
Check Out the Big Brain on BRAD: Simplifying Cloud Data
Processing with Learned Automated Data Meshes

Tim Kraska∗
MIT CSAIL

Amazon Web Services
kraska@mit.edu

timkrask@amazon.com

Tianyu Li∗
MIT CSAIL

litianyu@mit.edu

Samuel Madden∗
MIT CSAIL

madden@csail.mit.edu

Markos Markakis∗
MIT CSAIL

markakis@mit.edu

Amadou Ngom∗

MIT CSAIL
ngom@mit.edu

Ziniu Wu∗
MIT CSAIL

ziniuw@mit.edu

Geoffrey X. Yu∗
MIT CSAIL

geoffxy@mit.edu

ABSTRACT
The last decade of database research has led to the prevalence of
specialized systems for different workloads. Consequently, organi-
zations often rely on a combination of specialized systems, orga-
nized in a Data Mesh. Data meshes present significant challenges
for system administrators, including picking the right system for
each workload, moving data between systems, maintaining con-
sistency, and correctly configuring each system. Many non-expert
end users (e.g., data analysts or app developers) either cannot solve
their business problems, or suffer from sub-optimal performance
or cost due to this complexity. We envision BRAD, a cloud system
that automatically integrates and manages data and systems into
an instance-optimized data mesh, allowing users to efficiently store
and query data under a unified data model (i.e., relational tables)
without knowledge of underlying system details. With machine
learning, BRAD automatically deduces the strengths and weak-
nesses of each engine through a combination of offline training and
online probing. Then, BRAD uses these insights to route queries
to the most suitable (combination of) system(s) for efficient execu-
tion. Furthermore, BRAD automates configuration tuning, resource
scaling, and data migration across component systems, and makes
recommendations for more impactful decisions, such as adding or
removing systems. As such, BRAD exemplifies a new class of sys-
tems that utilize machine learning and the cloud to make complex
data processing more accessible to end users, raising numerous new
problems in database systems, machine learning, and the cloud.

PVLDB Reference Format:
Tim Kraska, Tianyu Li, Samuel Madden, Markos Markakis, Amadou Ngom,
Ziniu Wu, and Geoffrey X. Yu. Check Out the Big Brain on BRAD:
Simplifying Cloud Data Processing with Learned Automated Data Meshes.
PVLDB, 16(11): 3293 - 3301, 2023.
doi:10.14778/3611479.3611526

∗All authors contributed equally to this paper.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611526

1 INTRODUCTION
The last decade has seen an explosion of specialized database en-
gines for both transactional and analytical workloads following
the “one size does not fit all” mantra [71]. Today, Amazon Web
Services (AWS) alone lists nearly 30 different services under its “An-
alytics” (e.g., Redshift, EMR, Athena) and “Database” (e.g., Aurora,
DynamoDB, DocumentDB) categories. This is because no single sys-
tem can provide adequate performance for all of an organization’s
data needs. For example, an S&P 500 corporation we are familiar
with uses, among other services, a dozen Amazon Aurora databases
for their website and ERP systems, MemoryDB for caching, S3 man-
aged by AWS Lake Formation and queried by AWS EMR for their
logs, over ten different Redshift clusters for dashboards and data
science, and DocumentDB for content serving. Such Data Mesh
architectures [20] are now common in organizations of all sizes.

Building and maintaining such a data mesh is challenging. Ex-
perts must pick the right combination of engines based on deep
understanding of the strengths and weaknesses of each engine,
devise custom solutions to move data between engines, track data
locations and formats, and actively evolve the mesh over time.
This leads to highly complex systems that require large teams of
skilled engineers to operate. Meanwhile, data mesh users (e.g., data
scientists or app developers) often lack the expert knowledge to
quickly identify which exact service(s) to use for their purposes,
which leads to poor user experience and sub-optimal use of the data
mesh. Furthermore, modern data infrastructure is often deployed
on the public cloud [27] with fine-grained auto-scaling capabili-
ties [37]. Cloud data mesh users must additionally optimize for
cost-efficiency, besides performance. The ensuing complexity is
quickly growing beyond human capabilities. Previous efforts have
focused on automating individual systems (e.g., auto-scaling data
warehouses) [9, 42, 56, 62] or optimizing for a single metric (e.g.,
knob tuning for performance) [39, 40, 76, 78, 87], whereas we call for
a more holistic approach that navigates the complex trade-offs that
arise when when choosing which systems to use and which data to
place on them to minimize costs and / or maximize performance.

In this paper, we argue that the way forward is to build highly
autonomous, learning-powered Self-Organizing Data Meshes, and
present our vision for the first such system called BRAD. BRAD
uses automation techniques, instead of human experts, to assemble,

3293

https://doi.org/10.14778/3611479.3611526
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611526


Table 1: Runtime of two queries on Aurora and Redshift.

Query Aurora Redshift Performance Gap Joint

19b 0.18 s 3.1 s 17× —
19e 9.6 s 2.6 s 3.7× 1.8s

optimize, and evolve data meshes in the cloud. Users largely inter-
act with BRAD through a unified interface under the illusion of a
single system with one copy of the data and one (SQL-based) API.
Underneath the hood, BRAD uses ML models to extract insights
about the strengths and weaknesses of available engines, discover
workload patterns, smartly create and evolve the data mesh infras-
tructure and optimally distribute the workload among the available
engines. If needed, users can bypass the one-size-fits-all interface
and directly intervene in some underlying systems while leaving
others to BRAD. With BRAD, developers can enjoy increased pro-
ductivity from a strong abstraction and simple interface, which
hides away the management of various specialized systems; organi-
zations can enjoy performance improvements and cost savings as
our models uncover insights and adapt the data pipeline at a speed
and frequency infeasible for human experts; and database internals
developers can enjoy greater impact, as BRAD lowers the cost of
innovation adoption by automating workload migration.

BRAD’s vision presents several novel technical challenges. BRAD
needs a query planner that can cleverly divide work between en-
gines, supported by an accurate, learned model for query perfor-
mance on different engines. Then, BRAD must leverage sophisti-
cated strategies to navigate the complex trade-off space of data
mesh design. To make BRAD practical, we must also develop novel
learning techniques to adapt to unseen workloads and deployments
and solve challenges around data synchronization and consistency.
In this paper, we present the architecture of BRAD, outline our plan
to address these challenges, and present promising initial results.

2 MOTIVATION AND BACKGROUND
We will first present examples of counter-intuitive optimizations
on a simple data mesh: an OLTP engine and an OLAP engine.

2.1 Motivating Scenarios
OLAP systems are not always better at analytics. Conven-

tional wisdom suggests that for the best performance within this
simple data mesh one should execute transactional queries on the
OLTP system (e.g., Aurora), analytical queries on the OLAP sys-
tem (e.g., Redshift), and periodically synchronize between the two.
This is not true; as a counter-example, we run query 19b from the
Join-Order Benchmark [46] (an analytical query) on Aurora and
Redshift on the IMDB dataset, along with a modified version de-
noted 19e. Both queries have the same join template, but 19e omits
some highly selective filter predicates (on title, cast_info, and
name). As shown in Table 1, we observe that Aurora is 17× faster
than Redshift on 19b, but 3.7× slower on 19e. This is because the
selective filters in query 19b allow Aurora to leverage its indexes
for the join. Redshift, lacking indexes, must resort to table scans for
both queries. Had one chosen to process 19b on Redshift, based on
the query type, they would see an order-of-magnitude slowdown.

Figure 1: The cost of two setups across workload scales. We
label the changes made to maintain latency targets.

The Best Execution Plan may be Federated. The best execu-
tion plan for a given query on a data mesh may need to combine the
strengths of different engines. To illustrate, we manually split query
19e from Table 1 into two sub-queries: sub-query 1 can be optimally
executed using index scans and joins, which only Aurora supports,
so we route it to Aurora. We export the results as a CSV file, which
we then import into Redshift. Sub-query 2 lacks filter predicates,
so it is more efficient to execute on Redshift, a column store. Per
Table 1 this joint execution plan is indeed faster than either Aurora
or Redshift alone. The reported runtime includes 0.8 seconds to
transfer the intermediate results, which could be further optimized.

Knowing When to Scale is Non-Trivial. Operating cloud data
infrastructure also invites cost optimization, as modern systems
support fine-grained resource scaling. Ideally, one would only pay
for the resources they need at any given time, but doing so is
not easy. To illustrate this, we ran a simple e-commerce workload
(consisting of sales transactions and periodic analytical reporting
queries), representing a typical company’s data needs as it grows,
against two setups: a single instance deployment of Amazon RDS
PostgreSQL and a deployment of RDS PostgreSQL and Redshift,
along with an ETL pipeline that periodically copies the latest writes
from RDS into Redshift. The former setup is simpler to maintain and
more economical at small workload scales, but the latter setup may
performmuch better at larger scales. Figure 1 shows our results. The
RDS-only deployment starts as the most economical setup, but at
a large enough scale (scale factor 8) a combined RDS and Redshift
setup becomes cheaper. Importantly, in real cloud deployments,
such inflection points tend to be dynamic, subject to changing
workloads, pricing models and offerings, etc. Human developers
are unlikely to be able to always follow the optimal cost line.

2.2 The Case for a New Approach
As shown, automated solutions that manage a data mesh and decide
how to execute user queries are needed. We argue that we should
cast the challenge of hybrid workload processing as automated
system composition. BRAD encompasses three novel directions:
• BRAD is a backward-compatible, incrementally-deployable solu-

tion on top of existing data meshes. Advanced users can directly
access underlying systems where necessary, or use BRAD’s pro-
grammable policy interface to restrict its interaction with the
data mesh. This minimizes impact on legacy workloads and con-
trols the pace of transition to autonomous operation.

3294



Table 2: Differences between BRAD and related work.

System In
cr
em

en
ta
l

A
do

pt
io
n

Sp
ec
ia
li
ze
d

Fe
at
.S
up

po
rt

M
ul
ti
pl
e
D
at
a

M
od

el
Su

pp
or
t

A
ut
on

om
ou

s
O
pe

ra
ti
on

AlloyDB (HTAP System) [30] No No No No
DeltaLake (Lakehouse) [11] Some Yes Some No
BigDAWG (Polystore) [25] No Some Yes No
Oracle Autonomous Database [61] No No No Yes
BRAD Yes Yes Some Yes

• BRAD is a cloud-native system optimizing not just for perfor-
mance, but for a complex cost-performance trade-off curve, with
many more degrees of freedom than conventional ML-optimized
data systems: it can dynamically change the provisioning of sys-
tems, spin up new systems, shift workload and data between
systems, and take advantage of serverless [5, 7] offerings.

• BRAD is a learned system that leverages machine learning tech-
niques to automatically extract insights about the strengths and
weaknesses of available engines, discover workload patterns,
smartly create and evolve the data mesh infrastructure and dis-
tribute the workload among the available engines optimally.

Below, we compare BRAD to prior work (summarized in Table 2).

HTAP systems. Recent advances in HTAP systems have shown
it possible to build engines that match specialized engines across
scenarios [1, 26, 35, 41, 45, 70]. Compared to BRAD, HTAP systems
may be more efficient for specific workloads, as they may optimize
execution holistically, across engine boundaries. However, HTAP
systems are replacements for existing systems; because of the com-
plexity of migration, we believe modern enterprises are unlikely to
adopt HTAP systems for existing and legacy applications. BRAD
instead helps organizations manage their existing infrastructure,
rather than requiring them to move to a new system. In addition, if
an HTAP system excels at certain workloads, BRAD can incorporate
it into the data mesh and take advantage of its performance.

Data Lakehouses. Data lakehouses process, curate, and store
data directly on a cloud data lake [12]. For the user, BRAD looks
like a data lakehouse: a unified data storage layer that supports
various workloads and automatically transforms and prepares data.
However, the emphasis and implementation of the two approaches
are quite different. BRAD focuses on automatic management of
multiple structured data engines, while lakehouses typically rely
on open direct-access data formats and support unstructured and
semi-structured data as a first-class concern. If such concerns are
relevant, lakehouses can simply be incorporated into a data mesh as
a component system, and therefore leverage BRAD. Our techniques
may also benefit lakehouses that support multiple structured data
frontends (e.g., SparkSQL and Presto on Delta Lake).

Polystores and Federated Databases. Prior work on polystores
[2, 3, 24, 65, 79, 80, 88] and federated databases [13, 15, 16, 28, 36,
38, 66, 69, 86] resembles BRAD in serving diverse data process-
ing needs with a collection of specialized systems under a unified

Figure 2: BRAD intelligently serves a unified data API with
specialized engines, leveraging the modern cloud to provide
an auto-scaling, management-free DBMS

query interface. These systems focus on tackling heterogeneous
data models and query languages, leaving it up to developers to de-
ploy, maintain, and curate the underlying systems. Instead, BRAD
automates the management of the underlying systems and jointly
optimizes query execution with system composition and data place-
ment. In short, BRAD is the next-generation polystore, emphasizing
autonomy more than heterogeneous data models and federation.

Self-Driving and Instance-Optimized Systems. There has
been a wealth of work in instance-optimization techniques [22, 23,
42–44, 52–54, 57, 84, 85], which allow systems to automatically
specialize themselves to a specific workload’s characteristics; and
self-driving systems [49, 62–64, 78], which automate the running of
complex systems that previously relied on regular human interven-
tion. BRAD builds on top of this important work, but must (i) tackle
additional complexity in deciding how systems compose with one
another, including dynamic data placement and cross-system query
optimization and planning and (ii) optimize for a more complex, dy-
namic objective (e.g., cost-savings and resilience to future business
shifts in addition to raw performance) due to its cloud setting.

3 BRAD OVERVIEW
We now introduce our proposed architecture for BRAD. As shown
in Figure 2, each instance of BRAD sits atop an ensemble of backend
data processing engines; each engine excels at a different workload
or provides a different cost-performance trade-off. We assume that
each component engine supports the relational model and SQL to
some degree. BRAD users define schema, issue queries, and execute
transactions against a unified SQL interface. BRAD maintains front-
end servers that act as entry points for translating user queries into
an execution plan using a learned query planner. In the simplest
case, the planner routes the query to one engine based on predicted
performance, data availability, and dynamic information such as
system load. In other cases, BRAD may split a query into sub-
components on different engines and combine the results.

To power the learned planner, BRAD must derive insights about
each engine, including supported features, pricing, and performance

3295



on different query types. Such information, along with statistics
collected by the engines, drives BRAD’s cost model. We envision
that performance insights are transferable across deployments and
workloads on the same engine. It is therefore possible to obtain
reasonable cost models through experiments in offline training de-
ployments instead of exploring in production. By collecting large
volumes of workload information and performance metrics in the
cloud setting, BRAD can avoid relying on human-supplied infor-
mation (e.g., that AWS Aurora is optimized for transactions) and
instead discover them from real workloads and environments.

Beyond query execution, BRAD maintains and evolves the data
mesh to match workload changes (e.g., business growth or demand
spikes). BRAD first uses historical data for workload forecasting; the
forecast is used by an intelligent policy engine to trigger necessary
actions (e.g. increasing resources for an engine). Perhaps the most
important policy decision regards data placement across engines.
For example, if a user frequently runs analytics on transactionally
hot tables, BRAD may need to replicate the tables in an analytical
engine and trigger frequent batch export jobs to keep them in sync.
The problems of query planning and mesh optimization constitute
a joint optimization problem. For example, BRAD may decide to
under-provision Redshift in a mesh, and instead route burst work-
loads to a serverless engine such as Athena. Alternatively, BRAD
may over-provision an OLTP system such as Aurora to handle some
analytical workloads (e.g., to take advantage of indexes).

Lastly, BRAD must be practical: organizations already operate
data meshes and want to avoid disruptions. BRAD is designed for
compatibility and gradual adoption: one may deploy BRAD on the
existing data mesh and it can immediately start serving users with
the single-interface experience after some initial bootstrapping.
Meanwhile, legacy workloads can still interact with the underlying
engines directly, bypassing BRAD. To aid gradual adoption, BRAD
lets users apply policy filters. For example, a user may enforce that
some table is always loaded into Redshift, or that Redshift is always
provisioned with a minimum amount of resources. Policy filters
can also be used to run BRAD in advisory mode, by intercepting
migration decisions and asking users for permission. This addresses
the corner cases where BRAD is faced with underlying systems
with weaker semantics (e.g., DynamoDB) or non-SQL interfaces
(e.g., Redis). For example, BRAD cannot unilaterally migrate from
a relational DBMS to a lightweight key-value store, as users may
anticipate a future feature that needs strong transactional support.

4 RESEARCH DIRECTIONS
4.1 Learned Query Planner
Central to BRAD is a learned query planner that maps queries
to execution plans, considering factors like data availability, the
strengths of each engine, and each engine’s load.

4.1.1 Execution Time Cost Model. Arguably, the core component
of a learned planner is a cost model that predicts the query execu-
tion time for each of the underlying engines, which the planner can
use to route a query to the engine with the lowest predicted execu-
tion time. Developing this model poses new research challenges.
For example, it is necessary to predict a query’s performance on

engines and hardware that may not yet have been tested for the
user’s current workload and dataset. Therefore, we must transcend
existing approaches [47, 50, 52, 53, 55, 72], which use previously
executed workloads on a specific engine as training data.

Recently, a dataset-agnostic cost model [33] was proposed to
predict the runtime for unseen workloads. However, directly ap-
plying this model in BRAD is sub-optimal for three reasons: (i) the
model requires the query execution plan as input, which may not be
available, as some engines may not support or contain certain tables
to execute functionality that produces a query execution plan (i.e.,
EXPLAIN); (ii) the model allows dataset-specific information leakage
into the model, influencing the performance on unseen workloads,
and (iii) the model is tailored to a single-node PostgreSQL engine
with fixed hardware, which may not be generalizable.

To tackle problem (i), we designed a transferrable cost model
that takes a SQL query as input and outputs its estimated runtime
in PostgreSQL. For problem (ii), we provide our cost model with the
true cardinalities during the training phase to prevent the model
from learning dataset-specific knowledge (e.g., cardinality). Our cost
model only needs base-table and pair-wise join cardinalities, which
are relatively easy to obtain either from the underlying engines
directly or by using a learned cardinality estimator [58, 83].

These two ideas already provide better generalizability than Hil-
precht’s model [34]. As a preliminary experiment, we use the same
datasets and analytical query workloads as in [34]. We train our
cost model on 19 datasets and test it on 2,000 analytical queries
on the unseen IMDB dataset. For this experiment, we provide our
model with the true cardinalities for training and testing queries.
In practice, during testing time, our cost model would not have
access to the true cardinality. Therefore, we propose integrating a
lightweight cardinality corrector from our recent research [59] that
takes DBMS estimates as input and adaptively evolves when ob-
serving more queries. Comprehensive experiments [59] have been
conducted to show the accuracy and practicality of this cardinality
corrector. Our experiments in Figure 3 show the robustness of our
cost model against Hilprecht’s [33]. Figure 3 shows that our cost
model, when trained on queries from 19 datasets with less than
15 s runtime (3(a)) or up to two join predicates (3(b)), can gener-
alize to unseen IMDB queries with longer runtimes or more join
predicates, respectively (Q-error is defined as max{predicted/true,
true/predicted} - better estimates have a Q-error closer to 1).

For problem (iii), we use lightweight parameterized functions
to predict query performance on different hardware. Figures 3(c)
and 3(d) show our ability to accurately predict an example query’s
runtime on instances with unseen types (3(c)) or node counts (3(d)),
given its runtime on current hardware. We are currently integrating
all these components to derive an accurate and robust cost model.

4.1.2 Cross-Engine Translation. Different component engines of
BRAD may support different SQL dialects, data types, or special-
ized operators and therefore be mutually incompatible. To fully uti-
lize underlying engines, BRAD must be able to potentially rewrite
queries for different engines. Writing manual rules for translation
between systems is challenging and error-prone. Recent work in
automatic code understanding provides an alternative solution
[18, 75]. Specifically, large language models (LLMs) trained on the
documentation of each engine can translate special features and

3296



(a) Query Runtime (b) Number of Joins (c) Instance Type (d) Number of Nodes

Figure 3: Cost model performance overview: (a), (b) Our cost model generalizes to unseen queries with longer runtimes or more
join predicates. (c), (d) We accurately predict query runtime under different instance types and/or number of nodes.

possibly generate UDFs in the process.We illustrate the feasibility of
this approach by using GPT-4 to convert the Athena query SELECT
CONTAINS (’10.0.0.0/8’, IPADDRESS address) to Postgres-
and Redshift-compatible SQL, where it needs to use a Python UDF
for the missing IP address processing feature. For Postgres SQL,
the LLM correctly used the inet type and the » operator. For Red-
shift, the LLM correctly generated a Python UDF using ipaddress
(part of the standard library) to check if an IP address is within
a subnet. These early results show that it is possible to represent
query semantics as a dialect-independent embedding. However,
relying solely on LLMs is not yet practical due to the performance
overhead and hallucination risk. Developing robust, interpretable
translation schemes with LLM-like techniques instead of static rules
is a promising research direction to address this challenge.

4.1.3 Multi-System Query Plans. As shown earlier, BRAD can
sometimes achieve better performance by combining results across
engines. Similar ideas have been explored for federated query exe-
cution [21, 29, 31, 32, 38, 48, 67, 69, 74], but these systems (i) largely
focus on data integration and easy querying rather than perfor-
mance, and (ii) often rely on manual rules or heuristics. We envi-
sion tackling multi-system query planning as an extension of the
single-node query optimization problem [68]. Each operator will
have variants backed by different engines, along with data move-
ment and results merging operators. This framing will also allow
BRAD to incorporate standalone components, such as a serverless
or hardware-accelerated hash join operator, opening up exciting
new opportunities. The optimizer then must efficiently explore the
plan space, using system statistics and the cost model to pick the
best plan. Recent developments have yielded learned query opti-
mizers that match or outperform traditional methods; we plan to
leverage such optimizers in this new environment. Lastly, a resilient
execution layer must execute the plan and hide away distributed
complexity and possible anomalies due to transient failures [8, 17].

4.2 Joint Query-Mesh Optimization
Beyond executing queries, BRAD optimizes the data mesh struc-
ture. Unlike self-driving databases [62–64], BRAD faces dynamic
trade-offs among query performance, cost, service level agreements,
anticipated growth, etc. The mesh architecture impacts query plan-
ning and vice-versa, yielding a joint optimization problem. BRAD
needs several learning-based methods to tackle this.

Figure 4: BRAD changes Redshift instance types to reduce
cost (bottom) as it correctly predicts that query latency will
remain below a user-specified ceiling (top, shaded).

4.2.1 Configuration and Placement Searching. BRAD optimizes
the mesh in two major ways: (i) individual engine configuration,
and (ii) data placement. At a high-level, BRAD picks a deployment
type (e.g., off vs. serverless vs. provisioned); provisioning (e.g., VM
type); and various knobs (e.g., number of nodes, cache size) for each
system and then decides how to place, replicate, and partition data
across engines to best serve a workload. The resulting search space
is exponential in the number of tables and configurations, which is
prohibitively large for practical deployment.

We envision that BRAD will first adopt a heuristics-based ap-
proach, using simple observations (e.g., tables referred to in a single
query should be placed together, transactions should be routed to
Aurora) and optimization strategies (e.g., [78]) to narrow down the
search space. Then, for each candidate mesh configuration and data
placement, BRAD can take advantage of its cost model to predict
the performance of a forecasted workload [51, 73], which is then
combined with the dollar operating cost of the configuration and
other metrics to determine how desirable the candidate is.

The holy grail of mesh optimization, however, is to explicitly
learn to optimally operate a data mesh. BRAD can either choose to
learn to score each mesh configuration, or directly learn a policy to
evolve it [81, 82]. The challenge is that users of BRAD are unlikely to
tolerate the amount of trial and error required for a learning-based
method to arrive at a stable and performant configuration. BRAD
must therefore devise new techniques to quickly adapt learned
models to new, unseen operating conditions. One possible avenue

3297



of approach is to leverage BRAD’s cloud-native setting and learn
from both the large corpus of passive observations from client
deployments and carefully curated shadow deployments that are
able to experiment on what-if scenarios (see Section 4.2.2).

Figure 4 shows an example of BRAD optimizing a data mesh; we
plot query latency (top) and monthly Redshift cost (bottom) over
time. In this example, a user deploys BRAD on a mesh with Redshift
running on one ra3.xlplus node and tells BRAD that their queries
should finish within 10 seconds (shaded region in the figure). When
BRAD’s mesh optimizer runs, it predicts each query’s latency across
Redshift provisionings using a learned regression model; the model
uses the query’s measured latency on the current provisioning and
the ratios between the hardware resources (vCPUs and amount of
memory) across the two compared provisionings. BRAD correctly
predicts (the dashed lines on the graph) that all three queries will
run under 10 seconds on one dc2.large node—Redshift’s most
economical instance type. BRAD applies this change and reduces
the mesh’s monthly Redshift cost by 4× (bottom graph).

4.2.2 System Exploration and Transfer Learning. BRAD must rely
on automated, learning-based methods to explore each engine’s
strengths and weaknesses due to the sheer number of engines
BRAD must support. However, learning requires exploring unseen
configurations and execution plans, which may hurt performance
in an online environment. We aim to leverage BRAD’s cloud-native
deployment to mitigate this. Cloud providers have access to traces
of many client deployments and therefore large amounts of training
data. More importantly, they can transparently capture workload
traces and spin up “what-if” shadow deployments or experiments in-
stead of exploring on live deployments. This approach has security
and privacy implications, but we see these concerns as orthogonal
to our system. The critical challenge is whether our model can effi-
ciently transfer insights to unknown databases and deployments,
which we have briefly addressed in Section 4.1.1. We envision that
in its complete form, BRAD is able to automatically incorporate a
new engine into the mesh by first obtaining a rough performance
model of it through offline deployments running standard bench-
marks (e.g., TPC-C and TPC-H), and then fine-tuning using shadow
deployments and real client performance data.

4.3 Data Synchronization and Consistency
A key challenge in a data mesh is to correctly synchronize data
across component systems and maintain consistency where it mat-
ters, without incurring overhead elsewhere. BRAD’s automated
placement and migration decisions must address this challenge.

4.3.1 Session-Based Freshness Guarantees. Consistency is a nat-
ural concern in BRAD, as it encompasses multiple engines that
cannot always be synchronized performantly. Since BRAD is exter-
nally a unified system, stale reads and distributed anomalies would
violate its abstraction. To avoid them, we propose session-based
freshness guarantees (similar to Daudjee et al. [19]), where clients
issue queries within explicitly defined sessions. Within a session, a
query runs against a consistent snapshot of the database and future
queries will run against the same, or a later, snapshot. For example,
a session 𝑆 issuing a large data lake query 𝑄1 may use a snapshot
on cloud storage, but if 𝑆 then issues a transactional update 𝑄2, it

is promoted to the latest snapshot. A future analytical query 𝑄3
will wait for the analytic engine to receive 𝑄2’s changes. Users
can still avoid interleaving analytics/transactions within a session
to minimize latency. These guarantees can be achieved through
epoch-based logical snapshots [77] and tuple multi-versioning [14].
The challenge is to do so without modifying the underlying engines
or introducing excessive runtime overhead.

4.3.2 Auto-ETL. In addition to providing consistency guarantees
across table replicas, BRAD needs to support more complex data
dependency relationships between tables—typically handled by ex-
tract, transform, and load (ETL) jobs today. For example, ETL jobs
may be used to transform the tables in a transactional DBMS before
loading them into the data warehouse (e.g., to de-normalize the
tables, re-arrange the tables in a star schema [60], or to compute
aggregate statistics). Currently, users often rely on handcrafted
transformation logic and ETL frameworks such as AWS Glue [10]
or EMR [6]. This setup is both tedious for users and restrictive
for BRAD, as users typically hard-code the source and destination
systems of such transformations in black box logic—preventing
BRAD from freely placing tables. Instead, we envision that BRAD
will support a higher-level declarative API for specifying table
dependencies (e.g., table B is obtained by running the given SQL
statements on table A), which allows BRAD to (i) change the loca-
tions of the inputs and outputs to a transformation (e.g., to migrate
a table off of an engine), and (ii) select the system(s) on which to
execute a transform (e.g., using spare capacity on Redshift or new
features such as zero-ETL [4] instead of AWS Glue or EMR).

5 CONCLUSION
BRAD shows a new way to assemble and operate data meshes in
the cloud, relying on recent advances in automation techniques
instead of human experts. For the vast majority of end users, BRAD
significantly simplifies the operation of state-of-the-art data meshes
and allows easier derivation of timely insights from vast amounts of
data. For database researchers, BRAD lowers the barrier of adoption
by providing room for automated and user-transparent migration
to new engines where appropriate. This paper outlines our plan to
build BRAD and presents preliminary results to show the promise
of our approach. If successful, we expect BRAD to unlock the true
potential of last decade’s research into specialized data systems and
have a significant impact on the efficiency of modern enterprises.

ACKNOWLEDGMENTS
This research was supported by Amazon, Google, and Intel as part
of the MIT Data Systems and AI Lab (DSAIL) at MIT and NSF
IIS 1900933. Geoffrey X. Yu was partially supported by an NSERC
PGS D. This research was also sponsored by the United States Air
Force Research Laboratory and the Department of the Air Force
Artificial Intelligence Accelerator and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the Department of the Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein.

3298



REFERENCES
[1] Michael Abebe, Horatiu Lazu, and Khuzaima Daudjee. 2022. Proteus: Au-

tonomous Adaptive Storage for Mixed Workloads. In Proceedings of the 2022
International Conference on Management of Data (SIGMOD ’22) (Philadelphia,
PA, USA). Association for Computing Machinery, New York, NY, USA, 700–714.
https://doi.org/10.1145/3514221.3517834

[2] Divy Agrawal, Sanjay Chawla, Bertty Contreras-Rojas, Ahmed Elmagarmid,
Yasser Idris, Zoi Kaoudi, Sebastian Kruse, Ji Lucas, Essam Mansour, Mourad
Ouzzani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, Saravanan Thiru-
muruganathan, and Anis Troudi. 2018. RHEEM: Enabling Cross-Platform Data
Processing: May the Big Data Be with You! Proceedings of the VLDB Endowment
11, 11 (July 2018), 1414–1427. https://doi.org/10.14778/3236187.3236195

[3] Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu, and Stamatis
Zampetakis. 2019. Towards Scalable Hybrid Stores: Constraint-Based Rewriting
to the Rescue. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). 1660–1677.

[4] AmazonWeb Services. 2022. AWS announces Amazon Aurora zero-ETL integration
with Amazon Redshift . https://aws.amazon.com/about-aws/whats-new/2022/
11/amazon-aurora-zero-etl-integration-redshift/.

[5] Amazon Web Services. 2023. Amazon Athena. https://aws.amazon.com/athena/.
[6] Amazon Web Services. 2023. Amazon EMR. https://aws.amazon.com/emr/.
[7] Amazon Web Services. 2023. Amazon Redshift Serverless. https://aws.amazon.

com/redshift/redshift-serverless/.
[8] Amazon Web Services. 2023. AWS Step Functions. https://aws.amazon.com/step-

functions/.
[9] Amazon Web Services. 2023. Redshift Concurrency Scaling. https://docs.aws.

amazon.com/redshift/latest/dg/concurrency-scaling.html.
[10] Amazon Web Services. 2023. What is AWS Glue? https://docs.aws.amazon.com/

glue/latest/dg/what-is-glue.html.
[11] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul

Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
Michał undefinedwitakowski, Michał Szafrański, Xiao Li, Takuya Ueshin,Mostafa
Mokhtar, Peter Boncz, Ali Ghodsi, Sameer Paranjpye, Pieter Senster, Reynold
Xin, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proceedings of the VLDB Endowment 13, 12 (2020),
3411–3424. https://doi.org/10.14778/3415478.3415560

[12] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. In Proceedings of the 11th Annual Conference on Innovative
Data Systems Research (CIDR ’21).

[13] Graham Bent, Patrick Dantressangle, David Vyvyan, Abbe Mowshowitz, and
Valia Mitsou. 2008. A Dynamic Distributed Federated Database. In Proc. 2nd Ann.
Conf. International Technology Alliance (ACITA ’08’).

[14] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[15] Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. 1992. Overview
of Multidatabase Transaction Management. VLDB Journal 1 (10 1992), 181–239.
https://doi.org/10.1145/1925805.1925811

[16] Yuri Breitbart and Avi Silberschatz. 1988. Multidatabase Update Issues. In Proceed-
ings of the 1988 ACM SIGMOD International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’88). Association for Computing Machinery,
New York, NY, USA, 135–142. https://doi.org/10.1145/50202.50217

[17] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S Meiklejohn. 2021. Durable Functions: Semantics
for Stateful Serverless. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–27.

[18] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[19] Khuzaima Daudjee and Kenneth Salem. 2006. Lazy Database Replication with
Snapshot Isolation. Proceedings of the VLDB Endowment (VLDB ’06).

[20] Z. Dehghani. 2022. Data Mesh. O’Reilly Media. https://books.google.com/
books?id=jmZjEAAAQBAJ

[21] Amol Deshpande and JosephMHellerstein. 2002. Decoupled Query Optimization
for Federated Database Systems. In Proceedings 18th International Conference on
Data Engineering (ICDE ’02). IEEE, 716–727.

[22] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud Analytics Workloads. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 418–431.
https://doi.org/10.1145/3448016.3457270

[23] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proceedings of the VLDB Endowment 14, 2 (November 2020), 74–86.
https://doi.org/10.14778/3425879.3425880

[24] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, SamMadden, David Maier, Tim Mattson, and Stan Zdonik.
2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2 (August 2015), 11–16.
https://doi.org/10.1145/2814710.2814713

[25] Aaron J. Elmore, Jennie Duggan, Mike Stonebraker, Magdalena Balazinska, Ugur
Çetintemel, Vijay Gadepally, Jeffrey Heer, Bill Howe, Jeremy Kepner, Tim Kraska,
Samuel Madden, David Maier, Timothy G. Mattson, Stavros Papadopoulos, Jeff
Parkhurst, Nesime Tatbul, Manasi Vartak, and Stan Zdonik. 2015. A Demonstra-
tion of the BigDAWG Polystore System. Proceedings of the VLDB Endowment 8,
12 (2015), 1908–1911. http://www.vldb.org/pvldb/vol8/p1908-Elmore.pdf

[26] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, IngoMüller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull. 35 (03 2012), 28–33.

[27] Gartner. 2022. DBMS Market Transformation 2021: The Big Pic-
ture. https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-
transformation-2021-the-big-picture/.

[28] Dimitrios Georgakopoulos, Marek Rusinkiewicz, and Amit P. Sheth. 1991. On
Serializability of Multidatabase Transactions Through Forced Local Conflicts. In
Proceedings of the Seventh International Conference on Data Engineering (ICDE ’91).
IEEE Computer Society, USA, 314–323.

[29] Victor Giannakouris and Immanuel Trummer. 2022. Building Learned Federated
Query Optimizers. In CEUR workshop proceedings, Vol. 3186.

[30] Google, Inc. 2023. AlloyDB. https://cloud.google.com/alloydb.
[31] Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. 1997. Optimiz-

ing Queries Across Diverse Data Sources. In Proceedings of the VLDB Endowment
(VLDB ’97).

[32] JoachimHammer, Hector Garcia-Molina, Kelly Ireland, Yannis Papakonstantinou,
Jeffrey Ullman, and Jennifer Widom. 1995. Information Translation, Mediation,
and Mosaic-Based Browsing in the TSIMMIS System. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD ’95).

[33] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-
of-the-box Learned Cost Prediction. arXiv preprint arXiv:2201.00561 (2022).

[34] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2019. Deepdb: Learn from data, not from
queries! arXiv preprint arXiv:1909.00607 (2019).

[35] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-Based HTAP Database.
Proceedings of the VLDB Endowment 13, 12 (August 2020), 3072–3084. https:
//doi.org/10.14778/3415478.3415535

[36] S.-Y. Hwang, E.-P. Lim, H.-R. Yang, S. Musukula, K. Mediratta, M. Ganesh, D.
Clements, J. Stenoien, and J. Srivastava. 1994. The MYRIAD Federated Database
Prototype. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data (Minneapolis, Minnesota, USA) (SIGMOD ’94). Association
for Computing Machinery, New York, NY, USA, 518. https://doi.org/10.1145/
191839.191986

[37] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant
Yadwadkar, Joseph Gonzalez, Raluca A. Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
ArXiv abs/1902.03383 (2019).

[38] Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin. 2002. Garlic: A
New Flavor of Federated Query Processing for DB2. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data (SIGMOD ’02).
524–532.

[39] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
2020. TooManyKnobs to Tune? Towards Faster Database Tuning by Pre-selecting
Important Knobs. In 12th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’20).

[40] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino,
and Shivaram Venkataraman. 2022. LlamaTune: Sample-Efficient DBMS Config-
uration Tuning. Proceedings of the VLDB Endowment 15, 11 (2022), 2953–2965.

[41] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP & OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In Proceed-
ings of the 2011 IEEE 27th International Conference on Data Engineering (ICDE
’11). IEEE Computer Society, USA, 195–206. https://doi.org/10.1109/ICDE.2011.
5767867

3299

https://doi.org/10.1145/3514221.3517834
https://doi.org/10.14778/3236187.3236195
https://aws.amazon.com/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://aws.amazon.com/about-aws/whats-new/2022/11/amazon-aurora-zero-etl-integration-redshift/
https://aws.amazon.com/athena/
https://aws.amazon.com/emr/
https://aws.amazon.com/redshift/redshift-serverless/
https://aws.amazon.com/redshift/redshift-serverless/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/1925805.1925811
https://doi.org/10.1145/50202.50217
https://arxiv.org/abs/2107.03374
https://books.google.com/books?id=jmZjEAAAQBAJ
https://books.google.com/books?id=jmZjEAAAQBAJ
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.1145/2814710.2814713
http://www.vldb.org/pvldb/vol8/p1908-Elmore.pdf
https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/
https://blogs.gartner.com/merv-adrian/2022/04/16/dbms-market-transformation-2021-the-big-picture/
https://cloud.google.com/alloydb
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/191839.191986
https://doi.org/10.1145/191839.191986
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867


[42] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In 9th Biennial Conference on Innovative Data Systems
Research, (CIDR ’19), Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf

[43] TimKraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2017. The
Case for Learned Index Structures. CoRR abs/1712.01208 (2017). arXiv:1712.01208
http://arxiv.org/abs/1712.01208

[44] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to Optimize Join Queries with Deep Reinforcement
Learning. arXiv preprint arXiv:1808.03196 (2018).

[45] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan
Loaiza, Neil Macnaughton, Vineet Marwah, Niloy Mukherjee, Atrayee Mul-
lick, Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez,
and Mohamed Zait. 2015. Oracle Database In-Memory: A Dual Format In-
Memory Database. In 2015 IEEE 31st International Conference on Data Engineering
(ICDE ’15). 1253–1258. https://doi.org/10.1109/ICDE.2015.7113373

[46] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[47] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri. 2012.
Robust Estimation of Resource Consumption for SQL Queries Using Statistical
Techniques. Proceedings of the VLDB Endowment 5, 11 (2012).

[48] Ee-Peng Lim and Jaideep Srivastava. 1993. Query Optimization and Processing in
Federated Database Systems. In Proceedings of the Second International Conference
on Information and Knowledge Management (CIKM ’93). 720–722.

[49] Wan Shen Lim, Matthew Butrovich, William Zhang, Andrew Crotty, Lin Ma,
Peijing Xu, Johannes Gehrke, and Andrew Pavlo. 2023. Database Gyms. In
Conference on Innovative Data Systems Research (CIDR ’23).

[50] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML Enhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). 175–191.

[51] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J Gordon. 2018. Query-Based Workload Forecasting for Self-Driving
Database Management Systems. In Proceedings of the 2018 International Confer-
ence on Management of Data (SIGMOD ’18). 631–645.

[52] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making Learned Query Optimization Practi-
cal. In Proceedings of the International Conference on Management of Data (SIG-
MOD ’22).

[53] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (2019).

[54] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for
Join Order Enumeration. In Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management (aiDM ’18).

[55] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proceedings of the VLDB
Endowment 12, 11 (2019).

[56] Microsoft Corporation. 2023. Serverless Compute Tier for Azure SQL Data-
base. https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-
tier-overview?view=azuresql&tabs=general-purpose.

[57] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ing Multi-Dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 985–1000.
https://doi.org/10.1145/3318464.3380579

[58] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality Esti-
mates That Matter. Proceedings of the VLDB Endowment 14, 11 (2021).

[59] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proceedings of the VLDB
Endowment 16, 6 (2023), 1520–1533.

[60] Patrick O’Neil, Betty O’Neil, and Xuedong Chen. 2006. Star Schema Benchmark.
Technical Report. University of Massachusetts Boston. https://www.cs.umb.edu/
~poneil/StarSchemaB.PDF.

[61] Oracle. 2023. Oracle Autonomous Database. https://www.oracle.com/
autonomous-database/.

[62] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Manage-
ment Systems. In Conference on Innovative Data Systems Research (CIDR ’17).
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[63] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,
Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. 2019. External vs. Internal:

An Essay on Machine Learning Agents for Autonomous Database Management
Systems. IEEE Data Engineering Bulletin (June 2019), 32–46. https://db.cs.cmu.
edu/papers/2019/pavlo-icde-bulletin2019.pdf

[64] Andrew Pavlo, Matthew Butrovich, Lin Ma, Wan Shen Lim, Prashanth Menon,
Dana Van Aken, and William Zhang. 2021. Make Your Database System Dream
of Electric Sheep: Towards Self-Driving Operation. Proceedings of the VLDB
Endowment 14, 12 (2021), 3211–3221. https://db.cs.cmu.edu/papers/2021/p3211-
pavlo.pdf

[65] Maksim Podkorytov and Michael Gubanov. 2019. Hybrid.Poly: A Consolidated
Interactive Analytical Polystore System. In 2019 IEEE 35th International Confer-
ence on Data Engineering (ICDE ’19). 1996–1999. https://doi.org/10.1109/ICDE.
2019.00223

[66] Calton Pu. 1988. Superdatabases for Composition of Heterogeneous Databases.
In Proceedings of the Fourth International Conference on Data Engineering. IEEE
Computer Society, USA, 548–555.

[67] Mary Tork Roth, Laura M Haas, and Fatma Ozcan. 1999. Cost Models Do Matter:
Providing Cost Information for Diverse Data Sources in a Federated System. IBM
Thomas J. Watson Research Division.

[68] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’79) (Boston, Massachusetts) (SIGMOD ’79). Association for
Computing Machinery, New York, NY, USA, 23–34. https://doi.org/10.1145/
582095.582099

[69] Amit P Sheth and James A Larson. 1990. Federated Database Systems for Manag-
ing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing
Surveys (CSUR) 22, 3 (1990), 183–236.

[70] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale, Arizona,
USA) (SIGMOD ’12). Association for Computing Machinery, New York, NY, USA,
731–742. https://doi.org/10.1145/2213836.2213946

[71] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All": An Idea
Whose Time Has Come and Gone. In Proceedings of the 21st International Con-
ference on Data Engineering (ICDE ’05). IEEE Computer Society, USA, 2–11.
https://doi.org/10.1109/ICDE.2005.1

[72] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proceedings of the VLDB Endowment 13, 3 (2019).

[73] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-
Store: An Elastic Database System with Predictive Provisioning. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD ’18) (Houston,
TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY,
USA, 205–219. https://doi.org/10.1145/3183713.3190650

[74] Anthony Tomasic, Remy Amouroux, Philippe Bonnet, Olga Kapitskaia, Hubert
Naacke, and Louiqa Raschid. 1997. The Distributed Information Search Com-
ponent (Disco) and the World Wide Web. ACM SIGMOD Record 26, 2 (1997),
546–548.

[75] Immanuel Trummer. 2022. CodexDB: Generating Code for Processing SQL
Queries using GPT-3 Codex. arXiv:2204.08941 [cs.DB]

[76] Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool That "Reads the
Manual". In Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machin-
ery, New York, NY, USA, 190–203. https://doi.org/10.1145/3514221.3517843

[77] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).
18–32.

[78] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for ComputingMachin-
ery, New York, NY, USA, 1009–1024. https://doi.org/10.1145/3035918.3064029

[79] Marco Vogt, Alexander Stiemer, and Heiko Schuldt. 2018. Polypheny-DB: To-
wards a Distributed and Self-Adaptive Polystore. In 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 3364–3373.

[80] Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin, Brandon
Haynes, Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan Maas, Parmita Mehta,
Dominik Moritz, Brandon Myers, Jennifer Ortiz, Dan Suciu, Andrew Whitaker,
and Shengliang Xu. 2017. TheMyria Big Data Management and Analytics System
and Cloud Services. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR ’17).

[81] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning 8, 3 (1992), 279–292. https://doi.org/10.1007/BF00992698

[82] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach. Learn. 8, 3–4 (May 1992), 229–256.
https://doi.org/10.1007/BF00992696

3300

http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
https://arxiv.org/abs/1712.01208
http://arxiv.org/abs/1712.01208
https://doi.org/10.1109/ICDE.2015.7113373
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql&tabs=general-purpose
https://learn.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview?view=azuresql&tabs=general-purpose
https://doi.org/10.1145/3318464.3380579
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://www.oracle.com/autonomous-database/
https://www.oracle.com/autonomous-database/
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://db.cs.cmu.edu/papers/2019/pavlo-icde-bulletin2019.pdf
https://db.cs.cmu.edu/papers/2019/pavlo-icde-bulletin2019.pdf
https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf
https://db.cs.cmu.edu/papers/2021/p3211-pavlo.pdf
https://doi.org/10.1109/ICDE.2019.00223
https://doi.org/10.1109/ICDE.2019.00223
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1145/3183713.3190650
https://arxiv.org/abs/2204.08941
https://doi.org/10.1145/3514221.3517843
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696


[83] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel
Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join
Queries. Proc. ACM Manag. Data 1, 1, Article 41 (May 2023), 27 pages. https:
//doi.org/10.1145/3588721

[84] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine: An Update-In-Place Key-Value Store
for Modern Storage. Proceedings of the VLDB Endowment 16, 1 (2022), 99–112.

[85] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1297–1308.

[86] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2022. Skeena:
Efficient and Consistent Cross-Engine Transactions. In Proceedings of the 2022

International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 34–48.
https://doi.org/10.1145/3514221.3526171

[87] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In Proceedings of the 2019 International Conference onManagement
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Ma-
chinery, New York, NY, USA, 415–432. https://doi.org/10.1145/3299869.3300085

[88] Xiuwen Zheng, Subhasis Dasgupta, Arun Kumar, and Amarnath Gupta. 2022.
AWESOME: Empowering Scalable Data Science on Social Media Data with an
Optimized Tri-Store Data System. arXiv:2112.00833 [cs.DB]

3301

https://doi.org/10.1145/3588721
https://doi.org/10.1145/3588721
https://doi.org/10.1145/3514221.3526171
https://doi.org/10.1145/3299869.3300085
https://arxiv.org/abs/2112.00833

	Abstract
	1 INTRODUCTION
	2 MOTIVATION AND BACKGROUND
	2.1 Motivating Scenarios
	2.2 The Case for a New Approach

	3 BRAD OVERVIEW
	4 RESEARCH DIRECTIONS
	4.1 Learned Query Planner
	4.2 Joint Query-Mesh Optimization
	4.3 Data Synchronization and Consistency

	5 CONCLUSION
	Acknowledgments
	References

