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ABSTRACT
We address twomajor obstacles to practical deployment of AI-based

models on distributed private data. Whether a model was trained

by a federation of cooperating clients or trained centrally, (1) the

output scores must be calibrated, and (2) performance metrics must

be evaluated — all without assembling labels in one place. In partic-

ular, we show how to perform calibration and compute the standard

metrics of precision, recall, accuracy and ROC-AUC in the feder-

ated setting under three privacy models (𝑖) secure aggregation, (𝑖𝑖)

distributed differential privacy, (𝑖𝑖𝑖) local differential privacy. Our

theorems and experiments clarify tradeoffs between privacy, accu-

racy, and data efficiency. They also help decide if a given application

has sufficient data to support federated calibration and evaluation.
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1 INTRODUCTION
Modern data management places increased focus on deploying and

managing models for predicting and classifying data. Such deployed

systems draw insights from large amounts of data, e.g., by training

prediction models on collected labels. Traditional data workflows

assemble all data in one place, but much human-generated data —

the content viewed online and reactions to this content, geographic

locations, the text typed, sound and images recorded by portable

devices, interactions with friends, interactions with online ads, on-

line purchases, etc — is subject to privacy constraints and cannot

be shared easily [4]. This raises a major challenge: extending data

processing systems to accommodate a federation of cooperating

distributed clients with individually private data. In a general frame-

work to address this challenge, instead of collecting the data for

centralized processing, clients evaluate a candidate model on their

labeled data, and send updates to a server for aggregation. For ex-

ample, federated training performs learning locally on the data in

parallel in a privacy-respecting way: the updates are gradients that

are summed by the server and then used to revise the model [19].

Federated learning (FL) [16] can offer privacy guarantees to

clients. At a baseline level of disclosure limitation, the clients never
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share raw data but only send out model updates. Formal privacy

guarantees are obtained via careful aggregation and by adding noise

to updates [30]. Given the prominence of federated learning, dif-

ferent aspects of the training process (usually for neural networks)

have received much attention: aiming to optimize training speed,

reduce communication and tighten privacy guarantees. However,

deploying trained models usually requires to (𝑖) evaluate and track

their performance on distributed (private) data, (𝑖𝑖) select the best

model from available alternatives, and (𝑖𝑖𝑖) calibrate a given model

to frequent snapshots of evolving data (common in industry appli-

cations). Strong privacy guarantees for client data during the model
training must be matched by similar protections for the entire data
pipeline. Otherwise, divulging private information of clients dur-

ing product use would negate earlier protections. E.g., knowing

if some label agrees with model prediction can effectively reveal

the private label. Concretely, Matthews and Harel [18] showed that

disclosure of an ROC curve allows some recovery of the sensitive

input data. In this paper, we develop algorithms for (𝑖) federated

evaluation of classifier-quality metrics with privacy guarantees and

(𝑖𝑖) performing classifier calibration, explained further below.

Calibration and evaluation of classifiers form fundamental tasks

that arise regardless of federated learning and deep learning [23].

They are important whenever a classifier is used in a deployed data

processing system, e.g., by distributed clients on data that cannot be

collected centrally due to privacy concerns. Common evaluation
scenarios arising in practical deployments include cases such as

• A heuristic rule-based model used as a baseline for a task is evalu-

ated to understand if a more complex ML-based solution is needed;

• A model pre-trained via transfer learning for multiple tasks (e.g.,

BERT [8]) is evaluated for its performance on a particular task;

• A new model trained with FL on fresh data needs to be compared

with earlier models on distributed test data before launching;

•Amodel has been deployed to production, but its predictions must

be continuously evaluated against user behavior (e.g., click-through

rate) to determine when retraining is needed.

Calibration of a classifier score function remaps raw score values

to probabilities, so that examples assigned probability 𝑝 are pos-

itive (approximately) a 𝑝 proportion of the time. Since classifier

decisions are routinely made by comparing the evaluated score to

a threshold, calibration ensures the validity of the threshold (espe-

cially for nonstationary data) and the transparency/explainability

of the classification procedure. As noted by Guo et al. [13], “modern

neural networks are not well calibrated”, prompting recent study

of calibration techniques [20]. Calibration (if done well) does not

affect precision-recall tradeoffs.

In this paper, we address federated evaluation of standard binary-

classifier metrics: precision, recall, accuracy and ROC-AUC [23].

Accuracymeasures the fraction of predictions that are correct, while

recall and precision focus on only examples from a particular class,

giving the fraction of these examples that are predicted correctly,
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and the fraction of examples labeled as being in the class that are

correct, respectively. ROC-AUC is defined in terms of the area under

the curve of a plot of the tradeoff between false positive ratio and

true positive ratio. These simple metrics are easy to compute when

the test data is held centrally. It is more challenging to compute

them in a distributed setting, while providing formal guarantees of

privacy and accuracy. For privacy, we leverage secure aggregation

and/or differential privacy (Section 2.2). For accuracy, we seek error

bounds when estimating metrics for a given privacy requirement,

so as to facilitate practical use. We present bounds as a function

of the number of participating clients (𝑀) and privacy parameters

(𝜖). For the evaluation metrics we studied, errors decrease as low

polynomials of𝑀 — good news for medium-to-large deployments.

The federated computation techniques we use are instru-

mental for the challenges addressed in this paper. These techniques

compile statistical descriptions of the classifier score function as

evaluated on the examples held by distributed clients. The descrip-

tion we need is a histogram of the score distribution, whose buckets

divide up the examples evenly. This is attractive for several reasons.

(i) Our algorithms simply estimate classifier quality, ROC AUC, and

the calibration mapping by evaluating these functions on the his-

togram representation of the score function. (ii) Histograms are

well-suited to the federated computing model, and are well-studied

under different privacy models, while being robust to heteregenous

data allocations. (iii) The approach is independent of the classifier

type – it only needs to see the scores the classifier gives to examples.

The estimation error drops for more detailed histograms: for a

𝐵-bucket histogram, error due to the histogram scales as 1/𝐵 or

even 1/𝐵2 in some cases. Hence, 𝐵 ≤ 100 leads to very accurate

results. Fortunately, the histogram-based approach is compatible

with multiple privacy models that provide strong guarantees under

different scenarios by adding noise to data and combining it. The

chief novelty in our work is in showing practical solutions for these
important problems via histogram computations, and in proving
accuracy bounds. Privacy noise adds error as 𝑀−1/4

(worst case)

or 𝑀−1
(the best case). Hence, we obtain good accuracy (under

privacy) with upwards of several thousands of participating clients.

The three models of privacy considered in this work are: (1) Fed-

erated privacy via Secure Aggregation (Federated for short), where

the protocol reveals the true output of the computed aggregate

(without noise addition) [24]. The secrecy of the client’s inputs is

achieved by using Secure Aggregation to gather their values, only

revealing the aggregate (typically, the sum); (2) Distributed Differen-

tial Privacy (DistDP), where each client introduces a small amount

of noise, so that the sum of all these noise fragments is equivalent

in distribution to a central noise distribution such as Laplace or

Gaussian, leading to a guarantee of differential privacy [11]. Us-

ing Secure Aggregation then ensures that only the sum of inputs

with privacy noise is revealed; and (3) Local Differential Privacy

(LocalDP), where each client adds sufficient noise to their report to

ensure differential privacy on their output, so that Secure Aggrega-

tion is not needed [32]. These models imply different error bounds

as we trade accuracy for the level of privacy and trust needed.

Our contributions offer algorithmic techniques and error bounds

for federated calibration of classifier scores and key classifier qual-

ity metrics. These honor the three different privacy models (above).
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Figure 1: Score functions and score histograms

For local and distributed differential privacy we use the standard 𝜖

privacy parameter (see Section 2.2), along with the 𝐵 and𝑀 parame-

ters (above) and the histogram parameter ℎ explained in Section 2.3.

Our theoretical bounds are summarized in Table 1, and explained

in greater detail in Section 3. These rely on carefully bounding the

contributions from different sources of uncertainty, then choosing

parameters to minimize the sum of these uncertainties. Several key

questions we address have largely eluded prior studies in the feder-

ated setting, and even modest asymptotic improvements over prior

results are significant in practice due to large values of 𝑀 . Com-

pared to a prior result on ROC AUC estimation under LocalDP [3],

we asymptotically improve bounds under less restrictive assump-

tions. Recently, heuristics have been proposed for AUC estimation

based on local noise addition [26, 27]. These do not provide any

accuracy guarantees, and we see that our approach provides better

results in our experimental study. Similar questions have also been

studied in the centralized model of DP [25], but these too lack the

accuracy guarantees we can provide.

2 PRELIMINARIES
Supervised binary classification supports many practical applica-

tions, and its theoretical setting is conducive for formal analyses.

It also helps address multiclass classifications and subset selection

(via indicator classifiers), while lightweight ranking is routinely

implemented by sorting binary classifier scores trained to predict

the examples most likely to be selected. Standard classifier metrics

are often approximated in practice (e.g., by Monte Carlo sampling),

but this becomes more challenging in the federated setting.

2.1 Classifier Calibration and Evaluation
The input to our problem is a set of examples 𝐸. Each example 𝑥 has

a ground-truth label 𝑦 which is either positive (+1) or negative (-1).

Given a set of𝑀 examplesX = {(𝑥𝑖 , 𝑦𝑖 )}, these are partitioned into
disjoint subsets P = {(𝑥, +1)} and N = {(𝑥,−1)} of positive and
negative examples, of size 𝑃 and 𝑁 respectively. Given a trained

score function𝑤 (·) which takes in examples 𝑥 and outputs a score

𝑤 (𝑥) ∈ [0, 1], we define a binary classifier based on a threshold

𝑇 , as pred(𝑥) = I[𝑤 (𝑥) ≥ 𝑇 ]. At 𝑇 = 0, the false positive ratio
(FPR) and true positive ratio (TPR) are 1, and drop to 0 as 𝑇 → 1.
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Let 𝑝 (𝑠) and 𝑛(𝑠) denote the score (mass) functions 𝑝 and 𝑛 of

the positive and negative examples respectively. That is, given a

set of positive examples P, 𝑝 (𝑠) = |{𝑤 (𝑥) < 𝑠 |𝑥 ∈ P}|/𝑃 and

𝑛(𝑠) = |𝑤 (𝑋 ) < 𝑠 |𝑥 ∈ N}|/𝑁 for negative examples N . Figure 1a

shows an example of these functions: positive examples tend to

have higher scores, while the negative examples have lower scores.

Well-behaved score distributions. For arbitrary score distribu-

tions, strong bounds for our problems may not be possible. But

empirically significant cases often exhibit some type of smoothness

(moderate change), except for point spikes – score values repeated

for a large fraction of positive or negative examples: (𝑖) for classi-

fiers with a limited range of possible output scores, (𝑖𝑖) when some

inputs repeat verbatim many times, (𝑖𝑖𝑖) when a dominant feature

value determines the score. We call such score distributions well-
behaved. Formally, we define a spike as any point with probability

mass > 𝜙 , hence at most 1/𝜙 spikes exist.

Definition 1. Spikes are points 𝑠 for which 𝑝 (𝑠) > 𝜙 or 𝑛(𝑠) > 𝜙 .

The score distribution is (𝜙, ℓ)-well-behaved if it is ℓ- Lipschitz

between spikes:

|𝑝 (𝑠) − 𝑝 (𝑠 + Δ) | ≤ ℓΔ and |𝑛(𝑠) − 𝑛(𝑠 + Δ) | ≤ ℓΔ (1)

This smoothness condition for a parameter ℓ captures the idea that

the amount of positive and negative examples does not change too

quickly with 𝑠 (barring spikes in [𝑠, 𝑠 + Δ]).

Balanced input assumption.Our proofs spell out the dependence
on the number of positive and negative examples. To simplify pre-

sentation, we may sometimes assume that counts of positive and

negative examples (𝑃 and 𝑁 ), are each at least a constant fraction of

the total number of examples𝑀 = 𝑃+𝑁 . Our proofs hold regardless,

but the simplified claims expose core dependencies between results.

Indeed, in some cases, 𝑃 = 𝑁 (perfect balance) maximizes our error

bounds and yields worst-case behavior. We can trivially assume

that classifier accuracy is > 0.5. So for balanced inputs, there is a

constant fraction of true positives.

Calibration.Given a score function 𝑠 , calibration defines a transfor-
mation of 𝑠 to obtain an accurate estimate of the probability that the

example is positive. That is, for a set of examples and labels (𝑥𝑖 , 𝑦𝑖 ),
we want a function 𝑐 (·), so that 𝑐 (𝑤 (𝑥𝑖 )) ∼ Pr[𝑦𝑖 = 1]. There are
many approaches to find such a mapping 𝑐 , such as isotonic re-

gression, or fitting a sigmoid function. A baseline approach is to

perform histogram binning on the function, with buckets chosen

based on quantile boundaries. More advanced approaches combine

information from multiple histograms in parallel [22]. To measure

the calibration quality, expected calibration error (ECE) arranges

the predictions for a set of test examples into a fixed number of bins

and computes the expected deviation between the true fraction of

positives and predicted probabilities for each bin
1
.

Precision, Recall, Accuracy. Given a classifier that makes (bi-

nary) predictions pred(𝑥𝑖 ) of the ground truth label 𝑦𝑖 on𝑀 exam-

ples 𝑥𝑖 , standard classifier quality metrics include:

• Accuracy: the fraction of correctly predicted examples, i.e.,

|{𝑖 : pred(𝑥𝑖 ) = 𝑦𝑖 }|/𝑀 .

1
Formally, the ECE is defined by Naeini et al. [22] as

∑︁𝐾
𝑗=1 𝑃 ( 𝑗) |𝑜 ( 𝑗) − 𝑒 ( 𝑗) |, where

𝑃 ( 𝑗) is the (empirical) probability that an example falls in the 𝑗 th bucket (out of 𝐾 ),

while 𝑜 ( 𝑗) is the true fraction of positive examples that fall in the 𝑗 th bin, and 𝑒 ( 𝑗) is
the fraction predicted by the model.

• Recall: the fraction of correctly predicted positive examples

(a.k.a. true positive ratio), i.e.,

|{𝑖 : pred(𝑥𝑖 ) = 𝑦𝑖 = 1}|/|{𝑖 : 𝑦𝑖 = 1}|.
• Precision: the fraction of examples labeled positive that are

labeled correctly, i.e.,

|{𝑖 : pred(𝑥𝑖 ) = 𝑦𝑖 = 1}|/|{𝑖 : pred(𝑥𝑖 ) = 1}|.
ROC AUC (Receiver Operating Characteristic Area Under the

Curve) is often used to capture the quality of a trained ML classifier.

Plotting TPR against FPR generates the ROC curve, and the ROC

AUC (AUC for short) represents the area under this curve. The

AUC can be computed in several equivalent ways. Given a set of

labeled examples 𝐸 = {(𝑥,𝑦)} with ±1 label 𝑦, the AUC equals

the probability that a uniformly-selected positive example (𝑦 = 1)

is ranked above a uniformly-selected negative example (𝑦 = −1).
Let 𝑁 be the number of negative examples, |{(𝑥,−1) ∈ 𝐸}|, and
𝑃 = |{(𝑥, 1) ∈ 𝐸}|. Then [14]

AUC = 1

𝑃𝑁

∑︁
(𝑥,1) ∈𝐸

∑︁
(𝑧,−1) ∈𝐸 I[𝑤 (𝑥) > 𝑤 (𝑧)] (2)

This expression of AUC implies that we should compare pairs of

examples across clients. We avoid such distributed interactions by

evaluating it via histograms for guaranteed approximations.

2.2 Privacy Models
FederatedPrivacy via SecureAggregation (Federated) assumes

that each client submits one (scalar or vector) value 𝑥 (𝑖) . Our pro-
tocols easily handle the case when clients hold multiple values,

by working with a vector representing the aggregated inputs. The

Secure Aggregation protocol computes the sum, 𝑋 =
∑︁𝑀
𝑖=1 𝑥

(𝑖)

without revealing any intermediate values. Various cryptographic

protocols provide distributed implementations of Secure Aggrega-

tion [3, 24], or aggregation can be performed by a trusted aggregator,

e.g., a server with secure hardware [33]. While secure aggregation

provides a practical and simple-to-understand privacy primitive, it

does not fully protect against a knowledgeable adversary. In partic-

ular, knowing the inputs of all clients except for one, the adversary

can subtract the values that they already hold. Hence, differential

privacy guarantees are sought for additional protection.

Distributed Differential Privacy (DistDP). The model of differ-

ential privacy (DP) represents a data processing task as a random-

ized algorithm, so that so for two inputs that are close, their outputs

have similar probabilities (within an exp(𝜖) factor)–in our case, cap-
tured as inputs that vary by the addition or removal of one example

(event-level privacy) [11]. DP is often achieved by adding calibrated

noise from a suitable statistical distribution to the exact answer. In

our setting, this is instatiated by introducing distributed noise at

each client which sums to give discrete Laplace noise with vari-

ance 𝑂 (1/𝜖2) [2]. The resulting (expected) absolute error for count

queries is 𝑂 (1/𝜖), and for means of𝑀 values is 𝑂 (1/𝜖𝑀) [11, The-
orem 3.8]. The distributed noise is sampled from the difference of

two (discrete) Pólya distributions [2], which neatly combines with

secure aggregation so only the noisy sum is revealed
2
.

Local Differential Privacy (LocalDP). LocalDP can be under-

stood as applying the DP definition at the level of an individual

client: each client creates a public report based on the input that

they hold (e.g, an example), so that whatever inputs the client holds,

2
Other privacy noise is possible via Binomial [9] or Skellam [1] noise addition.
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the probability of producing each possible report is within an exp(𝜖)
factor [32]. When a set of𝑀 clients each hold a binary value 𝑏𝑖 , we

can estimate the sum and the mean of 𝑏𝑖 under 𝜖-LDP by applying

randomized response [29]. For the sum over𝑀 clients, the variance

is𝑂 (𝑀/𝜖2), and so the absolute error is proportional to
√
𝑀/𝜖 . After

rescaling by𝑀 , the variance of the mean is𝑂 (1/(𝑀𝜖2)), and so the
absolute error is proportional to 1/𝜖

√
𝑀 [32]. The same bounds hold

for histograms via “frequency oracles”, when each client holds one

out of 𝐵 possibilities — we use Optimal Unary Encoding (OUE) [28]

to build a (private) view of the frequency histogram.

2.3 Building Score Histograms
A key part of our algorithms is to form an equi-depth histogram of

the clients’ information. That is, given𝑀 samples as scalar values,

we seek a set of boundaries that partition the range into 𝐵 buckets

with (approximately) equal number of samples per bucket. This is

a well-studied problem, so in what follows we review how such

histograms can be computed under each privacy model and analyze

their accuracy as a function of parameters ℎ and 𝜖 . The novelty in

our work is using them to privately measure classifier quality with

accuracy guarantees across a range of federated models.

To represent the distribution of scores with histograms, we create

a set of 𝐵 buckets that partition [0, 1]. We will build two histograms,

𝑛 and 𝑝 , where 𝑝𝑖 and 𝑛𝑖 give the number of positive and nega-

tive examples respectively whose score falls in bucket 𝑖 . Figure 1b

shows a histogram for the positive score function from Figure 1a. In

what follows, we set the histogram bucket boundaries based on the

(approximate) quantiles of the score function for the given set of

examples 𝐸, so that 𝑝𝑖 +𝑛𝑖 ≤ (𝑃 +𝑁 )/𝐵, where 𝑃 and 𝑁 denote the

total number of positive and negative examples respectively. We

formalize the problem of equi-depth histogram as follows. Given

𝑀 examples with real values 𝑧𝑖 ∈ [0, 1] we seek 𝑟0 . . . 𝑟𝐵 , so that

∀1 ≤ 𝑗 ≤ 𝐵 : 𝑟 𝑗−1 < 𝑟 𝑗 , and |{𝑖 : 𝑟 𝑗−1 < 𝑧𝑖 ≤ 𝑟 𝑗 }| = 𝑀/𝐵. (3)

This definition can be naturally generalized for multiple examples

with the same value, and to tolerate some approximation factor.

In the central non-private setting, it is straightforward to find the

exact bucket boundaries for a score histogram with equal-weighted

buckets: gather all the input data points and sort them, then read

off the value after every𝑀/𝐵 examples. This is more challenging

for distributed private data, but has been studied when finding

the quantiles of the input data [5, 12, 31]. In what follows, we

outline finding quantiles under different models of privacy and

give the accuracy bounds that result. Most federated techniques

gather information on the data at a suitably fine granularity, and

use this information to find appropriate bucket boundaries. For a

parameter ℎ (“hierarchy height”), and for each integer 𝑘 (1 ≤ 𝑘 ≤ ℎ)

we divide the range [0, 1] into 2𝑘 uniform segments, each of length

2
−𝑘

. For each segment, we count how many data points reside in

that segment. This immediately lets us answer a prefix query up to

a granularity of 2
−ℎ

: given a range [0, 𝑟/2ℎ] for an integer 𝑟 < 2
ℎ
,

we can greedily use the computed counts to partition the prefix into

at most ℎ segments, at most one for each length 2
−𝑘

, for 1 ≤ 𝑘 ≤ ℎ.

To find the point 𝑞 s.t. |{𝑖 : 𝑧𝑖 < 𝑞}| = 𝜙𝑀 , we perform binary

search on 𝑟 in order to the prefix whose sum is closest to 𝜙𝑀 . We

now apply this idea for each of the privacy models.

Secure Aggregation. The secure aggregation case is most straight-

forward, since we do not introduce any privacy noise. Instead,

each client can encode their data into ℎ one-hot vectors of length

2
𝑘
for 1 ≤ 𝑘 ≤ ℎ. This allows the aggregator to find a set of

bucket boundaries 𝑟 𝑖 based on (3), up to |𝑟 𝑖 − 𝑟𝑖 | ≤ 2
−ℎ

. When the

score distribution is (𝜙, ℓ)-well-behaved, the mass of client data

points varies by at most ℓ per unit, meaning that the error in the

number of points in this approximation is at most ℓ2−ℎ . We can

then ensure that the parameter ℎ is chosen so that the error in a

bucket, ℓ2−ℎ , is at most a small fraction of the desired amount (say,

1/4) of the bucket weight, which is 1/𝐵. Rearranging, we require
ℎ > log

2
(4𝐵ℓ) = 2 + log

2
𝐵 + log

2
ℓ . In other words (treating ℓ also

as a constant), we only require that ℎ be log
2
𝐵 plus a constant.

Distributed DP. In the DistDP case, the aggregator obtains the

data from the clients, each of whom add a small amount of noise

that collectively sums up to be equal in distribution to some global

noise value. In our setting, we will make use of Pólya noise which

sums to the (discrete) Laplace distribution, a.k.a., the symmetric

geometric distribution [2].We can adopt the same depthℎ hierarchy

as before, but now we have discrete Laplace noise added to every

count (Section 2.2). To ensure differential privacy, the noise has to

be scaled as a function of 𝜖/ℎ to achieve an overall 𝜖-DP guarantee,

since each client contributes to ℎ counts. Equivalently, we could

divide the clients into ℎ batches, so that each batch reports on a sin-

gle level of the hierarchy, and adds noise as a function of 𝜖 . In either

case, the total variance of finding the number of clients in a range is

𝑂 (ℎ3/𝜖2), since𝑂 (ℎ) counts each with variance𝑂 (ℎ2/𝜖2) are com-

bined. This ensures that the end points for bucket boundaries can

be found with expected absolute error𝑂 (ℎ3/2/𝜖𝑀 +2−ℎ). As before,
the 2

−ℎ
term comes from representing input points at this granu-

larity. If we balance these terms, for constant 𝜖 , and𝑀 between 10
3

and 10
6
, we would expect to choose values of 10 ≤ ℎ ≤ 20.

Local DP. The case of local DP is somewhat similar to the dis-

tributed DP case. Here, the privacy noise is added by each client

independently (typically by a version of randomized response) so

that their input is encoded in a frequency oracle [28]. Standard ap-

proaches apply asymmetric randomized response [29] to a one-hot

encoding of the client’s input value, such as the Optimal Unary

Encoding approach we use in our experiments [28]. If a client has

no data to report (e.g., when building a histogram on positive exam-

ples, and the client’s example is negative), the client can submit an

all-zeros vector to the LDP mechanism, and obtain the same LDP

guarantee for their contribution. Each client introduces noise of

𝑂 (1/𝜖2) on each count they report, and clients are divided into ℎ

groups of size 𝑀/ℎ to report on one level of the hierarchy. Now

the variance for the fraction of clients in a range is 𝑂 (ℎ2/(𝜖2𝑀)),
due to the increased noise level. This means that bucket end points

are found with expected absolute error𝑂 (ℎ/𝜖
√
𝑀 + 2

−ℎ), so a shal-

lower hierarchy is preferred: for typical parameter settings, we now

expect 5 ≤ ℎ ≤ 10.

Overcoming heterogeneity. A common concern when working

in the federated model is data heterogeneity: values held by clients

may be non-iid (some clients are more likely to have examples of a

single class), and some clients may hold more examples than others.

By working with histogram representations we overcome these

concerns: the histograms we build are insensitive to how the data is
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Table 1: Our simplified error bounds in three privacymodels

Federated DistDP LocalDP

P/R/A (for a score function) 1/𝐵 1/𝜖2/3𝑀2/3
1/𝜖2/3𝑀1/3

ROC AUC 1/𝐵2 ( 1
𝜖
+ 1

𝐵
) 1

𝑀
ℎ/𝜖𝑀1/2

Expected Calibration Error 1/𝑀1/3
1/𝑀1/3

1/𝜖1/2𝑀1/4

distributed to clients, and the privacy noise needed is independent
of heterogeneity. We can then state results in terms of a few basic

parameters (number of clients 𝑀 and histogram buckets 𝐵 etc.),

and independent of other properties of the data distribution.

3 SUMMARY OF OUR RESULTS
Table 1 presents simplified versions of our main results as a func-

tion of the parameters introduced above. Here and throughout we

express asymptotic error bounds in terms of the expected absolute
error , which is also a bound that holds with high probability via

standard concentration inequalities [21].Without requiring any i.i.d.

assumptions for distributed clients, our results clarify the expected

magnitude of the error, which should be small in comparison to the

quantity being estimated: tightly bounding the error values ensures

accurate results. All the estimated quantities are in the [0, 1] range.
For (binary) classifiers of interest the four quality metrics will be

≥ 1

2
, while the expected calibration error is a small value in [0, 1].

To keep the presentation of these bounds simple, we use the bal-
anced input assumption (from Section 2.1), i.e., there are Θ(𝑀) posi-
tive examples and Θ(𝑀) negative examples among the 𝑀 clients

3
.

Error bounds are presented as a function of the number of clients,

𝑀 , the privacy parameter 𝜖 , the number of buckets used to build a

score histogram, 𝐵, and the hierarchy height, ℎ (see above). Across

the various problems the error increases as wemove from Federated

to DistDP to LocalDP. This is expected, as the noise added in each

case increases to compensate for the weaker trust model.

Other trends we see are not as easy to guess. Increasing the num-

ber of buckets 𝐵 often helps reduce the error, but this is not always

so, particularly for the LocalDP results. Increasing the number of

examples, 𝑀 , typically decreases the error, although the rate of

improvement as a function of𝑀 varies from 1/𝑀1/4
in the worst

case to 1/𝑀 in the best case. Our experimental findings presented

in Section 7 agree with this analysis and confirm the anticipated

impact of increasing𝑀 and of varying the parameters 𝐵 and ℎ. We

observe high accuracy in the Federated case and good accuracy

when DP noise is added. Calibration error for DistDP is insensitive

to 𝜖 as explained after Theorem 8. These results help building full-

stack support for practical federated data processing, and show the

practicality of federated classifier evaluation.

4 PRECISION, RECALL, AND ACCURACY
Overview. Given a score function 𝑤 (·) with values in [0, 1] for

each example 𝑥 , we seek statistics that would help estimate the pre-
cision, recall and accuracy of the classifier defined by a threshold 𝑇 ,

where𝑇 can be chosen at query time. Our solution is to build score

histograms of the positive and negative examples (via Section 2.3),

and compute the metrics using just the histograms. That is, we

3
The results without this assumption appear in the proofs of the respective claims.

break each calculation into a sum over histogram buckets. We can

bound the uncertainty due to this approximation by limiting the

number of examples in the bucket, and bound the uncertainty due

to privacy noise by limiting the number of buckets. We balance

these two sources of uncertainty to determine the optimal number

of buckets as a function of privacy 𝜖 and number of client values

𝑀 . We will use the following mathematical fact.

Fact 1. For (positive) real numbers 𝐴 and 𝐺 , suppose we are given
𝐴̂ = 𝐴±𝛼 and 𝐺̂ = 𝐺 ±𝛾 , where 𝛾 ≤ 𝐺/2 and 𝑋̂ = 𝑋 ±𝑥 is shorthand
for 𝑋̂ ∈ [𝑋 − 𝑥,𝑋 + 𝑥]. When estimating a fraction 𝐴

𝐺
≤ 1, we have

| 𝐴̂
𝐺̂

− 𝐴
𝐺
| = 𝑂 ( 𝛼+𝛾

𝐺
).

Proof.|︁|︁|︁𝐴±𝛼𝐺±𝛾 − 𝐴
𝐺

|︁|︁|︁ = |︁|︁|︁ 𝐴±𝛼
𝐺 (1±𝛾/𝐺) −

𝐴
𝐺

|︁|︁|︁ = |︁|︁|︁ (𝐴±𝛼) (1∓2𝛾/𝐺)
𝐺

− 𝐴
𝐺

|︁|︁|︁
≤ 2𝐴𝛾

𝐺2
+ 𝛼
𝐺

+ 2𝛼𝛾

𝐺2
= 𝑂

(︂
𝛼+𝛾
𝐺

)︂
(4)

using 𝐴/𝐺 ≤ 1 and 𝛾/𝐺 ≤ 1/2 to simplify in the final step. □

Theorem 2. Given a score histogram for positive and negative
examples built based on a hierarchy of height ℎ, we can compute
estimates for precision, recall and accuracy based on a threshold
𝑇 which approximate the true precision, recall and accuracy for a
threshold𝑇 ′ ∈ 𝑇 ±Δ, under the balanced input assumption, as follows:
• In the basic Federated case, we achieve error 𝑂 (1/𝐵) with Δ = 2

−ℎ ;
• For DistDP, the error is𝑂 (1/(𝜖𝑀)2/3) with Δ = 𝑂 (ℎ3/2/𝜖𝑀 +2−ℎ);
• For LocalDP, error is𝑂 (1/(𝜖2/3𝑀1/3)) with Δ = 𝑂 (ℎ/𝜖

√
𝑀 + 2

−ℎ).

Proof. We make use of score histograms of positive and neg-

ative examples that are accurate up to a small uncertainty in 𝑇 ,

which we write as (𝑇 ± Δ). The histogram takes a parameter ℎ that

determines the height of the hierarchy used to construct it. Under

the Federated model, we have that Δ = 2
−ℎ

, whereas for DistDP

Δ = 𝑂 (ℎ3/2/𝜖𝑀 + 2
−ℎ) and for LocalDP Δ = 𝑂 (ℎ/𝜖

√
𝑀 + 2

−ℎ), as
explained in Section 2.3. We consider each classifier metric in turn.

Accuracy is easiest to handle, since we just need the numerator

|{𝑖 : 𝑦𝑖 = −1 ∧𝑤 (𝑥𝑖 ) < 𝑇 }| + |{𝑖 : 𝑦𝑖 = 1 ∧𝑤 (𝑥𝑖 ) ≥ 𝑇 }|
That is, the number of negative examples with a score below𝑇 plus

the number of positive examples with a score of at least 𝑇 . We can

estimate both these quantities with additive error at most 1/𝐵 using

a 𝐵-bucket equi-depth histogram (without noise addition).

In the DistDP case, there is discrete Laplace noise on each bucket

count to mask the presence of any individual. We can bound the

error from this noise to be of order

√
𝐵/𝜖𝑀 , by summing variances,

giving a total error bound of𝑂 (1/𝐵+
√
𝐵/𝜖𝑀). We can balance these

two terms so that 1/𝐵 =
√
𝐵/𝜖𝑀 , so 𝐵3 = 𝜖2𝑀2

, i.e., 𝐵 = (𝜖𝑀)2/3.
This gives the total error as 𝑂 (1/(𝜖𝑀)2/3).

Under 𝜖-LocalDP noise, we obtain an additional error term of√
𝐵/𝜖

√
𝑀 (summing the variance over 𝐵 buckets). Balancing these

two terms sets 1/𝐵 =
√
𝐵/𝜖

√
𝑀 , i.e., 𝐵3 = 𝜖2𝑀 , and so 𝐵 = 𝜖2/3𝑀1/3

.

Under this setting, the total error is bounded as 𝑂 (1/𝜖2/3𝑀1/3).
Recall. The same histogram approach works for recall. Using a

histogram, we aim to estimate the number of true positives, which

is the number of positive examples above the threshold, divided by

the total number of positives. Without DP noise, we can compute 𝑃 ,

the number of positive examples, exactly for the denominator, but
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we incur error𝑀/𝐵 for the numerator, giving error𝑀/𝐵𝑃 . To sim-

plify this expression, we can invoke the balanced input assumption,

which bounds this by 𝑂 (1/𝐵) since𝑀 = 𝑂 (𝑃).
Including LocalDP noise, we incur error 𝛼 =

√
𝐵𝑀/𝜖 when sum-

ming over 𝐵 buckets. We also have error 𝛾 =
√
𝑀𝜖 for estimating 𝑃 .

Using Fact 1, the error is dominated by 𝑂 (
√
𝐵𝑀/𝜖𝑃 +𝑀/𝐵𝑃). This

is again balanced by setting 𝐵 = 𝜖2/3𝑀1/3
. Likewise, for DistDP

noise, 𝛼 =
√
𝐵𝑀/𝜖 and 𝛾 = 𝑀𝜖 , which fixes 𝐵 = (𝜖𝑀)2/3 for error

𝑂 (1/𝐵) = 𝑂 ((𝜖𝑀)−2/3) under the balanced input assumption.

Precision. The bounds for precision are similar. Using a histogram,

we want to first count how many examples are correctly classified

as positive – this is the number of positive examples above the

threshold𝑇 . We scale this by the total number of examples that are

classified as positive, which is just the number of examples above

the threshold 𝑇 . Under secure aggregation, we can estimate both

of these with error𝑀/𝐵, which is due to the histogram bucketing.

Plugging these into (4), the error bound is 𝑂 (𝑀/𝐵(𝑇𝑃 + 𝐹𝑃)). To
simplify the form of this bound, we invoke the balanced input

assumption. This implies that a constant fraction of the examples

are positives, and that the classifier has at least a constant accuracy,

so the bound becomes 𝑂 (1/𝐵).
With LocalDP noise, both of these quantities incur additional

noise of 𝛼 = 𝛾 =

√
𝐵𝑀
𝜖 . The error bound is𝑂 ( 1

(𝑇𝑃+𝐹𝑃 ) (
𝑀
𝐵
+

√
𝐵𝑀

𝜖
√
𝑀
)).

Balancing this error sets 𝐵 = 𝜖2/3𝑀1/3
, which gives an error of

𝑂 (𝑀2/3/𝜖2/3 (𝑇𝑃 +𝐹𝑃)). If 𝐹𝑃 +𝑇𝑃 is a constant fraction of𝑀 , then

we simplify this to 𝑂 (1/𝜖2/3𝑀1/3). Similarly for DistDP noise, we

have 𝛼 = 𝛾 =
√
𝐵𝑀/𝜖 , which leads to error 𝑂 (1/(𝜖𝑀)2/3) under

the same assumptions on positive examples.

Combining each of these bounds with the error introduced by us-

ing a score histogram to find the bucket boundaries on the threshold

as Δ, we obtain the results stated in the theorem. □

In the Federated case, accuracy improves without limit if we

increase the height of the hierarchy ℎ arbitrarily and scale 𝐵 ∼ 2
ℎ
.

The cost is that the resulting histogram built by the aggregator

is 𝑂 (2ℎ) in size. However, for DistDP and LocalDP, increasing ℎ

increases the imprecision Δ: there is uncertainty due to the privacy

noise, which eventually outweighs the fidelity improvement due to

smaller histogram buckets. Our analysis for Theorem 2 balances

the two terms to find a setting of 𝐵 that yields the stated bounds.

5 FEDERATED COMPUTATION OF ROC AUC
Overview. Estimating ROCAUC is a fundamental problem in classi-

fier evaluation. It is particularly challenging in the federated setting,

since it requires comparing how different examples are handled by

the classifier, whereas these examples are usually held by different

clients. However, it turns out that we can get accurate approxima-

tions of AUC without requiring communication amongst clients.

Our approach is to represent the positive and negative score distri-

butions with 𝐵-bucket score histograms, and use these to compute

the AUC. That is, we treat the piecewise-constant function (Fig-

ure 1b) as if it were the true score function. We first show that this

approach has bounded error in the federated case (Section 5.1), then

tighten this under our well-behaved assumption (Section 5.2. We

then give the corresponding results for the DistDP and LocalDP

models (Section 5.3 and 5.4).

In more detail, we use 𝐵-bucket score histograms (Section 2.3)

to write a histogram-based estimator for AUC:

𝐻𝐵 = 1

𝑃𝑁

∑︁
𝑖∈[𝐵 ]

(︂∑︁
𝑗<𝑖 𝑝𝑖𝑛 𝑗 + 1

2
𝑝𝑖𝑛𝑖

)︂
(5)

Recall that 𝑃 and 𝑁 denote the total number of positive and nega-

tive examples, while 𝑝𝑖 and 𝑛𝑖 denote the number of positive and

negative examples in bucket 𝑖 of the histogram.

We start by analysing the accuracy when the histogram contains

exact counts, i.e., in the Federated case. Compared to the precise

AUC computation, our uncertainty in this estimate derives from the

𝑝𝑖𝑛𝑖 term: for any 𝑗 < 𝑖 , we know that all the pairs of examples that

contribute to 𝑝𝑖𝑛 𝑗 would be counted by (2), while for 𝑗 > 𝑖 , no pairs

corresponding to 𝑝𝑖𝑛 𝑗 should be counted. However, within bucket

𝑖 , we are uncertain whether all positive examples are ranked higher

than all negative examples (in which case we should count 𝑝𝑖𝑛𝑖
towards (2)), or vice-versa (yielding a zero contribution). The choice

of
1

2
𝑝𝑖𝑛𝑖 in (5) takes the midpoint of these two extremes. Section 5.2

shows this is a good choice for well-behaved distributions.

5.1 Worst-case Bounds via Score Histograms
We first present a general bound on AUC estimation using a score

histogram. A key insight is that, in the Federated case, the only

uncertainty comes from the contribution to the AUC of positive

and negative examples that fall in the same bucket. Using an equi-

depth histogram bounds the number of such examples, and so the

absolute error drops as the number of histogram buckets grows.

Lemma 3. In the Federated case, the additive error in AUC estimation
with a 𝐵-bucket score histogram is 𝑂 (1/𝐵).

Proof. In order to bound the error in our estimate of AUC, we

can choose the histogram buckets based on the quantiles of the

score function (Section 2.3), so that 𝑝𝑖 + 𝑛𝑖 = (𝑃 + 𝑁 )/𝐵. The error
in our estimate is at most

1

2𝑃𝑁

∑︁
𝑖∈[𝐵 ] 𝑝𝑖𝑛𝑖 . This error is maximized

when 𝑝𝑖 = 𝑛𝑖 = (𝑃 +𝑁 )/2𝐵, so that the resulting (absolute) error is
1

2𝑃𝑁

∑︁
𝑖∈[𝐵 ] 𝑝𝑖𝑛𝑖 =

1

2𝑃𝑁

∑︁
𝑖∈[𝐵 ]

(𝑃+𝑁 )2
(2𝐵)2 = 4

2(𝑃+𝑁 )2
𝐵 (𝑃+𝑁 )2

4𝐵2
= 1

2𝐵

using that our worst-case setting of 𝑝𝑖 and 𝑛𝑖 entailed that 𝑃 = 𝑁 =

(𝑃 + 𝑁 )/2 (the perfectly balanced input case). □

The proof considers worst-case allocations of examples with a

uniform share of positive and negative examples in each bucket, to

show that using a histogram with 𝐵 buckets set by the quantiles

of the score function suffices to bound the (additive) AUC error

by 1/2𝐵. I.e., 𝐵 = 50 buckets ensure that the error ≤ 0.01. For a

classifier with AUC > 1

2
, this means a relative error of at most 1/𝐵.

5.2 Better Bound for Well-behaved Distributions
The worst-case bound allows extreme cases where all positive ex-

amples in a bucket are ranked above all negative examples in the

same bucket, or vice-versa. We show a tighter bound when the

distribution functions of examples are well-behaved (Defn. 1).

Theorem 4. For (1/𝐵,Θ(1))-well-behaved inputs, the Federated
error for AUC estimation using score histograms is 𝑂 (1/𝐵2).

Proof. We consider the maximum uncertainty we can have

within a single histogram bucket 𝑖 when the score distribution is
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(1/𝐵,Θ(1))-well-behaved. First, suppose that there is a spike within
the bucket. Choosing our spike parameter𝜙 = 1/𝐵, we have that the
bucket must contain only this spike, otherwise the bucketing would

violate the quantile property (3). Thus, we have no uncertainty as to

the contribution of the single point 𝑥 in this bucket to the AUC, as

it is zero according to (2). Hence, providing the (𝜙, ℓ)-well-behaved
property holds for 𝜙 = 1/𝐵, we incur no error due to spikes.

This leaves only buckets without spikes, which are assumed to

obey the Lipschitz condition with parameter ℓ = Θ(1). Abusing
notation slightly, let 𝑝𝑖 and 𝑛𝑖 denote the mass of positive and nega-

tive examples at the left hand end of the bucket. We reparameterize

the mass function within a bucket based on a parameter 0 ≤ 𝛼 ≤ 1,

so that 𝑝 (𝛼) and 𝑛(𝛼) give the mass of examples within the bucket

at the point that is an 𝛼 fraction across the bucket (from left to

right). We define 𝐿 = ℓΔ𝑖 , where Δ𝑖 is the width of bucket 𝑖 . Then

|𝑝 (𝛼) − 𝑝𝑖 | ≤ 𝐿𝛼 and |𝑛(𝛼) − 𝑛𝑖 | ≤ 𝐿𝛼

Rearranging, we can write 𝑝 (𝛼) ∈ 𝑝𝑖 ± 𝐿𝛼 and 𝑛(𝛼) ∈ 𝑛𝑖 ± 𝐿𝛼 .

The contribution to AUC from this bucket is then bounded by

integration of these linear bounding functions:∫
1

0
𝑝 (𝛼)

∫ 𝛼
0

𝑛(𝛼 ′)𝑑𝛼 ′𝑑𝛼 ∈
∫
1

0
(𝑝𝑖 ± 𝐿𝛼)

∫ 𝛼
0
(𝑛𝑖 ± 𝐿𝛼 ′)𝑑𝛼 ′𝑑𝛼

∈
∫
1

0
(𝑝𝑖 ± 𝐿𝛼)

(︂
𝑛𝑖𝛼 ± 𝐿𝛼2

2

)︂
𝑑𝛼

∈
[︂
𝑝𝑖𝑛𝑖𝛼

2

2
± 𝐿𝑛𝑖𝛼

3

3
± 𝑝𝑖𝐿𝛼

3

6
± 𝐿2𝛼4

8

]︂
1

0

∈ 1

2
𝑝𝑖𝑛𝑖 ± 1

3
𝐿𝑛𝑖 ± 1

6
𝐿𝑝𝑖 ± 1

8
𝐿2 .

If we use 𝑝𝑖𝑛𝑖/2 as our estimate of the contribution to the AUC

from bucket 𝑖 , the absolute error in this estimate is at most 𝐿𝑛𝑖/3 +
𝐿𝑝𝑖/6+𝐿2/8 = 𝑂 (Δ𝑖 (𝑝𝑖 +𝑛𝑖 )+Δ2

𝑖
) (treating the Lipschitz parameter

ℓ as a constant). Without loss of generality, we can assume that

Δ𝑖 ≤ 1/𝐵 – the width of any bucket is at most 1/𝐵. Although this

is not directly implied if we define the buckets by the quantiles

of the score functions, we can additionally enforce this property

without changing that there are 𝑂 (𝐵) buckets in the histogram.

The uncertainty in AUC contribution is 𝑂 ((𝑝𝑖 + 𝑛𝑖 )/𝐵 + 1/𝐵2) =
𝑂 ((𝑃 + 𝑁 )/𝐵2), from our choice of bucket boundaries and the

bounded number of points in a bucket. Summing over all buckets

and normalizing by 1/𝑃𝑁 the absolute error in AUC is bounded by

𝑂 ( 𝑃+𝑁
𝐵𝑃𝑁

) which simplifies to 𝑂 (1/𝐵𝑀) under the balanced input

assumption. To express this solely in terms of 𝐵, we can observe

that 𝐵 < 𝑁 and 𝐵 < 𝑃 (else, we have empty buckets, which don’t

contribute to the error), and so the error bound is 𝑂 (𝐵−2). □

This improved 1/𝐵2 scaling is strong and produces tight error

bounds for small 𝐵. Picking 𝐵 ≈ 100 gives error ≈ 10
−4
, small

enough for most conceivable applications. Empirical errors on

AUC estimates closely follow 𝑂 (𝐵−2) on test data (Section 7).

5.3 AUC Noise Addition for DistDP
Differential privacy introduces noise into every bucket, which

quickly becomes the dominant factor.

Theorem 5. Under DistDP, the AUC estimation error bound with
the balanced input assumption is 𝑂 (( 1𝜖 + 1

𝐵
) 1

𝑀
).

Proof. Under differential privacy, we additionally have to ac-

count for privacy noise on the counts. We first consider the effect

of centralized DP noise added to each histogram bucket. Recall that,

as described in Section 2.2 the effect of the 𝜖-DP noise is to add

unbiased noise of variance 𝑂 (1/𝜖2) (i.e., with magnitude Θ(1/𝜖))
to every count. This means that there are errors introduced in the

estimates of 𝑝𝑖𝑛 𝑗 , as well as 𝑝𝑖𝑛𝑖 .

Errors also arise due to the variation in the size of histogram

buckets: if we estimate quantiles under differential privacy, then we

no longer guarantee that there are exactly𝑀/𝐵 examples in each

histogram bucket. However, the analysis is not highly sensitive to

this issue, and it suffices to assume that the private histogram guar-

antees that there are between 𝑀/2𝐵 and 2𝑀/𝐵 examples in each

bucket. This is the case using the DistDP histogram construction of

Section 2.3 for typical choices of the parameters ℎ, 𝜖 ,𝑀 and 𝐵 (say,

𝑀 more than a few hundred). We make use of the expression for

the variance of the product of two independent random variables,

Var[𝑋𝑌 ] = Var[𝑋 ]Var[𝑌 ] +Var[𝑋 ] (E[𝑌 ])2 +Var[𝑌 ] (E[𝑋 ])2 . (6)

We apply this expression to the estimate of 𝑝𝑖𝑛 𝑗 , since the ran-

dom variables representing privacy noise on each of 𝑝𝑖 and 𝑛 𝑗 are

truly independent. The total variance in the use of a noisy histogram

with 𝐵 buckets, 𝐻̂𝐵 , in (5) to approximate (2) is given by

𝑂

(︃∑︁
𝑖, 𝑗

1

𝜖4
+ 𝑝2𝑖
𝜖2

+
𝑛2𝑗

𝜖2

)︃
= 𝑂

(︃
𝐵2

𝜖4
+ 𝐵

∑︁
𝑖∈[𝐵 ]

𝑝2𝑖 +𝑛2𝑖
𝜖2

)︃
= 𝑂

(︂
𝐵2

𝜖4
+ 𝑃2+𝑁 2

𝜖2

)︂
This expression is dominated by the quadratic terms in 𝑃 and

𝑁 for 𝜖 at least a constant, i.e., we can use 𝑂 ((𝑃 + 𝑁 )2
(︁
1/𝜖2

)︁
) as

a bound on the variance, since we can assume 𝑃 > 𝐵 and 𝑁 > 𝐵.

Combining the error bound from Theorem 4 and after normalizing

by the factor of 𝑃𝑁 , this yields an absolute error of magnitude

𝑂 (( 1𝜖 + 1

𝐵
) 𝑃+𝑁
𝑃𝑁

), i.e., augmenting 1/𝐵 from the noiseless case with

an additional 1/𝜖 . Under the balanced input assumption, we can

write the total error bound as 𝑂 (( 1𝜖 + 1

𝐵
) 1

𝑀
). □

That is, the error is comprised of two components: privacy noise

of 𝑂 (1/𝜖𝑀), and “bucketization” noise of 𝑂 (1/𝐵𝑀). Since 𝜖 can

usually be treated as fixed, this rules out asymptotic benefit for

increasing 𝐵 above Θ(𝜖): when 𝐵 is large enough, the error due to

privacy noise will dominate, and using more buckets will not help.

Empirical results in Section 7.2 confirms this: for 𝜖 = 1, 𝐵 ≫ 20

makes negligible difference in terms of accuracy.

5.4 AUC Noise Addition for LocalDP
The LocalDP case is similar, except the magnitude of the noise is

larger, since we incur noise on every example. Here, the error of

the quantile estimates is also larger, but this does not affect things.

Theorem 6. The error bound for LocalDP AUC estimation with the
balanced input assumption with a hierarchy height ℎ is 𝑂 (ℎ/𝜖

√
𝑀).

Proof. As in the DistDP case, we assume that𝑀 is large enough

so the error from determining the quantile boundaries is sufficiently

small that each bucket has a constant multiple of𝑀/𝐵 examples in

it. This means thatℎ/𝜖
√
𝑀 ≤ 𝑀/𝐵. Rearranging, we require 𝐵ℎ/𝜖 =

𝑂 (𝑀3/2). For constant 𝜖 , and typical bounds ℎ ≤ 20, 𝐵 ≤ 10
3
, this

will hold provided that𝑀 is in the order of thousands or more.

3259



Let 𝑉𝜖 denote the variance when using the LDP frequency or-

acle to answer a range query (the sum of a range of buckets in

the histogram). Prior work has determined that when we use a

hierarchical histogram [5] of height ℎ with Optimal Unary En-

coding, 𝑉𝜖 =
ℎ2 exp(𝜖)

(exp(𝜖)−1)2 . Let 𝑀 = 𝑁 + 𝑃 denote the total num-

ber of examples. Considering the variance in the estimation of∑︁
𝑖∈[𝐵 ]

∑︁
𝑗<𝑖 𝑝𝑖𝑛 𝑗 via (6), we can write

Var[∑︁𝑖∈[𝐵 ] ∑︁𝑗<𝑖 𝑝𝑖𝑛 𝑗 ] = 𝑂

(︂∑︁
𝑖, 𝑗 𝑀

2𝑉 2

𝜖 + 𝑝2
𝑖
𝑀𝑉𝜖 + 𝑛2𝑗𝑀𝑉𝜖

)︂
= 𝑂

(︂∑︁
𝑖, 𝑗 𝑀

2𝑉 2

𝜖 +𝑀3𝑉𝜖/𝐵2
)︂

= 𝑂
(︁
𝑀2𝐵2𝑉 2

𝜖 +𝑀3𝑉𝜖
)︁

For small 𝐵, the term in𝑀3
will dominate. If we balance the two

terms, we obtain 𝐵 = 𝑂 (
√︁
𝑀/𝑉𝜖 ).

For 𝜖 = 𝑂 (1), we have that 𝑉𝜖 = 𝑂 (ℎ2/𝜖2). Consequently, the
absolute error is of magnitude 𝑂 (

√︁
𝑉𝜖/𝑀) = 𝑂 (ℎ/𝜖

√
𝑀). That is,

the dependence on 𝑀 = 𝑃 + 𝑁 = 𝑂 (
√
𝑃𝑁 ) is weakened, so error

decreases more slowly as the number of examples increases. □

We compare this bound to a result of Bell et al. [3] where a bound

of 𝑂 (ℎ3/2/𝜖
√
𝑀) is derived for LDP AUC estimation. Their setting

assumes a discrete domain with 2
ℎ
possible values and non-private

classes of the examples, whereas we remove those assumptions.

6 FEDERATED SCORE CALIBRATION
Overview. For calibration, we will look at the histogram of the

score functions, and apply the calibration to this representation.

That is, we will compute a calibrated score for each bucket, based

on the observed number of positive and negative examples in that

bucket. Classifier calibration poses an additional challenge, since

the quality of a calibrated classifier is determined by its performance

averaged over multiple examples. When building a summary from

a histogram representation of the labeled data, we incur additional

uncertainty: for small buckets holding a few points, our estimates

of classifier metrics within such buckets are noisier and subject to

sampling error. Hence, we balance the precision of smaller buckets

with the increased uncertainty when choosing parameters.

To begin, we first consider the accuracy in our estimation using

a score histogram (without privacy noise) with 𝑂 (𝐵) buckets. If
the value of the calibrated score function varies arbitrarily as the

uncalibrated score changes, then calibration via histogram is not

a meaningful task. Hence, we assume the (𝜙,𝑂 (1))-well-behaved
property of the (ideal) calibrated score function (Defn 1), meaning

that each bucket is either heavy or smoothly varying.

Theorem 7. In the Federated case, the expected calibration error
using score histograms is bounded by 𝑂 (1/𝑀1/3).

Proof. Recall that the (ideal) calibrated value for a score 𝑠 is the

true positive ratio at that point, i.e., 𝑝 (𝑠)/(𝑝 (𝑠) + 𝑛(𝑠)), where 𝑝 (𝑠)
and𝑛(𝑠) are the probability mass functions for positive and negative

examples. We assume that this calibration function 𝑐 (𝑠) is (1/𝐵, ℓ)-
well behaved, for a constant ℓ , so that between any spikes the

maximum change is governed by |𝑐 (𝑠)−𝑐 (𝑠+Δ) | ≤ ℓΔ.We consider

the behavior of the score function within a histogram bucket of

width Δ that includes the score value 𝑠 . So the calibrated value for

Table 2: Data and classifiers from three different “tabular
playground” Kaggle competitions used for evaluation.

Kaggle Classification Data Baseline ROC

challenge task domain rows classifier AUC

Sep 2021 Insurance risk 958K LightGBM 0.79

Oct 2021 Genetic tests 1M XGBoost 0.85

Nov 2021 Email spam 600K Logit Regression 0.73

any point in the bucket must be in the range 𝑐 (𝑠) ± ℓΔ = 𝑐 (𝑠) ± ℓ/𝐵,
as we require the width of any histogram bucket to be at most 1/𝐵.

The points drawn in the histogram for this bucket can be consid-

ered to be samples, where the probability of each sample for score

𝑠 ′ being a positive example is 𝑐 (𝑠 ′). By a standard Hoeffding bound,
the probability that the mean calibrated value of 𝑛 sampled points

falls below 𝑐 (𝑠) − ℓ/𝐵 − 𝜀, or exceeds 𝑐 (𝑠) + ℓ/𝐵 + 𝜀 is bounded by

exp(−2𝜀2𝑛). Since each bucket has Θ(𝑀/𝐵) samples, we set this

probability to be a small constant and rearrange to guarantee that

for any score 𝑠 ′ that falls in the bucket we can estimate its calibrated

value within absolute error at most ℓ/𝐵 +
√︁
𝐵/𝑀 . Else, if the bucket

contains a spike, then the error is dominated by the sampling error,

and so we focus on the non-spiky case. Trading off these two error

terms, we equate ℓ/𝐵 =
√︁
𝐵/𝑀 . Rearranging, and treating ℓ as a

constant, we set 𝐵 ∝ 𝑀1/3
to balance these errors. In this case, the

(expected) error achieved is 𝑂 (𝑀−1/3). □

Hence, calibration is challenging, as accuracy improves slowly as

a function of the number of clients,𝑀 (due to the uncertainty from

client sampling). Next, we consider the impact of privacy noise.

Theorem 8. Expected calibration error in the LocalDP and DistDP
cases is 𝑂 (1/𝜖1/2𝑀1/4) and 𝑂 (1/𝑀1/3 + 1/𝜖𝑀2/3), respectively.

Proof. We follow the argument of Theorem 7 to argue that

within a bucket we haveΘ(𝑀/𝐵) points. However, now the estimate

from the bucket is perturbed due to privacy noise. In particular, we

obtain a value for 𝑝𝑖 and 𝑛𝑖 , the numbers of positive and negative

examples in the bucket, that have expected absolute error of

√
𝑀/𝜖

(in the LocalDP case) or 1/𝜖 (in the DistDP case). In a bucket with

Θ(𝑀/𝐵) examples, this yields an additional error on estimates of 𝑐

of 𝑂 (𝐵/𝜖
√
𝑀) or 𝑂 (𝐵/𝜖𝑀), respectively.

For the LocalDP case, the quantity of 𝐵/𝜖
√
𝑀 will dominate the√︁

𝐵/𝑀 term, leading us to choose 𝐵 = 𝑂 (
√
𝜖𝑀1/2). This sets the

error bound to 𝑂 (𝜖−1/2𝑀−1/4). That is, we expect the number of

bins needed to be rather small in the LDP case.

For the DistDP case, the quantity of 𝐵/𝜖𝑀 will be of lower mag-

nitude than

√︁
𝐵/𝑀 since (treating 𝜖 as a constant) 𝐵/𝑀 < 1. Hence,

we focus on balancing ℓ/𝐵 with

√︁
𝐵/𝑀 as in the noiseless case. This

sets 𝐵 = 𝑂 (𝑀1/3) to achieve error 𝑂 (𝑀−1/3 + 1/𝜖𝑀2/3). We state

this as 𝑂 (𝑀−1/3), assuming that 1/𝑀1/3 < 𝜖 . □

For DistDP, we expect that there are enough clients so that

1/𝑀1/3 < 𝜖 , thus the bound simplifies to 𝑂 (𝑀−1/3). The depen-

dence on 𝜖 is (surprisingly) limited because sampling noise domi-

nates privacy noise. So we anticipate small difference in calibration

quality with and without privacy noise. For LocalDP, privacy noise

is big enough to affect the error but only weakly (as 1/
√
𝜖).
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(f) Nov data, LocalDP noise

Figure 2: Accuracy for classifier Precision, Recall and Accuracy estimation with varying noise levels

7 EMPIRICAL EVALUATION
Our empirical study quantifies the accuracy of the proposed ap-

proaches and the impact of enforcing different models of privacy.

We simulate a distributed environment on a single CPU and evaluate

several approaches for a selection of trained classifiers using data

examples with ground-truth labels and predicted scores
4
. We lever-

age freely-available synthetic data and trained baseline classifiers

from three diverse “tabular playground” competitions at Kaggle.
5

These data science challenges present a variety of realistic synthetic

data and prediction tasks. Table 2 summarizes the different data and

classifiers used from the three different challenges from 2021. They

each have binary targets and approximately balanced positive and

negative classes. The input is then the set of scored examples and

labels, i.e., the pairs (𝑤 (𝑥𝑖 ), 𝑦𝑖 ), where each client is assigned one

example. We show representative results on subsets of the datasets;

full results are in our extended technical report [6].

Privacy settings. Choosing privacy parameter 𝜖 is the subject of

several studies [15, 17]. Across many implementations [7, 10], 𝜖 < 1

is considered very strong privacy, while 𝜖 > 10 is very weak, and

typical choices fall between these. We evaluate our results with 𝜖

values between these extremes, using standard noise distributions.

For LocalDP, we implement Optimized Unary Encoding [28] with

𝜖 = 5.0, a common setting, which was slightly preferable to other

LocalDP mechanisms. For DistDP, we sample discrete Laplace noise

via the summation of𝑀 Pólya distributions, equivalent to 𝜖 = 1.0.

4
Our Python notebook is available at https://figshare.com/s/607998e479b0778645f6

5
See https://www.kaggle.com/competitions?hostSegmentIdFilter=8 Accessed: 7/7/23

7.1 Precision, Recall, and Accuracy
Figure 2 shows results for estimating precision, recall and accuracy

as we vary the parameter ℎ that determines the height of the hierar-

chy used for the score histogram. For each data set, we consider ten

different decision score thresholds𝑇 (1/11, 2/11 . . . 10/11) to define
a binary classifier. For each experiment, we show the absolute error

between the exact and reported values, with error bars showing the

variation over the threshold choices. Figures 2a-2b show that in the

Federated setting the error behavior is similar across datasets. Error

decreases rapidly as the ℎ increases, as this gives more fidelity to

represent the score distribution, in accordance with Theorem 2. Of

the three metrics, precision has slightly higher error, consistent with
the proof of Theorem 2: we approximate both terms in the ratio,

whereas for recall and accuracy, we only approximate the numera-

tor of the ratio. The total error can be made arbitrarily small, e.g.,

< 10
−4

for ℎ = 14, sufficient to compare two classifiers accurately.

With DistDP noise (Figures 2c-2d) there is now a tradeoff be-

tween (𝑖) better data descriptions with a taller hierarchy, and (𝑖𝑖)

the extra privacy noise due to more numerous buckets. The results

are consistent with Theorem 2, which predicts that ℎ should be

chosen close to 12. Indeed, we observe the lowest error near this

predicted value, around ℎ = 11 for Sep, and ℎ = 10 for Nov, yielding

error around 0.001. For LocalDP noise (Figures 2e-2f), the tradeoff

is shallower, and the lowest error is seen around 0.005. Theorem 2

suggests choosing the number of buckets proportional to 𝜖2/3𝑀1/3
,

which means ℎ = 8 for these experiments and indeed marks the

lowest error for estimating precision, recall and accuracy.
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(f) Nov data, LocalDP noise

Figure 3: Accuracy for classifier Precision, Recall and Accuracy estimation with varying population size

Figure 3 varies the number of clients, 𝑀 , in the three privacy

regimes (with ℎ = 10 based on earlier experiments). Now we see no

observable impact in the Federated case (Figures 3a to 3b): accuracy

is not affected by increasing𝑀 . For DistDP noise (Figures 3c to 3d)

and LocalDP noise (Figures 3e to 3f), errors drop as 𝑀 increases,

consistent with the 𝑂 (1/𝑀) behavior seen in Theorem 2. So, in-

creasing𝑀 by 10× reduces error by this factor. Good accuracy with

DP noise requires a population size > 10K, and > 100K for LocalDP.

7.2 Area Under Curve
For Area Under Curve (AUC), we show the results over ten rep-

etitions, varying (𝑖) how the examples are sampled, and (𝑖𝑖) the

random noise. For all methods, we use a hierarchy with ℎ = 10,

found earlier to be a good choice. Figure 4 shows our results for

AUC, as we vary the data and the noise model. In each plot, the

guideline 1/2𝐵 represents the pessimistic bound from Lemma 3,

while the guideline 1/3𝐵2 shows our tighter bound under the well-
behaved assumption (Theorem 4). For each experiment, we plot a

line showing the worst-case uncertainty in our estimate, due to the

noise in each bucket. That is, the quantity corresponding to

∑︁
𝑖 𝑝𝑖𝑛𝑖 ,

the sum over buckets of the product of the number of positive and

negative examples. This is the error we would see if the analysis in

Lemma 3 was tight. We also plot one curve for using the histogram

naively, i.e., picking 𝐵 buckets with uniform boundaries, and the

observed error for our approach where we pick 𝐵 buckets based on

the (estimated) quantile boundaries. This uniform choice of buckets

is equivalent to the recent approach in the LocalDP model [27]: as

we will see, it is outperformed by the quantile histogram approach.

In the Federated case (no explicit privacy noise), the worst-case

error bound indeed follows 𝑂 (1/𝐵), but our tighter analysis yields
𝑂 (1/𝐵2) errors : the total uncertainty follows the 1/2𝐵 curve closely,

while the histogram estimators follow the 1/3𝐵2 curve. The error
vanishes: with 100 buckets, AUC is estimated with 10

−5
accuracy,

sufficient for all uses. Quantile-based histograms produce smaller

errors than uniform-bucket boundaries, by an order of magnitude.

Theorem 5 predicts an accuracy limit due to a fixed level of

noise from DistDP privacy. Experiments confirm this: the error

curve initially follows 1/3𝐵2 but then flattens after about 20-40

buckets. Here, the AUC estimation error is≈0.001—small enough for

useful conclusions about the classifier.Withmore buckets, examples

distribute across them without large clusters, helping the uniform

and quantile-based histograms work as well. The same behavior

holds for the LocalDP case, where the error bound converges to ≈
0.005. The speed of convergence and value reached vary based on

the data used. Beyond 20 buckets, error reduction is minimal, as

LocalDP noise has stronger impact than the DistDP noise.

7.3 Calibration
Recall that expected calibration error (ECE) is found by dividing

the domain of the scores into bins (distinct from the histogram

buckets used in our algorithms) and measuring the fraction of posi-

tive examples in each bin, averaged over all bins. Plots in Figure 5

vary the number of such bins and allow our calibration approach

to use the same number of buckets as bins. We adapt the Bayesian

Binning into Quantiles (BBQ) technique of Naeini et al. [22], which

also makes use of histograms based on quantiles, by trying a range
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(f) Nov data, LocalDP noise

Figure 4: Accuracy for ROC AUC estimation with varying noise levels

of choices of 𝐵 from 𝑀1/3/10 up to 10𝑀1/3
. Each choice of 𝐵 is

assigned a BBQ score based on the number of positive and negative

examples in each bucket, via the Gamma function, which is used

to compute a weighted sum of binning choices. We can implement

this approach in our setting, as high-resolution histograms can be

used to build the score histograms for many choices of 𝐵. In the

Federated case, this should give the same results as BBQ in the

centralized setting. For histograms with privacy noise, we expect

some deviation in performance, since the BBQ method is not tuned

to correct for the noise in bucket counts. On these plots, we show

the calibration error identified by the Bayesian Binning into Quan-

tiles (BBQ) method combined with our histogram approach. The

baselines are (𝑖) the calibration error of the uncalibrated score func-

tion and (𝑖𝑖) the result of using the (centralized) implementation of

isotonic regression from scikit-learn 0.22.
For the Federated case, plots in Figures 5a-5c show that good

accuracy is possible – calibration error of≈0.01 is achievable, i.e., on
average, the calibrated score is within 0.01 of the true probability.

This outcome is not very sensitive to the number of evaluation

bins. The BBQ approach on top of our histogram approach does

a good job at combining information from multiple bucketings

when there is no noise, and gives a reliable choice of calibration.

We note that, due to the use of the Gamma function in defining

scores, it often happens that one bucketing has a vastly greater

BBQ score than other choices. Then normalized weighting puts all

weight on this bucketing, so the method effectively simplifies into

choosing the number of buckets. This gives an improvement over

using the uncalibrated score function, where the calibration error

can be much larger, ≈0.1 for Sep and 0.08 for Nov. Surprisingly,

the (centralized) isotonic approach is not a good fit for these score

functions. On Sep data, it attains calibration error of 0.04, and for Oct

data it increases the error compared to the original score function.

Isotonic regression only clearly helps for the Nov data.

Introducing DistDP noise does not change the results much, as

anticipated by our observation in Theorem 8 that privacy noise is

outweighed by the variation of data points within the bins. Further,

the overall calibration error is similar in magnitude to the Federated

case,≈0.01. For LocalDP noise, the error increases to 0.02 and higher,
as the impact of privacy noise is noticeable. Given the choice of the

number of buckets, using fewer calibration buckets reduces noise.

Despite cruder calibration, using ≤10 buckets keeps the error near
0.02. As expected, the BBQ approach is affected by the extra noise,

and tends to place more weight on choices with more buckets. For

Oct data, the original uncalibrated score function has smaller error,

and combining LocalDP noise with calibration causes more harm

than good. For Sep and Nov, where the original score function was

not well calibrated, federated calibration brings significant benefit.

7.4 Other Experimental Observations
Dependence on privacy parameter 𝜖.We found that the bounds

in Table 1 were closely followed in our experiments as we varied 𝜖 .

This is unsurprising, since the impact of varying 𝜖 for histograms

is well-understood, and the impact on accuracy is quite direct.

Time cost. Simulations were performed on a single CPU machine,

and were not highly optimized for performance. Nevertheless, we

accurately simulated the tasks of each client and the server within
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(b) Oct data, no noise
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(c) Nov data, no noise
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(d) Sep data, DistDP noise
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(e) Oct data, DistDP noise

0 20 40 60 80 100
Bins

0.00

0.02

0.04

0.06

0.08

E
xp

ec
te

d 
ca

lib
ra

tio
n 

er
ro

r

(f) Nov data, DistDP noise
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(g) Sep data, LocalDP noise
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(h) Oct data, LocalDP noise
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(i) Nov data, LocalDP noise

Figure 5: Classifier calibration accuracy with varying noise levels

the protocol. Typically, it took only minutes to evaluate a large

range of parameter choices and repetitions, thus the cost per client

is trivial (milliseconds of computation effort per client), and the

effort for the server is just simple aggregation.

Dependence onNumber ofClients. For AUC and calibration, we

saw that accuracy improves as𝑀 increases, more quickly for DistDP

and LocalDP. For Federated AUC, there is no impact of increasing𝑀 ,

while for calibration, the ECE for DistDP and Federated converges.

8 CONCLUDING REMARKS
Distributed data management system support for federated learning

requires federated calibration and computation of classifier metrics

in order to maintain end-to-end privacy. Our results demonstrate

feasibility for these key tasks. Many other aspects of distributed

data management also need federated solutions: data cleaning, fea-

ture selection, and normalization, etc. We expect approaches similar

to our histogram-based algorithms will apply here. Importantly, the

use of histograms is robust to the heterogeneity that is rampant in

the distributed setting. The end goal for this line of work will be to

build systems that achieve end-to-end privacy guarantees for feder-

ated learning, from feature extraction to deployment with ongoing

performance tracking, and so on. Extending to entire distributed

systems would require some consideration of privacy budgeting
across tasks to support a single 𝜖-DP end-to-end guarantee. The

challenge is to determine how best to divide 𝜖 among different

stages and ensure sufficient performance.
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