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ABSTRACT
For a write request, today’s flash storage cannot distinguish the
logical object it comes from (e.g., SSTables in RocksDB). In such
object-oblivious flash devices, concurrent writes from different ob-
jects are simply packed in their arrival order to flashmemory blocks;
hence data pages from multiple objects with different lifetimes are
multiplexed onto the same flash blocks. This multiplexing incurs
write amplification, worsening the performance.

Tackling the multiplexing problem, we propose a novel interface
for flash storage, FlashAlloc. It is used to pass the logical address
ranges of objects to the underlying flash device and thus to en-
lighten the device to stream writes by objects. The object-aware
flash storage can now de-multiplex concurrent writes from multi-
ple objects with distinct deathtimes into per-object dedicated flash
blocks. In essence, the interface enables the per-object fine-grained
write streaming. Given that popular data stores tend to separate
writes by logical objects, we can achieve, compared to the existing
solutions, transparent streaming just by calling FlashAlloc upon
object creation. Also, FlashAlloc is adaptive to workload changes,
and liberates the stream conflicts in the multi-tenant environment.
Our experimental results using an open-source SSD prototype

demonstrate that FlashAlloc can reduce the device-level write am-
plification factor (WAF) under RocksDB, F2FS, and MySQL by 1.5,
2.5, and 0.3, respectively and improve their throughput by 2.7x,
1.8x, and 1.2x, respectively. Also, FlashAlloc can mitigate the WAF
interference among tenants: when running RocksDB and MySQL
together on the same SSD, FlashAlloc reduced WAF from 2.5 to 1.6
and doubled their throughputs.
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1 INTRODUCTION

Most data stores, including LSM (Log-Structured-Merge) tree-
based KV (Key-Value) stores, relational DBMSs, and file systems
manage data using logical objects: to name a few, SSTables in
RocksDB, DWB (double write buffer) in MySQL, and segments in
F2FS. And, upon each object creation, its logical space is secured in
advance before writes are made to the object. For instance, RocksDB
calls fallocate() right after creating an SSTable file so as to pre-
allocate the logical address space for the file. The logical address
range allocated from the call belongs to the file object. As such,
host-side data stores can identify the corresponding object based
on the LBA (Logical Block Address), which specifies the address of
the host file system.
In addition, when an object is deleted, all its data pages tend

to be invalidated together at once, having the same deathtime.
Meanwhile, different objects are, though created and populated
simultaneously, usually destructed at different points in time; they
have different deathtimes. In summary, host software stacksmanage
data by objects; each object is the unit of logical space allocation
and, in many cases, all its pages will have the same deathtime.
Though host software stacks can distinguish objects by their

logical address ranges, the host-side semantic about objects’ logical
address ranges cannot cross the storage interface wall simply be-
cause no interface exists to pass it to the storage. As a result, today’s
flash storage has no knowledge about the belongs-to relationship be-
tween LBA address and object. Therefore, when concurrent writes
from different objects interleave, the conventional object-oblivious
flash storage cannot distinguish each write’s object so that it has
no choice but to simply append new data in their arrival order
into flash blocks. As a consequence, writes from different objects
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colocate in the same flash blocks. That is, each flash block will be
multiplexed by data frommultiple objects with different deathtimes,
as illustrated in Figure 1. We call this situation as multiplexing.
As detailed in Section 2.2, the multiplexing is the main culprit

of physical write amplification in flash storage, worsening the per-
formance and lifespan of flash storage. Unfortunately, since no
interface exists to offload the host semantic about objects’ logical
address range to the storage, the valuable semantic is discarded and
the object-oblivious flash device can not stream writes by objects,
incurring multiplexing and write amplification.

Addressing the multiplexing problem, we propose a novel inter-
face, FlashAllocate (FlashAlloc in short), which is used to pass the
host semantic about object’s logical address range to the flash stor-
age and thus to enlighten the storage to be object-aware in handling
writes. To be concrete, after creating an object, a data store calls
FlashAlloc with the object’s local address range as a parameter to
inform the flash device that the address range belongs to the same
object. Then, upon receiving FlashAlloc, the flash device creates a
corresponding FlashAlloc instance, which keeps the given address
information, and thus is now aware of the address range of the
object. At the same time, the flash device will secure physical flash
block(s) where to place writes from the object and dedicate those
blocks to the FA instance.
Once logical objects are FlashAlloc-ed, their writes will be, as

illustrated in the right bottom of Figure 1, de-multiplexed into
per-object dedicated flash blocks. In this regard, we say that flash
storage, enlightened by FlashAlloc, can stream writes by objects.
Given that popular data stores tend to separate writes by logical
objects, the write streaming by objects is a natural way to achieve
grouping data by deathtime [21] because logical objects have differ-
ent deathtimes while all pages of each object become dead together
at once upon the object destruction. The ultimate benefit of stream-
ing writes by objects is to avoid GC-induced write amplification.
For instance, as each SSTable file in Figure 1 is deleted, all its pages
are invalidated, and thus, its dedicated block can be erased in its
entirety, not causing any page relocation.
In essence, the FlashAlloc interface supports the per-object fine-

grained write streaming, which is an alternative to existing solutions
such as Multi-stream SSD and Zoned Name Space SSDs [6, 24] in
controlling the physical placement of writes inside flash devices. The
key contributions of this paper are summarized below.

• Wemake an observation that data stores with flash-friendly write
patterns, contrary to the common belief, can experience severe
write amplification on conventional SSDs and investigate the
write multiplexing as the main culprit for the problem.

• We motivate that existing flash devices are object-oblivious sim-
ply because the host semantic about the object’s logical address
range cannot cross the storage interface wall.

• We propose a new interface, FlashAlloc, which allows to offload
the host semantic about object’s logical address range to the
storage and thus to enlighten flash device to stream writes by
objects, reducing device-level write amplification.

• We present the design principles and the architecture of FlashAl-
loc, and explain the rationales for its design decisions and how
operations such as write and garbage collection work. And, we
describe the implementation detail of the FlashAlloc prototype

built using the Cosmos board [26] and also the changes made in
file system and database storage engines.

• Our experimental results using the FlashAlloc prototype show
that FlashAlloc can reduce WAFs in RocksDB, F2FS, and MySQL
by 1.5, 2.5, and 0.3, respectively, and accordingly improve through-
put by 2.7×, 1.8×, and 1.2×, respectively. And, when RocksDB
and MySQL are run together, FlashAlloc can reduce WAF from
2.5 to 1.6, and double their throughputs.

2 BACKGROUND AND MOTIVATION
This section reviews several key concepts about flash storage and
presents a few motivating examples about write amplification in
flash-friendly data stores.

2.1 Flash Memory SSD
Here we review how the existing flash storage works and explain
two key concepts of page deathtime and stream write by time.

FTL An FTL (Flash Translation Layer) is responsible for several
key functionalities such as address mapping, GC and wear level
management [31]. Because overwrites are not allowed in flash
memory, a new page write should be handled in an out of place
manner (i.e., log-structured) - the old version of the page will be
marked as invalid and new version will be stored in a new clean
flash page. Thus, FTL has to manage the ever-changing address
mapping between each page’s logical address at the file system
layer and its physical address in flash memory chips. Since the
address mapping scheme is critical to the performance and lifespan
of flash storages, most flash storage prefers the page-mapping FTL
scheme among numerous address mapping schemes, mainly for
performance reason at the cost of memory resource for managing
the logical-to-physical mapping at the page granule [20, 25, 31].

Garbage Collection When clean space for new writes runs
out, FTL has to reclaim new clean space by the garbage collection
(GC in short) procedure. Upon GC, a victim block𝑉 is chosen, then
its valid pages are relocated to a clean block 𝐵 (i.e., valid pages
are read out from 𝑉 and written back to 𝐵), and then 𝑉 is erased
and returned to the free block pool. After GC, new writes from
the host will be appended to the remaining space in 𝐵. Relocating
valid pages during GC amplifies physical writes inside flash storage.
Informally, write amplification factor (WAF) represents the ratio of
physical writes to flash memory over logical writes from the host.

Page Deathtime When a flash block page copy is overwritten
or discarded by trim, it is termed as dead, with its invalidation mo-
ment referred to as its deathtime [21]. The distribution of deathtimes
of pages in flash blocks is critical to determining the write amplifi-
cation. For instance, let us assume that a flash block fb1 stores only
data pages from the same SSTable in RocksDB. All the pages in fb1
will be dead when the SSTable is deleted after compaction. Then,
the GC procedure can secure a new clean block without relocating
any page but simply by erasing fb1, incurring no write amplifica-
tion. In contrast, when a flash block stores pages with quite distant
deathtimes and later is chosen as a victim for GC, many valid pages
should be relocated to another block. Therefore, grouping pages by
deathtimes is paramount to reducing write amplification.
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Figure 2: Three Database Workloads on a Commercial SSD: WAF and Throughput

Stream-Writes-by-Time Consider how today’s flash storage
handles writes when concurrent write requests from different ob-
jects interleave. For each write request with logical address (i.e.,
start_lba), the existing flash storage cannot distinguish the object
the data belongs to. Therefore, the conventional object-oblivious
flash storage will simply append writes from different objects in
their arrival order at the clean flash memory space [9]; we call this
write policy as stream-writes-by-time.

2.2 Motivating Examples

It has long been believed that sequential writes are flash-friendly:
less harmful than randomwrites in terms of write amplification [33].
In addition, mainly because of the parallelism in SSDs, issuing a
single large data request in a write command yields higher band-
width than making multiple small write requests [21]. With this
expectation in mind, sequential writes have been opted for by
many data stores such as LSM (log-structured merge) tree-based KV
(key-value) stores [15, 19, 24, 34] and F2FS (Flash-Friendly File Sys-
tem) [27]. Contrary to the belief, however, log-structured sequential
writes at such flash-friendly software stacks are not effective in
reducing write amplification [13, 21, 44, 48].

In this section, we demonstrate that RocksDB with the so-called
flash-friendly write pattern suffer from severe write amplification.
We also motivate a write multiplexing problem in MySQL. In ad-
dition, we show that two tenants of RocksDB and MySQL inter-
fere each other and thus exacerbate the write amplification further.
While running each workload on top of a commercial SSD of 256GB,
wemeasured its throughput and also the runningWAF at the device-
level using smartmontools [43] and present the results in Figure 2.
For each workload, we describe the experimental setting and ex-
plain its IO architecture and dominant write patterns. In particular,
we elaborate on why each workload experiences severe device-level
WAF despite its flash-friendly write pattern.

RocksDB (Figure 2 (a)) RocksDB is a popular KV store used
in many large-scale data services as well as databases [15, 16]. Since
it uses Log-Structured-Merge (LSM) tree [34] as the primary data
structure, the dominant write pattern from RocksDB is sequential
in the unit of SSTable (Single Sorted Tables). Upon memtable flush
or compaction, RocksDB creates new SSTable file(s), allocates a
logical space of (by default) 64MB to each file via the fallocate()
call, writes data, and then flushes the file. SSTables will be later
deleted after compaction; all pages of an SSTable will be invali-
dated together upon the file deletion. Note that SSTable files which

are created and populated simultaneously will be compacted and
deleted at different points of time. Using the sequential batch write
for each SSTable, RocksDB expects pages from the same SSTable
and thus with the same deathtime to colocate in the same flash
blocks and thus to barely cause write amplification.
To verify the WAF problem in RocksDB, we executed four con-

current RocksDB instances on Ext4 file system until the SSD was
full, each of which runs the same db_bench’s fillrandomworkload
against the initial database of 40GB [17]. Each RocksDB instance
runs four user threads and four compaction threads concurrently
to utilize storage better and mitigate the compaction overhead [16].
To further reduce the physical write amplification, the discard op-
tion in the Ext4 file system was also by default enabled [14]. While
running the workload, we measured the average OPS (Operations
Per Second) of four benchmarks and also the running WAF of the
SSD in every five minutes, and plot the result in Figure 2 (a). Un-
expectedly, the WAF has continued to increase over time, ending
around five. This result about flash-unfriendly RocksDB has been
reported consistently by other researchers [13, 44, 48].
Consider why RocksDB suffers from high WAF. Though each

SSTable file is sequentially written, four compaction threads will
flush their SSTables concurrently. In addition, each flush of 64MB
SSTable file tends to split into smaller write requests due to file
system fragmentation and kernel IO scheduling [11, 46]. Thus, write
requests from multiple SSTables will interleave at the flash storage
according to the stream-writes-by-time policy. Further, the striped
architecture will divide eachwrite request into smaller write chunks
(e.g., 4KB) and distribute them over multiple channels [23, 26, 38].
As a result, pages from multiple SSTables with distinct deathtime
tend to be stored together in the same flash blocks.

MySQL (Figure 2 (b)) In order to guarantee the write atomicity
in the presence of crashes, MySQL takes the redundant journaling
approach using the special object, called double write buffer (DWB
in short): before flushing dirty pages to their original locations,
InnoDB engine first appends them sequentially to DWB. On system
booting, contiguous logical address space of 2 MB is allocated to
DWB. Though tiny in capacity, DWB will account for half of the
writes in InnoDB to the storage. When full, the DWB space will be
reused from the beginning. Therefore, the write pattern to DWB
can be characterized as sequentially appended and cyclically reused.
In addition, the pages written to DWB in the previous cycle will
be overwritten in the next cycle. Namely, all the pages written to
DWB during the same cycle will have the same deathtime.
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Another characteristics in InnoDB engine’s write pattern is that
sequential writes to DWB and random writes to original database
will interleave at the storage. Thus, according to the stream-writes-
by-time policy at the flash storage, both types of data with different
deathtimes will colocate in the same flash blocks. To evaluate the
multiplexing effect, we measured TPS (Transactions Per Second)
and runningWAFwhile running the TPC-C benchmark [28] with 32
client threads and initial database of 150GB (i.e., 1,500 warehouses)
until the SSD was full, and present the result in Figure 2 (b). As
the WAF at the device increases steadily over time, the transaction
throughput (TPS) drops continuously. The multiplexing of DWB
data and normal data pages accounts for the increasing WAF.

Multi-tenantDatabases (Figure 2 (c)) With the ever-growing
capacity of SSDs, it is not uncommon for multiple databases to share
a single large SSD [29]. In such multi-tenant workloads, pages from
more objects with further distant deathtimes are likely to be multi-
plexed onto the same flash blocks, exacerbating the the write ampli-
fication. This will in turn hinder the performance isolation among
tenants [2]. To verify how the WAF behaves under multi-tenant
databases, we ran db_bench and TPC-C together on the commercial
SSD. While running both benchmarks with initial database of 80GB
until the SSD became full, we measured their throughputs and the
device WAF, and present the result in Figure 2 (c). When comparing
WAF in the figure with those in Figure 2 (a) and (b), we confirm
that the WAF in the multi-tenant case is almost double than that
in either single tenant. Also, note that as the WAF spikes at the
initial phase during the multi-tenant experiment, both OPS and
TPS drop more rapidly than the throughput in either single tenant.
In particular, we note that the multiplexing among multi-tenants
worsens the performance interference.

3 THE MULTIPLEXING PROBLEM
This section presents an analysis of the object characteristics in
data stores and delineates the multiplexing issue. It also motivates
the absence of the storage interface for object-aware writing.

3.1 Object Characteristics in Data Stores
Understandingworkloads is key to storage system design. However,
little work has been conducted on characterizing objects in popular
data stores from the perspective of the write multiplexing in flash
storage. In this section, we make three observations about object
characteristics in flash-friendly data stores: logical space allocation,
write pattern, and deathtime. The design of FlashAlloc capitalizes
on these characteristics.

Logical Space Allocation by Objects The host data stores
manage data using logical objects such as SSTables in RocksDB
and DWB in InnoDB. Each store will invoke the write system calls
against such objects and those objects account for a dominant
portion of total I/O. Prior to writing data to each object, data stores
will allocate its logical address space at the file system layer in
advance. For instance, RocksDB invokes the fallocate() call after
creating a new SSTable but before writing data to it. Thus, the data
stores will stream writes over the logical address space by objects.

Write Pattern The write pattern to each logical object is usu-
ally sequential (in either batch or append). For instance, when
flushing a memtable, RocksDB invokes a write system call against

L0 SSTable with the memtable data as parameter, which is an exam-
ple of the batch sequential write. Meanwhile, the writes to DWB in
InnoDB exemplify the append sequential write. Though the write
pattern to individual logical objects is sequential, however, data
stores with multiple write threads will usually issue writes from
multiple objects concurrently to the storage. For instance, RocksDB
with four compaction threads can flush four SSTables concurrently.
As such, writes from different objects and thus with different death-
times will interleave each other to the underlying storage.

Deathtime When a logical object is deleted, its all data pages
become dead together. Meanwhile, different objects with almost
the same birthtimes tend to have different deathtimes. For instance,
SSTables concurrently generated at different levels by two com-
paction threads will be compacted at quite distant points of time.

3.2 Multiplexing

The three characteristics of objects in data stores discussed above
can offer the chance of realizing the stream-write-by-deathtime pol-
icy [21] at the flash storage, thus minimizing the write amplification.
That is, once flash storage can store pages by objects with distinct
deathtimes into different flash blocks, its effect is to stream writes
by deathtimes. However, despite the eager logical space allocation
by objects and log-structured sequential write to individual object
in data stores, concurrent writes from different objects in single
or multiple tenants will interleave to the flash storage. Thus, ac-
cording to the stream-writes-by-time policy, flash devices will pack
those writes in their arrival order into flash blocks. An undesirable
consequence is that pages from different objects are packed onto
the same flash blocks. We call this phenomenon as multiplexing.

The multiplexing is the main culprit of physical write amplifica-
tion in flash storage [21]. As flash blocks are multiplexed with pages
with different deathtimes, write amplification is inevitable. Since
logical objects have different deathtimes each other in most cases
(e.g., four SSTables in Figure 1 will be deleted at different points
of time), pages in a multiplexed flash block will be incrementally
invalidated at different points of time. When the block is chosen as
a victim for GC, the remaining valid pages have to be relocated to
another block, amplifying physical writes.
Suppose the case where four SSTable files are multiplexed (left-

bottom in Figure 1).When the file (denoted as OBJ 1) is deleted, each
of the four flash blocks still keeps three valid pages (i.e., see dashed
edge in Figure 1). Thus, if a block becomes victim, three pages
have to be relocated. In contrast, when four files are de-multiplexed
into different files (right-bottom in Figure 1), a flash block with
its all pages invalidated is available. Thus, a clean block can be
obtainedwithout relocating any page. In particular, as demonstrated
in Section 2, WAF becomes greater than five under the RocksDB
databases (Figure 2 (a)) and even becomes larger than eight in multi-
tenancy (Figure 2 (c)). To sum up, due to the multiplexing problem,
the so called flash-friendly sequential writes are no less harmful
than random writes in terms of write amplification [33].

3.3 Object-Oblivious Flash Storage in Writing
The main reason why the existing flash devices are object-oblivious
in handling writes is that, from the logical address given in a write
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request, flash storage cannot distinguish the logical object the ad-
dress belongs to. This is in turn because the conventional block
interfaces do not provide anymechanism to pass the relationship be-
tween objects and their logical address ranges to the storage. While
the host software stacks are aware of the relationship, the valu-
able semantic cannot cross the storage interface wall. As a result,
the useful host semantic is simply discarded and the flash device
cannot stream writes by objects (i.e., object-oblivious), incurring
multiplexing and write amplification.
As will be reviewed in Section 7, though several novel inter-

faces [6, 7, 24] have been recently suggested to allow the host
programs to control the data placement within the flash storage
and thus to mitigate write amplification, none of them allows to
pass the host semantic about object’s logical address to the un-
derlying storage. Because those new interfaces are not based on
objects, they require the applications to use new concept such as
stream identifier or zone identifier [6, 24]. To be worse, in the case
of Zoned Name Space, applications are required to follow the strict
sequential writes [6], which can hinder its wide adoption [1].

4 DESIGN OF FLASHALLOC

In this section we propose new interface for flash storage, called
FlashAlloc, which is used to inform the flash storage that an logical
address range belongs to an object and thus enable flash storage to
allocate and dedicate physical flash blocks by objects. We describe
its design principles, semantics, and architecture. Also, we give its
use cases and discuss its benefits and limitations.

4.1 Key Idea and Design Principles

As discussed in Section 2, grouping data by deathtime is effective
in reducing write amplification [21]. Considering that pages of indi-
vidual object have the same deathtime while different objects have
different deathtimes, grouping data by objects will have the effect of
grouping data by deathtime. However, as pointed out in Section 3.2,
the existing flash devices can not group writes by objects simply
because they are unaware of the relationship between objects and
their logical address ranges. This is, in turn, because no interface
exists to allow host to convey the semantic to the flash storage.
Recognizing the missing interface, we introduce a new inter-

face, FlashAlloc, to hint flash devices about the host-side semantic
that all pages in a logical address range belong to the same logical
object. With the help of the simple hint, flash devices should be
able to place writes into distinct flash blocks by objects. If the new
abstraction requires excessive change along the software stacks, it
increases the system complexity and hinders its applicability and
future extension, thus being unlikely to be accepted in the mar-
ket, regardless of its effect. With this in mind, we set three design
objectives of FlashAlloc. First, it takes advantage of the existing
concept at the host layer, per-object logical address range. This
is in stark contrast with other approaches (e.g., multi-stream SSD
and ZNS [6, 24]) which introduce new concepts (e.g., stream-id and
zone-id) and thus force applications to adapt to their interfaces.
Second, host-side data stores should be able to leverage FlashAlloc
with minimal change. In particular, required changes, if any, must
be limited to the use of abstraction provided by FlashAlloc. Third,

FlashAlloc aims at passing the host semantic to the storage without
being limited to any specific application domain. So the abstractions
of FlashAllocmust introduce minimal changes to the standards such
as NVMe and the changes must not disrupt existing applications.
This approach is novel in that it turns the common knowledge at
host (i.e., a logical address range constitutes an object) into a strong
point for flash storage (i.e., to be able to stream writes by objects).

4.2 Interface
As a way to pass the information that a logical address range consti-
tutes an object from the host to the flash storage, we propose new
FlashAlloc(logical_addr_range) interface, as detailed below.

FlashAlloc ({LBA, LENGTH}*) FlashAlloc informs flash storage
that the logical address range denoted by the parameter, {LBA,
LENGTH}*, belongs to one object. As indicated by *, an address
range can consist of one or multiple logical chunks. Each chunk
is presented by a pair of LBA and LENGTH which represent its
starting address and length, respectively.

Since the storage command is not always available to applications
(e.g., database engines) that access objects through a file system, we
exploited the ioctl infrastructure so that the FlashAlloc command
can pass through the file system to the storage device, instead of
invoking the new command directly from applications.
More importantly, calling a FlashAlloc command, the host ex-

presses its intention that it will perform operations on the given
logical address range, LS, as an integral unit for writes: once a portion
of the dataset is written, all the dataset is going to be written once,
and later they will be invalidated together nearly at the same time.
This is a useful hint for write optimization in flash storage. Given a
FlashAlloc command, flash storage will dedicate the corresponding
physical flash block(s) (PS), and then store all writes from LS in
the arrival order into PS; In this way, flash storage will guarantee
the physical clustering of all pages from the same logical object. In
particular, note that even when the writes from an FlashAlloc-ed
object are spatially fragmented (e.g., due to file system aging [46])
or temporally split (e.g., due to log-appending in F2FS), they are
guaranteed to be eventually clustered into the same flash block(s).
Thus, when properly FlashAlloc-ed, concurrent write streams from
different logical objects will be de-multiplexed into each own dedi-
cated flash block. The beauty of FlashAlloc lies in that it can achieve
the transparent write streaming without the hassle of assigning
stream-id or zone-id to each write request [6, 24].

Use Cases As illustrated in Figure 3, popular database engines
and file systems have write-intensive objects (e.g., SSTable, DWB,
segment) whose IO patterns fit well with the purpose of FlashAlloc:
each object is written sequentially just once and later becomes dead
in its entirety at the same or similar time. In addition, objects with
such “write-once and dead-at-once” pattern are ubiquitous in most
data stores: numerous LSM-based KV stores, WAL log files in rela-
tional databases, two journaling modes (RBJ and WAL) in SQLite,
and file system journaling. In addition, FlashAlloc will naturally
stream writes from different tenants so that it is, as demonstrated in
Section 6, quite beneficial in reducing write amplification and per-
formance interference in multi-tenant database environments [2].
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4.3 Architecture

Figure 3 illustrates the architecture of FlashAlloc. Using the figure,
we explain the concept of FlashAlloc instance and its physical
space management. Also, we explain howwrite and read operations
work and describe how the logic of trim and garbage collection is
extended to support FlashAlloc. Though the page-mapping FTL is
assumed in this paper, FlashAlloc can be seamlessly supported by
other FTL schemes such as block and hybrid mappings [31].

FlashAlloc Instance Upon receiving a FlashAlloc command
with a logical address range, flash storage will create its correspond-
ing FlashAlloc instance (in short, FA instance). In addition, flash
storage will secure the corresponding physical space (i.e., one or
more clean flash memory blocks whose total size amounts to the
given logical address range’s size), and dedicate the space to the
instance1. The physical space to an FA instance is allocated in the
unit of flashmemory block (e.g., usually 2MB in flashmemory chips)
so as to isolate writes from the instance into the dedicated blocks
The dedicated blocks for FA instances are called as FlashAlloc-ed.
Once multiple blocks are allocated to an instance, data for the in-
stance will be striped across channels for better bandwidth [26]. As
illustrated in Figure 3, an FA instance consists of three metadata:
logical address range, physical flash blocks, and physical location
for next write. Next write for an FA instance will be appended to
the page pointed by next_write_ptr.

Active FA Instances Once created, every FA instance and its
metadata will remain active and also be managed persistently until
its destruction. An FA instance and its metadata will be destructed
once its physical space is filled up. As depicted in Figure 3, multiple
FA instances could be active at a point of time. Note that the logical
address ranges of all instances should be disjoint from each other.
Meanwhile, the number of active FA instances will remain rather
small in practice, though unlimited in principle. For instance, con-
sidering that an SSTable file in RocksDB is, once created, quickly
filled by memtable flushing or compaction, its FA instance will be
destructed shortly after created. Thus, when running a RocksDB,
the number of active FA instances will not be greater than that
of concurrent compaction threads (i.e., four by default). Similar
argument can be made for F2FS segments.

Non-FlashAlloc-ed Objects While good for objects with se-
quential or log-appending write patterns, FlashAlloc is not intended
for objects with random write pattern. For the latter type of objects,
FlashAlloc is not recommended to be called. Thus, flash devices with
FlashAlloc should be able to support such non-FlashAlloc-ed ob-
jects as well; writes from non-FlashAlloc-ed objects can be handled
exactly the same as in the conventional SSD and stored in normal
blocks. An object will be regarded as non-FlashAlloc-ed once the
FlashAlloc call is not made when allocating logical space for the
object. Accordingly, our FlashAlloc architecture has to support two

1For the simplicity of discussion, we assume synchronous physical space allocation
throughout this paper. Note, however, that the FlashAlloc interface does not mandate
synchronous allocation. Instead, as long as the physical space is secured prior to the first
write to the instance, either asynchronous or even on-demand physical space allocation
(or securing) is acceptable, which may bring some optimization opportunities. We
leave such an interesting optimization topic as future work.

types of blocks, FlashAlloc-ed and normal, as illustrated in the bot-
tom of Figure 3. In this regard, our approach is in contrast with the
ZNS interface [6] which strictly assumes all writes to be sequential
and thus cannot support workloads with random writes.

Write For a write request with two parameters, LBA_start
and length, indicating the starting LBA and length of the data
respectively, flash storage first probes its matching FA instance
using the LBA_start, as depicted in Figure 3. If a matching instance
is found, the write data will be appended to a FlashAlloc-ed block
pointed by the instance’s next_write_ptr, and the corresponding
entry in L2P table and next_write_ptr value will be accordingly
adjusted. Otherwise, the request comes from non-FlashAlloc-ed
objects. In this case, as in the conventional SSDs, the writes will
be stored in normal block. In this way, our approach supports two
write policies: stream-write-by-object for FlashAlloc-ed objects and
stream-write-by-time for normal writes.

Read While FlashAlloc aims at reducing WAF by controlling
the placement of writes into different blocks by objects, its read
operation will proceed exactly the same as in the conventional
page-mapping FTLs: after looking up the physical page number
(i.e., block-id + page-offset) from the mapping table with the given
LBA, FTL reads the page from the corresponding flash block.

Trim The trim command was introduced to notify the flash
storage that a set of logical pages is no longer valid [42]. Upon
receiving a trim command, flash storage will invalidate the relevant
pages, preventing them from being unnecessarily relocated. In our
FlashAlloc architecture, the trim command will be handled same
as in the conventional flash storage with one exception. Consider-
ing that pages in an FlashAlloc-ed object have the same deathtime
and are also clustered in the same physical flash block(s), the trim
command against the object can complete by erasing the block(s)
instead of invalidating individual pages. In this sense, FlashAlloc
enables to achieve nearly zero-overhead trim. In fact, the trim com-
mand is, though effective in lowering write amplification, known to
induce non-trivial run-time overhead (e.g., trim spikes [16]); thus
data stores resort to the delayed discard policy to mitigate the effect
of trim spikes on the write latency [27, 32]. The trim optimization
enabled by FlashAlloc will remove the trim-induced stalls so that
the developers are free from the burden of devising deliberate rate
limiting to file deletion [32] or delayed discard [27].

Garbage Collection (GC) When no space is available for new
writes, FTL has to conduct the GC operation: copying valid pages
from a victim block to a clean block, fb and then returning fb.
Unfortunately, the conventional GC algorithm returning a partially
clean block fb is inappropriate for FA instances. Recalling that
FlashAlloc intends to disallow pages from different objects to mix in
the same flash block(s), each FA instance needs total-clean block(s).
Thus, FTL has to handle two cases of GC differently: The first case
is when FlashAlloc is called, and the second one is when free space
is unavailable for normal write. Recall that when a FlashAlloc-ed
object is trimmed, all its blocks will be returned as free and thus
the free block pool is likely to have some free blocks. In the case
when GC is triggered for normal write, FTL will first check the
free block pool for a free block and, if found, use it. Otherwise, it
will carry out the conventional GC: it chooses a victim block with
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the least valid pages and merges the victim. In the second case,
when a FlashAlloc call is made, FTL checks whether clean blocks
are available in the free block pool and, when unavailable, has to
merge multiple blocks to secure total-clean block(s) [25].
In addition, while selecting victim blocks for each of two GC

cases, block types have to be taken into account so that pages
from normal blocks are not mixed with those from FlashAlloc-ed
blocks. In the case of GC for normal writes, only normal blocks
can be victims. Otherwise, once an FlashAlloc-ed block is chosen
as victim, non-FlashAlloc-ed normal writes should co-locate with
the relocated pages from the old FlashAlloc-ed victim block. In
the case of GC for FlashAlloc, as discussed above, one or more
blocks with the same time have to be merged to secure total-clean
block(s) for FlashAlloc. In this sense, we call our algorithm as GC-
By-Block-Types. Interestingly, the GC-By-Block-Type algorithm
will adaptively allocate the space of FlashAlloc-ed and normal blocks:
depending on victim block type, one region grows while the other
shrinks. For instance, if a new FlashAlloc block is in need and no
free block is available, multiple normal blocks have to be merged
so as to secure a total-clean block, enlarging FlashAlloc-ed region.
In this way, the space allocation to both regions will adapt to the
changing workloads, requiring no static allocation or tuning.

4.4 Advantages and Limitations

Advantages FlashAlloc is the first work which allows host ap-
plications to hint the storage that a logical address range belongs to
the same object. It provides three advantages. First, enlightened by
FlashAlloc, flash storage can now cluster data from the same object
into the same flash blocks, minimizing write amplification. In par-
ticular, data from objects which are even logically fragmented will
be physically de-fragmented into the same flash block(s). In this re-
gard, FlashAlloc could be a clean solution to the logical and physical
fragmentation problem in flash storage [41, 44]. Second, since the

abstraction taken in FlashAlloc complies to the abstractions used for
logical space allocation in data stores (e.g., the fallocate() call in
Ext4 and segment in F2FS), the existing software stacks can achieve
write streaming with minimal changes, as detailed in Section 5.
Third, since the FlashAlloc semantic does not require involving
intermediate layers such as the kernel block layer, the command
can be easily incorporated into the existing storage interfaces such
as SAS and NVMe (e.g., using the vendor specific command).

Limitations While effectively de-multiplexing objects with
sequential write-once pattern, FlashAlloc is not a panacea for the
write amplification problem and also has a few limitations, some of
which are the trade-offs of being object-aware.

First, FlashAlloc does not suit for all objects and thus needs to
be judiciously used depending on each object’s write pattern. For
instance, FlashAlloc is not intended for objects with small and ran-
dom overwrites (e.g., relational database’s tablespace under OLTP
workload). Also, FlashAlloc is not suitable either for tiny objects
whose sizes are less than the size of a flash block or for objects with
append-only writes of unknown size. In particular, FlashAlloc-ing
tiny objects makes flash blocks under-utilized2. Such objects are
recommended to be non-FlashAlloc-ed, stored in a non-FA instance,
and managed by the conventional FTL. This approach would be,
instead of forcing one type of write pattern (e.g., ZNS [6]), a flexible
and practical approach for supporting real workloads with various
types of objects with different write patterns.

Second, the effect of FlashAllocwill diminish as writes are skewed
to non-FlashAlloc-ed objects which can cause the write amplifica-
tion. However, it is always beneficial to isolate objects suitable for
FlashAlloc into dedicated flash blocks, as illustrated in Section 6.

2For the simplicity of discussion, the flash block is assumed as the unit of physical
space allocation for each FlashAlloc-ed object in this paper. However, we do not exclude
the case where multiple tiny objects share one flash block. It would be always better
to cluster pages from tiny objects, as long as they have the same deathtime, into the
same flash block. We leave this design and implementation as future work.

3272



Third, when the FlashAlloc call is made at a coarser granule that
encompasses multiple objects with varying lifetimes, the fragmen-
tation problem can still persist. As such, it is crucial for the user to
call FlashAlloc at the granule of a single object whose pages have
the same deathtime. Fortunately, in most cases, the appropriate unit
for FlashAlloc is clear to users (e.g., SSTable and DWB).

Fourth, FlashAlloc incurs the run-time overhead of memory and
computation, though marginal. To ensure instant access to FA in-
stances, the FTL firmware has to manage the metadata for each
active instances on the Cosmos board’s DRAM. However, consid-
ering each active instance needs a small memory footprint (i.e.,
tens of bytes) and the number of active instances is limited in prac-
tice, FlashAlloc strikes a reasonable trade-off between performance
and memory usage. In addition, for every write request, the FTL
firmware first has to determine the matching active FA instance
while comparing the given LBA against the LBA ranges of all active
instances. Though, we can remove the computational overhead
by accelerating the matching step with special hardware and also
pipelining the step with flash memory access [26].
Lastly, FlashAlloc trades off the I/O latency for small objects

which are dedicated by a few flash block(s). For instance, the size
of each segment in the F2FS file system is 2MB by default and is
thus, when FlashAlloc-ed, dedicated with single flash block. Con-
sequently, when a large write request is made to the segment, the
write will be directed to the single flash block, taking long to com-
plete. In contrast, in the case of the conventional SSDs, a large write
request is striped in parallel over multiple flash blocks across differ-
ent channels and ways, completing faster [9]. A similar argument
can be made for the read latency. However, for large objects which
are FlashAlloc-ed by multiple flash blocks (e.g., 64MB-sized SSTables
in RocksDB), this will not hold for. In addition, FlashAlloc will not
sacrifice the throughput when multiple I/O requests are concur-
rently made. Most importantly, the reduced WAF by FlashAlloc will
can compensate the prolonged I/O latency for small objects.

5 IMPLEMENTATION
This section presents the implementation details of the FlashAlloc
architecture. The dominant portion of the FlashAlloc implementa-
tion is made into the FTL firmware of the Cosmos board written in
C. The FlashAlloc command was prototyped via vendor unique com-
mand. A user-level library that implements a protocol for the new
commands via the ioctl system call supports applications and SSDs.
This approach not only allows to quickly prototype the concept
but also to make the prototype portable to most file systems. In
addition, this section describes the changes we made in file systems
and database engines to enable them to run on the FlashAlloc inter-
face. Note that the changes are, as summarized in Table 1, marginal
and moreover local to a few modules.

5.1 Changes made in Applications

RocksDB As explained in Section 2, RocksDB manages key-value
documents using SSTables. In particular, after creating each SSTable
file, RocksDB secures its logical address space (whose size is by de-
fault 64MB) in advance by calling fallocate() for the file. Once al-
locating the logical space for the given fallocate() call, RocksDB
engine calls FlashAlloc. For this reason, every SSTable’s data will

Table 1: Linesmodified across applications to use FlashAlloc

Applications Lines Added Lines Removed
RocksDB (v6.10) 72 -
F2FS (v5.4.20) 26 -

MySQL/InnoDB (v5.7) 74 16
FTL (cosmos+) (v3.0.0) 1683 193

be streamed to its dedicated flash block(s). Flash blocks dedicated
to each SSTable remain full of valid pages until the SSTable is later
compacted and deleted. When an SSTable is deleted, all its pages
will be trimmed and thus invalidated altogether at once and ac-
cordingly all flash blocks dedicated for the SSTable can be simply
erased. Hence, as shown in Section 6, RocksDB can achieve near
ideal WAF (i.e., 1) transparently with minimal code change.

MySQL/InnoDB In order to isolate DWB pages from normal
ones into different flash blocks and thus to reduce write amplifica-
tion [12], we modified the InnoDB engine to call FlashAllocwith the
logical address range of DWB as parameter before writing to the
journal area for the first time. To obtain the address range was used
the FS_IOC_FIEMAP ioctl call. Also, whenever DWB is cyclically
reused, the trim call is made for the journal area so as to invalidate
all the old pages and and thus to make the old FlashAlloc-ed block
to be erased in its entirety. As shown in Table 1, the changes made
in InnoDB engine were minimal - less than 100 lines of code change
were made at two modules of double-write-buffer and file.

5.2 Changes made in FTL
We have prototyped FlashAlloc on the OpenSSD Cosmos board [26]
by extending its firmware. The Cosmos board adopts a page map-
ping scheme for flash memory management, as in most contempo-
rary SSD products. The board is connected to a host system through
the NVMe interface. Main technical issues encountered while em-
bodying FlashAlloc on the board are summarized below. Note that
the existing FTL can support FlashAlloc with moderate changes in
its codebase, as shown in Table 1.

FA Instances For each FlashAlloc command, a corresponding
FA instance is created in Cosmos board’s DRAM, which contains
its logical address range, the list of flash blocks dedicated to the
instance, and the current write pointer. The memory requirement
per a logical FA instance is, though varying slightly depending
on address range and the number of flash blocks, just several tens
bytes. Thus, considering that the number of active FA instances is
in practice limited (e.g., less than 100), small amount of DRAM (i.e.,
several tens KB) will suffice to maintain active FA instances.

GC and Block Type The existing GC firmware in the Cosmos
board was extended to support the GC-By-Block-Type policy. Also,
to distinguish two types of blocks, normal and FlashAlloc-ed, one bit
flag, FA-BLK, was added to the block_header struct in the Cosmos
firmware. The FA-BLK flag will be set on dedicating a block to an
FA instance and reset when the block is erased and returned as free.

Probing the matching FA instance For a write request, FTL
should be able to quickly probe the matching FA instance using
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the given LBA address. If the probing fails (i.e., no matching in-
stance exists), the request is not for active FA instance thus will
be written to non-FA instance. To determine whether the given
write is for active FA instance or not, a flag bit was added to ev-
ery entry in page-mapping table. The flag bit of every relevant
logical page is set when an FlashAlloc command is invoked and
later reset when the page is overwritten or discarded. The next
issue is, when the flag is turned on, how to probe the matching
instance. While there should be alternative implementations such
as hardware-acceleration and pipelining, rather a simple approach
was taken for fast prototyping. That is, while scanning each of all
active FA instances, we check whether its logical address range
contains the start_LBA in the given write request. Once a matching
instance is found, the write will be appended at the physical space
pointed by the next_write_ptr of the instance.

6 PERFORMANCE EVALUATION
In this section, we present performance evaluation carried out to
analyze the impact of FlashAlloc on key-value store, log-structured
file system, relational database, and multi-tenancy.

6.1 Experimental Setup
All experiments were conducted on a Linux platform with 5.4.20
Kernel running on an Intel Core i7-6700 CPU 3.40GHz processor
with two sockets of four cores and 50GB DRAM. The host ma-
chine has two storage devices, 16GB Cosmos OpenSSD and 256GB
Samsung 850 Pro SSD. The Cosmos OpenSSD employs a controller
based on Dual Core ARM Cortex-A9 on top of Xilinx Zynq-7000
board with 256KB SRAM, 1GB DDR3DRAM, and 16GB MLC Nand
flash memory [37]. The Cosmos OpenSSD was used as the main
storage device for the experimental data and connected to host
using PCIe interface. The over-provisioning area in the board was
set to 10% (i.e., 1.6GB) for all experiments. In Cosmos OpenSSD, the
flash block size is 2MB and the page size is 16KB. The Samsung 850
Pro SSD was used as the log device when MySQL/InnoDB was run.

6.2 Workloads
To demonstrate the benefit of FlashAlloc, we used a synthetic work-
load and two realistic workloads, db_bench and TPC-C. The fio
tool was used to generate a synthetic workload. And, to evaluate the
effect of FlashAlloc on key-value stores, we ran the db_bench bench-
mark using RocksDB on ext4 file system. The same db_bench work-
load was run also using F2FS [27] to test the impact of FlashAlloc on
log-structured file system. In addition, the TPC-C benchmark was
used to measure the effect of separating DWB in MySQL/InnoDB
into dedicated flash blocks. Finally, to highlight the benefit of
FlashAlloc in multi-tenancy, we ran db_bench using RocksDB and
TPC-C using MySQL concurrently on Ext4 file system. In all exper-
iments, the direct I/O option (O_DIRECT) was enabled to minimize
the interference from file system’s page caching and the TRIM op-
tion was turned on for both file systems. To compare the impact of
FlashAlloc, we ran those workloads using the vanilla databases and
file systems on the Cosmos board running the original FTL and also
ran them using the modified versions with the board supporting
FlashAlloc. The three workloads are summarized below.

FIO The Flexible I/O (FIO) benchmark is commonly used to test
the performance of file and storage systems [18]. It spawns
a number of threads or processes doing a particular type of
I/O operations as specified by the user parameters.

db_bench RocksDB provides db_bench as the default benchmark
program [17]. The fillrandom workload which write key-
value pairs in random key order was run against empty data-
base till the Cosmos board became full.

TPC-C The tpcc-mysql tool [39] was used for TPC-C benchmark-
ing [28]. The benchmark was run using 32 clients against
initial database of 8GB until the storage device became full.

6.3 Performance Analysis
Let us briefly review the overall performance benefit of FlashAlloc
using Figure 4. While running four experiments using vanilla and
FlashAlloc-ed configurations, we measured the throughput of each
benchmark program and the running WAF at the Cosmos device
every minute till no space is left in the Cosmos device, and present
the results in Figure 4. In the figure, the X-axis represents the
time and the left and right Y-axis does the running WAF and the
throughput of each benchmark, respectively. As shown in Figure 4,
FlashAlloc-ed version outperforms the vanilla one considerably in
terms of throughput as well as WAF consistently across all four
experiments. The running WAF gaps between two versions are
ever-growing over time in all experiments. That is, as the Cosmos
board is filled with data, the effect of de-multiplexing different
objects into different blocks in FlashAlloc becomes outstanding. In
particular, the running WAF in FlashAlloc-ed version remains close
to 1 even at the ends of RocksDB and F2FS experiments.

Synthetic FIOWorkload Before explaining the effect of FlashAl-
loc on realistic workloads in Figure 4, let us show the benefit of
FlashAlloc using a synthetic write workload. For this, using the
fio tool, we created eight 2GB files on Linux and Cosmos board
and ran eight threads, each of which performs random overwrites
in the unit of 2MB against its dedicated 2GB file. The same exper-
iments were conducted in two modes, vanilla and FlashAlloc-ed.
In the FlashAlloc-ed mode, before invoking each 2MB overwrite,
FlashAlloc was called a prior so as to secure a dedicated flash block
to store new data. While running each experiment during one hour,
we measured the device WAF and the write bandwidth and plotted
the result in Figure 5. FlashAlloc has reduced the device WAF from
3.1 to 1 and has doubled the write bandwidth from 75MB to 150MB.

In addition, to further highlight the effect of FlashAlloc when the
multiplexing degree is increased, we carried out another experiment
by increasing the number of concurrent write threads to 32 in fio
tool and thus decreasing the per-thread file size to 512MB, and
present the result in Figure 5(b). Note that, under more concurrent
write threads, a flash block in the Cosmos board will be multiplexed
by more files with more deviating lifetimes. As shown in Figure 5,
both WAF and write bandwidth of the vanilla version under 32
threads become worse than those under 8 threads. Even in the case
of 32 threads, FlashAlloc has reduced the device WAF from 4 to 1
and thus has tripled the write bandwidth (i.e., roughly from 60MB
to 180MB). The considerable gain of the FlashAlloc version is direct
reflection of reductions in the garbage collection overhead.
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RocksDB on EXT4 To analyze the effect of FlashAlloc on
RocksDB engine, we ran 4 RocksDB instances concurrently on
top of two configurations of ext4 file system and the Cosmos board,
vanilla and FlashAlloc-ed. Each RocksDB instance was run with
the fillrandom workload in the db_bench benchmark. In order
to minimize the interference from flushing the WAL log, the log
file was stored in a separate storage device. While running both
experiments, we measured device-level WAF and average OPS of
four RocksDB instances over time and present the result in Fig-
ure 4 (a). In the case of vanilla mode, as SSTables at different levels
are simultaneously created and populated by multiple compaction
threads in RocksDB, they are multiplexed into the same flash blocks.
Recall that SSTables at different levels will be compacted and thus
deleted at different points of time. As such, in the vanilla ver-
sion, device-level WAF increased steadily while RocksDB’s OPS
decreased, which is consistent with the result in Figure 2 (a). In
contrast, in the case of FlashAlloc-ed mode, WAF at the Cosmos
board, as expected, remained nearly one even till the end of the
experiment and accordingly, compared to the vanilla version, the
average RocksDB’s OPS improved by 2.7×. This result clearly illus-
trates that FlashAlloc can drastically reduce write amplification in
RocksDB by de-multiplexing SSTables into different flash blocks.
Nonetheless, write amplification was not completely removed

in FlashAlloc-ed mode. The running WAF was 1.1 at the end of the
experiment. The residual physical write amplification is attributable
to metadata files. RocksDB maintains several metadata files (e.g.,
MANIFEST and CURRENT) to keep track of database state changes
whose write patterns are not log-structured instead random writes.
Though the sizes of those files are relatively small, they contribute
non-marginal fraction of total writes from RocksDB. Those ran-
dom writes go to the non-FA instance which is managed by the
conventional Greedy FTL and hence incur write amplifications.

RocksDBs on F2FS The F2FS file system [27], a flash-friendly
variation of log-structured file system [40], has been gaining the
popularity on flash devices successfully. F2FS is argued to be flash-
friendly since it takes the out-of-place-update (OPU) policy and
also the sequential write pattern [27].

To evaluate the effect of FlashAlloc on F2FS, we ran four RocksDB
instances each with the fillrandom workload on top of two con-
figurations of F2FS and Cosmos boards, vanilla and FlashAlloc-ed.
For FlashAlloc-ed F2FS version, we modified the F2FS file system
to call the FlashAlloc whenever allocating new segment. While
concurrent log writes from active segments are multiplexed into
the same flash block in the vanilla configuration, writes from each
segment is perfectly isolated into its dedicated flash block in the
FlashAlloc-ed version. Thus, the FlashAlloc-ed F2FS can nearly re-
movewrite amplification due to thewritemultiplexing in the vanilla
version; the WAF at the final phase was reduced from 3.5 to 1.1, as
shown in Figure 4 (b). The residual WAF of 0.1 in FlashAlloc-ed ver-
sion is presumably contributed by random writes for hot metadata
in F2FS [27]. Accordingly, FlashAlloc-ed version outperforms the
vanilla version about by 3× in terms of the db_bench’s OPS at the
end of experiment. The result indicates that FlashAlloc can be a fun-
damental solution to the log-on-log problem [44, 48] by allowing to
perfectly align logical segments in F2FS with physical flash blocks.
Namely, FlashAlloc enables F2FS to achieve an ideal WAF of 1 and
thus to realize its full potential of log-structured write.
Though effective in reducing WAF, FlashAlloc can negatively

affect the read and write latency for small FlashAlloc-ed objects
such as segments in F2FS. In the experiment for Figure 4 (b), the
segment size is set by default to 2MB and the size of the flash
block used in the Cosmos board is also 2MB. Consequently, each
FlashAlloc-ed segment is mapped to single flash block and the write
request to the segment (usually, several tens of KBs) will go for the
flash block and the write latency will be limited . In contrast, in
the vanilla mode, the write request will be striped across multiple
flash blocks in different channels and ways [9]. A same argument
can be made for the segment read operations during F2FS segment
cleaning. This seems to be one of the main reasons why the relative
OPS improvement by FlashAlloc (i.e., about 2×) is rather smaller
than the WAF improvement by FlashAlloc (i.e., roughly 3.5×).

DWB inMySQL/InnoDB Underworkloadswith both FlashAlloc-
ed and non-FlashAlloc-ed objects, the effect of FlashAlloc will de-
pend on the write amount to each object type - the more writes
are made for FlashAlloc-ed objects, the less WAF and wear-out and
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Table 2: Effect of FlashAlloc on Latency (DB-Bench)

(unit: us) DB-Bench Operations Block I/Os Latency
Avg. 99th 99.9th Avg. Read

Vanilla 140.2 20.9 5694.2 34.89
FlashAlloc 94.4 18.3 3401.2 18.95

the higher performance are expected. Conversely, as writes are
skewed towards non-FlashAlloc-ed objects, the effect of FlashAlloc
diminishes. Though, regardless of the write skewness to either ob-
ject type, it is always beneficial to apply FlashAlloc to appropriate
objects and thus isolate them to dedicated flash blocks. To evaluate
the effect of separating the DWB object with cyclic and sequential
writes from the main database with random writes, we measured
the throughput and the device-level WAF while running the TPC-C
benchmark using the vanilla and FlashAlloc-ed MySQL/InnoDB en-
gines, and present the result in Figure 4 (c). Recall that, in the case
of FlashAlloc-ed version, half of writes goes to the FA instance for
DWB while the other half does to the non-FA instance for original
database. Hence, the write amplification induced by the random
writes in non-FA instance is inevitable. Nevertheless, FlashAlloc can
reduce the increased write amplification by one third (i.e., 1.2 to 0.8)
and thus improve the throughput by 50%. The benefit of FlashAlloc
on DWB should also apply to other ubiquitous journal objects, such
as WAL files in RocksDB, SQLite, and relational databases.

Multi-Tenancy As discussed in Section 2, when run together
on the same SSD, multi-tenants can interfere each other in terms
of write amplification. To demonstrate the effect of FlashAlloc on
multi-tenant databases, we ran two databases concurrently on Ext4
file system and the Cosmos board, one RocksDB instance (used in
Figure 4 (a)) and oneMySQL instance (used in Figure 4 (b)), in vanilla
and FlashAlloc-ed modes, respectively, and present the results in
Figure 4 (d). In the case of vanilla version, theWAF in multi-tenancy
is worse than that in either single tenant (i.e., Figure 4 (a) and (c)),
which is consistent with the result in Figure 2 (c) obtained from
commercial SSDs. In the case of FlashAlloc-ed version, the WAF
in multi-tenancy remains lower than that in either single tenant.
As a result, both benchmarks’ throughputs in FlashAlloc-ed mode
are higher than those in vanilla mode. The result in Figure 4 (d)
indicates that FlashAlloc is not only beneficial to the calling tenant
itself but also altruistic to neighbor tenants.

Though beneficial for all tenants, the effects of FlashAlloc are not
uniform across tenants. To be specific, the TPC-C’s TPS improve
about by 1.9× while the DB Bench’s OPS does only by 1.3×. This
is because the WAF interference do more harms for the TPC-C
benchmark in the vanilla mode.

Operation Latency High tail latency can negatively impact
performance stability, making it challenging to meet Service-Level-
Agreements of service providers. Although numerous studies [3,
5, 30] have presented solutions to reduce latency, garbage collec-
tion in SSDs can still hinder traffic and revenue. The root cause
of latency spikes during garbage collection in the existing SSDs is
that victim blocks have pages with different lifetimes, resulting in
excessive copyback overhead. To evaluate the effect of FlashAlloc
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on the latency at the application layer, we measured the operation
latency of db_bench while running the benchmark with the same
configuration in Figure 4 (a) and presented in Table 2. FlashAlloc
substantially reduces the overall operation latency and narrows
the latency distribution. To be concrete, as shown in Table 2, the
average, 99th, and 99.9th percentile latency of FlashAlloc are 32%,
12%, and 40% lower than those of Vanilla, respectively. In addition,
to evaluate the effect of FlashAlloc on the read latency at the block
I/O layer, we measured the average latency for all read requests to
the storage by RocksDB using the blktrace utility and presented
in the last column in Table 2. FlashAlloc can almost halve the aver-
age read latency at the block layer, compared to the Vanilla version.
This result corroborates that the reduced WAF by FlashAlloc helps
to complete the read and write operation faster than the Vanilla.

6.4 Quantitative Comparison with MS-SSD
A novel interface for flash storage, Multi-Stream SSD (MS-SSD
in short), was proposed and standardized [24, 47], which allows
applications to place pages with different lifetimes to different
streams (i.e., flash blocks). More specifically, when a write system
call is invoked, applications can assign a proper stream-id to the
data. Upon receiving this write command, MS-SSD will allocate the
data to the corresponding physical stream. This interface performs
effectively when correctly hinted by applications [24].

In that MS-SSD aims to reduce write amplification by streaming
objects into different flash blocks [24], it is meaningful to quanti-
tatively compare FlashAlloc with MS-SSD and discuss their differ-
ences. For this, we have prototyped the MS-SSD interface using the
Cosmos+ board 3 and have measured throughput and WAF while
running three workloads in FlashAlloc andMS-SSDmodes: the TPC-
C benchmark using MySQL, the db_bench using RocksDB (single
tenant), and concurrent execution of the former two workloads
(multi-tenancy), and present the results of the latter two experi-
ments in Figure 6. For the db_bench experiment, the static stream-id
assignment which manually maps stream-ids and physical stream
of Cosmos+ board based on file type or level of SSTables is taken
to lower the write amplification [10, 49]. Figure 6 omits TPC-C
benchmark results, as MS-SSD’s performance is almost identical
to FlashAlloc, as shown in Figure 4(c). This is mainly because both
schemes isolate the single DWB object from other data.
Meanwhile, in the case of single tenant db_bench(Figure 6 (a)),

MS-SSD suffers from write amplification while FlashAlloc does not.

3The source codes of Cosmos+ Board firmware for MS-SSD are available at https:
//github.com/JonghyeokPark/Flashalloc-Cosmos/tree/master/Multistream
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With the MS-SSD prototype supporting eight streams, as in com-
mercial MS-SSDs [24], each stream has to be shared by multiple
SSTables with differing lifetimes due to the higher number of SSTa-
bles in the benchmark compared to physical streams. SSTables, even
when created simultaneously at the same level but with varying
lifetimes, are often multiplexed onto the same flash blocks in MS-
SSD due to their differing deletion times. To be Worse, MS-SSD,
while using stream-id for writing, doesn’t perform stream-aware
GC, leading to pages from different streams mixing in the same
flash block.
For these two reasons, MS-SSD suffers from device-level write

amplification. In contrast, with FlashAlloc, each SSTable streams
into distinct flash blocks, and its GC-By-Block-Type scheme pre-
vents data pages from different FA instances mixing within the same
block, eliminating write amplification in db_bench experiments.
Figure 6 clearly shows the advantage of FlashAlloc’s fine-grained
per-object streaming over MS-SSD when the object count exceeds
the number of physical streams in MS-SSD. As expected due to
MS-SSD’s write amplification under db_bench, FlashAlloc surpasses
MS-SSD in the multi-tenancy experiment as shown in Figure 6 (b).
Specifically, FlashAlloc boosts TPC-C’s TPS and db_bench’s OPS
by 1.7× and 1.4× , respectively, compared to MS-SSD.

7 RELATEDWORK

In that FlashAlloc aims at reducing physical WAF by passing the
host semantic to flash devices, three interfaces are closely related
to it: Trim [42], Multi-Stream SSD [24] and ZNS-SSD [6].

Trim Even when a file is deleted, the old storage interface (e.g.,
SATA) provides no mechanism to pass the host semantic about the
file deletion and thus flash devices regard pages from the deleted
file as still valid and unnecessarily relocate them during GC, caus-
ing write amplification. To address this, the trim command was
proposed to inform flash devices that page(s) specified by a logical
address range are no longer valid (i.e., dead) at the host [42]; the
trim-hinted device will no longer relocate those pages upon GC [4].

FlashAlloc and trim are common in that both explicitly provide
flash storages with the host semantic to lower write amplifica-
tion. In addition, they are synergetic to each other: when a file is
FlashAlloc-ed, the trim command can complete simply by erasing
all the FlashAlloc-ed blocks, instead of invalidating all pages individ-
ually [22]. Meanwhile, they differ in their invoke time: FlashAlloc
is called at object creation while trim is at object deletion.

Multi-Stream SSD While both commonly aim at streaming
writes to reduce write amplification, MS-SSD and FlashAlloc quite
differ in their abstractions for write streaming. The MS-SSD in-
terface has introduced the additional concept of stream-id and
mandates applications to statically bind stream-id to each write call.
The static binding of stream-id, combined with the limited number
of physical streams available in commercial MS-SSDs (e.g., 4 [24]),
will raise several practical issues. First, it is a non-transparent ab-
straction in that every write call has to come with static stream-id.
Next, it would be a non-trivial task for developers to estimate the
number of physical streams for their applications and to correctly
group numerous objects with different lifetimes into the limited
streams. Third, the static stream-id assignment is non-adaptive. As

the lifetimes of objects can change over time, programmers need
scrutinize those statistics and periodically re-assign stream-ids to
objects. Fourth, the effect of write streaming could diminish due to
the stream-id conflict in the multi-tenant environment [29]. Lastly
and most importantly, as shown in Section 6.4, MS-SSD still suffers
from write amplification when the number of logical objects to be
streamed exceeds the number of physical streams available in the
SSD. This situation is mostly the case in real applications.

On the other hand, FlashAlloc’s per-object write streaming abstrac-
tion offers benefits. It enables transparent write streaming by only
needing the logical address range of each object during creation,
resulting in minimal or no application changes. Additionally, its
fine-grained per-object streaming removes the need for develop-
ers to manage stream-ids or worry about stream-id conflicts in
multi-tenant environments.

ZNS-SSD As another way to address the write amplification
problem in the conventional SSDs, a new interface, ZNS (Zoned
Name Space) is recently proposed [6], which exposes zones (a set of
logical blocks) to the host as the unit of data management. ZNS is an
advanced interface of Open-Channel SSD [7] and LightNVM [8] and
is thus reviving the existing zoned echo system using open-source
storage management software [35, 36, 45].
Though novel and effective in several use cases, however, the

interface imposes the strict write-ordering rule: all writes to zones
should be to be sequential and also in their LBA order. Data-center
vendors criticize that the strict write rule of ZNS can hinder the
innovation [1]. Such strict write rule has two drawbacks. First,
software stacks should adapt to the sequential write ordering, which
is unlikely to be accepted in industry [1]. Second, while exempting
from the block interface tax, ZNS can instead introduce yet-more-
expensive tax of log-structuredwrites (e.g., compaction in RocksDB).
Such operations can induce logical WAF of more than ten [13, 48].
In contrast, FlashAlloc requires neither any write rule nor the log
structured write, enabling transparent write streaming.

8 CONCLUSION
Existing flash devices are object-oblivious in handling writes and
thus allow to colocate data from different objects in the same flash
block. To remedy such write multiplexing problem, we proposed a
novel interface, FlashAlloc, which enables flash devices to stream
writes by logical objects into different physical flash blocks, thus
object-aware in handling writes and minimizing write amplification.
We prototyped FlashAlloc on a real SSD board by extending its

FTL firmware and also modified a set of software stacks so as to
use FlashAlloc. Experimental results confirmed that FlashAlloc can
enable popular data stores to reduce write amplification and can
also mitigate the WAF interference among multiple tenants.
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