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ABSTRACT
The traditional and well-established cost-based query optimizer
approach enumerates different execution plans for each query, as-
sesses each plan with costs, and selects the plan that promises
the lowest costs for execution. However, the optimal execution
plan is not always selected. To steer the optimizer in the right di-
rection, many query optimizers provide configuration parameters
called query optimizer hints. These hints can be set for every single
query separately. To show the great potential of these hints for the
optimization of analytical queries, we present results of a compre-
hensive and in-depth evaluation using three benchmarks and two
different versions of the open-source database system PostgreSQL.
In particular, we highlight that query optimizer hinting is a non-
trivial challenge. To solve this challenge, we propose FASTgres, a
learning-based context-aware classification strategy for hint set
prediction. Compared to related work, FASTgres provides transpar-
ent and direct hint set predictions with consistent performance
improvements. In our end-to-end evaluation, we demonstrate that
FASTgres effectively reduces benchmark runtimes by a factor of up
to 3.25x with only steering the cost-based optimizer.
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1 INTRODUCTION
With the continuously increasing amount of data managed by data-
base systems (DBSs), efficient analytical query processing still poses
a critical challenge [4]. To tackle this optimization task, every DBS
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features a query compiler that converts each incoming SQL query
into a query execution plan (QEP). The most important component
of such a query compiler is the query optimizer whose task is to
determine the most efficient QEP [2]. Despite decades of research
activities, query optimization is still far from being solved and, thus,
the most efficient plan is not always executed [3, 15]. According
to [2], the most challenging issues for the optimization of analytical
queries consisting of complex joins and filter predicates are: (i) find-
ing a proper join order and (ii) selecting the best-fitting physical
join implementation for each join within the chosen join order. To
solve these challenges, traditional and over decades developed query
optimizers use three components: (i) an enumerator, which spans
the search space of all possible QEPs, (ii) a cost model to assess the
cost of any given QEP prior to its execution, and (iii) a cardinality
estimator, which delivers the size of intermediate results and base
tables as the most crucial input to the cost model.

Interestingly, such traditional query optimizers in many sys-
tems, e.g., PostgreSQL (PG) [25], MySQL [22], Oracle [24], or SQL
Server [26], feature a rich set of configuration parameters to influ-
ence the characteristics of the selected QEP. These configuration
parameters are also known as query optimizer hints since they can
be specified separately as annotations for each query. For example,
the evaluation of hash-join execution plan types can be enabled or
disabled in PG [25]. Enabling or disabling such a hint for a query re-
sults in the underlying query compiler to either consider or strictly
avoid using the hash-join plan types. By doing so, the optimizer can
be hinted externally on a single query basis. Even though [18] has
shown that hints can be used in two different DBSs for query opti-
mization, still a clear and deep understanding of the optimization
potential of hinting remains to be shown. Therefore, and in line
with recent work [1, 7, 8, 13, 18], we conducted a comprehensive
experimental analysis using PG for a profound understanding. As
shown in [8], the physical operator selection matters for query
optimization and, thus, we mainly focus our evaluation on the six
primary Boolean PG hints for scan (sequential, index, index-only)
and join (hash-join, merge-join, nested-loop) operations as sug-
gested in [18]. Moreover, we use the StackExchange (Stack) [18], the
Join-Order-Benchmark (JOB) [13], and the TPC-H benchmark [6]
(scale factor of 10) for two different PG versions (v12.4 and v14.6).
The PG versions are so different that they actually behave like two
different systems.
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Table 1: Benchmark response times with PG default and opti-
mal hint set configuration per query. The speedup compares
the default and the optimal hint set configuration.

Benchmark & Configuration PG 12.4 PG 14.6

St
ac
k default setting 19,384s 9,087s

optimal hint set (speedup) 7,234s (2.6x) 3,561s (2.5x)

JO
B default setting 204s 185s

optimal hint set (speedup) 87s (2.3x) 79s (2.3x)

TP
C-
H default setting 445s 143s

optimal hint set (speedup) 119s (3.7x) 110s (1.3x)

To analyze the optimization potential, we execute the following
steps per benchmark and PG version: (i) determine the response
time for every query with the optimizer using the default configu-
ration, (ii) systematically execute every query with every possible
hint combination – with six hints, 26 = 64 combinations are possi-
ble –, and (iii) extract the optimal hint combination with the lowest
response time per query. Then, we execute all benchmark queries
by steering the optimizer with the optimal hint combination for
every query. As illustrated in Table 1, query optimizer hinting has
a decisive impact as the overall benchmark response times are
accelerated by a factor of 1.3x to 3.7x compared to an execu-
tion run with the default optimizer configuration. This potential
is considerable since we did not make any internal changes to the
optimizer itself but steered it properly with existing hints.

CoreContribution:To utilize this potential for the optimization
of complex analytical queries, we present FASTgres. FASTgres is a
lightweight, learning-based context-aware classification strategy
for predicting hint combinations directly for incoming queries.
FASTgres is explicitly designed to augment any relational cost-based
query optimizer that can be steered by hints. To show the impact on
different systems, we focus on different versions of the open-source
DBS PG. The input of FASTgres is a pure SQL query, while the output
is a set of predicted proper hints for this query. Subsequently, the
traditional cost-based query optimizer is invoked using the query
and the predicted hints. Thus, FASTgres considers the underlying
query optimizer a black box and does not require a deep integration
into the optimizer, facilitating broad applicability. Unlike other
learning approaches, we do not learn one global model but a distinct
model per well-defined context to make fine-grained predictions
of hint combinations. The idea behind our approach is that each
set of joined tables represents a self-contained context since the
queries per context are reasonably homogeneous with respect to
the joins and differ only in the filter predicates. The context-aware
models can distinguish fine-grained hint combination distinctions,
which would be otherwise overshadowed by queries of completely
different contexts. Additional advantages are (i) the sufficiency of
simpler models, (ii) less training effort per context, and (iii) low
runtime maintenance effort within each context. Especially, (iii) is
useful to render on-line model updates a feasible option.

Contributions in Detail and Outline: To present FASTgres,
we make the following detailed contributions:

• We start with a problem statement using an experimental
analysis to investigate the potential of query optimizer
hinting in Section 2. Moreover, we highlight the associated
challenges for effective query hinting. In addition, we show

that recent related work in this area is not able to achieve
the potential to the full extent.

• In Section 3, we introduce the overall architecture of our
learning-based context-aware classification strategy called
FASTgres to accelerate analytical query executions by steer-
ing the optimizer with learned hints.

• Subsequently, Section 4 describes details of FASTgres, while
the runtimemodelmaintenance for FASTgres to cover chang-
ing conditions is presented in Section 5.

• In Section 6, we evaluate FASTgres in an end-to-end fashion
by highlighting further insights on hinting. To show the
effectiveness and applicability of FASTgres, we also provide
a comparison to recent machine learning (ML) approaches.

After discussing related work in Section 7, we briefly summarize
the paper in Section 8.

2 THE MERITS OF QUERY HINTING
Query optimizers in many database systems (e.g., Oracle [24], Post-
greSQL (PG) [25], MySQL [22], or SQL Server [26]) feature a rich
set of configuration parameters to influence the determination of
the optimal QEP. The query optimization potential of these config-
uration parameters has become the subject of current research [18]
as it is an important topic to investigate. To show this potential, we
present selective results of an exhaustive experimental evaluation
using three different benchmarks: the StackExchange-Benchmark
(Stack) [18], the Join-Order-Benchmark (JOB) [13], and the TPC-H
benchmark (scale factor of 10) [6]. In the following, we will focus
primarily on Stack and JOB since the results for TPC-H do not
differ. While Stack contains data from over 18 million questions and
answers from different StackExchange websites with more than
6,000 analytical queries, JOB comprises 113 analytical queries over
the Internet Movie Database with a total size of 10GiB.

In our experimental analysis, we mainly focus on the open-
source DBS PG as a primary representative featuring a traditional
cost-based query optimizer that has evolved over decades. The
available configuration parameters are manifold [25]. Without loss
of generality, we restrict ourselves to the following six Boolean
configuration parameters with regard to scans and joins to force
the optimizer to choose a different plan [25] as suggested in [18]:

• hash join: Enables or disables hash-join plan types.
• merge join: Enables or disables merge-join plan types.
• nested loop join: Enables or disables nested-loop join

plans. Disabling discourages the optimizer from using this
join operator if other methods are available.

• index scan: Enables or disables index-scan plan types.
• sequential scan: Enables or disables sequential scan plan

types. Disabling discourages the optimizer from using se-
quential scans if other methods are available.

• index-only scan: Enables or disables index-only scan plans.
In the default PG setting, all six configuration parameters are
enabled to span the largest possible plan search space. A one-
elementary configuration is referred to as a hint, a multi-elementary
configuration as a hint set, and the process of configuring and ap-
plying hints or hint sets as query optimizer hinting or just hinting.
Based on the six considered Boolean hints, 26 = 64 possible hint
sets exist. For now, assume the hint order as introduced above to
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Figure 1: Speedup potential through optimal hinting for dif-
ferent benchmarks and PG versions.

be subsequently maintained and that every hint set is numbered as
an integer according to the binary representation, e.g., the hint set
with only hash joins enabled is represented as 1000002 = 3210.

To systematically evaluate the effect of query hinting, we com-
pare the query response times for all benchmark queries using (a)
the default optimizer configuration and (b) all possible hint sets.
Based on an exhaustive evaluation, we are able to determine the
QEP with the lowest response time for every single query, including
the optimal hint set per query. Unless described otherwise, we ran
our experimental evaluation on a 64-bit Linux machine with an
Intel Xeon Gold 6216 CPU (Skylake architecture) with 12 cores,
92 GiB of main memory, and 1.8 TiB HDD storage. This hardware
environment is further denoted as Skylake machine. Moreover, we
used two different PG versions (v12.4 and v14.6).

2.1 Results
Table 1 comprises the cumulative query response times for three
considered benchmarks and both PG versions using the correspond-
ing optimizer with the default configuration and the optimal hint
set per query. As clearly visible in Table 1, a proper hinting of the
optimizer leads to an enormous speedup. Regarding Table 1, Fig-
ure 1 displays the relative speedup per query for Stack and JOB. The
individual queries are sorted according to the relative speedup. The
diagrams in Figure 1 indicate that almost all queries for both shown
workloads and both PG versions can be accelerated by proper hint-
ing. In general, the achieved maximum speedup gain per query is
much higher in PG v12.4 than in v14.6, but the overall achieved
speedup for both versions is equal, as shown in Table 1.

From this analysis, we can conclude that hinting offers great op-
timization potential. To further emphasize the importance, a deeper
investigation of queries benefiting the most from hinting seems
appropriate. To answer that question, we colored the slowest 100 for
Stack and 10 for JOB queries according to the default configuration
of the optimizer per benchmark – the queries are usually called
tail latency queries – in Figure 1. On average, these tail queries
experience the highest relative speedup and thus profit the most
from effective query hinting. Thus, hinting is beneficial in general
and specifically for tail latency queries.

Figure 2: Distribution of optimal hint set occurrences for
different benchmarks and PG versions.

However, this still leaves the question of which hint sets get the
most out of the optimization potential. To answer that question,
Figure 2 shows how often a certain hint set is used to reach the
minimal query response times in the benchmarks. As we can see,
nearly all hint sets are used and no pattern is visible for a general
recommendation. Moreover, we observe fine-grained differences,
which are decisive. For example, the most frequent hint set for the
Stack benchmark in PG v12.4 is 43 (binary representation 101011;
count 1251), while in PG v14.6, it is the hint set 47 (binary repre-
sentation 101111; count 1848). Both hint sets are similar, except
that the hint for sequential scans is enabled in v14.6, while it is
disabled in v12.4. Additionally, there are differences between the
benchmarks. Compared to the most frequent hint set 42 for Stack
in PG v12.4, hint set 14 (binary representation: 001110) is crucial for
JOB as it is the most frequently used one in this case. Thus, we can
conclude that the hint set distributions are different depending on
the workload as well as the optimizer version and that these differ-
ences are important. This is backed by an additional analysis result
shown in Figure 3, where we depict the relative cross appearance
of all hints in the optimal hint sets. The principle diagonal contains
the relative occurrences of a single hint in optimal hint sets. Here,
we can see that the direct effect of a combination of hints in a hint

Figure 3: Relative co-occurrences of hints in optimal hint
sets for different benchmarks and PG versions.
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Figure 4: Distribution of optimal hint set occurrences for two
different Stack query batches and PG versions.

set is not trivial, as the hint set distribution varies greatly across
the heat map. Again, no general pattern is visible. Each hint is used
with a wide range of other hints in different combinations for QEPs
with the best query response times regarding the chosen hint sets.

So far, our analysis has focused on all queries within the bench-
marks and we have not been able to detect any hint set pattern.
However, the benchmark queries are usually diverse with regard
to different joins as well as filter patterns. Thus, the question of
how this diversity influences the optimal hint set selection arises.
To answer this question, we re-grouped the Stack queries into 11
batches named C0 to C10. All queries in a specific batch join the
same set of tables with the same join predicates and vary only in the
filter predicates. Figure 4 shows the distribution of the optimal hint
set occurrences for two representative query batches, namely C0
and C9. While C0 contains 2,009 queries, C9 has only 100 queries.
Despite the limitation to similar queries per batch, nearly all hint
sets are present per batch. Additionally, we see that even within
these batches, the hint set distributions differ between the PG ver-
sions. Additionally, query hinting depends not only on the query
and PG version but also on the underlying hardware. To show that,
we repeated our entire evaluation on a different hardware environ-
ment. In this case, we used a second machine – further referred to
as CoffeeLake machine – with an Intel Xeon E-2186M (Coffee Lake
architecture) with six physical cores, 64 GiB of main memory, and
1.8 TiB NVMe SSD storage. The results on this CoffeeLake machine
reveal the same findings, although the hint set distributions are
different. Figure 5 illustrates this for the Stack query batches C0
and C9 by showing the differences in the hint set distributions for
PG 14.6 on both hardware environments with striking and deci-
sive differences. Thus, we can conclude that hinting offers great
optimization potential, but it is a non-trivial challenge requiring
fine-grained decisions. In particular, hinting depends on the query,
the PG version, and the underlying hardware.

2.2 Related Work using Hints
To the best of our knowledge, the Bandit Optimizer (BAO) [18] is
the only work that uses query optimizer hints to optimize queries.
In particular, BAO utilizes the same six Boolean hints for joins and
scans. Unfortunately, the authors did not present a comprehensive
analysis of the potential of query hinting and its associated chal-
lenges. In general, BAO is a learning-based approach extending

Figure 5: Distribution differences of optimal hint set occur-
rences for two different Stack query batches for PG v14.6 on
two different hardware machines.

the traditional cost-based optimizer by continuously learning an
additional runtime-oriented cost model in the form of a tree convo-
lutional neural network (TCN) based on experiences from executed
QEPs. To determine a QEP for a query, BAO conducts the three
following steps: (Step 1) BAO creates different QEPs by calling the
traditional query optimizer multiple times. In each call, BAO steers
the traditional optimizer with a different hint set from a limited pre-
defined set of hint sets. (Step 2) The resulting QEPs are re-evaluated
with the runtime-oriented cost model to select the best-fitting QEP
with regard to its model. In detail, the resulting QEP trees are used
as input for the TCN that predicts the execution time (i.e., quality)
of each query plan tree based on the learned model. (Step 3) Finally,
the QEP with the lowest predicted execution runtime is used for
the actual query execution. Once the execution is completed, the
combination of the selected QEP tree and the observed performance
is used to adapt the learned TCN model continuously.

To include BAO in our comprehensive evaluation, we used the
available BAO PG extension [17]. In particular, we trained BAOwith
the maximum amount of feedback possible based on a certain frac-
tion of randomly selected Stack queries and froze the corresponding
learned TCN model afterward. Then, we used the frozen snapshot
and ran the remaining benchmark queries to evaluate the degree
of acceleration. For each fraction, we performed five experiments,
each with different randomly selected queries and we only show
the average speedup for Stack depending on the number of learned
queries over these five experiments in Figure 6. BAO slightly ac-
celerates analytical queries for Stack but does not exploit the full
potential of query hinting marked by the red line. There are many
reasons why the potential is not even close to being reached. Most
importantly, BAO uses only the following five hard-coded hint sets:
35, 43, 47, 55, and 63 (denoted as BAO Default in Figure 6). However,
our analysis has shown that hinting is hardware-dependent, among

Figure 6: Evaluation of BAO using Stack.
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Figure 7: System model of FASTgres.

other things, and that the hint sets 12, 14, 43, 46, and 63 are the
five most common for the Stack workload on our Skylake machine.
Thus, we modified BAO accordingly (denoted as BAO Modified in
Figure 6), resulting in a much better acceleration, closer to the orig-
inal results [18] but still far from the maximum possible potential.
This once again reflects the non-trivial challenge of hinting.

2.3 Lessons Learned
Our comprehensive experimental analysis shows that query hint-
ing offers a great potential for accelerating analytical queries. The
advantage of hinting is that we can consider existing query optimiz-
ers as black boxes and steer them using available hints. However,
hinting is non-trivial because of different hint set distributions per
workload, hardware, and optimizer, even when considering table set
batches. With BAO [18], there is a recent approach that indirectly
uses hints for optimization but cannot harness its full potential. All
this motivates an approach that directly predicts an appropriate
learned hint set per query and passes this hint set with the query
to the unmodified optimizer. Moreover, the hint sets are learned
separately by workload and hardware to provide adaptability.

3 FASTGRES: OVERALL SYSTEM DESIGN
To accelerate analytical queries with optimal optimizer hint sets,
we propose FASTgres, a novel lightweight, learning-based context-
aware classification model for hint set prediction. As illustrated in
Figure 7, FASTgres is a learned standalone component predicting
a optimal hint set for each incoming analytical query. After the
going through FASTgres, the query and its predicted hint set are
forwarded to an unmodified query optimizer and execution engine.

Design: From a high-level perspective, FASTgres is composed of
the following simple and lightweight concepts: (1) using a divide-
and-conquer approach, the overall problem space is partitioned
into smaller and specific sub-problems called contexts, (2) within
each context, a separate supervised multi-class classification model
for hint set prediction is learned, (3) a context-aware and challenge-
specific training phase is supplied to minimize the training over-
head, and (4) a retraining of individual context-sensitive models
at runtime is deployed if necessary. While (1)-(3) are explained in
detail in Section 4, Section 5 exclusively deals with (4).

Assumptions and Limitations: Generally, FASTgres is not lim-
ited to a specific DBS. However, it assumes that the corresponding
optimizer can be hinted with a finite set of Boolean hints to enable
or disable physical operators. This assumption is realistic since sev-
eral DBSs offer appropriate optimizers such as PG [25]. Moreover,

FASTgres assumes that hinting can be conducted at the granularity
of a single query resulting in semantically equivalent QEPs. To
use the full potential of these hint sets for query optimization, the
hint set search space cannot be restricted, as shown in our compre-
hensive evaluation. Thus, for 𝑘 hints, all possible 2𝑘 hint sets have
to be examined and we propose a supervised learning approach
as solution with the assumption that a set of representative work-
load queries is available that can be used during an explicit model
training phase. While training our model may be costly, applying
the model at runtime is orders of magnitude faster and adds only
little overhead to the query optimization process. To avoid model
staleness, FASTgres features a component for runtime maintenance.
This maintenance component determines if retraining is necessary
on a per-query basis and triggers it accordingly.

4 SUPERVISED LEARNING IN FASTGRES
A learning-based approach is an arbitrary function approximation
and thus, the high-level challenge for FASTgres is to learn a function
being able to map a SQL query to an optimal hint set directly:

SQL query → hint set

Since ML models are not naturally compatible with SQL string
inputs, SQL queries have to be transformed into numerical repre-
sentations initially. Transforming queries into a numerical repre-
sentation, i.e., feature vector, is referred to as query featurization.
These feature vectors serve as input to a ML model. Since we focus
on analytical queries, we are mainly interested in tables, join predi-
cates, and filter predicates in workload queries. Thus, the supervised
learning challenge for FASTgres can be specialized as follows:

tables × join predicates × filter predicates → hint set

4.1 Divide-and-Conquer Approach
To solve this challenge, FASTgres adopts a divide-and-conquer so-
lution. The diversity of query structures in a workload is usually
limited since these queries work on the same relational database
with a finite set of tables. Thus, workload queries can be partitioned
into query groups. One of these query groups is characterized by
using the same multi-way join group. A multi-way join group is
defined as a set of workload queries that contain the same set of
joined tables with the same join predicates. Accordingly, different
multi-way join groups are defined by different joined tables and join
predicates. There is the possibility that the multi-way join groups
overlap or include each other, but two groups never contain the
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same exact set of joined tables and join predicates. Within a multi-
way join group, the queries only differ in their filter predicates. In
the following, a single partition of a workload representing one
multi-way join group will be referred to as a context. Our analysis
in Section 2 shows that (i) queries within a multi-way join group
utilize various different optimal hint sets, and (ii) the optimal hint
set distributions differs between different multi-way join groups. To
reflect this knowledge in FASTgres, we follow a two-phase ensemble
approach as illustrated in Figure 7. In the first phase, we create a
set of well-defined contexts by partitioning the query workload
into sub-groups with respect to the different multi-way join groups.
Thus, the number of distinct multi-way joins in the workload de-
termines the number of contexts. In the second phase, we learn
a separate and context-sensitive ML model for each context. This
divide-and-conquer approach offers several advantages. On the
one hand, our two-phase approach reduces the overall complexity
because joins are modeled outside the learned part. This allows
simpler ML models to be used. On the other hand, each ML model
for each multi-way join group in a context can focus on learning
fine-grained characteristics based on the filter predicates. Thus, the
two-phase approach of FASTgres can be formulated as follows:

∀multi-way join groups : filter predicates → hint set

According to this, our approach is context-aware as it adapts to differ-
ent properties of a query, i.e., multi-way joins and filter predicates,
by dividing the problem space into sub-problems. This divide-and-
conquer character maps every query to exactly one context.

As stated above, the contexts are extracted from the workload
queries via the joined query tables and join predicates. To ob-
tain different layers of context-awareness, we identify three dif-
ferent levels of granularity for contexts. For the coarsest level,
namely FASTgres𝑐𝑜𝑎𝑟𝑠𝑒 , we use no divide-and-conquer approach
at all and create only one context representing all possible multi-
way join groups. In contrast, the finest context granularity level,
FASTgres𝑓 𝑖𝑛𝑒 , corresponds to splitting the workload into every
multi-way join groups, even if they overlap. For example, a query
joining tables A and B with the join predicate A.x = B.y would
be in a different context than a query joining A and B with the
join predicate A.x = B.z. However, this may lead to infeasible
amounts of contexts to consider. To keep the number of contexts
as small as possible while still retaining table join characteristics,
we propose a third granularity that settles between FASTgres𝑐𝑜𝑎𝑟𝑠𝑒
and FASTgres𝑓 𝑖𝑛𝑒 . FASTgres𝑡𝑎𝑏𝑙𝑒 divides the workload according to
each set of joined tables ignoring the join predicates. For example,
all queries joining tables A and B, and C belong to the same context
independently of the used join predicates, while queries joining
tables A and B belong to a different context.

4.2 Hint Set Classification
The second phase of FASTgres uses the defined contexts from the
first phase as preliminary context-aware states and builds upon
them. The core idea of this second phase is that each context gets its
own local ML model to learn the mapping between filter predicates
and optimal hint sets. Doing so allows us to learn fine-grained
differences between filter predicates and optimal hint sets without

Figure 8: Featurization of queries in FASTgres.

considering join predicates. Moreover, we propose how context-
sensitive models can be used to directly predict hint sets in the form
of their integer representation (i.e., class).

To achieve this property, we define our classification problem for
hint set prediction as a learned function mapping from a numerical
representation of query 𝑋 to a multi-class label 𝑦. Each label repre-
sents a hint set as an integer containing all binary optimizer hints.
We decide to use multi-class instead of multi-label prediction since
a multi-label approach would predict all hints separately, which
neglects all complex correlations between single hints. However, as
shown in our comprehensive evaluation (cf. Figure 3), hints have
complex correlations with each other. Contrarily, a multi-class ap-
proach predicts the whole hint set as a class for a query at once.
Thus, such co-dependencies are treated appropriately.

For the numerical representation of a query, we include filter
information within each context, reducing the sparsity of the fea-
turization. Thus, we use a predicate-based encoding as presented
in Figure 8. In our query featurization, we first collect all filter
predicates and their operators. Operators in a query are then bi-
nary encoded from a lookup table. Next, we identify the type of
each predicate value. For numeric values, we min-max normalize
the value using database column statistics. For strings, it uses the
normalized rank of the predicate ordered by the cardinalities of all
predicates on the base tables. For compound values, e.g., predicates
with the IN operator, the average of all string encodings is used.
This featurization is naturally adapted within each context. Extend-
ing this featurization to include join information is possible, but
this would lead to sparser query representations, which may lower
the model’s quality [23].

For modeling the classification itself, we use Gradient Boosting
(GB). GB models use the sum of predictions from weak learners, i.e.,
decision trees, where every single learner is trained on the residuals
of the previous learner [20]. To predict the hint set ℎ𝑠 of a query 𝑞,
a GB model uses 𝑃 predictions 𝐹𝑝 of weak learners scaled with _𝑃
and a constant 𝑐 .

ℎ𝑠 (𝑞) =
𝑃∑︂

𝑝=1
_𝑝𝐹𝑝 (𝑞) + 𝑐

Through its simple structure, it is fast in training and small in
memory footprint [23]. This simplicity of our model enables our
approach to scale well with increasing amounts of contexts. More-
over, related work has already shown that using several GB models
for solving problems in DBSs is faster and produces better quality
predictions than using one large model, like a single specialized
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neural network [23, 29]. We also tested models like random forests
or neural networks. However, GB shows to be the best combination
of simplicity, expressiveness, and fast training time. GBmodels have
two primary hyperparameters: the number of estimators, i.e., deci-
sion trees, and the maximum depth of estimators. The maximum
depth is set to infinite as [8] have shown that endlessly deep tries
(i.e., prefix trees) can capture the complexity of predicates and their
influence on physical operators adequately. Based on experiments,
we fix the number of decision trees to 100.

4.3 Training
Through the supervision character, FASTgres requires an explicit
training phase to produce expressive models, which takes some
time. However, the training phase can profit from extensive opti-
mization since it does not interfere with the prediction of hint sets
during runtime. Compared to reinforcement learning approaches,
like BAO [18], the separated training phase also eliminates the ef-
fect of catastrophic forgetting during runtime. This section aims to
present techniques to reduce the required time to set up a model by
improving the training phase of FASTgres. In general, the setup of
FASTgres requires two parts: labeling and training. In the following,
we show how both parts can be improved.

Supervised learning requires a labeled set of training queries
where a label contains the best, i.e., optimal hint set for the query.
Retrieving these labels, or labeling, is a time-consuming step, but
it only needs to be run once for a fixed set of training queries.
Our labeling needs to retrieve the optimal runtimes and the corre-
sponding hint sets for all queries in the training data. The naïve
approach is to run every query using every possible hint set, store
the corresponding runtimes and hint set, and choose the best ones
for every query. This is very ineffective as it is not only very time
consuming but also stresses the database enormously. To overcome
this issue, we introduce a smart labeling strategy. The core idea
is a runtime timeout per query, after which the query is aborted
and the corresponding hint set can be safely discarded because it
is not the best one. Our smart labeling strategy iterates over all
queries in a training data set, which is a subset of a given workload.
Initially, the current query is executed with the PG default hint set
and the resulting response time is set as a timeout as we are only
interested in hint sets with a reduced response time. To further
speed up the labeling process, we aggressively lower the timeout
whilst evaluating each query for every hint set. Whenever a hint set
leads to a response time lower than the current timeout, this new
response time replaces the timeout. Additionally, the hint set is col-
lected as the (current) best hint set for the query. Thus, the labeling
process speeds up over time when better hint sets with lower query
response times are retrieved for a query. This leads to reasonable
runtimes even for larger training data sets while generating the
complete set of optimal hint set labels at the same time.

𝑡𝑏𝑒𝑠𝑡 = 𝑞withℎ𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑌 [𝑞] = ℎ𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑡𝑏𝑒𝑠𝑡
For training, each context-aware model in FASTgres requires

data in the form of labeled analytical queries. To achieve this, most
other ML-based approaches take random samples from the available
workload of queries [10, 16, 28, 30]. This approach is conditionally
applicable in FASTgres because we need representative queries from
every context to train expressive context-aware models. To tackle

this query demand, we propose a stratified sampling approach that
samples queries from every context according to the split criteria.
For example, an 80-20 split would sample 80% of queries from
every context separately and collect these queries in a training
dataset. The remaining 20% from every context form the test dataset
for evaluation. Especially for small training splits, our stratified
sampling provides equal opportunity. After sampling and labeling
a certain amount of queries, the GB models are trained with the
labeled training data for every context. Here, the training times
profit from the simple but powerful structure of GB models based
on decision trees.

5 RUNTIME MAINTENANCE
The supervised approach of FASTgres is possibly too rigid since
every model within each context is fixed after training. Additionally,
the quality of each model depends on how well the training queries
enable a model to learn the mapping between filter predicates and
optimal hint sets. Thus, it is likely that FASTgres might not predict
an ideal hint, e.g., due to data or workload drifts. To overcome this
issue, a naïve approach would be to initiate a retraining with every
incoming query. This would be possible from a model point of view
because each query is assigned to exactly one small GB model in
FASTgres and only this model would be subjected to retraining. In
our case, the retraining of a single GB model is negligible. However,
the frequency of retraining during runtime already makes this
approach impractical. This is further complicated by the fact that
for each retraining, the corresponding query would have to be
executed with all 2𝑘 possible hint sets to determine the optimal
hint set for the retraining. Although this labeling can be optimized
as described in the training phase, this still creates an additional
high load on the DBS.

Since we cannot completely avoid retraining to achieve good
model qualities all time, we propose a novel approach based on ac-
tive learning. Instead of triggering a retraining with every incoming
query, we want to actively initiate a retraining of a context model
in FASTgres when an update is necessary. To recognize the proper
situations, our divide-and-conquer approach is again beneficial:
Once incoming queries are executed with a predicted hint set, we
also supply a per-context timeout to the query compiler such that
abnormally long-running queries are detected. This timeout is cal-
culated for each context model based on the best response times for
every query collected during labeling. Timeout 𝑓 is then a mapping
for every context 𝑐 , corresponding observed best times 𝑡𝑖𝑚𝑒𝑠𝑐 dur-
ing labeling, and a combination of absolute and percentage-based
timeout 𝑡𝑎 ∈ R, 𝑡𝑝 ∈ {0, . . . , 100} as follows:

𝑓 (𝑡𝑖𝑚𝑒𝑠𝑐 , 𝑡𝑝 , 𝑡𝑎) :=𝑚𝑎𝑥 (𝑡𝑎, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑡𝑖𝑚𝑒𝑠𝑐 , 𝑡𝑝 ))
Doing so has a variety of implications for our model. Firstly, we use
percentile-based timeouts, as choosing a value in the range of ob-
served times allows us to enforce different retraining behaviors. A
small value 𝑡𝑝 enforces greater retraining rates as the probability of
exceeding a smaller timeout increases. Contrarily, high values of 𝑡𝑝
may decrease the retraining rate. This results in retraining only by
observing hinted queries that exceed all previously seen response
times. Moreover, using an absolute threshold 𝑡𝑎 implies a minimal
timeout value. This is especially useful for contexts consisting solely
of fast-running queries with lower query response times than 𝑡𝑎 .
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Table 2: Overview and details of the multi-way join contexts for the Stack benchmark.
Context C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
#Tables within Multi-way Join 7 6 4 8 3 6 7 7 6 7 3
#Queries 2,009 1,008 1,072 1,202 100 100 200 200 100 100 100
Average Query Response Time (PG Default) 1.09s 0.35s 0.34s 0.59s 1.40s 0.52s 0.70s 0.04s 0.40s 49.12s 1.53s
Average Smart Labeling Time 54s 18s 18s 31s 14s 30s 33s 1s 10s 11m 38s 1m 30s
Average Smart Labeling Speedup 1.3 1.2 1.2 1.2 6.4 1.2 1.4 2.6 2.6 4.5 1.1

Hinted queries will then not trigger a timeout until exceeding 𝑡𝑎 .
This value can be chosen in a workload-dependent manner. For the
three investigated benchmarks, a value of 0.1𝑠 is sufficient. Notably,
the chosen context-sensitive timeouts are not static after being
calculated. Upon retraining within a context, abnormal queries are
asynchronously labeled and then added to our models. After each
retraining, we add the optimal hint set time of the labeled queries
to our experienced times 𝑡𝑖𝑚𝑒𝑠𝑐 . The corresponding timeout is then
updated accordingly. This active learning-based retraining intro-
duces runtime adaptivity to our supervised classification approach,
making it more flexible and precise during application runtime.

In addition, changes in workload queries or database schema
may occur at runtime. In the worst case, changes in the work-
load queries or schema manifest themselves in context changes
(i.e., multi-way join groups). Thus, either new contexts have to be
created or existing contexts have to be dropped. Both situations
are uncritical for FASTgres since a separate model exists for each
context. If a new context evolves at runtime, a new model can be
created and learned. To build this model, incoming queries can be
used for labeling and training, which can be done asynchronously.
As long as no corresponding model exists, FASTgres predicts the
default hint set. With this, we do not achieve a speedup and neither
do we make queries artificially slower. If a context is no longer
needed, the corresponding model can be deleted.

6 EVALUATION
To evaluate FASTgres, we use three different benchmarks: Stack [18],
JOB [13], and TPC-H [6]. Unless otherwise described, we show the
experimental results of our Skylake machine with an Intel Xeon
Gold 6216 CPU (Skylake architecture) with 12 cores, 92 GiB of
main memory, and 1.8 TiB of HDD storage. We fully implemented
FASTgres in Python and used two different PG versions – namely
v12.4 and v14.6 – as underlying black box DBS. The optimizers of
both systems can be steered with the six Boolean hints described in
Section 2, which is also in the focus of our evaluation. In line with
related work [8, 18], we do not adopt any particular benchmark
query order. Instead, each experiment was run several times, each
run had a different random query ordering. Therefore, the following
results are always average values over runs.

Since FASTgres adopts a divide-and-conquer approach using
multi-way join groups (i.e., contexts), we first analyze the bench-
marks regarding contextualization. The Stack benchmark consists
of ten relational tables and 6,191 workload queries, which can be
divided into eleven different contexts as shown in Table 2. Each
context joins a different number of tables, ranging from three to
eight. While seven contexts contain either 100 or 200 queries, the
remaining four contexts consist of more than 1,000 queries each,
the largest having 2,009 queries. Moreover, for Stack, multi-way
joins are built such that the granularity levels FASTgres𝑓 𝑖𝑛𝑒 and

FASTgres𝑡𝑎𝑏𝑙𝑒 , as introduced in Section 4.1, coincide. This means,
there are no contexts joining the same set of tables with different
join predicates. In contrast, the JOB workload has a total of 113
queries, distributed over 33 contexts, while TPC-H has 22 workload
queries over 18 contexts. This results in scarcely any queries per
context for JOB and TPC-H as well. Again, the granularity lev-
els of FASTgres𝑓 𝑖𝑛𝑒 and FASTgres𝑡𝑎𝑏𝑙𝑒 coincide. Thus, a distinction
between FASTgres𝑓 𝑖𝑛𝑒 and FASTgres𝑡𝑎𝑏𝑙𝑒 is redundant.

6.1 Exploiting the Potential
In the first set of experiments, we investigated whether the opti-
mization potential of hinting is achievable with FASTgres. For this
purpose, we enabled FASTgres to learn with all benchmark queries
in the training phase (i.e., train-to-represent). Then, we executed
all benchmark queries again, where FASTgres predicts that hint set
per query that it deems optimal. The resulting benchmark response
times for the different PG versions are shown in Table 3. For com-
parison, the benchmark times for PG using the optimal hint sets
(denoted as optimal hint set) are shown as well. The benchmark
times for PG with default settings are depicted in Table 1. Addi-
tionally, the BAO benchmark runtimes for PG v12.4 are depicted
since the BAO extension does not run on PG v14.6. BAO was also
allowed to use all benchmark queries for training. For Stack, we
modified BAO as described in Section 2. Since BAO itself does not
address the adaptation of the hint sets used, we evaluated JOB and
TPC-H with the BAO default hint sets. As shown in Table 3, BAO
does not reach the potential offered by hints, even if the relevant
hint sets are taken as demonstrated for Stack. In contrast, FASTgres
approaches close proximity to the optimal hint set performance. In
some cases, FASTgres does not fully exploit its potential, as the num-
ber of queries may not be sufficient for adequate model training or
due to featurization collision (i.e., two queries mapping to the same
featurization but having different optimal hint sets), though not
actively observed. We also ran these experiments on our second
machine with a Coffee Lake CPU and NVMe SSD storage. In this
case, the resulting benchmark times are different, but the achieved

Table 3: Evaluation results for exploiting the potential.

Benchmark & Configuration PG 12.4 PG 14.6

St
ac
k opt. hint set (speedup) 7,234s (2.6x) 3,561s (2.5x)

BAO (speedup) 14,666s (1.29x) n/a
FASTgres (speedup) 7,760s (2.5x) 3,649s (2.49x)

JO
B

opt. hint set (speedup) 87s (2.3x) 79s (2.3x)
BAO (speedup) 243s (0.84x) n/a
FASTgres (speedup) 88s (2.3x) 95s (1.94x)

TP
C-
H opt. hint set (speedup) 119s (3.7x) 110 (1.3x)

BAO (speedup) 388s (1.15x) n/a
FASTgres (speedup) 137s (3.25x) 127s (1.13x)
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(a) Stack on PG v12.4. (b) Stack on PG v14.6. (c) JOB on PG v14.6.

Figure 9: Evaluating the influence of the training set size. BAO only runs on PG v12.4.

speedups are comparable to the shown speedups on the Skylake
machine. Thus, we can conclude that FASTgres is able to harness the
offered potential of query hinting for the considered benchmarks
on two different PG versions on two hardware environments.

6.2 Influence of the Training Set
Train-to-represent, as discussed above, is not a realistic scenario as
future incoming queries can not be known beforehand. To overcome
this shortcoming, only a subset of the workload queries may be
used for training. In the second set of experiments, we evaluated
the influences of training set size by dividing the workload queries
into a training set and a testing set, as defined by a percentage. For
example, a split of 80-20 means that 80% of the queries are used for
training and the remaining 20% are used for testing with the learned
models. To generate such a split, training queries are randomly
sampled from the workload, leaving the unsampled queries for
the test set. For a test set, we used the predicted FASTgres hint
set for optimization and execution. Afterward, we determined the
speedup regarding an execution with the default configuration of
the optimizer. To evaluate the robustness of FASTgres, we run every
experiment ten times with different queries in training as well as
testing and report the average and standard deviation of all runs.

The results for Stack and JOB with increasing training fractions
are shown in Figure 9. The average speedups are represented by
lines, i.e., solid orange lines denoted as FG w/o Retraining, while
deviation is shown as shaded regions around the average. In each
diagram, the red line marks the optimal speedup as the theoretical
optimum with regard to the optimal hints. The black line corre-
sponds to the benchmark runtime with the default optimizer con-
figuration. For Stack and PG 12.4 (cf. Figure 9a), we added BAO as
our main competitor. BAO slightly accelerates Stack for all splits,
but FASTgres already performs better with few training queries on
Stack with a higher speedup than BAO. For larger training frac-
tions, the FASTgres speedup increases slightly with the exception
of Stack on PG 14.6 (cf. Figure 9b). For JOB on PG 14.6 (Figure 9c),
we observe that the FASTgres speedup is lower for less training
fractions while increasing with growing training fractions. Notably,
we do not reach the fully possible speedup for JOB since the num-
ber of queries is not representative enough for the high number
of occurring contexts. The same applies to TPC-H. Nevertheless,

the standard deviations show a robust prediction behavior. We can
conclude that FASTgres leads to significant and robust speedups
even with a small subset of the workload queries in training.

So far, the results summarize over all workload queries and
therefore do not allow any conclusions to be drawn about tail
latency queries. The speedups of tail latency queries – green line
(denoted as Top-100) – are explicitly illustrated in Figure 10a. The
starting point are the 100 slowest Stack queries according to the
default optimizer configuration. As shown in Figure 10a, the average
speedup for the tail latency queries is much higher than for all other
queries. The first row in the table below the diagram in Figure 10a
depicts the average number of tail queries in the testing set. As
expected, the number decreases with increasing training fraction
since more tail queries are used for training. Thus, we can conclude
that FASTgres accelerates tail latency queries especially well, even
if only a small subset of the workload queries is used in training.

However, we notice that FASTgres’ speedup gain does not con-
tinually increase with growing training fractions. From our point
of view, the reason for this behavior is that not all contexts are
equally represented by the random choice of training queries. To
tackle this issue, we use stratified sampling, as presented in Sec-
tion 4.3. Figure 10b shows the impact of this approach for Stack on
PG 14.6. In contrast to an entirely random choice (i.e., solid orange
lines denoted as Fully Random) our stratified sampling (i.e., the
solid blue line denoted as Context Random) leads to a steady gain
in average speedup gain with increasing training fractions. Thus,
we can conclude that our stratified sampling improves our model
quality leading to higher speedup gains.

6.3 Influence of Granularity Level
So far, we built FASTgres with the finest granularity FASTgres𝑓 𝑖𝑛𝑒 ,
as introduced in Section 4.1, and learned a separate model for each
context. In the third experiment, we also investigated FASTgres
using the coarsest granularity level FASTgres𝑐𝑜𝑎𝑟𝑠𝑒 . There, we used
only one context for all workload queries. For Stack, we observe
that our divide-and-conquer approach is always beneficial, as ex-
emplified in Table 4. Here, the achieved speedup with contexts is
10% higher than the speedup without contexts for a 10-90 split.
This observation applies to Stack in general since there are enough
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(a) Speedup of the tail latency queries. (b) Fully random vs. stratified sampling. (c) Impact of retraining.

Figure 10: Further evaluation details for Stack on PG v14.6.

Table 4: Comparing FASTgres with and without contexts for
a 10-90 split using the Stack benchmark on PG 14.6.

Speedup FASTgres Speedup FASTgres Rate of
w/o Contexts w/ Contexts Improvement

1.65 1.81 10%
queries per context. In contrast, FASTgres without contexts per-
forms better for JOB than FASTgres with contexts as illustrated in
Figure 9c (i.e., dotted orange line denoted as FG w/o Contexts). The
same applies to TPC-H. Due to the high number of contexts and the
very small number of queries per context, it is beneficial to learn a
single model suiting all queries for JOB and TPC-H because the GB
model can generalize better with divergent training data than with
too little training data.

6.4 Influence of Retraining
A key feature of FASTgres is runtime maintenance. As described
in Section 5, abnormally long-running queries with predicted hint
sets are detected using a per-context timeout. These queries, also
called critical queries, are used for retraining as they do not fit
into the previously observed runtime behavior within a context.
The reason for doing so lies within the possibly enormous miss-
prediction penalty a hint set can incur. In the fourth experiment,
we repeated the second experiment for training set influences, but
this time with runtime maintenance enabled. The tables below
the diagrams in Figure 9 show the number of critical queries per
training fraction using a 99% timeout percentile. Again, the numbers
are averaged over ten runs. Since the effect of retraining on the
speedup depends on the query order, we first show the maximum
possible speedup in the diagrams in Figure 9. For this purpose,
we include the critical queries in the training set. Our retraining
(i.e., solid blue lines denoted as FG w/ Retraining in Figure 9) leads
to a significant speedup gain, with the number of critical queries
decreasing as the training fraction increases. Overall, FASTgres
discovers the critical queries at runtime to increase the quality
of the model in terms of robustness. This is valid for FASTgres
with contexts and without context, as visible in Figure 9c (i.e., blue
lines denoted as FG w/ Contexts, Retraining and FG w/o Contexts,
Retraining). Furthermore, considering JOB, the speedup can be
increased with a few important retrainings at runtime.

However, this is only theoretically the maximum possible gain
since no runtime overhead has been considered so far. The overhead

includes (i) the critical queries that are aborted by the per-context
timeout and therefore need to be re-executed, (ii) the discovery
of the optimal hint set, and (iii) the training of the corresponding
context model that needs to be adjusted. We simulated a possible
strategy where the overhead should be as low as possible. Each
detected critical query is aborted and triggers an asynchronous pro-
cess where the optimal hint set is determined and the corresponding
model is adjusted. Thus, the optimal hint set is determined in a
highly parallel manner. In the meantime, incoming queries continue
to be processed by the unmodified original model. After the model
is retrained, it replaces the existing model and the execution of the
critical query is triggered again. In this strategy, the per-context crit-
ical query timeout produces an additional overhead and decreases
the speedup, as shown in Figure 10c. However, this decrease is
not dramatic because retraining leads to an overall speedup gain.
Lastly, Figure 10c also displays results for a 95% percentile time-
out enforcing more frequent retraining phases due to additional
detected critical queries. Moreover, having more retraining phases
leads to higher speedup gains.

6.5 Influence of Set of Hints
In the training phase, the optimal hint sets for each query within
the training set need to be determined. A naïve approach is to
exhaustively search every hint set (i.e., 64 hint sets for our six
chosen hints) and select the best for every query. However, this
approach is not feasible since some hint sets may lead to extreme
query response times. To overcome this challenge, we presented our
smart labeling approach in Section 4.3. In general, our approach
leads to reasonable average labeling times per query, as shown
in Table 2, where our chosen hint sets are evaluated sequentially.
To show the benefit of smart labeling, we simulate an optimized
naïve approach with enabled smart labeling using the response time
under the optimizer’s default configuration as our initial timeout.
Table 2 shows that the dynamic timeout adjustment leads to an
improvement with an average speedup gain ranging from 1.1 to
6.4 for Stack. Especially for the four largest contexts, our smart
labeling time is still in the range of seconds. The exceptions are the
two small contexts C9 and C10, where the query response times
are generally high. Overall, our smart labeling shows an efficient
average labeling time of 44s per query for Stack on PG 14.6, after
which the optimal hint set is known. A further optimization would
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(a) Speedup potential. (b) Labeling time. (c) Impact on resulting speedup.

Figure 11: Evaluating the influence of hint combinations for Stack on PG v12.4.

be to run the hint set evaluation in parallel, which is beyond the
scope of this contribution. We observe the same characteristics for
JOB and TPC-H. However, due to the large number of contexts (33
for JOB and 22 for TPC-H) and the sparse query distribution, we
refrain from a detailed display.

In general, labeling queries is a computationally expensive task
with an exponential search space (2𝑘 hint sets for a set of 𝑘 Boolean
hints), even with our smart labeling strategy. To tackle this chal-
lenge, a solution is to reduce the search space to the most impactful
hints. To investigate this solution, we repeated our experimen-
tal analysis from Section 2 with an increasing number of hints
starting with one hint – nested loop (nl). Then, we consec-
utively added hints in the order of hash join (hash), merge
join (merge), index-only scan (idxo-s), sequential scan
(seq-s), index scan (idx-s). Figure 11 shows (i) the speedup
potential for the different sets of hints on the full Stack workload
and (ii) the labeling runtimes on the lowest possible amount of data
required (10%) for stable prediction from FASTgres. Every bar in
both plots corresponds to a set of hints where one hint was added
to the set of hints compared to the previous bar. From Figure 11a,
we observe that the three hints for the join operators have the most
impact. This is consistent with [8] claiming that join operators are
most beneficial. However, every additional hint, including the ones
for scans, positively impacts the speedup, each with a different mar-
gin. This is important considering Figure 11b. There, the marginal
improvement in speedup does not justify the extreme amount of
time spent in labeling when we include the three hints for scans.
Notably, we observe that for multiple arbitrary but fixed hint orders,
the speedup gain per hint naturally fluctuates due to the different
orders while keeping its tendency.

Based on this insight, we repeated our experiments for increasing
training fractions with and without retraining using only the three
hints for the join operators. The achieved results for Stack on PG
v12.4 are illustrated in Figure 11c. The resulting speedups for the
restricted set of hints are unsurprisingly higher than for all six hints
for FASTgres without retraining. When retraining is enabled, they
do not vastly differ as the hints leading to the most speedup increase
are included in either case. We also observed a similar behavior for
JOB and TPC-H. Thus, we deem only using a restricted amount
of hints feasible. In our experimental setup, focusing on three join
hints reduces the labeling time by 75% compared to the labeling for
six hints. This is expected as hint restriction exponentially decreases
the search space, opening up an interesting research direction.

6.6 Influence of Data and Workload Drift
So far, we have shown that FASTgres is capable of predicting hint
sets appropriately on a given workload. However, model staleness
is an issue that can possibly deteriorate prediction performance
enormously, especially in light of changes in data and queries.

Data Shift: To investigate data shift, we use Stack as a repre-
sentative example. Stack considers data between the years 2008
and 2019. We constructed our data shift experiment as follows.
From 2019 downward, we consider a data shift as a three-year gap.
Thus, we obtain multiple data versions of Stack, each considering
the years 2008 – 2019 (i.e., the full data set), 2016, 2013, and 2010.
Therefore, the smallest data set only consists of two years of data
instead of eleven. The evaluation results are shown in Figure 12a
and 12b for training-testing splits 10-90 and 50-50. These figures
depict the data shift, considering workload speedups along the y-
scale. Since we evaluated every experiment ten times, the results
are displayed as boxplots. Notably, every data shift experiment
speedup is obtained by training FASTgres on the reduced data and
evaluating the final speedup on the whole data. By doing so, we
measure the robustness of FASTgres trained on old data towards the
up-to-date one. FASTgres performs well on the full data set while
deteriorating in performance once trained on fewer data. However,
such deterioration is unavoidable to a certain extent, as future data
distribution is not an easily predictable task. Nevertheless, FASTgres
always outperforms the PG default optimizer configurations, even
with only two years of data information. Thus, we conclude that
FASTgres shows robust behavior even when trained on stale data.

Workload Drift: This scenario emerges when obtaining a pre-
viously unseen query that behaves differently than the previously
observed one. As FASTgres deploys a context-wise solution, two
scenarios have to be considered. Firstly, an unforeseen query can
be classified into an existing context. In this case, FASTgres is able
to predict a hint set that is then used for query evaluation. If the
execution behaves abnormally, it is labeled and used for retrain-
ing, as explained in Section 5. Secondly, if a new query does not
fit into an existing context, a new context has to be created. For
such a scenario, we conducted an experiment to investigate the
minimal amount of context queries needed to handle a new context
adequately. Figure 12c shows the result over all Stacks contexts
averaged across ten runs. Here, we train FASTgres on merely a few
queries per context, as shown on the x-axis. Afterward, we evaluate
every query of the remaining workload. The resulting speedup is
displayed along the y-axis. Moreover, we shaded the minimum and
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(a) Data drift with 10% training queries. (b) Data shift with 50% training queries. (c) Workload drift

Figure 12: Evaluating the influence of data and workload drift for Stack on PG v12.4.

maximum speedup of each x-axis entry along the graph. We obtain
two major insights: (1) we only need two queries for each new
context to obtain speedups that outperform the default setting of
PG, and (2) even though speedups naturally fluctuate while using
little training data, we obtain feasible performance. Thus, we can
conclude that FASTgres is robust towards data and workload shift,
performs well on highly stale data, and also performs competitively
while only using minimal amounts of context queries.

7 RELATEDWORK
Query optimization of SQL queries has been a research topic for
decades, but it is still not solved [3, 13]. According to [2], query
optimization depends on the accuracy of cardinality estimates, par-
ticularly for intermediate results sizes. However, traditional cardi-
nality estimation techniques frequently rely on basic heuristics that
may assume predicate independence and uniform distribution of
attribute values [13]. To overcome this issue, various sophisticated
techniques have been proposed. For example, DB2’s optimizer LEO
integrates query feedback to account for estimation errors [27].
However, it is unable to capture arbitrary join predicate correla-
tions. More recent work investigates sampling [5, 14, 21, 33] or
computationally intensive sketches [1, 9, 11] to achieve precise
cardinality estimates. A common disadvantage of these approaches
is that they must be tightly integrated into the optimizer since they
affect one of the internal core components. In contrast, FASTgres
does not need to be integrated because it assumes the optimizer as
a black box, and FASTgres is decoupled from cardinality estimation.

With the influence of ML, query optimization solutions are in-
creasingly built by replacing core optimizer functionalities with
learned models. The most apparent application area for ML in query
optimization is cardinality estimation. [10, 16, 23, 28, 30] are recent
supervised learning approaches for cardinality estimation or query
costs. A disadvantage of these approaches is that extensively labeled
training data is required and, unlike FASTgres, all queries must be
executed extensively to retrieve all cardinalities.

Beyond cardinality estimation, other approaches apply reinforce-
ment learning for holistic query plan optimization [12, 18, 19]. For
example, [31] try to avoid using expert optimizers and cost models
in their approach called BALSA. Here, partial query plans and their
resulting latency are learned by a neural network in a two-stage
manner. In contrast, [19] provide input for a model using query and
plan encoding in their model NEO. The plan encoding is provided
by an expert optimizer that generates a query plan tree. The result
is then used as an input for a TCN that outputs a query execution

time prediction. Both approaches demonstrate improvements to
mean query performance, but only after a long training period. The
most recent and most relevant ML approach using reinforcement
learning with respect to FASTgres is BAO [18]. We already discussed
and evaluated BAO in Sections 2 and 6.

Moreover, [8] presents a Case-Based-Reasoning approach called
TONIC to improve QEPs with learned physical join operators. The
input of TONIC is a QEP determined by a cost-based optimizer,
while the output is a QEP with the same join order but with learned
physical operator selections. For this purpose, TONIC collects, for
each executed query, the QEP with a summary of the exact costs
for the used operators in a case base. For each incoming query, its
QEP is retrofitted by TONIC using a stored QEP from the case base.
However, the performance benefit with a cost-based optimizer is
limited since the QEP, especially the join order, is not changed by
TONIC. Thus, TONIC is reactive, while FASTgres is proactive and
does not have this limitation.

There is also related work by Yu et al. [32] labeled as hint-based
query plan optimization with a hybrid learned and cost-based opti-
mizer. However, this work has a different understanding of hints.
Here, hints are prefix trees with partial join orders used as indica-
tors for the final join order to be inferred by a ML model. FASTgres
only uses global hint parameters and does not need to interact with
the individual query structure. Additionally, the model-based join
ordering and plan selection are deeply integrated into the database
system. Our approach is not dependent on a system implementa-
tion but only on the exposed hints. Nonetheless, the authors also
recognize the importance of contexts (called templates) and they
also use the PG standard optimizer as a fallback solution.

8 CONCLUSION
Despite many years of research, a clear picture has not yet emerged
of the extent to which Boolean query optimizer hints for physical
operators can be used to optimize analytical queries. Therefore, we
systematically evaluated this aspect for different PG versions and
our evaluation shows that optimizer hints offer great acceleration
potential. However, query hinting is a non-trivial challenge with
different optimal hint set distributions per workload, optimizer, and
hardware environment. To unlock this potential, we present FAST-
gres, a lightweight, learning-based, context-aware classification
strategy for predicting hint sets directly for incoming queries. Gen-
erally, FASTgres substantially improves benchmark response times,
where the traditional cost-based query optimizer is just steered
with predicted learned hints for each query.
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