Write-Aware Timestamp Tracking:
Effective and Efficient Page Replacement for Modern Hardware

Demian Vohringer
Friedrich-Alexander-Universitat Erlangen-Niirnberg
demian.voehringer@fau.de

ABSTRACT

In this paper, we revisit the classical data management problem
of page replacement. We propose Write-Aware Timestamp Track-
ing (WATT), a novel replacement algorithm that is optimized for
modern hardware. By explicitly tracking the access history of each
cached page, WATT achieves state-of-the-art replacement effective-
ness. WATT is also carefully co-designed with modern multi-core
CPUs and can be implemented with very low overhead. Finally,
WATT allows trading of read versus write I/O operations, which is
useful for prolonging flash SSD lifetime.

PVLDB Reference Format:

Demian V6hringer and Viktor Leis. Write-Aware Timestamp Tracking:
Effective and Efficient Page Replacement for Modern Hardware. PVLDB,
16(11): 3323 - 3334, 2023.

doi:10.14778/3611479.3611529

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/leanstore/leanstore/tree/ WATT.

1 INTRODUCTION

Replacement Algorithms. Every system that caches data even-
tually must decide what to evict from cache. Page replacement
is therefore a classical data management problem, and several al-
gorithms for this task exist. Most database systems still rely on
classical algorithms such as LRU and its approximations such as
CLOCK. Only few systems use advanced algorithms, including LRU-
K [15] and ARC [13], which are also well known and have better
accuracy.

Hardware Changes. We argue that it is time to revisit the page re-
placement problem due to major changes in the hardware landscape.
Solid-State Drives (SSDs) have largely replaced magnetic disks as
a storage medium. In comparison with disks, high-end SSDs have
four orders of magnitude higher random read throughput. Flash
SSDs also have read/write asymmetry, meaning that writes are
slower than reads, and that device lifetime is determined by write
volume. Additionally, modern servers changed from having only
one core to dozens or even hundreds of cores. From these changes,
we can derive four goals that any modern replacement algorithm
should achieve.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611529

3323

Viktor Leis
Technische Universitat Minchen
leis@in.tum.de

Goal 1: Replacement Effectiveness. The primary goal of any
replacement algorithm is to minimize I/O. For many workloads,
the number of I/O operations directly determines overall system
throughput. Given that DRAM capacities have stagnated in the
past decade [4] and persistent memory has been canceled by In-
tel, I/O-bound workloads are expected to become more common
and consequentially replacement effectiveness to (again) become a
crucial optimization goal, directly affecting DBMS performance.
Goal 2: Write Awareness. Most replacement algorithms (includ-
ing LRU, LRU-K, and ARC) explicitly or implicitly try to maximize
the cache hit rate. Writes of dirty pages are assumed to happen in
the background and have no cost. We argue that optimizing for
the hit rate alone, which does not take writes into account, is too
simplistic. For example, consider two algorithms A and 8B with hit
rates of 90% and 89%, respectively. Algorithm A appears superior —
but it could easily be the case that A causes twice as many writes
as B. Therefore, A could in fact be substantially slower than 8
both in terms of throughput and (tail) latency - while also halving
SSD lifetime. Any algorithm designed for flash should therefore
take writes into account.

Goal 3: CPU Efficiency. A single modern PCle 4.0 SSD can achieve
more than 1M IOPS [20] and commodity servers can directly con-
nect to multiple devices. Consequently, a database system trying
to exploit such hardware must be capable of replacing millions
of pages per second. This means that finding replacement candi-
dates must be highly efficient to avoid becoming CPU bound. A
second important aspect of CPU efficiency is that accessing cached
pages needs to have low overhead as well to avoid slowing down
workloads with high page hit rates.

Goal 4: Multi-Core Scalability. Our final goal is multi-core scala-
bility. Both page access tracking and replacement must scale well,
as they will be performed by multiple threads concurrently. This,
for example, prohibits the use of global lists and queues which
would immediately become points of contention on modern highly-
concurrent machines. Therefore, only decentralized algorithms and
data structures are viable on modern hardware.

Write-Aware Timestamp Tracking. In this work, we propose
Write Aware Time Tracking (WATT), a new page replacement algo-
rithm that achieves all four goals simultaneously. Our extensive
simulation results show that WATT achieves state-of-the-art re-
placement effectiveness. This is achieved by tracking individual
page accesses, which contain substantially more information than
other tracking mechanisms, together with a page value scoring func-
tion that considers both frequency and recency. WATT tracks reads
and writes separately and has a write-weight parameter, which
allows explicit write penalization.

https://doi.org/10.14778/3611479.3611529
https://github.com/leanstore/leanstore/tree/WATT
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611529
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Implementation. WATT is engineered to be efficient on modern
CPUs - for example, by exploiting SIMD instructions and prefetch-
ing. The implementation also avoids centralized data structures
and exploits epoch-based tracking, which make WATT scalable on
multi-core CPUs. We integrate WATT into the open-source high-
performance storage engine LeanStore and demonstrate that it
substantially improves end-to-end performance for out-of-memory
workloads without negatively impacting in-memory performance.
WATT can easily be integrated into existing caching-based systems,
and we believe that many systems would benefit from adopting it.
We additionally provide an open-source page replacement simula-
tion framework that includes workload traces and ten replacement
algorithms, which we believe will prove useful to others.
Outline. The rest of the paper is organized as follows. Section 2
surveys the replacement algorithms employed by widely-used data-
base systems and discusses prior work of page replacement. Sec-
tion 3 presents the main algorithmic ideas behind WATT. We then
compare WATT against three classical and six state-of-art competi-
tors through simulation in Section 4. Section 5 describes how to
implement WATT efficiently, and Section 6 evaluates this imple-
mentation within LeanStore. Finally, we summarize our paper and
discuss future work in Section 7.

2 RELATED WORK

A Neglected Problem. Although page replacement is a classical
problem in the data management field, in the past two decades
research on the topic has become sparse. This may have been due
to the shifting focus from disk-based to main-memory database sys-
tems. However, given that DRAM prices have stagnated during the
past two decades [4], and flash has become affordable and efficient,
we argue that it is time to revisit the problem. In the following, we
first present a short survey of the replacement algorithms used by
existing systems, before discussing more recent proposals.

2.1 What Database Systems Use

Commercial systems. Most existing systems rely on Least Recently
Used (LRU), or its variants and approximations. By default, DB2 [5]
uses LRU but also offers users the option to switch to First In First
Out (FIFO), which has less internal latch contention. Oracle [16]
uses standard LRU as well but partitions the LRU lists to reduce
latch contention. Additionally, a separate strategy is used to avoid
thrashing for large table scans. SQL Server [3] is one of the few
widely-used systems that uses a slightly more advanced algorithm,
namely LRU2, which is an instantiation of LRU-K [15]. LRU2 uses
the next-to-last access to find replacement candidates.
Open-source systems. InnoDB, the storage engine of MariaDB [11]
and MySQL [14], modifies LRU by inserting new pages in the mid-
dle (instead of the front) of the LRU list. This ensures that large
table scans do not thrash the entire buffer pool (but only a part
of it). PostgreSQL [12] uses Clock-Sweep, a variation of CLOCK.
WiredTiger [23], which is the default storage engine of MongoDB,
uses an approximation of LRU. The implementation scans the whole
RAM for pages older than a certain threshold and replaces them.
LeanStore. This paper is part of the LeanStore [9] project. LeanStore
is a high-performance storage engine for flash and is based on

3324

pointer swizzling for fast access to cached pages. Its original re-
placement algorithm, called LeanEvict, was co-designed with the
pointer swizzling scheme to have no overhead for accessing hot
pages. This is achieved by a combination of randomly selecting
replacement candidates and then putting them into a FIFO list
(“cooling stage”). Pages are then replaced if they arrive at the end of
the list without having been accessed in the meantime. The length
of the FIFO list can be configured (e.g., 10% of the buffer pool) and
determines how much access history is considered. In Section 6, we
show that for out-of-memory workloads, WATT enables replace-
ment effectiveness without sacrificing the efficiency and scalability
introduced with LeanEvict.

2.2 Advanced Replacement Algorithms

Most surveyed systems rely on variants or approximations of LRU.
Modifications such as partitioning the LRU list may improve multi-
core scalability and CPU efficiency, but come at the cost of even
lower replacement effectiveness, i.e., more I/O. In the following, we
first discuss more advanced algorithms that try to mitigate these
issues, and then discuss optimizations for modern hardware.
Replacement Effectiveness. An inherent problem of LRU is that a
page with low access frequency (“cold”) that happens to be accessed
will reside in the cache for a long time, i.e., until it arrives at the end
of the list. It would be beneficial to replace such cold pages earlier to
make space for “warmer” pages with higher access frequency. One
algorithm that tries to achieve this is LRU-K [15], which replaces
pages based on their K™-to-last accesses timestamp. In practice, K
is set to 2, which effectively means that the most recent access is
ignored. Another approach is having two lists instead of one such
that pages with very different frequencies can be separated. With
the 2Q [7] algorithm, for example, pages are first entered into a FIFO
list, and only if they are accessed a second time, they are moved
to an LRU list. One downside of 2Q is it has several difficult-to-set
parameters, in particular the lengths of the two lists. The Adaptive
Replacement Cache (ARC) [13] algorithm also relies on two lists,
but can adaptively determine their sizes based on the workload.
All these algorithms try to improve replacement effectiveness, but
they all run into severe scalability problems on modern CPUs due
to contention hot-spots at the head of the LRU list.

Multi-Core scalability. Scalability can be achieved by making
replacement a distributed and sampling-based process, as has been
proposed by the Hyperbolic Caching [2] approach. The algorithm
relies on a page value function, determining which of the sampled
pages to replace. WATT relies on similar ideas for scalability, but
differs in its tracking and page value function approach.

Write awareness. With Clean-First LRU (CFLRU) [18] and LRU
with Write Sequence Reordering (LRU_WSR) [8], two heuristics that
try adding write awareness to LRU have been proposed. LRU_WSR
gives modified (dirty) pages a second chance through the LRU list
before replacing them. Rather than always replacing from the end
of the LRU list, CFLRU replaces pages from an interval with given
size at the end, where it prefers replacing clean to dirty pages. Both
are simple heuristics that do not allow trading off reads vs. writes
in a principled way, e.g., keeping dirty pages in RAM might even
be prioritized too much.

Table 1: Comparison of replacement algorithms

Replacement ~ Write CPU Multi-Core
Effectiveness Awareness Efficiency Scalability

random —— no ++ ++
CLOCK = no + +
LeanEvict [9] - no + +
LRU2 [15] + no ++ +
LRU = no = =
CFLRU [18] - yes - -
LRU_WSR [8] - yes - -
Hyperbolic [2] - no ++ ++
ARC [13] + no - -
WATT (our) ++ yes ++ ++

2.3 Discussion

Table 1 surveys ten classical as well as modern replacement algo-
rithms in terms of the four goals introduced in Section 1. Only
WATT, the technique proposed in this work, satisfies all four goals.
Given that LRU has been known for decades and more effective
algorithms exist [13, 15], it is surprising that most systems use a
variant of LRU. LRU scores badly on all four metrics and, as we show
in Section 4, switching to a more effective algorithm can reduce the
volume of I/O by 10% or more on many workloads. Interestingly, the
PostgreSQL community discussed adopting ARC, but these efforts
were eventually abandoned due to patent concerns [19].

3 WRITE-AWARE TIMESTAMP TRACKING

Access History. The task of an online replacement algorithm is
to replace pages based on their past access history, and algorithms
differ in how much and what they track. In general, it is intuitively
clear that storing more information should lead to more accurate
page replacement. For example, whereas the CLOCK algorithm
maintains only a single bit per cached page indicating whether
the page has recently been accessed, LRU maintains a recency
rank by ordering cached pages in a list. However, even the more
effective LRU (1) does not directly track access frequency, (2) stores
no history for pages, and (3) does not distinguish between reads
and writes. WATT maintains more information and is therefore
capable of substantially reducing I/O.

3.1 Basic Algorithm

Timestamp Tracking. WATT tracks the access history of each
page by maintaining timestamps in an access log, adding new times-
tamps to the front at position i=1. In the following example, a page
has initially been accessed at timestamps 0, 8, and 15, and is then
accessed a fourth time at timestamp 42:
i 1 2 3 N i
15 8 0 t;

1
42

2
15

3 4
8 0

The Value of a Page. A full access history contains strictly more
information than just a recency ordering (LRU) or an access fre-
quency count (LFU). However, it is not obvious how to use this
information to determine which pages to replace. To do this, WATT
uses a value function that takes the page access log as its input. A

3325

page with a lower value is more likely to be replaced than one with
a higher value.
Subfrequencies. To compute the page value at timestamp t,0,
we first compute the subfrequency (SF) of each access in the log:
SFi(tnow) = l (1)
thow — ti
As the name of the function implies, it computes the current access
subfrequency for each order i. For the first order subfrequency
the formula considers only the most recent access, for the second
order subfrequency the two most recent accesses, and so on. For
each order, the formula divides the number of accesses occurred
(i) by the time difference between the current time and the oldest
timestamp in that order (t40w — ;). In our example, we obtain the
following results for tpe,y = 50:

i 1 2 3 4

ti 42 15 8 0

SF; | 1/8~0.13 2/35%~0.06 3/42~0.07 4/50~ 0.08
The example can also be illustrated geometrically:
! | | [1sF | =10.08
;2 | [15/m w007
I T 1SR | =1/0.06

©1/5F |]=1/0.13
0 8 15 timestamp 42 50(thow)

We see that within each order, we split the overall time interval
into equi-width ranges. Each range equals the inverse of the sub-
frequency.

Computing the Page Value. After computing the subfrequencies,
we have to combine them to obtain the overall page value (PV). We
do this by computing the maximum of all subfrequencies:

PV*(tnow) = mlile SFi(tnow) (2)

It would also be plausible to use the mean or median, but the maxi-
mum is cheaper to compute and works just as well.

Recency vs. Frequency. The two classical page replacement strate-
gies LRU and LFU try to model two completely different scenarios.
LFU implicitly assumes statistically-independent and constant page
access frequencies — therefore only long-run frequency matters.
LRU, in contrast, assumes bursts of potentially changing working
sets that fit into the cache — here only recency matters. In our
framework, LRU (LFU) would be equivalent to using SF; (SFmax)
as the value function. By combining the subfrequencies, we obtain
a compromise between both extremes. During a burst, the recent
frequencies will be high and give the working set a high probability
of staying in cache. After the burst, the value of a page with just a
few recent accesses will shrink quickly until it is dominated by a
higher-order subfrequency, which corresponds to the long-run fre-
quency. This can also be illustrated graphically by showing how the
page value and the subfrequencies evolve in our running example:

1 .

1/4

1/16

page value [log]

15

42

timestamp 50(tnow)

Accesses are indicated as solid vertical lines, and subfrequencies of
accesses are shown with dashed lines. They turn into a solid line
once enough accesses happen and the subfrequency becomes valid.
The subfrequency responsible for the pages value is marked with
red dots. For example, we see a green dashed line for subfrequencies
of third order between t = 0 and t = 15, resulting from the access
at ¢t = 0, turning solid and valid at the access at ¢ = 15. From ¢ = 20
to t = 42 this third order subfrequency is responsible for the pages
value and marked with red dots. We can also see that whenever a
new access arrives, PV briefly spikes due to a high SF; value, but
also quickly decreases over time — converging towards the long-run
frequency.

3.2 Refinements

Finding Replacement Candidates. Due to its dependence on
thow, the value of a particular page changes over time even when
the page is not accessed. It is therefore not feasible to maintain
all pages in a queue ordered by their value. To find replacement
candidates, we instead rely on random sampling and lazy evaluation,
as proposed by Blankstein et al. [2]. We pick n € N random pages,
evaluate their values, and select the lowest value page for removal
from the buffer. This method on average selects the lowest (n+1)-
quantile of all pages for replacement. For example, if we sample
nine pages, in expectation we replace pages at the tenth percentile.
Write Awareness. To make our algorithm write-aware, we add
a second list to track write timestamps separately from access
timestamps. A write access is tracked twice, once as an access,
once as a write. We calculate the value for accesses and writes
separately before combining them to a single page value:

PV (tnow) = PVjyeess(tnow) + write_weight - PV;r”e(t,,ow) 3)

The write_weight parameter determines how expensive a write
access is in comparison with a read access. Increasing the parameter
will cause WATT to prioritize the replacement of clean pages —
thereby reducing write-backs by keeping more dirty pages in the
cache.

Bounding History Size With Epochs. It is of course not practical
to store the full access history of each page. We therefore limit the
history size of each page to a constant number of accesses (e.g.,
eight accesses plus four writes). The downside of a limited history
is that a short burst of accesses quickly exhausts the history limit
and all older access history gets lost. To prevent this problem, we
group accesses into epochs by incrementing the current time (¢501)
infrequently. Storing 12 timestamps and 2 positions with 4 Byte
timestamps and 1 Byte positions adds 50 Bytes to the pages header,
fitting into a single cache line. A comparison of memory overhead
per cached page follows:

Ay s & 5
s & & S
) 75b g’@ Q% S \ @ ‘% & @) é
F F§ 5 F 2888 & &5
S F o JF S S5O FS & SRS
Byts! 0 1 8 8 24 24 24+} 8 48 50
2
Overhead™ =\, 02 06 06 06 02 12 12

1Using: timestamp = 4 Byte, pointer or PageID = 8 Byte,
doubly-linked list = 2 pointers + 1 PagelD = 24 Byte
24KB pagesize

3326

Table 2: Workload statistics. Hot pages with >2% of accesses;
Top 10: fraction of accesses to 10 hottest pages

TPC-C TPC-E ZipfRO dynZipfRO dynZipfRW
Writes 15.6% 5.7% 0% 0% 16.7%
Accesses 1M 1.5M 1M 2M 1.2M
Pages 16,128 65,656 10,000 20,000 20,000
Hot pages 8 24 7 1 0
Top 10 36.0% 30.4% 20.5% 4.5% 2.5%

How Many Epochs? An approach we found to work well is to
couple the growth of ¢y, to the number of pages replaced. Suppose,
for example, we have a cache of 1 million pages. To be able to
distinguish which of these pages to replace next, we set a goal
of having ten epochs for every 1 million replacements. In other
words, we increment ¢p0,, once for every cacheSize/10 = 0.1 million
replacements. Epochs not only allow bounding the history size,
they also prevent contention hot-spots on multi-core CPUs, which
can otherwise occur on frequently-accessed pages as we discuss
in Section 5.

Dampening First Order Subfrequencies. Many replacement
strategies, including LRU-K [15] and ARC [13], are based on the
idea of not giving the most recent access too much weight. In-
tuitively, this helps because the most recent access often proves
to be transitory rather than exemplary. We can incorporate this
idea through dampening the first order subfrequency. We therefore
divide SF; by a constant that we will determine experimentally.

4 SIMULATION-BASED EVALUATION

Methodology. The evaluation of WATT is split into two parts. In
this section, we compare its effectiveness against existing strategies
through simulation and describe how we tune parameters. The
efficiency and scalability of a high-performance implementation
of WATT in LeanStore will later be evaluated in Section 6. We im-
plemented the ten algorithms shown in Table 1 in our open-source
simulation-based framework and tested them on five workload
traces. The simulator takes a cache size, and a page access trace as
input and computes the number of read and write I/O operations.
This allows us to quantitatively compare the effectiveness of WATT
with its competitors.

4.1 Workload Traces

Workload Overview. For our evaluation we use the five workload
traces listed in Table 2. TPC-C and TPC-E are two well-known OLTP
benchmarks containing a non-negligible fraction of writes [22].
The workloads were created by instrumenting Shore-MT [6] with
Shore-Kits. The other three workloads are based on the Zipf distri-
bution [21]. ZipfRO is generated by a standard Zipf distribution and
is read only. By slightly shuffling the Zipf order every few accesses,
and by adding a scan, we created the dynZipfRO trace, whose access
pattern can be visualized as follows:

random CLOCK LeanEvict LRU2 LRU CFLRU LRU_WSR Hyperbolic ARC
A_ A 3
o
WATT A - - ;_ b - »-_ AL - Lv.v._ (I(:
—20% -
+20% A
. 4
FWATT" ‘ L_ - &-- &--. k-- k-. ;- g
|
m
<
= _20%-
o +20%
:,. R o - . . S
= i ‘,‘ A T,
o
8 -20% -
+20% A |
=
E WarT1 3
3
(o]
-20% -
+20% 1
‘ L l 2
=)
WATT A u+ - A N
3
=
-20% % .)L .)L .)L .)b .)L .)b .)L .)b . .
1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%1% 50% 100%
Buffer pool ratio to dataset size
Figure 1: Replacement algorithm comparison
100 - .
green; red areas indicate cases where WATT is less performant than
% 787 the competitor. Overall, across all workloads and data sizes, WATT
o 507 has the best effectiveness on average. The results also provide in-
S 25- sights into the relative strengths and weaknesses of the algorithms.
0

timestamp

This workload is challenging not only because a sequential scan
may cause hot pages to be replaced unnecessarily but also because
the set of hot pages changes over time. Finally, we weave Zipf-
distributed writes into the mix, obtaining dynZipfRW.

Workload Statistics. Statistics of the workloads are shown in
Table 2. The fraction of writes for TPC-E, TPC-C, and dynZipfRW
ranges from 5.7% to 16.7%. To give an indication of the amount of
skew in the workloads, the table shows the hot pages and top 10
statistics. The former is the number of pages with more than 2% of
all accesses, and the latter is the fraction of all accesses on the 10
hottest pages in the trace.

Strategy Parameters. To show a generalized and objective view of
the performance of each strategy, we tried to get a set of different
workloads, and run each strategy on multiple RAM sizes. For each
strategy that has configuration parameters, we performed a grid
search for an overall good performing parameter set. For CFLRU
we picked a Clean-First-Window of 30%, LeanEvict was run with a
Cooling-Stage-Size of 30%, and for Hyperbolic Caching we used a
Sample-Size of 20.

4.2 Replacement Effectiveness

Page Hit Rate. In Figure 1, we show the page misses normalized
by WATTS’ page misses for every RAM size and every workload.
Situations where WATT outperforms its competitor are colored in

3327

Clearly, the random strategy has the worst effectiveness. CLOCK
and LeanEvict are slightly worse than LRU, which is not surprising
as they are effectively approximations of LRU. The same is the case
for the write-aware LRU variants CFLRU and LRU_WSR. Interest-
ingly, LRU2 achieves better performance than LRU on Zipf-based
workloads, but on TPC-C and TPC-E it performs worse than LRU.
Hyperbolic and ARC generally perform better than LRU, but on
average still worse than WATT.

Page Hit Rate Vs. Writes. As discussed in Section 1, one of our
main goals is extending SSD lifetime by reducing writes. In Figure 2,
we show how the different algorithms balance page misses and
writes on TPC-C and TPC-E with a fixed RAM size. Algorithms
without tuning parameters are presented as points while WATT
and CFLRU are presented as lines. In TPC-E, all configurations of
CFLRU give the same result as all dirty pages fit in the clean first
area. Out of all write-oblivious strategies, WATT with write_weight
set to 0 performs best by having the least number of misses and
in TPC-C the least amount of writes, too. In TPC-E, Hyperbolic
generates slightly fewer writes but significantly more misses. By
increasing the write_weight WATT is able to shift its focus from
page misses to writes and reduce writes by over 10% in TPC-C (20%
on TPC-E) while increasing page misses by less than 15% (7%). Only
CFLRU is able to achieve similar levels of write reduction but has
much more misses. Overall, we see that WATT not only offers a
lower page miss rate than its competitors, it also enables trading
off these misses to a substantially reduction in writes.

PAY
© W/.'\TT random
+ write-aware | CLOCK
o, | & write—oblivious
2 120% LeanEvict
E LRU —
O 110% u
© 110% Hyperbolic LRU_WSR ARU2 o
a3 o
‘£ 100%
2
90% 30 40 60100
70% 75% 80% 85% 90% 95% 100%
misses relative
o WATT 4
+ write—aware random
o 120%14 write—oblivious
> LeanEvict
T 110% CLOCK LU-E
; 0 ARg: e
3 100% = LRU WSR HypAerbollc m
£ g% B *
° A
80% 201 00 Cqu_RU (30-60)
100% 105% 110% 115% 120%

misses relative

Figure 2: Read/write tradeoff

4.3 WATT Parameters

Parameters. In Section 3, we mentioned that WATT has several
parameters, but did not specify how we configured them. In the
following, we experimentally show each parameters impact on
effectiveness and derive appropriate default parameters. We start
with an untuned configuration, and then incrementally tune each
parameter in a separate experiment:

Parameter Untuned WATT
random sampling size 8 8
access log length 1 8
epochs per full RAM replacement max 4
dampening factor of first access 1.0 0.1
aggregation function max max
write access log length 0 4
write weight 0 4

Sampling Size. Our replacement algorithm samples a certain num-
ber of pages and uses the lowest page value among them as the
eviction threshold. The impact of this sample size on the miss rate
is shown in Figure 3. Interestingly, a larger sample does not always
reduce misses. Given that a larger sample size also leads to slower
replacement, we chose eight samples as the default. This means that,
in expectation, pages with a value at the eleventh percentile are
evicted. As in all following figures, the default setting is indicated
by a dotted green line.

Access Log Size. In order to keep used space in bounds, we need to
limit the number of timestamps we keep for each page. As Figure 4
shows, it is a trade off between memory and CPU consumption and
the quality of a page value. As default we chose eight.

3328

relative 1/0 relative misses relative misses relative misses relative misses

relative 1/10

TPC-C = TPC-E # ZipfRO —+ dynZipfRO

dynZipfRW

+10% |
WATT ;
default |

+5%

%

min -

2
Figure 3: Number of sampled pages

1

+4%
+3%-
+2%

+1%

min -

1 2 4 8 16 32 64
Figure 4: Number of timestamps in access log

max

+10%
+5% 1
min- ¥ :
16 32 64 128 max
Flgure 5 Epochs per full RAM replacement
+4%
+2%1
min1_+ 1 T i T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Dampening factor for most recent access

TPC-C = TPC-E dynZipfRW

+1.5% 1
|
+1%1]
|
+0.5% 1

min{_G——#— —rg'l 5 = S > 5

1 2 4 8 16 32 64 max

Figure 7: Number of timestamps in write access log

+12% A
+10% A
+8% 1
+6% 1
+4%
+2% 1
min -

0-0dl

1 |
4 8 16 20

Figure 8 Impact of write_weight (cf Equation 3) on I/O

Replacements per Epochs. An other parameter presented is the
update frequency of the global time. One extreme would be an
increment after as many evictions as we have pages in the buffer
pool (1 epoch per full cache replacement). The other extreme would
be an increment after every eviction (max). Figure 5 shows the
impact of different settings. For our default configuration we chose
4 epochs per full cache replacement.

Dampening of Most Recent Access. Figure 6 shows that dampen-
ing the most recent access (by multiplying it with a value less than
1) substantially improves replacement effectiveness. Considering
all workloads, a value of 0.1 is a good choice.

Aggregation Function. WATT aggregates the subfrequencies by
computing their maximum. Since other functions appear plausible
as well, we compare their impact in misses relative to taking the
maximum below:

Function TPC-C TPC-E ZipfRO dynZipfRO dynZipfRW
minimum +4.5% +5.8% +11.1% +7.7% +9.9%
average -1.0% +0.5% +1.1% +0.7% +1.1%
median +0.5% +0.4% +1.0% +0.6% +0.4%

These results show that the minimum would be a bad choice, and
that median and average are slightly worse than our default maxi-
mum function.
Write Access Log Size. By adding a write access log, WATT be-
comes write-aware. Figure 7 shows that tracking 4 writes results in
the best performance over all workloads. For this experiment, we
used a write weight of 1.
Write Weight. Because write costs depend on the used hard-
ware and workload, the page value function of WATT includes
a write_weight parameter. Its effect on read, write, and total I/O can
be seen in Figure 8. We chose a default write_weight of 4.
Write-Awareness Variants. We simulated two other logging vari-
ants of WATT. One has a strict separation of reads and writes in
different lists. The second variant uses one list and a boolean per
timestamp to distinguish reads from writes. The approach with one
access and one write list outperforms the alternatives:

I WATT (access/write) WATT (read/write) [l WATT one list

+10%

+5%

relative cost

baseline -
TPC-C TPC-E ZipfRO dynZipfRO dynZipfRW
Parameter Correlations. So far, we optimized each parameter
individually. To find out whether there are meaningful correla-
tions between the them, we also looked at the pairwise interactions
between all parameters. For example, we tried the 7 settings for
random sampling size and the 8 settings for access log length, result-
ing in 56 simulation runs per workload. Across all parameters, the
observed differences were small and we did not find any meaningful

correlations.

5 HIGH-PERFORMANCE IMPLEMENTATION

LeanStore Integration. We integrated WATT into LeanStore, an
open source, high-performance OLTP storage engine optimized

3329

for many-core CPUs and NVMe SSDs. LeanStore was designed
to achieve in-memory performance comparable to main-memory
database systems [9]. As mentioned in Section 2, its replacement
algorithm basically incurs no overhead for accessing cached pages.
Unless implemented very carefully, a more sophisticated algorithm
like WATT may run into the risk of slowing down in-memory
workloads though additional tracking and page value calculation
overhead. In this section, we present a high-performance implemen-
tation that is carefully co-designed with respect to the properties
of modern multi-core CPUs.

5.1 Efficient and Scalable Tracking

Cyclic Timestamp Insertion. Listing 1 shows the code for page
tracking. A naive implementation of timestamp tracking would
store the latest timestamp at the front of the timestamp log and, on
access, would have to shift all elements to the right (cf. Section 3.1).
To avoid shifting, we insert new timestamps in a cyclic manner:

1
39 |

access at t=42 |
= [42 25 31 39|

[20 25 31

For this we introduce an accessHead () to indicate the current
head’s position.

Fast Access. Retrieving the timestamps and the accessHead must
be fast, because it is done on every page access. We therefore store
all tracking information, which fits into one cache line, next to
other frequently-accessed page metadata such as the (optimistic)
latch [10] of the page. Together, the metadata and tracking informa-
tion fit into two neighboring cache lines. In practice, the adjacent
cache line hardware prefetching feature of modern CPUs thus hides
the additional cache line accesses caused by timestamp tracking.
Epochs Prevent Cache Line Ping Pong. As mentioned in Sec-
tion 3.2, we group accesses into epochs by incrementing the current
global time (globalTrackerTime) infrequently. This design choice
not only has conceptual benefits (it prevents an access burst from
invalidating the entire history of a page), it is also crucial for scal-
able concurrent page tracking. In the implementation of tracking,
we only insert a new timestamp if the current time changed since
the most recent page access timestamp (line 20). Therefore, the
tracking mechanism avoids writing to hot pages too frequently. For
example, consider a concurrent in-memory B-tree workload where
every operation accesses the root. Without epochs, the root page of
the tree would become a contention hot-spot because every access
would modify the tracking information - leading to cache line ping
pong and degrading scalability. With epochs and slower changing
global time, for most accesses the tracking information of the root
remains unchanged — avoiding scalability issues at the root.
Lock-Free Insertion With Release Memory Order. In cases
where the current time is greater than the most recent timestamp
of a page, we must insert that timestamp. We avoid explicit locking
and perform the insertion in three steps. After computing the new
head (line 22), we store both the timestamp (line 23) and the new
head (line 24). The timestamps and the heads have to be atomic
variables because they may be accessed concurrently. However,
instead of the default sequentially-consistent memory order, we
use the release memory order. On x86, a release store will simply be
translated into a single MOV instruction — without any fences that
cause write buffer flushes.

1 atomic<uint32_t> globalTrackerTime // time (epoch)

» class PageTracker // sizeof(PageTracker) < cache_line
3 // 8 and 4 from Figure 4 and Figure 7

4 atomic<uint32_t> accessLog[8], writelLog[4]
5 atomic<uint8_t> accessHead, writeHead

6 // Track read and write accesses

7 void track()

8 void trackWrite() // Similar to track()

9 // Calculate access frequency using SIMD
10 float PVaccess() // See Listing 3

1 float PVwrite() // Similar to PVaccess

12 // Calculate total page value

13 float getValue()

14 return PVaccess() + (4 * PVwrite())

15 // 4 from Figure 8

16 void PageTracker: :track()

17 // Compare last tracked and current epoch
18 uint8_t oldPos = accessHead.load()

19 uint32_t now = globalTrackerTime.load()

20 if (now != accesslLogl[oldPos])

21 // Store current epoch if they differ

22 uint8_t pos = (oldPos+1) % 8

2 accesslLog[pos].store(now, memory_order_release)
24 accessHead. store(pos, memory_order_release)

Listing 1: Tracking a single read access

Low Overhead for High-Frequency Pages. The page tracking
code (PageTracker::track in Listing 1) is optimized to be efficient
on modern processors. With GCC 12.2, checking whether the most

recent page timestamp differs from the current global time trans-

lates to 6 x86 instructions. For frequently-accessed pages, this is all

that has to be done. If the check fails, 6 simple instructions imple-

ment storing the timestamp. The code uses no fences or expensive

atomic instructions. We exploit the fact that x86 offers strong mem-

ory ordering by default (e.g., no reordering of writes), and that the
remaining potential races are harmless in our use case.

5.2 Replacement

Requirements. A single modern SSD can execute one million
random read I/O operations per second or more. Out-of-memory

workloads will therefore have to replace pages at very high rates.

The implementation of the replacement algorithm therefore must
be fast (i.e., few CPU instructions) and scalable (i.e., multiple threads
should be able to perform eviction in parallel).

Basic Algorithm. As discussed in Section 3.2, replacement uses
sampling and is completely distributed, i.e., it can be executed in

separate threads. Listing 2 shows the three main steps of the algo-

rithm. In step 1, a small number of pages is sampled. The minimum

page value among this small sample becomes the threshold for evic-

tion. Step 2 samples a larger number of pages as eviction candidates
and compares their page value with the threshold. To avoid having
to physically latch each page, our implementation in LeanStore
relies on optimistic, version-based locks and validation [1] (not

1 // Step 1: Determine value threshold through sampling

2 vector<Pagex> sample = samplePages(8) // 8 from Figure 3

3 double threshold = +Infinity
« for(Page* page : sample)
5 threshold = min(threshold, page.tracker.getValue())

¢ // Step 2: Evict pages below threshold

7 for(Page* page : samplePages(64))

8 if(!page.tryLock())

9 continue // skip page

10 if(page.tracker.getValue() > threshold)
1 page.unlock()

12 continue // skip page

13 if(page.isDirty())

14 // will be evicted once write is done
15 page.writeAsych()

16 continue

17 // Evict page
18 page.evict()

19 page.unlock()
20 pagesEvicted++

a1 // Step 3: Occasionally move to next epoch

22 uint32_t epochSize = (cacheSize/64) // 64 from Figure 5
23 if (pagesEvicted >= epochSize)

2 pagesEvicted = 0@ // reset counter

25 globalTrackerTime++

Listing 2: Simplified page replacement algorithm

shown in the code). Dirty pages are handled separately by moving
them to an asynchronous write buffer? and evicting them after the
write finished (not shown in the code). Clean pages can be evicted
directly. Step 3 increments the epoch whenever a sufficiently large
number of pages have been evicted. This ensures that the global
time advances in lockstep with the buffer pool evictions without
having too many epochs.

Prefetching and SIMD. Our algorithm samples many more pages
than it evicts, and every sampled page results in a cache miss and
page value calculation. We optimize the former through explicit
prefetching instructions, and the latter through SIMD. Because the
algorithm shown in Listing 2 always works on batches of pages,
prefetching can easily be implemented, e.g., within the samplePages
function. This largely hides the cache miss latency that would
otherwise dominate overall replacement runtime. Once latency is
hidden, page value calculation becomes a bottleneck. As a reminder,
the page value (with dampening) is computed as follows:

((i) 0.1)
max | max R
i€{2,..,8} \tnow — ti] tnow — 1

Listing 3 shows a SIMD implementation of page value calculation
using the AVX2 instruction set. Conveniently, one AVX2 register
exactly fits eight 32-bit timestamps, which is the default number

3This achieves the same effect as the ACE [17] technique.

3330

1

2

3

4

5

// Table of precalculated quotients i Equation (1)
// with dampening of ©.1 from Figure 6
float iQuotient[] = {{0.1, 8, 7, 6, 5, 4, 3, 2},
{2, 0.1, 8, 7, 6, 5, 4, 3},---}
float PageTracker::
uint8_t head =

PVaccess()
accessHead. load()

uint32_t now = globalTrackerTime.load()

__m2561 ts8 = _mm256_loadu_si256(accesslLog)
__m2561 now8 = _mm256_set1_epi32(now)

__m256i agelnt8 = _mm256_sub_epi32(now8, ts8)
__m256 age8 = _mm256_cvtepi32_ps(agelnt8)
__m256 i8 = _mm256_loadu_ps(iQuotient[head])
__m256 subfreq8 = _mm256_div_ps(i8, age8)

return _mm256_reduce_max_ps (subfreq8)

Listing 3: Evaluate a frequency

of read timestamps for each page. This makes computing subfre-
quencies straightforward, with one exception: due to the cyclic im-
plementation of insertion described earlier in this section, i values
depend on the current access head position. We solve this through
a constant lookup table, which pre-computes i values and includes
the first-access dampening factor.

Background Eviction. Prefetching and SIMD-based page value
calculation make sampling many candidate pages efficient. Also
note that the algorithm shown in Listing 2 does not have to be
executed by worker threads. Indeed, in LeanStores current imple-
mentation eviction is done by dedicated background threads.

5.3 Access on Inconsistent Data

Using no global lock on the PageTracker can lead to access on in-
consistent data where the accessHead (|) points to a wrong position
one behind its real head:

1
[42 25 31 41

Concurrent Tracking Executions. If two concurrent tracking
executions (Listing 1) occur this represents no problem. Because
of our code access, we ensured that in a tracking execution the
accessHeads read (line 18) and write (line 24) shield the other reads
and writes, forcing a tracking execution to write only on a specific
position determined by its first action. Therefore concurrent execu-
tions reading the same accessHead value can only interfere with
each other by reading different values from globalTrackerTime and
storing it to the same new position. Either value stored to this posi-
tion will lead to a consistent timestamp log. Concurrent executions
reading different accessHead values from a concurrency with a
third execution can lead to a race on writing a different new value
to the accessHead. If the execution reading the newer accessHead
value succeeds it leads to a consistent timestamp log. If the other
execution succeeds, the execution with the newer accessHead value
wrote a timestamp to a position one ahead of the current head as
seen in our example above. This situation is extremely rare, as it can
only occur if three tracking executions are executed concurrently
and the first finishing and the last one starting are in a different

3331

epoch. As already three concurrent executions happened, it is ex-
tremely likely that a fourth execution will happen soon. As the false
value is never read by the fourth execution, it has no effect on it
and the false value will be overwritten soon resulting in consistent
data.

Concurrent Track and PVaccess Executions. Because PVac-
ces Listing 3 only reads the data, access to inconsistent data can
only happen as a result of a) inconsistent data by three concurrent
tracking executions as presented above, or b) a PVaccess calcula-
tion is executed concurrent to a track execution and reads the new
timestamp at the new accessHead position before accessHead is
incremented. Therefore both inconsistency are only temporary and
lead to PVaccess reading data as shown in the example. In this situ-
ation, the least recent access has a higher timestamp than expected
and its computed subfrequency will be extremely high, preventing
replacement of this page. This is a good outcome because the con-
current time tracking access to the page would have led to a high
value in the head position, also preventing replacement.

6 SYSTEM EVALUATION

Through simulation, Section 4 demonstrated that, in comparison
with state-of-the-art competitors, WATT is more effective at min-
imizing both read and write I/O. This corresponds to the first
two goals stated in the introduction (Replacement Effectiveness
and Write Awareness). To evaluate WATT, we integrated it into
LeanStore. This allows us to show in Section 6.2 that WATT achieves
1/0 effectiveness not just in a simulation, but in a real system. Sec-
tion 6.3 and Section 6.4 then focus on CPU efficiency and scalability,
respectively. Finally, we show end-to-end performance results in
Section 6.5.

6.1 Experimental Setup and Workloads

Competitors. To evaluate WATT, we integrated it in LeanStore
(Section 5) together with random eviction (Random) and Hyper-
bolic Caching (Hyperbolic). Random was implemented like WATT,
only without the page value comparison. For Hyperbolic, we only
modified the access tracking and page value calculation in com-
parison with WATT. Therefore, both offer the same optimizations
presented for WATT, like prefetching and asynchronous writing.
In addition, we used LeanEvict, the reference replacement strategy
of LeanStore, for comparison. LeanEvict was tuned by running a
grid search over its parameters.

Hardware. The experiments were performed on a Linux 5.15 sys-
tem with an AMD EPYC 7713 (2.0 GHz (base), 3.675 GHz (max), 64
cores, 128 hardware threads), 512 GB of main memory and a PCle
4.0 attached Samsung PM1733 U.2 SSD of 3.8TB as storage.

Page Eviction in LeanStore. In LeanStore, page eviction is out-
sourced to a special page evictor thread. It sleeps if there are enough
free pages available for the worker threads. If not enough empty
pages are available, it enters the eviction loop (See Listing 2).

YCSB Workload. To measure the different aspects of WATT, LeanEvict,

Hyperbolic, and Random, we used the YCSB and TPC-C benchmarks
in different configurations. The YCSB experiment performs Zipfian
distributed skewed accesses to 25 and 400 GB datasets. For its skew
we selected a = 0.9. We performed it with 100 % reads (100R) and
90% reads mixed with 10% writes (90R 10W).

B WATT LeanEvict Hyperbolic Random

Reads per TX Writes per TX
+30% -
+20% -
+10% A
R S T D]
O Aot @ oo® o o
O%% QJQ?\ 0/0 O/O QQ@ C}/O C}/O
~ 406% << << \(06% << <<

Figure 9: Reads and writes per transaction

TPC-C Workload. TPC-C offers a more complicated online trans-
action processing benchmark with multiple transaction types and a
complex database. The dataset size depends on the number of ware-
houses and grows in size during the benchmarks execution. We use
datasets with 50 warehouses resulting in 9 GB, 1600 warehouses
with 264 GB, and 3200 warehouses leading to 588 GB of data.

6.2 Replacement Effectiveness (Goal 1) and
Write Awareness (Goal 2)

As shown in the simulation, WATT outperforms all other strategies
in terms of effectiveness (Figure 1) and write awareness (Figure 2).
We now evaluate, whether these properties are also achieved in a
real system.

Experiments. To measure effectiveness and write awareness we
ran LeanStore with multiple datasets on small RAM sizes. We ran
the YCSB experiments with a 400 GB dataset and TPC-C exper-
iments with 1600 (264 GB) and 3200 warehouses (588 GB). Each
experiment was performed with a freshly generated dataset from
an actively air-cooled SSD on an empty 8 GB buffer pool (RAM).
We used 120 worker threads supported by up to eight page evictor
threads and ran it twice for 20 minutes. Transactions and I/O mea-
surements were taken once every second leading to at least 2400
measurements per experiment. Aggregation of measurements was
performed by taking the median value of each measurement type
separately. The results averaged over all page evictors are shown
in Figure 9.

YCSB 100R. First, we focus on YCSB 100R and read only effec-
tiveness in workloads based on a simple Zipf distribution. This
workload is quite similar to ZipfRO in Section 4. Here, a good evic-
tion strategy should be able to determine the static frequency of
a page and keep high frequent pages in RAM and have less reads
per transaction. In this experiment, Random and LeanEvict were
unable to determine static frequencies of pages. Hyperbolic can
determine some pages frequencies, but WATT, with its processing
of subfrequencies, is able to determine the pages frequencies more
accurately, needing the fewest reads per transaction. This leads to
5% more reads per transaction for Hyperbolic, 11% for Random, and
12% more reads per transaction for LeanEvict compared to WATT.
YCSB 90R 10W. To see the effect of writes on the eviction strategies,
we added 10% writes to the experiment, while keeping everything
else the same. These additional writes slow down the eviction

3332

capability as the page evictor thread now additionally has to handle
writes. Similar as with YCSB 100R, WATT is able to improve reads
per TX. Additionally, the write awareness helps WATT to reduce
writes per TX significantly more than reads per TX. In comparison
to WAT'T, LeanEvict uses 26%, Hyperbolic 11%, and Random 36%
more writes per transaction.

TPC-C - 1600 Warehouses — 264 GB. TPC-C has a more complex
access patterns than YCSB. In this experiment LeanEvict needed
7% more reads and 15% more writes per transaction than WATT.
Hyperbolic Caching had an overhead of 6% in reads and 10% in
writes per transaction compared to WATT, and Random used 14%
more reads and 33% more writes per transaction than WATT.
TPC-C - 3200 Warehouses — 588 GB. Working on a bigger dataset
increased the difficulty and amount of page writes and evictions
per transaction, because only a smaller fraction of the data was able
to fit into RAM. In comparison to WATT, LeanEvict needed 10%
more reads and 19% more writes per transaction. Hyperbolic had an
overhead of 4% in reads and 13% in writes compared to WATT, and
Random used 14% more reads and 32% more writes per transaction
compared to WATT.

Conclusion. As expected, Random offers the worst effectiveness
and write awareness. LeanEvict performs better but is beaten by
Hyperbolic. WATT can outperform all other evaluated strategies.
On the YCSB benchmarks, LeanEvict and Random perform quite
similar in not being able to detect page access frequencies. Hyper-
bolic was able to notice frequency differences in pages. However
WATT had a clear advantage in effectiveness of at least 5% in reads
and 10% in writes per transaction. For the TPC-C benchmarks,
the differences in effectiveness varied slightly with dataset size.
LeanEvict and Hyperbolic were able to reduce reads and writes
compared to Random, but performed worse than WATT. The results
are similar to the simulated results in Figure 1. We can conclude
that the implementation of WATT is as effective and write aware
as shown in the simulation.

6.3 CPU Efficiency (Goal 3)

To evaluate CPU efficiency, we measured the performance of a
single page evictor thread as well as the impact of updating the
tracking structure with one worker thread.

Experiments. To measure the performance of one page evictor,
we reused the experiments for effectiveness and write awareness,
using only one page evictor. Here the important measurement is the
number of evictions performed per second (Figure 10). To measure
the overhead of updating the tracking structure the worker thread,
we ran it isolated in some in-memory experiments. We evaluated
an YCSB and TPC-C experiment on an in-ram dataset six times for
five minutes on 60 GB of RAM with one worker thread. YCSB 90R
10W used a 25 GB dataset while TPC-C was performed with 50
warehouses, growing from 9 to 22 GB in size. Figure 11 shows the
CPU statistics obtained.

Page Evictor — YCSB. As expected, Random, as a no-overhead
strategy, is able to perform the most evictions per second with one
thread, because no data structure or function has to be evaluated
before evicting a page. Due to the easier to calculate value function,
Hyperbolic can outperform WATT by a few percentages. However,
this experiment additionally shows how well WATT can close the

W WATT

LeanEvict

Hyperbolic

Random

Evictions per second with one page evictor
300 k-
200 kA
O 4

YCSB 100R YCSB 90R 10W TPC-C 1600 TPC-C 3200

Benchmark

Figure 10: CPU efficiency of one Page Evictor thread

B WATT LeanEvict Hyperbolic Random
1,500 150 k 4004
75 kA
1,000{| = | 100 k{1 | 3 | 300+ 3
el [| 2001 J88 |
500+ O | 25 k- ol 50k- o 1004 o
0- 0 k- 0 k- 0+
801 4 Kk 5k 15
60+ 3 k- 4k~ |
S\ sl skplS 10 S
4012 2k al 5 b9 o
204 W| 1k- A w| 57 w
01%= 0 k= 0 k1= 01=
L1 Misses Cycles Instructions Branch Misses

Figure 11: CPU efficiency per TX of one worker thread

performance gap between Random and LeanEvict. While LeanEvict
processes 69% less evictions per second than Random, WATT han-
dles only 32% less, more than halving the gap. Hyperbolic caching
can close the gap even further to only 21%. With processing dirty
evicts in YCSB 90R 10W WATT was able to close the gap between
LeanEvcit and Random even further from 66% to 25%. Hyperbolic
only leaves a gap of 17% to Random.

Page Evictor - TPC-C. In our smallest TPC-C experiment with
1600 warehouses WATT can reduce the performance gap between
LeanEvict and Random from 63% to 24%. Hyperbolic can reduce it
even further to 15%. With 3200 warehouses the gap can be reduced
from 65% in LeanEvict to 27% with WATT. Hyperbolic can once
again reduce the gap even further to 21%.

Page Evictor — Conclusion. The comparison of Random, Hy-
perbolic, and WATT show the effect no page value calculation, a
quite simple, and our carefully designed page value calculation (See
Section 5.2) have on the eviction performance of a single thread.
WATT achieves at least two times as many evictions per second
compared to LeanEvict, halving the gap to Random. Therefore,
WATT is highly efficient.

Effect on Worker Threads. Figure 11 shows different measure-
ments of our in-memory experiments like instructions, cycles, L1
misses, and branch misses per transaction. By comparing each mea-
surement, we see that there are just small differences between those
four algorithms, all just at noise level.

Worker Thread — Conclusion. As LeanEvict and Random are by
design zero-overhead strategies (for the workers in an in-memory

3333

= WATT Hyperbolic LeanEvict Random
10 m 500 //m
8 8m 5 //]
< S i aglS
(2] e 1es U
@ 6m1 B|a00k{ gl WS
C w / 1
S 4m = ; o
= 1 o 1y
2 i 2 | 200 k/ S
w 2mq / #
0 0+
148 16 32 148 16 32

Page Evictors Page Evictors

Figure 12: Multi-core scalability

situation), WATT can also be considered a low-overhead strategy.
Its low overhead is due to the optimizations described in Section 5.1:
accessing a page takes only 6 instructions to check if the epoch is
already tracked, and 6 additional instructions to eventually update
the epoch. These few instructions are overshadowed by the huge
number of instructions required for accessing and working with
data from a page.

6.4 Multi-Core Scalability (Goal 4)

Because it is difficult to evaluate the scalability of a single software
component without influences from the others, we performed ex-
periments measuring the multi-core scalability of page eviction in
isolation.

Experiments. Instead of running page evictor threads and worker
threads simultaneously, we ran them consecutively in different
phases. During the work phase we let the used RAM grow to 190
GB by 120 worker threads before reducing it in an evict phase to
180 GB by running up to 32 page evictor threads. For the YCSB
experiments we used a 400 GB dataset, and TPC-C was performed
with 3200 warehouses. The experiments were run twice for 30
minutes. Figure 12 shows the evictions per second during the evict
phase.

YCSB. In the read-only YCSB 100R, each strategy only has to evict
pages without writing changes. Therefore, they scale very well.
WATT performs quite similar to Hyperbolic, leaving a small gap
to the no overhead eviction strategy Random, showing its high
scalability. Only LeanEvict has scalability issues and is not able to
evict more than 1 million pages per second.

TPC-C. Because this benchmark generates dirty pages, all strategies
use a huge amount of writes per second, marked with a dotted line.
As dirty pages have to be persisted before eviction, this impacts the
performance of all strategies. Apart from that, all strategies scale
well and quite similar.

6.5 Overall Performance

The performance of an eviction strategy depends on many factors,
like efficiency, effectiveness, write awareness, and scalability. We
previously showed how WATT performs on each of these factors
independently. To combine them, we measured transactions per sec-
ond in our experiments used for effectiveness and write awareness

B WATT LeanEvict Hyperbolic Random
YCSB TPC-C

2m- 50 k-

1.5m 40 k1

§ 30 k1
RS 1 m+

e 20 k-

0.5 m+ 10 k-

0+ 0 0 0+ 0 0
100R 90R 10W 1600 3200

Figure 13: Overall Performance

with four or more page evictors, and present the averaged results
in Figure 13.

YCSB. Here LeanEvict shows its YCSB 100R scalability issues. Ran-
dom shows quite good results based on its multi-core scalability.
Hyperbolic is able to outperform Random by using its better ef-
fectiveness, but WATT can outperform all others by combining its
good scalability with its superior effectiveness. Changing to YCSB
90R 10W resolves the scaling problem of LeanEvict and makes it
comparable to the other strategies. Without this issues LeanEvict is
able to outperform Random. Hyperbolic performs more transactions
per second than LeanEvict and Random, but is still outperformed
by WATT with 6% more transactions per second.

TPC-C. On TPC-C experiments Random performed worse than
the other strategies with at least 22% less transactions compared
to WATT. With 1600 warehouses LeanEvict was able to perform
slightly more transactions than Hyperbolic, but with 3200 ware-
houses this was the other way around. WATT can outperform both
of them with 7% more transactions per second.

7 SUMMARY

In this paper, we present WATT, a low-overhead, effective, write
aware, efficient, and scalable page replacement strategy designed
for modern hardware. Its replacement effectiveness is based on
timestamp tracking, subfrequencies and their aggregation, while
its efficiency and scalability depend on random sampling with
lazy evaluation and a careful implementation design. We evalu-
ated WATT in terms of effectiveness, write awareness, CPU efficiency,
and multi-core scalability. Effectiveness and write awareness were
evaluated against three classical and six state-of-the-art replace-
ment strategies in a simulation and three high-efficient strategies
in LeanStore. WAT'T has the best effectiveness and offers a substan-
tial write reduction compared to all other strategies. Comparing it
against LeanEvict, alow-overhead and efficient LRU approximation,
Hyperbolic Caching, a highly scalable memory caching strategy,

3334

and the no-overhead strategy Random, WATT showed its high
efficiency and multi-core scalability. We can therefore conclude
that WATT is a highly effective, highly write aware, highly CPU
efficient, and highly scalable replacement strategy.

REFERENCES

[1] Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evolution
of LeanStore. In BTW (LNI), Vol. P-331. 259-281.

Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic
Caching: Flexible Caching for Web Applications. In USENIX ATC. 499-511.

K. Delaney, B. Beauchemin, C. Cunningham, J. Kehayias, B. Nevarez, and P.S.
Randal. 2013. Microsoft SQL Server 2012 Internals. Microsoft Press.

Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR.

IBM. 2023. DB2 - Choosing a page-stealing algorithm. Retrieved July 10,
2023 from https://www.ibm.com/docs/en/db2-for-zos/12?topic=pools-choosing-
page-stealing-algorithm

Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and
Babak Falsafi. 2009. Shore-MT: a scalable storage manager for the multicore era.
In EDBT, Martin L. Kersten, Boris Novikov, Jens Teubner, Vladimir Polutin, and
Stefan Manegold (Eds.), Vol. 360. 24-35.

Theodore Johnson and Dennis E. Shasha. 1994. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In VLDB, Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). 439-450.

Hoyoung Jung, Hyoki Shim, Sungmin Park, Sooyong Kang, and Jaehyuk Cha.
2008. LRU-WSR: integration of LRU and writes sequence reordering for flash
memory. IEEE Transactions on Consumer Electronics 54, 3 (2008), 1215-1223.
Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. 185-
196.

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN.

MariaDB. 2023. InnoDB Buffer Pool. Retrieved July 10, 2023 from https:
//mariadb.com/kb/en/innodb-buffer-pool/

Diego Mazzeo. 2023. Page Replacement Algorithm: Clock Sweep. Retrieved
July 10, 2023 from https://www.interdb.jp/pg/pgsql08.html#_8.4.4.

Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In FAST.

MySQL. 2023. Buffer Pool. Retrieved July 10, 2023 from https://dev.mysql.com/
doc/refman/8.0/en/innodb-buffer-pool.html

Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
Page Replacement Algorithm for Database Disk Buffering. In SIGMOD. 297-306.
Oracle. 2023. Buffer Replacement Algorithms. Retrieved July 10, 2023 from
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/memory-
architecture.html#GUID-D1429BAA-6543-4B34-93DB-C8F33D497B53

Tarikul Islam Papon and Manos Athanassoulis. 2023. ACEing the Bufferpool
Management Paradigm for Modern Storage Devices. (2023). Retrieved July 10,
2023 from https://cs-people.bu.edu/mathan/publications/icde23-papon.pdf
Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-soo Kim, and Joonwon
Lee. 2006. CFLRU: a replacement algorithm for flash memory. In International
conference on Compilers, architecture and synthesis for embedded systems. 234—
241.

PostgreSQL. 2023. Release Notes PostgreSQL 8.0.2. Retrieved July 10, 2023 from
https://www.postgresql.org/docs/release/8.0.2/

Samsung. 2023. Samsung PCle Gen 4-enabled PM1733 SSD. Retrieved July
10, 2023 from https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-
pm1735/mzwlj3t8hbls-00007/

SciPy. 2023. SciPy Documentation for Zipfian. Retrieved July 10, 2023 from
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipfian.html
Pinar Téziin, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anastasia
Ailamaki. 2013. From A to E: analyzing TPC’s OLTP benchmarks: the obsolete,
the ubiquitous, the unexplored. In EDBT. 17-28.

WiredTiger. 2023. Eviction in WiredTiger. Retrieved July 10, 2023 from
https://source.wiredtiger.com/11.0.0/eviction.html

[6]

(10]

[11

(12]

(13

[14

[15

[16

[19

[20]

[21

[22]

[23

https://www.ibm.com/docs/en/db2-for-zos/12?topic=pools-choosing-page-stealing-algorithm
https://www.ibm.com/docs/en/db2-for-zos/12?topic=pools-choosing-page-stealing-algorithm
https://mariadb.com/kb/en/innodb-buffer-pool/
https://mariadb.com/kb/en/innodb-buffer-pool/
https://www.interdb.jp/pg/pgsql08.html#_8.4.4.
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/memory-architecture.html#GUID-D1429BAA-6543-4B34-93DB-C8F33D497B53
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/memory-architecture.html#GUID-D1429BAA-6543-4B34-93DB-C8F33D497B53
https://cs-people.bu.edu/mathan/publications/icde23-papon.pdf
https://www.postgresql.org/docs/release/8.0.2/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-00007/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1733-pm1735/mzwlj3t8hbls-00007/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipfian.html
https://source.wiredtiger.com/11.0.0/eviction.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 What Database Systems Use
	2.2 Advanced Replacement Algorithms
	2.3 Discussion

	3 Write-Aware Timestamp Tracking
	3.1 Basic Algorithm
	3.2 Refinements

	4 Simulation-Based Evaluation
	4.1 Workload Traces
	4.2 Replacement Effectiveness
	4.3 WATT Parameters

	5 High-Performance Implementation
	5.1 Efficient and Scalable Tracking
	5.2 Replacement
	5.3 Access on Inconsistent Data

	6 System Evaluation
	6.1 Experimental Setup and Workloads
	6.2 Replacement Effectiveness (Goal 1) and Write Awareness (Goal 2)
	6.3 CPU Efficiency (Goal 3)
	6.4 Multi-Core Scalability (Goal 4)
	6.5 Overall Performance

	7 Summary
	References

