odyssey Tigger
Figure 15: Large Data Transfer — Elapsed time for pg_dump to back up a

34 GB database through different DBMS proxies.

Figure 16 shows the throughput of the different DBMS proxies
on varying instance sizes. For every instance type, Tigger yields the
highest throughput. All three proxies scale roughly linearly as the
resources of each instance increase. For Odyssey, this makes sense
because it uses multiple user-space worker threads, so Odyssey
expresses greater parallelism. PgBouncer performs better as in-
stance types change despite being single-threaded. We attribute
this to the noisy neighbor problem: the more resources requested
from a multi-tenant system, the less competition for unprovisioned
hardware (i.e., CPU caches).

With No-op and the smallest instance type (i.e., large, which the
other experiments use for the proxy), Tigger more than doubles
the throughput of PgBouncer and Odyssey. In this scenario, all
three proxies are bottlenecked by CPU utilization. Tigger’s higher
performance demonstrates the benefit of user-bypass, which does
not waste CPU cycles shuffling network buffers between user-space
and kernel-space. In all three workloads, Odyssey requires an 8xlarge
instance at 8X the cost to match Tigger’s baseline performance on
a large instance. This experiment demonstrates the benefit of user-
bypass to efficiently use CPU resources in resource-constrained
scenarios and the impact that user-bypass has on cloud cost.

7 RELATED WORK

We now discuss existing research on eBPF observability, programmable

networks, and techniques similar to user-bypass for pushing DBMS-
specific logic into kernel-space.

Network Observability Proxies: Envoy is an L3/L4 proxy with some
L7 capabilities for DBMS observability [22]. Endpoint support is lim-
ited to HTTP/2 and gRPC, along with “sniffing filters” for DBMSs
like MongoDB and PostgreSQL. For PostgreSQL, Envoy can accu-
mulate counters for queries (i.e., INSERT, UPDATE) and errors in the
query stream but does not perform connection pooling or work-
load replication. Because it is not a PostgreSQL endpoint, it cannot
process encrypted traffic.

Network Function Virtualization (NFV): Custom behavior in the
network stack and middleboxes has increased in recent years, par-
ticularly with the rise of SmartNICs among cloud vendors [47].
Programming languages like P4 [34] and Domino [73] allow more
expressibility in the network layer, but developers apply them to
flow routing using packet headers rather than L7 logic.

Recent works increasingly rely on the benefits of eBPF to push
logic into kernel-space and even to hardware layers [45, 65, 68, 82,
86]. These eBPF efforts target L3/L4 applications like flow routing,
intrusion detection, and denial-of-service mitigation and rely on
a class of eBPF programs called XDP which are more restrictive
than Tigger’s sockmap programs. BMC also uses XDP to apply
user-bypass to memcached, enabling kernel threads to handle the
key-value store’s simple operations over UDP [51].

3345

EZ3 PgBouncer EEE Odyssey

135

=T Tigger

136

No-op throughput

8xlarge
3.74

large xlarge 2xlarge 4xlarge

3.71

TPC-C throughpui

large xlarge 2xlarge 4xlarge 8xlarge

50.8 49.7 51.8

YCSB throughput

large

8xlarge

xlarge 2xlarge 4xlarge
Figure 16: Proxy Instance Size — Transaction throughput while varying

proxy server instance size.

TCP Splicing: Network researchers explored kernel-space connec-
tion pooling at the transport layer (e.g., TCP) in kernel-space with
a technique called TCP splicing [62]. The goal was similar to user-
bypass: avoid copying buffers to user-space that will ultimately
be forwarded to another socket. Prior work evaluated these tech-
niques on web server and firewall workloads but required invasive
changes to the OS to implement. For example, IBM AIX develop-
ers made changes directly to the kernel source code [67], a Linux
implementation required an out-of-tree kernel module [39], and
other approaches used custom designs like Scout OS and Exoker-
nel [50, 75]. The Linux effort was unique in applying L7 logic to
provide URL-aware forwarding [39]. This logic could be duplicated
using user-bypass to offer a safe implementation without risking
kernel panics.

One outcome of these efforts is the splice() system call in
Linux that promises zero-copy forwarding between file descriptors
without duplicating the data in user-space. However, this approach
still incurs system call overhead and requires waking up an user-
space application to coordinate forwarding. Lastly, it is impossible
to peek at the data in flight, so DPI to apply DBMS logic requires
copying the data to user-space.

OS Extensibility: For decades, database researchers discussed the
shortcomings of using OS services to design DBMSs [78]. In re-
sponse, the research community proposed methods to extend OS
behavior to better suit user-space applications [32, 69, 70]. However,
these approaches lacked a standard API and strong OS support like
eBPF to extend behavior.

More recently, researchers presented the ExtOS Linux prototype
designed to reduce data movement in the software stack [31]. For
example, they proposed adding programmability to the read()
system call to push database filters into the OS via a kernel module.
Their initial results showed promising speedup, and they proposed
extensions to eBPF which was not yet suitable for their task in 2019.

Unikernels: These applications represent kernel-bypass pushed to
an extreme, where applications are compiled with a library OS to
yield an application-specific machine [46, 55, 59, 83]. Unikernels
remain an active and promising research area, but the industry has

been slow to adopt this approach. Designing unikernel applications
requires similar expertise and has the same challenges as kernel-
bypass methods. While more limited in capabilities, eBPF is easily
deployed in cloud native environments and companies are rapidly
adopting it, as described in Section 3.2.

eXpress Resubmission Path (XRP): Recent work applies user-bypass
to the Linux kernel’s storage stack [87]. For example, B+ tree
lookups read multiple disk pages before finding the destination
leaf node. The DBMS copies the entire page from kernel-space to
user-space via system calls, only to find a pointer to the correct
child node and repeat the process. Similar to the network stack, re-
peatedly accessing the storage stack imposes overhead from system
calls and memory copies.

XRP pushes DBMS logic into the NVMe driver via eBPF. With
XRP, the DBMS performs B+ tree node traversal in kernel-space
by resubmitting multiple NVMe operations. XRP’s use of user-
bypass reduced the amount of data copied to user-space and the
number of repeated system calls. They demonstrated the latency
and throughput benefits of XRP against kernel-bypass using DPDK
and asynchronous I/O.

Kernel-Bypass: As discussed in Section 3.1, kernel-bypass is a tech-
nique to bring packets directly to user-space by eliding the Linux
network stack. We created a version of PgBouncer that uses kernel-
bypass via F-Stack [5] to evaluate the benefits and challenges of
kernel-bypass, especially compared to user-bypass. But integrat-
ing F-Stack dependencies and creating a productive development
environment proved challenging. For example, DPDK requires ex-
clusive control of a dedicated NIC, making debugging difficult with
standard networking tools. Despite communicating with F-Stack
engineers, we did not achieve acceptable performance with DPDK-
enhanced PgBouncer; it is 10-100x slower than unmodified Pg-
Bouncer. Our engineering problems match the recent effort to cre-
ate a DPDK version of Open vSwitch [80], which concludes by
recommending AF_XDP instead.

To our knowledge, the only database vendor making significant
use of kernel-bypass is Yellowbrick, which does not use DPDK but
instead wrote their own network and storage device drivers [53].
Although ScyllaDB promotes DPDK compatibility in their Seastar
framework, they do not deploy DPDK in production [52]. In gen-
eral, deploying DPDK applications into production is difficult due
to API/ABI instability, which forces developers to choose between
features and fixes of new releases and code stability of LTS re-
leases [64]. eBPF experienced similar API growing pains over the
last ten years but is proving to be a less burdensome development
environment than kernel-bypass.

8 FUTURE WORK

This work presents a technique called user-bypass in the context of
DBMS proxies. We believe this opens a number of opportunities for
both DBMS proxies and aspects of DBMS design that could benefit
from application logic in kernel-space.

Proxy Features: Tigger implements the most common features needed
in DBMS proxies to demonstrate the benefits of user-bypass, but
there are more capabilities to evaluate. For example, Vitess [74]
supports SQL-aware logic to perform query rewriting and sharding

3346

for MySQL. Also, techniques that modify the query stream, like
transaction reordering and in-network computation [44, 57], may
be feasible in a DBMS proxy using user-bypass.

Pgpool-II and ProxySQL provide a query result cache to return
result sets for frequently submitted queries. These caches rely on
simple time-to-live (TTL) policies with string-matching of queries
rather than SQL-aware eviction methods. For example, a cached
result will not automatically be evicted if a query changes its value
in the DBMS. For this reason, these caches are error-prone but could
be used to reduce the burden of queries automatically submitted
by application frameworks like “SELECT 1”. More sophisticated
solutions (e.g., Heimdall [15]) support transparent query caching
with automatic invalidation. These techniques could benefit from
user-bypass if their approaches satisfy the eBPF verifier. For exam-
ple, a full SQL parser is outside the verifier’s scope, and eBPF maps
may not be large enough for a robust query result cache.

Asynchronous I/O: Linux provides an asynchronous I/O interface
called io_uring. In late 2021, a Linux developer posted an experimen-
tal patch for io_uring that offers support for network sockets [41].
The new kernel feature reads and writes via shared buffers with
user-space, which reduces the number of data copies. A DBMS
proxy would still need to copy data between these buffers, and
all coordination would still be performed via user-space applica-
tion waiting on epoll(). Nonetheless, we remain interested in
evaluating io_uring’s impact on DBMS proxy design.

Hardware Acceleration: The improved capabilities of SmartNICs and
FPGAs and their proliferation in public cloud settings create new
opportunities for accelerating applications via hardware [47]. For
example, Mellanox and Netflix added support for offloading kTLS
to NICs [71]. This development may enable performing L7 logic like
DBMS proxies at lower levels of the network stack. Hardware TLS
is not broadly available, but future devices may enable user-bypass
techniques at the hardware layer.

9 CONCLUSION

DBMS proxies manage connections to address scalability and con-
nection life cycle issues introduced by modern cloud applications.
These programs apply DBMS-specific protocol logic to multiplex
client connections. But these proxies incur inefficiencies because
they are user-space applications that rely on system calls to copy
buffers to and from kernel-space. We introduce a user-bypass tech-
nique to overcome these shortcomings by pushing application logic
into the Linux kernel using eBPF. We show how to apply user-
bypass with our PostgreSQL-compatible proxy Tigger. When com-
pared against other DBMS proxies, Tigger offers the best perfor-
mance and lowest operating cost. Our evaluation shows the value
of user-bypass to reduce data movement between kernel-space and
user-space and avoid costly system calls.

ACKNOWLEDGMENTS

This work was supported (in part) by the National Science Foun-
dation (I1S-1846158, SPX-1822933), VMware Research Grants for
Databases, Google DAPA Research Grants, and the Alfred P. Sloan
Research Fellowship program.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1822933
https://sloan.org/grant-detail/8638
https://sloan.org/grant-detail/8638

REFERENCES

(1]
(2]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

[28]
[29]

[30]

[32

[33

[34]

[35]

[36

[37]

[n.d.]. Amazon EC2 Cé6i Instances - Amazon Web Services. https://aws.amazon.
com/ec2/instance-types/c6i/.

[n.d.]. Amazon RDS Proxy | Highly Available Database Proxy | Amazon Web
Services. https://aws.amazon.com/rds/proxy/.

[n.d.]. App Scaling - AWS Application Auto Scaling - AWS. https://aws.amazon.
com/autoscaling/.

[n.d.]. ENA Linux Driver Best Practices and Performance Optimization
Guide. https://github.com/amzn/amzn-drivers/blob/master/kernel/linux/ena/
ENA_Linux_Best_Practices.rst.

[n.d.]. F-Stack | High Performance Network Framework Based On DPDK. http:
//www.f-stack.org.

[n.d.]. GitHub - brettwooldridge/HikariCP: A solid, high-performance, JDBC
connection pool at last. https://github.com/brettwooldridge/HikariCP.

[n.d.]. GitHub - cilium/cilium: eBPF-based Networking, Security, and Observ-
ability. https://github.com/cilium/cilium.

[n.d.]. GitHub - cmu-db/benchbase: Multi-DBMS SQL Benchmarking Framework
via JDBC. https://github.com/cmu-db/benchbase.

[n.d.]. GitHub - facebookincubator/katran: A high performance layer 4 load
balancer. https://github.com/facebookincubator/katran.

[n.d.]. GitHub - haproxy/haproxy: HAProxy Load Balancer’s development branch
(mirror of git.haproxy.org). https://github.com/haproxy/haproxy/.

[n.d.]. GitHub - mariadb-corporation/MaxScale: An intelligent database proxy.
https://github.com/mariadb- corporation/MaxScale.

[n.d.]. GitHub - microsoft/ebpf-for-windows: eBPF implementation that runs on
top of Windows. https://github.com/microsoft/ebpf-for-windows.

[n.d.]. GitHub - sysstat/sysstat: Performance monitoring tools for Linux. https:
//github.com/sysstat/sysstat.

[n.d.]. GitHub - yandex/odyssey: Scalable PostgreSQL connection pooler. https:
//github.com/yandex/odyssey.

[n.d.]. Home - Heimdall Data. https://www.heimdalldata.com.

[n.d.]. Infrastructure — Vercel. https://vercel.com/features/infrastructure.
[n.d.]. Intel Data Plane Development Kit (DPDK). https://www.dpdk.org.
[n.d.]. nginx. https://nginx.org/en/.

[n.d.]. PgBouncer - lightweight connection pooler for PostgreSQL. https://www.
pgbouncer.org.

[n.d.]. pgpool Wiki. https://www.pgpool.net/.

[n.d.]. pgxpool package - github.com/jacke/pgx/v4/pgxpool - Go Packages.
https://pkg.go.dev/github.com/jacke/pgx/v4/pgxpool.

[nd.]. Postgres — envoy 1.24.0-dev-fbcf42 documentation. https:
//www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_protocols/
postgres.

[n.d.]. ProxySQL - A High Performance Open Source MySQL Proxy. https:
//proxysql.com.

[n.d.]. Seastar. https://seastar.io.

[n.d.]. socket(2) - Linux manual page. https://www.man7.org/linux/man-pages/
man2/socket.2.html.

[n.d.]. tc(8) - Linux manual page. https://man7.org/linux/man-pages/man8/tc.8.
html.

2021. PHP: Connections and Connection management - Manual. https://www.
php.net/manual/en/pdo.connections.php.

2022. Databases | Django documentation | Django. https://docs.djangoproject.
com/en/4.1/ref/databases/.

David Ahern. 2022. Can the Linux networking stack be used with very high
speed applications? https://Ipc.events/event/16/contributions/1345/.
Mohammad Alomari, Michael J. Cahill, Alan D. Fekete, and Uwe R6hm. 2008.
The Cost of Serializability on Platforms That Use Snapshot Isolation. In ICDE.
IEEE Computer Society, 576-585.

Antonio Barbalace, Javier Picorel, and Pramod Bhatotia. 2019. ExtOS: Data-
centric Extensible OS. In APSys. ACM, 31-39.

Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Giin Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan J. Eggers. 1995. Exten-
sibility, Safety and Performance in the SPIN Operating System. In SOSP. ACM,
267-284.

Daniel Borkmann and John Fastabend. 2018. Combining kTLS and BPF for
Introspection and Policy Enforcement.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
Comput. Commun. Rev. 44, 3 (2014), 87-95.

Michael J. Cahill, Uwe R6hm, and Alan D. Fekete. 2008. Serializable isolation for
snapshot databases. In SIGMOD Conference. ACM, 729-738.

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang, and
Rachit Agarwal. 2021. Understanding host network stack overheads. In SIG-
COMM. ACM, 65-77.

Brian E. Carpenter and Scott W. Brim. 2002. Middleboxes: Taxonomy and Issues.
RFC 3234 (2002), 1-27.

3347

[38

[39]

[45

[46

(48]

[49]

o
=

(51

[52]
(53]

[54]

[56

[57]

(58]

[59]

Elizabeth Christensen. 2022. Postgres at Scale: Running Multiple PgBounc-
ers. https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-
pgbouncers.

Ariel Cohen, Sampath Rangarajan, and J. Hamilton Slye. 1999. On the Perfor-
mance of TCP Splicing for URL-Aware Redirection. In USENIX Symposium on
Internet Technologies and Systems. USENIX.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. ACM,
143-154.

Jonathan Corbet. 2021. Zero-copy Network Transmission with io_uring. https:
//lwn.net/Articles/879724/.

J.D. Day and H. Zimmermann. 1983. The OSI reference model. Proc. IEEE 71, 12
(1983), 1334-1340. https://doi.org/10.1109/PROC.1983.12775

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proc. VLDB Endow. 7, 4 (2013), 277-288.

Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Concur-
rency Control Through Transaction Batching and Operation Reordering. Proc.
VLDB Endow. 12, 2 (2018), 169-182.

Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. 2019. Partition-Aware Packet
Steering Using XDP and eBPF for Improving Application-Level Parallelism. In
ENCP@CoNEXT. ACM, 27-33.

Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole Jr. 1995. Exokernel:
An Operating System Architecture for Application-Level Resource Management.
In SOSP. ACM, 251-266.

Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt
Humpbhrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye,
Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Mad-
han Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak
Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In NSDL
USENIX Association, 51-66.

Andres Freund. 2020. Analyzing the Limits of Connection Scalability in Post-
gres. https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/
analyzing-the-limits- of- connection-scalability- in-postgres/ba-p/1757266.
Andres Freund. 2020. Measuring the Memory Overhead of a Postgres Connec-
tion. https://blog.anarazel.de/2020/10/07/measuring-the-memory-overhead-of-
a-postgres-connection/.

Gregory R. Ganger, Dawson R. Engler, M. Frans Kaashoek, Héctor M. Bricefio,
Russell Hunt, and Thomas Pinckney. 2002. Fast and flexible application-level
networking on exokernel systems. ACM Trans. Comput. Syst. 20, 1 (2002), 49-83.
Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller. 2021.
BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack
Processing. In NSDI. USENIX Association, 487-501.

CMU Database Group. 2020. ScyllaDB: No-Compromise Performance (Avi Kivity).
https://youtu.be/0S619BmuF8U?t=2586.

CMU Database Group. 2022. Yellowbrick: An Elastic Data Warehouse on Kuber-
netes (Mark Cusack). https://youtu.be/uHMcVDNKkHi4.

Toke Hpiland-Jorgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress data
path: fast programmable packet processing in the operating system kernel. In
CoNEXT. ACM, 54-66.

Takayuki Imada. 2018. MirageOS Unikernel with Network Acceleration for IoT
Cloud Environments. In ICCBDC. ACM, 1-5.

Eunyoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In NSDI. USENIX Association, 489—
502.

Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and Philippe Cudré-
Mauroux. 2021. In-Network Support for Transaction Triaging. Proc. VLDB Endow.
14, 9 (2021), 1626-1639

Lev Kokotov. 2022. Scaling PostgresML to 1 Million Requests per Second. https://
postgresml.org/blog/scaling-postgresml-to-one-million-requests-per-second.
Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan Santhanam, Alexan-
der Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Stefan Teodorescu, Costi
Raducanu, Cristian Banu, Laurent Mathy, Razvan Deaconescu, Costin Raiciu,
and Felipe Huici. 2021. Unikraft: fast, specialized unikernels the easy way. In
EuroSys. ACM, 376-394.

Kahina Lazri, Antoine Blin, Julien Sopena, and Gilles Muller. 2019. Toward an
in-Kernel High Performance Key-Value Store Implementation. In SRDS. IEEE,
268.

Tim Liang. 2022. The growing pains of database architecture. https://www.figma.
com/blog/how-figma-scaled-to-multiple-databases/.

David A. Maltz and Pravin Bhagwat. 1999. TCP Splice for application layer proxy
performance. J. High Speed Networks 8, 3 (1999), 225-240.

Chris McCord. 2014. Rise of the Phoenix - Building an Elixir Web Framework.

https://aws.amazon.com/ec2/instance-types/c6i/
https://aws.amazon.com/ec2/instance-types/c6i/
https://aws.amazon.com/rds/proxy/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://github.com/amzn/amzn-drivers/blob/master/kernel/linux/ena/ENA_Linux_Best_Practices.rst
https://github.com/amzn/amzn-drivers/blob/master/kernel/linux/ena/ENA_Linux_Best_Practices.rst
http://www.f-stack.org
http://www.f-stack.org
https://github.com/brettwooldridge/HikariCP
https://github.com/cilium/cilium
https://github.com/cmu-db/benchbase
https://github.com/facebookincubator/katran
https://github.com/haproxy/haproxy/
https://github.com/mariadb-corporation/MaxScale
https://github.com/microsoft/ebpf-for-windows
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/yandex/odyssey
https://github.com/yandex/odyssey
https://www.heimdalldata.com
https://vercel.com/features/infrastructure
https://www.dpdk.org
https://nginx.org/en/
https://www.pgbouncer.org
https://www.pgbouncer.org
https://www.pgpool.net/
https://pkg.go.dev/github.com/jackc/pgx/v4/pgxpool
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_protocols/postgres
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_protocols/postgres
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/other_protocols/postgres
https://proxysql.com
https://proxysql.com
https://seastar.io
https://www.man7.org/linux/man-pages/man2/socket.2.html
https://www.man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://www.php.net/manual/en/pdo.connections.php
https://www.php.net/manual/en/pdo.connections.php
https://docs.djangoproject.com/en/4.1/ref/databases/
https://docs.djangoproject.com/en/4.1/ref/databases/
https://lpc.events/event/16/contributions/1345/
https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://lwn.net/Articles/879724/
https://lwn.net/Articles/879724/
https://doi.org/10.1109/PROC.1983.12775
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-the-limits-of-connection-scalability-in-postgres/ba-p/1757266
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-the-limits-of-connection-scalability-in-postgres/ba-p/1757266
https://blog.anarazel.de/2020/10/07/measuring-the-memory-overhead-of-a-postgres-connection/
https://blog.anarazel.de/2020/10/07/measuring-the-memory-overhead-of-a-postgres-connection/
https://youtu.be/0S6i9BmuF8U?t=2586
https://youtu.be/uHMcVDNkHi4
https://postgresml.org/blog/scaling-postgresml-to-one-million-requests-per-second
https://postgresml.org/blog/scaling-postgresml-to-one-million-requests-per-second
https://www.figma.com/blog/how-figma-scaled-to-multiple-databases/
https://www.figma.com/blog/how-figma-scaled-to-multiple-databases/

[64]

[65]

[71]

(72]

[73]

[74]

John McNamara, Ian Stokes, Luca Boccassi, and Kevin Traynor. 2017. API/ABI
Stability and LTS: Current state and Future. https://www.dpdk.org/event/dpdk-
userspace-dublin-2017/.

Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauri-
cio Vasquez Bernal. 2018. Creating Complex Network Services with eBPF:
Experience and Lessons Learned. In HPSR. IEEE, 1-8.

Yaser Raja. 2021. Resources consumed by idle PostgreSQL connections | AWS
Database Blog. https://aws.amazon.com/blogs/database/resources-consumed-
by-idle-postgresql-connections/.

Marcel-Catalin Rosu and Daniela Rosu. 2002. An evaluation of TCP splice benefits
in web proxy servers. In WWW. ACM, 13-24.

Dominik Scholz, Daniel Raumer, Paul Emmerich, Alexander Kurtz, Krzysztof
Lesiak, and Georg Carle. 2018. Performance Implications of Packet Filtering with
Linux eBPF. In ITC (1). IEEE, 209-217.

Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. 2016. RUMA has it:
Rewired User-space Memory Access is Possible! Proc. VLDB Endow. 9, 10 (2016),
768-779.

Margo I Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith. 1996.
Dealing with Disaster: Surviving Misbehaved Kernel Extensions. In OSDI. ACM,
213-227.

Slava Shwartsman and Drew Gallatin. 2019. Kernel TLS and TLS Hardware Of-
fload. https://papers.freebsd.org/2019/eurobsdcon/shwartsman_gallatin-kernel _
tls_harware_offload/.

Giulio Sidoretti, Sebastiano Miano, Stefano Salsano, Gianni Antichi, and Aurojit
Panda. 2023. Application Layer Processing Offload in the Kernel. https://2023.
eurosys.org/docs/posters/eurosys23posters-final39.pdf. Poster presented at
EuroSys 2023.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
SIGCOMM. ACM, 15-28.

Sugu Sougoumarane and Mike Solomon. 2012. Vitess: Scaling MySQL at YouTube
Using Go. USENIX Association, San Diego, CA.

3348

[75]

Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson.
2000. Optimizing TCP forwarder performance. IEEE/ACM Trans. Netw. 8, 2 (2000),
146-157.

Alexei Starovoitov. 2013. LKML: Alexei Starovoitov [PATCH net-next] extended
BPF. https://lkml.org/lkml/2013/9/30/627.

Alexei Starovoitov. 2019. BPF at Facebook. https://kernel-recipes.org/en/2019/
talks/bpf-at-facebook/.

Michael Stonebraker. 1981. Operating System Support for Database Management.
Commun. ACM 24,7 (1981), 412-418.

The Transaction Processing Council. 2007. TPC-C Benchmark (Revision 5.9.0).
http://www.tpc.org/tpec/spec/tpec_current.pdf.

William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. revisiting the
open vSwitch dataplane ten years later. In SSGCOMM. ACM, 245-257.

Marco Tusa. 2017. What About ProxySQL and Mirroring? https://www.percona.
com/blog/proxysql-and-mirroring-what-about-it/.

Marcos Augusto M. Vieira, Matheus S. Castanho, Racyus D. G. Pacifico, Eler-
son Rubens da Silva Santos, Eduardo P. M. Camara Junior, and Luiz Filipe M.
Vieira. 2021. Fast Packet Processing with eBPF and XDP: Concepts, Code, Chal-
lenges, and Applications. ACM Comput. Surv. 53, 1 (2021), 16:1-16:36.

Thiemo Voigt and Bengt Ahlgren. 1999. Scheduling TCP in the Nemesis Operat-
ing System. In Protocols for High-Speed Networks (IFIP Conference Proceedings),
Vol. 158. Kluwer, 63-80.

Antoni Wolski. [n.d.]. TATP Benchmark. http://tatpbenchmark.sourceforge.net.
Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017), 781-792.

Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leverag-
ing eBPF for programmable network functions with IPv6 segment routing. In
CoNEXT. ACM, 67-72.

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan
Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, and Asaf
Cidon. 2022. XRP: In-Kernel Storage Functions with eBPF. In OSDI. USENIX
Association, 375-393.

https://www.dpdk.org/event/dpdk-userspace-dublin-2017/
https://www.dpdk.org/event/dpdk-userspace-dublin-2017/
https://aws.amazon.com/blogs/database/resources-consumed-by-idle-postgresql-connections/
https://aws.amazon.com/blogs/database/resources-consumed-by-idle-postgresql-connections/
https://papers.freebsd.org/2019/eurobsdcon/shwartsman_gallatin-kernel_tls_harware_offload/
https://papers.freebsd.org/2019/eurobsdcon/shwartsman_gallatin-kernel_tls_harware_offload/
https://2023.eurosys.org/docs/posters/eurosys23posters-final39.pdf
https://2023.eurosys.org/docs/posters/eurosys23posters-final39.pdf
https://lkml.org/lkml/2013/9/30/627
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
https://www.percona.com/blog/proxysql-and-mirroring-what-about-it/
https://www.percona.com/blog/proxysql-and-mirroring-what-about-it/
http://tatpbenchmark.sourceforge.net

	Abstract
	1 Introduction
	2 Background
	2.1 Connection Scaling
	2.2 Connection Establishment
	2.3 User-Space Proxy Design

	3 User-Bypass
	3.1 Kernel-Bypass vs. User-Bypass
	3.2 eBPF

	4 Tigger DBMS Proxy
	4.1 User-Bypass Proxy Design
	4.2 DBMS Protocol Logic

	5 Tigger Features
	5.1 Connection Pooling
	5.2 Workload Mirroring

	6 Evaluation
	6.1 Workloads
	6.2 Connection Pooling for Many Clients
	6.3 Connection Pooling for Serverless Clients
	6.4 Workload Mirroring
	6.5 Protocol Efficiency
	6.6 CPU Efficiency
	6.7 Large Data Transfer
	6.8 Proxy Instance Size

	7 Related Work
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

