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ABSTRACT
Large language models (LLMs), such as GPT-4, are revolutionizing
software’s ability to understand, process, and synthesize language.
The authors of this paper believe that this advance in technology is
significant enough to prompt introspection in the data management
community, similar to previous technological disruptions such as
the advents of the world wide web, cloud computing, and statisti-
cal machine learning. We argue that the disruptive influence that
LLMs will have on data management will come from two angles.
(1) A number of hard database problems, namely, entity resolution,
schema matching, data discovery, and query synthesis, hit a ceiling
of automation because the system does not fully understand the
semantics of the underlying data. Based on large training corpora of
natural language, structured data, and code, LLMs have an unprece-
dented ability to ground database tuples, schemas, and queries in
real-world concepts. We will provide examples of how LLMs may
completely change our approaches to these problems. (2) LLMs
blur the line between predictive models and information retrieval
systems with their ability to answer questions. We will present
examples showing how large databases and information retrieval
systems have complementary functionality.
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1 INTRODUCTION
The recent technological advances in Large LanguageModels (LLMs),
such as OpenAI’s GPT models [10, 55], Google’s Bard, and many
others on the horizon, are capturing the imagination of industry,
academia, and the general public. These models have an unprece-
dented ability to understand and synthesize complex fragments of
both programming and natural languages. We believe that this ad-
vance in technology is significant enough to prompt introspection
in the data management community, similar to previous technolog-
ical disruptions such as the advents of the world wide web, cloud
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computing, and statistical machine learning. Simply put, LLMs
challenge the raison d’être of the data management community:
effective and accurate question answering over data.

This moment in time was theorized decades ago. Databases and
artificial intelligence share a common research history due to the
natural connections between database query answering and sym-
bolic reasoning [35]. The marriage of these two fields has resulted
in a number of results spanning from knowledge bases [74, 75],
large-scale graphical modeling [27, 28], and probabilistic query
answering [11, 54, 60, 61]. Large databases storing an enormous
corpus of facts were always seen as the conduit for powerful and
effective AI applications. In a sense, LLMs are a refinement of this
vision but crucially obviate the need for explicit data structuring or
schema design. They are trained on large corpora of unstructured
data and discover structure through statistical learning. This ap-
proach has been more effective than many researchers would have
expected, and prototypes such as ChatGPT can answer complex
questions with a reasonable degree of accuracy. As such, the rise
of LLMs is the most significant shift in the relationship between
databases and artificial intelligence that we have witnessed so far.

The widespread adoption of LLMs will disrupt many core data
management problems. With their advanced natural language pro-
cessing capabilities, LLMs will enable organizations to extract valu-
able insights from unstructured data sources, such as text doc-
uments and social media posts. This, in turn, will drive a more
efficient and effective use of data, leading to better decision-making
and business outcomes. The impact of LLMs on data management
will be far-reaching and lead to new industry standards and best
practices. This paper presents three key takeaway messages.

1. LLMs represent a fundamental shift in NLP capabilities. In
the last 10 years, we have moved fromword2vec models [51], which
could answer simple natural language analogies, to models that
can synthesize both text and code from arbitrary natural language
prompts (with reasonable accuracy). This new synthesis capability
leads to a number of intriguing data management questions around
data governance, factual accuracy, and incorporating new data.

2. LLMs will force us to revisit key data management prob-
lems. In addition to these new opportunities, LLMs will affect
traditional data management problems as well. A number of hard
database problems, namely, entity resolution, schema matching,
data discovery, and query synthesis, hit a ceiling of automation
because the system does not fully understand the semantics of the
underlying data.
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3. LLMs Will Get More Efficient. A widespread concern about
LLMs is their immense training and inference costs. In our opinion,
these costs are over-emphasized as limitations. When AlexNet was
first introduced in 2012, it took six days to train [42] and required
specialized software. In 2018, a far more accurate Resnet-50 model
can be trained in 18 minutes on AWS [34] (a 480x time reduction in
6 years). We believe the same hardware, software, and model effi-
ciency trends will occur in LLMs; though the rate of improvement
is unknown. Furthermore, the proliferation of fine-tuning solutions
indicates that training an entire LLM from scratch will be rare.

When we initially submitted this manuscript in March 2023,
we posited that such a strong statement about the future of LLMs
might be “premature”. We simply did not anticipate how much
the space would change in the subsequent four months. There are
now numerous commercial, open-source, and academic projects
addressing the very problems discussed in the vision paper [5]. In
reflection, these emerging systems do not change our vision, but
actually emphasize the need for deep and rigorous research by the
data management community into how LLMs should affect systems
and practice. Individual researchers in our community have long
contributed to the problems we discuss in this paper (see related
work in Section 2.3). Furthermore, we will use this paper to preserve
the unique snapshot in time when it was published to compare and
contrast the authors’ perspectives at submission versus publication.
We analyze the connection of LLMs and databases in Section 2.
We follow with a discussion of problems that will be disrupted
in Section 3 and opportunities that will arise in Section 4 before
offering conclusions in Section 5.

2 A SHIFT IN NLP AND DATA MANAGEMENT
In this section, we discuss the relationship between LLMs and data
management and overview LLMs from different perspectives.

2.1 Large Language Models (LLMs)
By LLM we refer to a class of models that synthesize long textual
outputs in response to a prompt. Today’s LLMs share these traits: (1)
they are trained over a large corpus of web data that includes natural
language and code, (2) they are architecturally based on transformer
networks [70], and (3) they have significantly more parameters than
traditional ML models. Specifically, we concentrate on the GPT line
of models [10], including ChatGPT, and smaller variants such as
LLAMA [62] or ALPACA [2], which are widely available as of May
2023. While the community does not fully understand why they
are so effective, LLMs are still a major breakthrough in information
retrieval and are already integrated in search engines [3], efforts to
understand how LLMs work continue growing [1, 16, 17, 24]. While
the details of these models might evolve, the new functionality
that they bring (i.e., textual synthesis in response to a prompt)
is a significant enough change to force us to think about their
relationship with data management systems.

Is an LLM a database? What is the boundary, if any? We can
approach this question from different angles:

An LLM is an Information Retrieval Tool. Users have an infor-
mation need, and they articulate it through various means, such as
SQL queries, keywords, or natural language questions. The goal is

for the system to deliver relevant information without the user wor-
rying about the intricacies of how it is retrieved. From the user’s
perspective, the underlying technologies, whether it be Google,
databases, the yellow pages, or LLMs, are all viewed as offering a
similar abstraction. There is a query and there is a response.

In this sense, an LLM is simply the ultimate declarative abstrac-
tion for an information retrieval tool. The “queries” are posed as
natural language prompts and information is “retrieved” accord-
ingly. The definitions of query and retrieval are imprecise here.
The nuance is that LLMs are able to answer queries for which the
data are not in the training set through extrapolation. However, the
inner workings of LLMs, specifically the principles of large neural
networks and attention mechanisms, are not as well understood
and LLMs have well-known failure modes with factual inaccuracies
and hallucinations [46, 49, 79].

An LLM is a Synthesis Tool. Alternatively, some use LLMs as
tool for code or text synthesis. For example, a data engineer might
ask “write a Python regular expression that extracts data within
curly braces”. Or, a data governance administrator may ask “write a
draft privacy policy for a website that collects profile pictures from
user’s webcams.” In both cases, the LLM produces an initial draft
that the engineer or the administrator can iterate on.

However, unlike recent tooling in “coding assistants” [7, 53],
it is not purpose-built for programming. The same model might
be able to solve a variety of programming language as well as
natural language synthesis tasks. For example, one might be able to
translate an english description of an application into a relational
data model.

AnLLM is aData EnrichmentTool.The closedworld assumption
has historically underpinned relational databases, namely, facts not
in the database are considered irrelevant to the query at hand [58].
As the size and scope of organizational data have grown, more
organizations have understood that knowledge from outside the re-
lational database, either from external corpora or unstructured data,
is valuable to augment structured data. This idea has manifested
itself in a number of different research projects, including work on
data/knowledge integration [22, 23], knowledge bases [18], web
data extraction [12, 25, 48], semantic web [6], and even database pa-
rameter tuning [63]. Such work has provided crucial “open-world”
context to organizational data such as rich type inference, language
models for integration, and the relationships between the database
and real-world entities.

Each subsequent generation of information extraction tools has
taken further advantage of data in the open world to enrich a data-
base. It is here that LLMs are a technological discontinuity. LLMs
can increasingly generate human-like language and perform a wide
range of natural language processing tasks, such as text classifica-
tion, text generation, and machine translation. The most advanced
LLMs (GPT-4 as of May 2023) consist of billions of parameters
trained on large volumes of data. This extensive training enables
LLMs to capture a vast amount of knowledge and contextual un-
derstanding of the language they were trained on. As a result, they
can perform complex language tasks with remarkable accuracy,
consistency, and coherency. However, the softer notion of informa-
tion structuring leads to known issues with incorporating new data
accurately.
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2.2 Critique
None of these analogies for LLMs are quite accurate. Simply put,
LLMs are a different technology. Classical data management sys-
tems represent data through symbols (via different data types) that
are associated with their meaning, and relationships between those
symbols that are often captured through specific layouts on disk,
along with metadata describing the structure of the data. In con-
trast, LLMs represent data in a fundamentally different way. LLMs
encode text data as high-dimensional vectors of floating-point num-
bers, with each dimension capturing a particular semantic feature
of the text. The resulting representation is stored in a multi-layered
neural network trained to perform specific tasks. Query evaluation
in LLMs involves performing algebraic operations on the numer-
ical representations of the data rather than searching for specific
symbols.

On the one hand, this method of structuring information leads
to interesting integrative and extrapolative effects. LLMs can syn-
thesize content not exactly seen in their training set [41]. They can
also combine content in the training set in novel and surprising
ways [73]. On the other hand, they are highly complex and unpre-
dictable tools, e.g., since the paper’s submission initial evaluations
suggest behavior changes and potential regressions in GPT-4 [15].

While the technology is still evolving, a few aspects of it are clear
right now: (1) LLMs can provide a bridge between programming
languages and natural language that have far more functionality
than past efforts [40, 43, 67]; (2) LLMs consolidate intelligence –
the same model/tooling is useful across the entire data lifecycle; (3)
LLMs integrate data with real-world context. These three strengths
of LLMs change the way that certain database problems can be
approached, as we explore next.

2.3 Related Work
Researchers in our community have long been contributing to
many of the questions we raise in this paper. They have considered
how pretrained language models [20, 47] can be used to configure
databases [65], to facilitate writing SQL queries [64], to understand
how to represent tabular data in formats more amenable to use
with the above models [13, 82] and to address problems in data
management [45, 78]. And there is similarly a large and growing
body of work on optimizations to training and inference time [50,
66, 80, 81].Even more recently, there are a few works that consider
generative large language models [52] (the target of this paper, see
Section 2.1) for data management problems. We expect that much
of the previous work will also leverage generative LLMs.

3 HARD PROBLEMS BECOME EASIER
LLMs will change many areas of data management. In this section,
we focus on problems that have been historically difficult to address
and that we think will benefit the earliest from LLMs. What were
once AI-complete problems will become trivial as we tap into AI-
capable agents; tedious but easy problems will be automated away.

3.1 Data Integration is a problem of Long Tails
Data management has provided solid solutions for query optimiza-
tion, query processing, storage management; in a varied set of sce-
narios including small devices, single-node deployments, and large

clusters. But the success on these tasks has not translated to data in-
tegration and other "hard-to-formalize" problems that we consider
core to data management and our community [21, 32]. Today, data
integration roughly means having a solution to schema matching
and mapping, entity resolution, alignment, data quality—which is
its own world—and more. Each of these problems is intellectually
interesting and the amount of work the community has poured into
it, and the progress made, is tremendous. And yet, data integration
remains a difficult challenge because of the variety of scenarios in
which it manifests, and the lack of practical tools.
Variety of Scenarios.While a SQL query expresses precisely what
data to retrieve, this degree of precision is difficult to obtain when
one tries to integrate two datasets. What does that even mean?
“Meaning” is where many issues are born: what the person who
produced a dataset meant when they designed the schema is not
necessarily aligned with what the consumer believes that schema
means. Semantic ambiguity makes data integration hard.
Tails. There are easy integration cases. And there are hard cases.
There has been much success in addressing the easy ones. An
example is program synthesis [31] for data transformations [30].
But the hard integration cases, those in the tail, mean that the
problem, as a whole, still requires tedious hand-holding by humans
that must curate and drive the wrangling process. This is related to
the famous “80% of effort analysts spend ...”.

LLMs will help in two ways. First, they will offer a new tool
to ameliorate the semantic ambiguity problem. Second, they will
assist in providing code snippets to solve the many “easy” cases at
the tail, thus reducing the need for hand-holding and increasing
the cases where integration is automated. Even general-purpose,
proof-of-concept LLMs such as ChatGPT do well in many tasks
that would be hard to automate, consider the following examples:
Us. “In a tabular dataset, I have a column named "Addresses" with
two values. The first value is "1210, S Indiana Ave" and the second
value is "3333, N Richmond St". In addition to this tabular dataset, I
have another one, with values: "North Richmond, 3333" and "South
Indiana Avenue". Could you help me align the values from the first
with the values from the second and represent the values all with one
single representation?”
ChatGPT:
# Mapping dictionary
mapping =

{ '1210, S Indiana Ave': 'South Indiana Avenue',
'3333, N Richmond St': 'North Richmond, 3333' }

Us. “standardize this address: "1210, S Indiana Ave"”
ChatGPT:

1210 S Indiana Ave, City: Chicago, State: IL, Zip code: 60605

Note that the city, state, and zip code are assumed based on the address
being "1210, S Indiana Ave". If the actual city, state, or zip code is
different, they should be replaced accordingly.

When we asked ChatGPT to combine a table with first name and
last name with one with full name it did equally well. When we
asked it to provide a code snippet to check integrity constraints of
a zip code in the US, it immediately offered a detailed program that
was easy to plug in existing code. That these cases were solved with
no effort suggests that with a bit of tuning, LLMs will be a boost
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to data integration. And the good news is that the community is
already exploring this area, consider the early Ava [37] and a more
recent vision paper on the potential of LLMs for data wrangling [52].

Still, LLMs are sometimes wrong, and, worse, subtly wrong. The
latter case compounded with humans’ confirmation biases pose a
challenge. We must make LLMs more robust and identify ways of
having them work with humans in a productive manner.

3.2 Democratizing Data Access
SQL was designed to resemble the English language [14]. The idea
was to design a language accessible to most users (at least those who
speak English). But what is better than a language that looks like
English is English. So the community has invested much in natural
language interfaces that take natural questions and translate them
into SQL [36, 44, 64].

LLMs will solve this problem for most queries: it is conceivable
that very complex queries will still require a human expert for a
while. But easing access to the bulk of queries will truly democratize
data processing. For example, when we asked ChatGPT to translate
the following request into SQL:
Us. Assume a schema with 2 tables:

em(emp_no, name, birthday, gender, hire_date, department_name)
de(dept_name, name, manager)

Can you write a SQL query that tells me, for each employee, the
manager of the department the employee works for?
ChatGPT:
SELECT e.name AS employee_name, d.manager AS department_manager
FROM em e
INNER JOIN de d ON e.department_name = d.dept_name;

The ability to interact with data management systems via natural
language also challenges the standard practice of interacting with
symbolic logic systems. For example, it would be useful if LLMs
provided an explanation of their answer, so those querying it can
verify its correctness. Indeed, ChatGPT gave a detailed justification
for the answer to the query above, which, if you noticed, does not
specify constraints, uses different naming, and refers to “em” and
“de” as the ’employees’ and ’department’ tables:

...this assumes that the em table contains a foreign key depart-
ment_name that references the dept_name field in the de table and
that the de table contains a manager field with the emp_no of the
manager. If this is not the case, you would need to modify the query
to join the tables together using their respective keys [...] if you want
to retrieve the manager’s name instead of emp_no, you would need to
join the em table again to get the manager’s name based on emp_no.

LLMs will permit more people than ever before query systems
and will facilitate interpreting and verifying the results.

3.3 Data Discovery
Data discovery is the problem of identifying and retrieving data
that satisfies an information need [26]. The problem is difficult
for at least two reasons: i) the large volume of unstructured, semi-
structured, and structured data available; ii) the difficulty in ar-
ticulating the information need. LLMs have shown a remarkable
capacity to retrieve (and formulate) relevant information, all stem-
ming from their training data which consists of a non-trivial portion

of the Internet. There will be rapid advances in adapting LLMs to
the enterprise setting, given the promise LLMs have shown to date
and the growing discovery needs. We envision a future where all
data sources within an organization are part of a large enterprise-
LLM that lets employees search for relevant information. Several
challenges impair this vision:
Scalability. LLM’s quality depends on data, compute resources,
and model size [39]. Large organizations have data. But large mod-
els will remain difficult and expensive to train, vastly reducing the
number of enterprises benefiting from such solutions. Smaller orga-
nizations will be in an even more dire situation without even having
all relevant data at hand: they may need to form coalitions with
other organizations in the same sector, as we discuss in Section 4.1.
Even for large organizations that can afford building LLMs, vector
sizes are huge and continue growing. Hardware and algorithmic
advances will help move the needled in the right direction, but
they will need to be aided by all the technical expertise developed
over decades, companies, and interactions on data access methods,
compression, and more.
Govern Data Flows. Building enterprise-LLMs requires control-
ling data flows, which remains an elusive problem. Despite the
difficulty, the renewed interest and pressure to ripe the benefits
of LLMs will bring in solutions. Those solutions must help main-
tain compliance, respect privacy, and permit other access control
restrictions. This is extremely challenging when the provenance
of the output generated by an LLM is not as easy to conceptualize
as that of, say, a SQL query. We discuss this in more detail in the
opportunities ahead (see Section 4.2).

There are already many approaches to attack this data discovery
problem using tables from the Internet [8, 19, 77], and our group
has made progress in addressing the challenge within enterprise
scenarios [72], where collecting training data is difficult. We expect
many rapid advances in the coming years.

3.4 Evolving System Support
Neural network architectures rely on large vector of vectors to store
parameters, which are growing exponentially with LLMs (i.e. GPT-
4 is rumored to have 100 trillion parameters, whereas GPT-3 has
over 175 billion parameters). These large vectors are costly to store
and query. Ideas from database systems should be explored to help
exploit access patterns, storage size, and potential indexing. For
example, prior database work has explored using columnar systems
for debugging models via effective intermediate results [69]. Similar
approaches could be used for effective versioning for incremental
training or crash-recovery. Given the scale of the vectors (both
in terms of quantity and size), moving them in and out of GPUs
introduces a number of I/O concerns that will limit scalability; ad-
dressing the scalability challenge will require codesigning hardware
and software. Consequently, moving vectors in and out of storage
or across distributed nodes will provide many opportunities for
the underlying storage systems. Another opportunity for database
systems is to provide additional support for developers. For exam-
ple, vector databases that optimize for sparse representations for
approximate similarity search. Recent projects such as Pinecone [4],
VAQ [56], and FAISS [38] explore database-centric approaches to
offering high performance vector-search functionality.

3305



3.5 A Bright Future, Not without Challenges
As we learn how to use LLMs to solve data management problems,
we anticipate a host of new associated challenges:
ETL Nightmare. Briefly, ETL software moves data from A to B,
possibly changing its format on-the-fly. Many pipelines are exceed-
ingly complex to build because they must target every special case
in the data, e.g., transforming dates no matter the format in which
they appear. LLMs will make building ETL pipelines faster because
they will help developers target these numerous tail events more
easily. Lowering the barrier to building these ETL pipelines will
result in an increase in the total number of ETL pipelines, thus
raising maintenance costs. Reigning over the increasing complexity
will require novel contributions.
Trust. All the potential problems of LLMs in general scenarios
apply to data management as well. If an analyst obtains a SQL
query from the LLM, can they trust the SQL query to perform the
operation they wish? An increased ability to explain and justify
answers will be needed across the board, and that includes data
management as well. Techniques to memoize previously working
answers, and to marry information retrieval with LLMs will surely
help achieve this goal.
Updating LLMs. Today’s LLMs are static. The current version of
ChatGPT (May 24th, 2023) was trained with data from months ago.
Incorporating new data into LLMs without expensive retraining
is a challenge. Successfully tackling this challenge will require a
combination of system and machine learning contributions.
Lack of data.While the open Internet is full of rich data sources,
this is not always true in enterprises, where data may be in semi-
structured and structured formats. Ensuring this data can be in-
corporated into LLMs will likely demand changes in the training
procedures. However, today’s LLMs are already doing a great job
in producing structured programming language snippets, and the
efforts in table representation [8, 77, 82] are a good indication that
this challenge will be addressed soon.

4 NEW HORIZONS
LLMs will introduce new opportunities. In this section, we discuss
a few lines that our group is working on and that we believe the
data management community has much to contribute.

4.1 Incentivizing Data Sharing
Today, LLMs are built and operated by large companies. Soon, they
will be accessible to many more. But they will remain quite expen-
sive to train and to deploy. There are two scarce resources:
Collecting Domain-Specific Data. Organizations that want to
train LLMs on their domain may not have sufficient data to train
good models and would benefit from forming coalitions with others.
Provisioning Sufficient Compute. There is a tension between
building smaller (cheaper) LLMs, and scaling them to achieve more
capabilities. For the foreseeable future, training LLMs will remain
expensive, posing a barrier for many organizations.

This introduces several opportunities. First, scarcity of data and
compute will incentivize the creation of LLMs as a “public com-
mons”: models trained by governments and made available to their

citizens, thus avoiding full dependence on private organizations.
We already see efforts in this direction, including the non-profit
LAION [59] that collects data from the crowd and builds open
source models, and petitions by scientists in Europe and the US
to get their governments to build open-source LLMs. Plus, online
repositories of datasets and models such as HuggingFace [76] and
OpenML [68] will continue to grow.

Second, we will see an increased need for the formation of data-
sharing consortia, groups of organizations that collaborate with
each other to address the problems introduced by scarce resources.
Data-sharing consortia helps in two ways: i) participants pool their
data, leading to access better training datasets; ii) participants cost-
share the training and deployment of these models.

The data management community—together with collaborators
in relevant disciplines such as economics, mechanism design, and
human-computer interaction—has an opportunity to contribute to
the design of platforms to incentivize and facilitate data sharing.

4.2 Who’s data is it? Provenance in LLMs
Over the last few decades, large Internet companies such as social
networks and search engines have leveraged individuals’ data to
create a profitable ad business. The numerous problems that stem
from the indiscriminate collection of this information will soon
propagate to LLMs, which are built off data available on the open
Internet. New terminology such as “surveillance capitalism” [83],
“data dividends” [71], “data-as-labor” [57] has appeared to describe
the problem and potential solutions. No solution has taken ground
yet, although there is a renewed interest triggered by the public
becoming aware of the downsides of indiscriminate data collection.
A question of ownership.Who owns the data used to train LLMs?
Are those who provide the data aware? do they consent? and if
so, are they adequately compensated for their contribution? Today,
the answers to these questions are negative, and without any inter-
vention, they will remain so. Companies leveraging data without
attribution will be a growing problem. If individuals fromwhom the
value of these models stems (whether via the code they publish on
GitHub, their blog posts, and other contributions) are dispossessed
of their contribution, LLMs cannot grow in a profitable way for so-
ciety. And if we lose track of what input data led to an LLM output,
we won’t reign in the incoming challenge of detecting and address-
ing non truthful and biased outputs, which may be weaponized as
misinformation. A full solution to these problems is complex but
keeping track of provenance must be part of such a solution.
Provenance as an enabling mechanism. The challenges of un-
derstanding the provenance of LLMs are daunting. At a minimum,
we should be able to tell whether a data source was used as part
of an LLM. More challenging, we must be able to associate output
with the input data. We will then need to define a notion of “con-
tribution” that measures how much is the output based on input
sources. This is where the difference between model and database
blurs. In databases, the attribution can be solved using provenance
techniques [29] to determine precisely the connection between out-
put and input. In models, the output is a distributed representation
over all input, making it more challenging to establish a connection.
Value data as we value grain. Perhaps a more adequate model
to attribute outputs to inputs is to relinquish the goal of fine-grain
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connection and instead concentrate on classifying input data into
a discrete set of grades, each of which corresponds to a degree of
data quality. This is inspired by how wheat farmers in the late 19th
century proposed a grading system for their wheat, later passed
by Congress on the Federal Grain Standards Act [9]. This grad-
ing system is widely recognized as a step forward in building a
better wheat market, one that even led to the formation of “pools”
(see Section 4.1) [33]. This grading system would standardize data,
avoiding the need for fine-grained valuation, and transforming that
challenging problem into a simpler classification of data into grades.
Solving the economics of making such a mechanism work is an in-
teresting problem. Data management must play a role in providing
the tooling and infrastructure to implement such mechanisms.
On compensating contributors. And after a quality is assigned,
the remaining problem is to adequately compensate contributors.
Monetary compensations are just one type. But many of the most
successful compensations in CS are reputation-based, such as the
reputation associated with contributing to the Linux Kernel or other
influential open source projects.

An appropriate reaction to the challenges may establish prove-
nance as a first-class citizen that is expected in a kind of new "social
contract" i.e., consumers of LLMs outputs will demand knowing
where their data came from and how it came to be, thus putting
upstream pressure on the systems used to generate such data. This
would have positive repercussions way beyond the use of LLMs.

4.3 Data Governance via Data Markets
LLMs are revitalizing a long-running discussion on the governance
of data, including questions of privacy, attribution, and value. For
example, OpenAI has been criticized for keeping the LLMs they
train closed without giving attribution to the otherwise often public
sources of data used to train the models. Data governance is not a
traditional data management problem but it must become one as
it will continue growing in importance with the development of
LLMs and the continued reliance on data. Our vision is that data
markets understood as environments where agents exchange data
are an approach to address data governance as we explain next.

Applying this “data market lens” helps articulate problems of
data governance, control of data flows, attribution, liability, and
value extraction. For example, if we apply this lens to the problem
of incentivizing data sharing (Section 4.1) one can immediately rec-
ognize the agents as the participating organizations, the exchange
as the pooling of these resources, and data as the main resource
exchanged to build and operate LLMs. And, when applied to the
problem of ownership (Section 4.2), the lens concentrates on the
agents’ incentives and preferences. In thatmarket, agents contribute
to producing a model that will then affect other agents. We want
to ensure the incentives and preferences of agents are honored ac-
cording to a standard of social welfare. What this standard should
be is up to the environment where the market operates. It could be
a self-organized body of organizations or individuals. Or it could
be a government. Whatever it is, we have no way of enforcing that
today because these ideas are growing organically (e.g., pushed by
organizations that naturally seek to further their own agenda). This
growth is good news for innovation only if paired with appropriate
responsibility towards affected citizens.

5 CONCLUSION: WHAT DOES CHATGPT
“THINK”?

Us: I would like to know your opinion on whether LLMs will disrupt
data management, and how can we make sure the combined used of
LLMs and databases will be productive.
ChatGPT: As an AI language model, I don’t have personal opinions,
but I can provide you with some insights and perspectives on the topic.

LLMs have the potential to impact data management by enabling
users to interact with data using natural language. This can reduce
the need for technical expertise and make data more accessible to a
wider range of users. However, LLMs also introduce new challenges,
such as ensuring the quality of the generated output, and addressing
ethical and legal concerns regarding privacy and ownership.

To ensure the productive use of LLMs in combinationwith databases,
it is important to establish guidelines for their integration. This in-
cludes developing best practices for data preparation, model training,
and output validation, as well as addressing issues related to data
privacy, security, and governance. It is also important to invest in ed-
ucation and training to ensure that users understand the capabilities
and limitations of LLMs, and can effectively use them in conjunction
with traditional database management tools and techniques.

In summary, while LLMs have the potential to disrupt data man-
agement, their productive use requires careful consideration of both
the opportunities and challenges they present, and the development
of appropriate guidelines and standards to ensure their effective inte-
gration with traditional database management techniques.
Us:When considering how LLMs will affect data management, give
me a brief worst case scenario and a brief best case scenario.
ChatGPT: Sure, here are brief worst case and best case scenarios
regarding the impact of LLMs on data management:

Worst case scenario: LLMs become the primarymethod for querying
and analyzing data, leading to a decline in the use of traditional
databases and causing significant disruption in the data management
industry. This could lead to a loss of jobs for professionals in the
database management field and a lack of trust in the accuracy and
security of LLM-generated insights.

Best case scenario: LLMs are integrated with traditional databases
to improve data management capabilities, leading to more efficient
and accurate querying and analysis of data. The use of LLMs allows for
more intuitive and user-friendly interfaces, making data management
more accessible to a wider range of users. This could lead to greater
insights and discoveries from data and more innovative uses of LLMs
in the data management industry.
Final Word (Us): This computer generated discussion shows that
LLMs mark an unprecedented improvement in natural language
capabilities. We will leave the readers with a single question that
summarizes the vision of this paper: Should Chat-GPT have been
included as an author?
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