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ABSTRACT
In a two-sided market with each agent ranking individuals on the

other side according to their preferences, such as location or incen-

tive, the stable marriage problem calls to find a perfect matching

among the two sides such that no pair of agents prefers each other

to their assigned matches. Recent studies show that the number of

solutions can be large in practice. Yet the classic solution by the

Gale-Shapley (GS) algorithm is optimal for agents on the one side

and pessimal for those on the other side. Some algorithms find a

stable marriage that optimizes a measure of the cumulative satis-

faction of all agents, such as egalitarian cost. However, in many

real-world circumstances, a decision-maker needs to examine a set

of solutions that are stable and attentive to both sides and choose

among them based on expert knowledge. With such a disposition,

it is necessary to identify a set of high-quality stable marriages and

provide transparent explanations for any reassigned matches to the

decision-maker. In this paper, we provide efficient algorithms that

find the 𝑘-best stable marriages by egalitarian cost. Our exhaustive

experimental study using real-world data and realistic preferences

demonstrates the efficacy and efficiency of our solution.
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1 INTRODUCTION
The problem of task assignment finds application in crowdsourcing,

resource allocation, and decision support [5, 32, 47, 52, 53, 59, 61].

Previous work usually considers the problem under a symmetric

function of cost or preference, on which both sides agree [31, 48, 61].

However, in spatial assignment applications the problem often

arises with an asymmetric cost function, by which agents on the

two sides evaluate each other by divergent criteria, e.g., distance

from vehicles or travel cost on the one side vs. interest in tasks or

utility gained on the other side [3, 12]. The same predicament also

appears in other task assignment applications. For example, uni-

versity admissions rely on students’ preferences for college places
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and their assessment by colleges [12], while in online recruitment

employers and candidates operate by divergent criteria [56].

The Stable Marriage Problem (SMP) [12] is defined on a mar-

ket comprising two disjoint sides dubbed men and women. Every

woman (man) ranks the men (women) on the other side by prefer-

ence. A solution matches agents on the two sides to each other; a

matching is called stable if there is no pair of a man and a woman

who would rather be matched to each other than to their assigned

matches. SMP has been extensively studied for decades with ap-

plications including the allocation of residents to hospitals [1, 19],

students to colleges [2, 12, 43], and tasks to workers [31, 61].

However, the consideration of two-sided preferences leads to a

problem of fairness among the two sides. As the preferences on the

two sides are often unrelated, it is challenging to find a solution that

satisfies both sides. The Gale-Shapley (GS) algorithm [39] computes

a stable marriage in 𝑂 (𝑛2) time, yet assigns to each agent on one

side the best, and to each one on the other side the worst match

they could get in any stable solution. Several works have studied

the ensuing fairness question [9, 19, 24, 27, 38] aiming to optimize

an equity cost, as there does not exist a dominant solution that

simultaneously achieves quality and fairness. Among them, the

Egalitarian Stable Marriage Problem (ESMP) [18] calls to minimize

the cumulative dissatisfaction of agents, or egalitarian cost.

1st 2nd 3rd 4th DistTasks and Users 
Preferences

Nearest, Low Utility

Medium Distance & Utility

Assignments and Egalitarian Costs

1st 2nd 3rd 4th Utility

Figure 1: An example of the 2-best egalitarian stable mar-
riages in a task-to-user market.

However, merely minimizing egalitarian cost may still result to

a solution that is excessively favorable to one side and exceedingly

harsh to the other side. We use a compelling example of spatial task

assignment to illustrate our problem in Figure 1.

Example 1 (The 𝑘-best egalitarian stable marriages in spa-

tial task assignment). Figure 1 shows a two-sided market of tasks

and users, where users prefer nearby tasks and tasks require users

of high utility on the task. For example, user 𝑢1 prefers task 𝑡2 to 𝑡4,

as the distance from 𝑢1 to 𝑡2 is 3 but to 𝑡4 is
√
13. Similarly, users 𝑢2
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and 𝑢3 are the best-2 choices for task 𝑡1, since 𝑢2 brings a benefit

of $4 while 𝑢3 produces $3. The tables in the figure list the full prefer-

ence lists. This instance has two stable marriages,M1 andM2, with

egalitarian costs 15 and 17 (i.e., the sum of all matches’ positions),

respectively. Even thoughM1 has lower egalitarian cost, it assigns 𝑡2
to 𝑢1, which is optimal in terms of distance but pessimal in terms of

utility.M2 may be a better choice if 𝑡2 does not accept 𝑢1 due to the

low utility. Besides,M1 is more favorable to users, as𝐶 (M1) = 5+10,
whileM2 is more favorable to tasks, as 𝐶 (M2) = 10 + 7. Thus, it is
tough to make a choice merely by egalitarian cost.

Since these quality and fairness issues are hard to be formulated

precisely and objectively, presenting only a single best solution is

insufficiently dependable. From a technological perspective, it is

difficult to simulate more complex situations involving political

and social considerations, which are considered by decision-makers

when making a final plan. For example, in the paper-reviewer as-

signment process, the program chair may need to adjust the assign-

ment results generated by conference management tool [35, 36].

A decision maker may thus require a set of high-quality stable

marriages [8] to determine one that best meets their requirements.

Let the set of all stable marriages in a problem instance be M.

Given the multiplicity of solutions, a stakeholder may wish to ex-

amine the 𝑘 best stable marriages, M(𝑘) = {M1,M2, . . . ,M𝑘 },
whereM𝑖 ∈ M(𝑘) ⊆ M is at position 𝑖 by egalitarian cost 𝐶 (M𝑖 ),
and choose one based on domain expertise and other desiderata.

This kind of problem, looking for the 𝑘 best solutions by some crite-

rion, has been studied in assignment tasks, e.g., 𝑘 best matchings in

weighted graphs [4, 40], and in discrete optimization problems, e.g.,

𝑘 shortest paths [7, 57] and 𝑘-nearest-neighbor search in spatial

database [41, 51]. However, to our knowledge, the problem of find-

ing the 𝑘-best egalitarian stable marriages has yet to be considered.

In this paper, we study the problem of finding the 𝑘-best sta-

ble marriages by egalitarian cost, or the 𝑘-best Egalitarian Stable

Marriages Problem (k-ESMP). To our knowledge, this is the first

work to study k-ESMP. Previous studies have aimed to find op-

timal stable marriages under constraints [15, 26] and fair match-

ings [14, 17, 46, 49, 50, 54, 55], but have not considered k-ESMP,
which, as we show, is NP-hard. Our solution returns the 𝑘-best

stable marriages as opposed to a single-assignment solution, thus

enables a human-in-the-loop approach that lets decision-makers

to participate in the process. We offer alternatives to the decision

maker in the form of re-assigned matches, which are efficiently

represented by a compact structures known as rotations [19, 21, 23].

We present a case study in our experimental section.

A brute-force solution to k-ESMP is to enumerate all stable mar-

riages and return the top ones by egalitarian cost. An iterative

algorithm [18] enumerates all stable marriages in𝑂 (𝑛2 +𝑛𝑁 ) time,

where 𝑛 is the number of agents in one side and 𝑁 is the number

of all possible stable marriages. However, this approach is imprac-

ticable, as the number of stable marriages in real-world markets

may be extremely large in practice, since the number of agents in

two-sided markets increases in real applications while some real-

world stable marriage instances inherently generate exceptionally

many stable solutions [3, 20] and up to exponential in the number

of agents in theory [23]. To reduce this search space, we devise and

use two bounds, the layer bound and the rotation bound, to eschew

unpromising enumeration branches; we also propose a heuristic

for k-ESMP. Figure 2 outlines our contributions.

+ Rotation Bounds

+ Layer Bounds

Brute-Force
Enumeration

Pruning
Techniques

Exact Solutions Heuristic Solutions

Pruning
Techniques

+ Bounds
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Figure 2: Our Solutions and their search spaces.

The rest of this paper is structured as follows. We introduce

related work in Section 2 and preliminaries in Section 3. Section 4

defines the k-ESMP and discusses our solutions. In Section 5 we

present our experimental results and we conclude in Section 6.

2 RELATEDWORK

Spatial Task Assignment. Spatial task assignment is a cardinal

problem in spatial crowdsourcing [32]. It aims to find a task-to-

worker assignment among spatial data subject to constraints. While

most previous works focus on symmetric preferences among work-

ers and tasks [31, 61], a few studies have examined themore realistic

case of asymmetric preferences of workers and tasks for the oppo-

site side, based on, e.g., the distance or reputation of a task [61],

the waiting time for a customer, or idle time of a driver [31], and

aim to optimize a global objective under constraints considering

the satisfaction of both workers and tasks. The work in [47] defines

the preferences of workers by an order-based model and finds a

matching that minimizes a total distance cost. The CA-SC prob-

lem [6] defines the cooperation quality score among workers as the

optimization goal. The FETA problem [5] aims to balance the wait-

ing time among workers based on the concept of Fagin-Williams

share. The FTA problem [59] aims to minimize the payoff difference

among workers using a game-theoretic approach. The OSM-KIID

problem [58] aims to maximize the expected total profits and mini-

mize the expected total number of blocking pairs, which should be

zero to ensure stability in the stable marriage problem [19]. Another

related work [31] extents the egalitarian stable marriage problem

using a function of the waiting time as the preference score on task

assignment in spatial crowdsourcing. However, none of the above

solutions returns a set of best stable matchings by egalitarian cost.

Stable Marriage and its Variants. The stable marriage problem

was introduced in 1962 [12] with a solution that finds a one-side-

optimal stable marriage in 𝑂 (𝑛2). Since then, several measures of

fairness have been proposed, including the regret cost [18], the egal-

itarian cost [24], and the sex-equality cost [30]. Theminimum-regret

stable marriage and the egalitarian stable marriage are found in

polynomial time [18, 24], while minimizing the sex-equality cost is
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NP-hard [27, 30, 38]. There are many other variants of SMP [19, 26].

Some extensions are about the nature of preference lists, such as

incomplete preference lists [13], preference lists with ties [22], and

both [25]. Relaxing the one-to-one constraint leads to the Hospi-

tal/Residents problem [19], which considers many-to-one matchings,

and many-to-many stable marriages [37]. Relaxing the stability con-

straint, the robust stable marriage problem [15, 16] calls to find a

marriage with a few unstable pairs. Although these problems have

been studied for decades, little attention has been paid to the 𝑘-best

stable marriages by egalitarian cost.

𝑘-Best Enumeration Problems. Problems calling to finding the 𝑘

best solutions have been studied in many discrete optimization

problems and applications for decades [8]; examples include the 𝑘

shortest paths [7, 57], 𝑘-nearest-neighbor search in spatial data-

base [41, 51], and 𝑘-best matchings in weighted graphs [4, 40]. A

similar problem is to find the 𝑘-best assignments on a bipartite

graph [40]. Chegireddy and Hamacher [4] give a𝑂 (𝑘𝑛3) algorithm
that constructs a binary partition of the solution space. While such

problems only consider symmetric or one-sided preferences, k-

ESMP aims to find 𝑘 stable matchings of high quality with asym-

metric two-sided preferences. Besides, k-ESMP is NP-hard. Some

𝑘-best enumeration problems allow both the best solution and the 𝑘-

best solutions to be found in polynomial time by exploiting optimal

substructures [8]. Others, such as the 𝑘-minimum spanning tree

problem [4], become more challenging when seeking more than

one best solution (𝑘 > 1). k-ESMP belongs to the latter category.

Stable Marriage Enumeration. The number of stable marriages

in a problem instance may grow exponentially in the input size [23]

and is large in real-world markets [3, 20]; counting them is #P-
hard [23, 42]. McVitie [39] provides an enumeration algorithm with

time complexity 𝑂 (𝑛3𝑁 ) in the worst case and 𝑂 (𝑛3𝑁 /log2 𝑁 )
in the best case. Knuth [33, 34] proposes a similar enumeration

method in the same time complexity. The set of stable marriages

forms a lattice, while a rotation poset helps generate them [19].

Based on this idea, the enumeration algorithm introduced in [18]

uses only𝑂 (𝑛2 +𝑛𝑁 ) time and𝑂 (𝑛2) space to enumerate all stable

marriages by successively finding each stable marriage in 𝑂 (𝑛)
time. We revisit this classic enumeration algorithm in Section 4.

Solutions to stable marriage problem variants use agent-based

procedures [17, 50], linear programming [46], and local search [14,

49, 54, 55]. Yet none of those finds the 𝑘-best stable marriages by

egalitarian cost while traversing the associated lattice. We solve

this NP-hard problem in a practicable manner using the rotation

poset and novel pruning techniques.

3 PRELIMINARIES
Herewe introduce fundamental concepts that aid the understanding

of the problem and its solution.

3.1 SMP and ESMP

StableMarriage Problem (SMP).An instance of SMP, 𝐼 = (𝑋,𝑌, 𝑃),
consists of a set of 𝑛 agents on one side 𝑋 = {𝑥1, ..., 𝑥𝑛} and a set

of 𝑛 agents on another side 𝑌 = {𝑦1, ..., 𝑦𝑛}, where each agent (𝑥 or

𝑦) has a preference list on those on the other side, denoted as 𝑃𝑥
or 𝑃𝑦 ; 𝑃𝑦 (𝑥) (𝑃𝑥 (𝑦)) is the position of 𝑥 (𝑦) in 𝑦’s (𝑥 ’s) preference

list. Table 1 shows the preference lists in our example for subse-

quent use. For example, 𝑃𝑥1 (𝑦1) = 2. A marriage is a matching

that comprises 𝑛 disjoint (𝑥,𝑦) couples, denoted asM. We denote

the mapping relationship asM(𝑥) = 𝑦 andM(𝑦) = 𝑥 if and only

if (𝑥,𝑦) ∈ M. Given aM, if there is an agent 𝑥 (e.g, a man) and

an agent 𝑦 (e.g, a woman) such that 𝑥 prefers 𝑦 toM(𝑥) and 𝑦

prefers 𝑥 toM(𝑦), (𝑥,𝑦) is a blocking pair. A marriageM without

blocking pair is a stable marriage.

Given an instance of SMP, 𝐼 , the Gale-Shapley (GS) algorithm [12]

finds in 𝑂 (𝑛2) time either an 𝑋 -optimal stable marriageM𝑋 , in

which each 𝑥 gets the most preferred mate and each 𝑦 the least

preferred mate they can get among stable marriages, or a 𝑌 -optimal

stable marriageM𝑌 , which reverses roles [39]. BothM𝑋 andM𝑌

are biased in favor of one side and against the other side [49]. Table 3

shows the 𝑋 -optimal stable marriageM𝑋 in our example.

Egalitarian Stable Marriage Problem. The Egalitarian Stable

Marriage (ESMP) [24] maximizes the cumulative happiness of all

agents. Formally, the egalitarian cost of a stable marriageM is the

sum of the positions of all agents in their partners’ preference lists:

𝐶 (M) =
∑︂

(𝑥,𝑦) ∈M
𝑃𝑥 (𝑦) + 𝑃𝑦 (𝑥) (1)

ESMP seeks a stable marriage M, also denoted as M1
, with

minimum egalitarian cost 𝐶 (M); it is solved in 𝑂 (𝑛4) time by a

network-flow-based method which we introduce in the following.

3.2 All Stable Marriages,M
Given a stable marriage instance 𝐼 , we denote the set of all stable

marriages of 𝐼 asM = {M1, . . . ,M𝑁 }, where 𝑁 is its cardinality.

Both the 𝑋 -optimal and 𝑌 -optimal marriages are included in M.

Irving and Leather [23] studied a family of stable marriage instances

which reveals that 𝑁 grows exponentially in the input size 𝑛, hence

it becomes intractable to explicitly store and search the set of all

stable marriages.

Instead, we explore all stable marriages implicitly using a com-

pact representational primitive called rotation [19, 21, 23]. A rota-

tion 𝑟 is exposed in a stable marriageM as an ordered list of pairs

such that breaking each pair (𝑥𝜌 , 𝑦𝜌 ) ∈ M and re-coupling 𝑥𝜌
with 𝑦𝜌+1 in a cyclic cascade shifts the matchings from 𝑟 to 𝑟 con-

stituting a new stable marriageM′:
𝑟 = {(𝑥𝜌 , 𝑦𝜌 ), (𝑥𝜌+1, 𝑦𝜌+1), . . . , (𝑥𝑧 , 𝑦𝑧)}

𝑟 = {(𝑥𝜌 , 𝑦𝜌+1), (𝑥𝜌+1, 𝑦𝜌+2), . . . , (𝑥𝑧 , 𝑦𝜌 )}
We call this process rotation elimination, denoted asM/𝑟 →

M′. Table 2 provides a complete list of rotations for our example

instance.

Example 2 (Rotation and Rotation Elimination). In Tables 2

and 3, rotation 𝑟2 = {(𝑥3, 𝑦7), (𝑥5, 𝑦4), (𝑥8, 𝑦2)} is exposed inM𝑋 .

M𝑋 /𝑟2 leads to a new stable marriage, where 𝑟2 is eliminated to 𝑟2,

marked with wavy lines.

A partial order relationship 𝑟𝑖 ≺ 𝑟 𝑗 among rotations indicates that

rotation 𝑟𝑖 must be eliminated before rotation 𝑟 𝑗 , otherwise 𝑟 𝑗 can-

not be exposed. For example, eliminating 𝑟1 and 𝑟2 fromM𝑋 , in any

order, leads to a new stablemarriageM, inwhichwe find rotation 𝑟4.

A set of such relationships defines a rotation poset 𝑅 = (𝑟, ≺). Given
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a stable marriage instance 𝐼 , we can construct
1
its rotation poset

in 𝑂 (𝑛2) and represent it as a directed acyclic graph 𝐺 = (𝑉 , 𝐸≺),
where each node stands for a rotation 𝑟 and a directed edge (𝑟𝑖 , 𝑟 𝑗 )
for a ≺ relation between rotation 𝑟𝑖 and rotation 𝑟 𝑗 . We denote the

predecessors and successors of 𝑟 as 𝑃𝑟𝑒𝑑 (𝑟 ) and 𝑆𝑢𝑐𝑐 (𝑟 ), respec-
tively. For instance in Figure 3, 𝑃𝑟𝑒𝑐 (𝑟7) = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} and
𝑆𝑢𝑐𝑐 (𝑟7) = {𝑟9, 𝑟10}.

Table 1: Preference Lists

Preference Lists of 𝑋 Preference Lists of 𝑌

(ranked by distance) (ranked by utility)

𝑃𝑥1 𝑦3 𝑦1 𝑦5 𝑦7 𝑦4 𝑦2 𝑦8 𝑦6 𝑃𝑦1 𝑥4 𝑥3 𝑥8 𝑥1 𝑥2 𝑥5 𝑥7 𝑥6
𝑃𝑥2 𝑦6 𝑦1 𝑦3 𝑦4 𝑦8 𝑦7 𝑦5 𝑦2 𝑃𝑦2 𝑥3 𝑥7 𝑥5 𝑥8 𝑥6 𝑥4 𝑥1 𝑥2
𝑃𝑥3 𝑦7 𝑦4 𝑦3 𝑦6 𝑦5 𝑦1 𝑦2 𝑦8 𝑃𝑦3 𝑥7 𝑥5 𝑥8 𝑥3 𝑥6 𝑥2 𝑥1 𝑥4
𝑃𝑥4 𝑦5 𝑦3 𝑦8 𝑦2 𝑦6 𝑦1 𝑦4 𝑦7 𝑃𝑦4 𝑥6 𝑥4 𝑥2 𝑥7 𝑥3 𝑥1 𝑥5 𝑥8
𝑃𝑥5 𝑦4 𝑦1 𝑦2 𝑦8 𝑦7 𝑦3 𝑦6 𝑦5 𝑃𝑦5 𝑥8 𝑥7 𝑥1 𝑥5 𝑥6 𝑥4 𝑥3 𝑥2
𝑃𝑥6 𝑦6 𝑦2 𝑦5 𝑦7 𝑦8 𝑦4 𝑦3 𝑦1 𝑃𝑦6 𝑥5 𝑥4 𝑥7 𝑥6 𝑥2 𝑥8 𝑥3 𝑥1
𝑃𝑥7 𝑦7 𝑦8 𝑦1 𝑦6 𝑦2 𝑦3 𝑦4 𝑦5 𝑃𝑦7 𝑥1 𝑥4 𝑥5 𝑥6 𝑥2 𝑥8 𝑥3 𝑥7
𝑃𝑥8 𝑦2 𝑦6 𝑦7 𝑦1 𝑦8 𝑦3 𝑦4 𝑦5 𝑃𝑦8 𝑥2 𝑥5 𝑥4 𝑥3 𝑥7 𝑥8 𝑥1 𝑥6

Table 2: Rotations

𝒓 After Elimination, �̃� 𝚫𝒓 𝑷𝒂𝒓𝒆𝒏𝒕

𝑟1 = (𝑥1, 𝑦3) (𝑥2, 𝑦1) (𝑥1, 𝑦1) (𝑥2, 𝑦3) 0

𝑟2 = (𝑥3, 𝑦7) (𝑥5, 𝑦4) (𝑥8, 𝑦2) (𝑥3, 𝑦4) (𝑥5, 𝑦2) (𝑥8, 𝑦7) -1

𝑟3 = (𝑥4, 𝑦5) (𝑥7, 𝑦8) (𝑥6, 𝑦6) (𝑥4, 𝑦8) (𝑥7, 𝑦6) (𝑥6, 𝑦5) -2

𝑟4 = (𝑥2, 𝑦3) (𝑥3, 𝑦4) (𝑥2, 𝑦4) (𝑥3, 𝑦3) 2 𝑟1, 𝑟2
𝑟5 = (𝑥1, 𝑦1) (𝑥6, 𝑦5) (𝑥8, 𝑦7) (𝑥1, 𝑦5) (𝑥6, 𝑦7) (𝑥8, 𝑦1) 2 𝑟1, 𝑟2, 𝑟3
𝑟6 = (𝑥4, 𝑦8) (𝑥7, 𝑦6) (𝑥5, 𝑦2) (𝑥4, 𝑦6) (𝑥7, 𝑦2) (𝑥5, 𝑦8) -1 𝑟2, 𝑟3
𝑟7 = (𝑥3, 𝑦3) (𝑥8, 𝑦1) (𝑥3, 𝑦1) (𝑥8, 𝑦3) -3 𝑟4, 𝑟5
𝑟8 = (𝑥2, 𝑦4) (𝑥5, 𝑦8) (𝑥6, 𝑦7) (𝑥2, 𝑦8) (𝑥5, 𝑦7) (𝑥6, 𝑦4) 0 𝑟4, 𝑟5, 𝑟6
𝑟9 = (𝑥1, 𝑦5) (𝑥5, 𝑦7) (𝑥8, 𝑦3) (𝑥1, 𝑦7) (𝑥5, 𝑦3) (𝑥8, 𝑦5) 1 𝑟7, 𝑟8
𝑟10 = (𝑥3, 𝑦1) (𝑥7, 𝑦2) (𝑥5, 𝑦3) (𝑥4, 𝑦6) (𝑥3, 𝑦2) (𝑥7, 𝑦3) (𝑥5, 𝑦6) (𝑥4, 𝑦1) 0 𝑟9

Table 3: Stable Marriage Examples for
Rotation Elimination

M = 𝑪 (M)

M𝑋
(𝑥1, 𝑦3), (𝑥2, 𝑦1), (𝑥3, 𝑦7), (𝑥4, 𝑦5)

55(𝑥5, 𝑦4), (𝑥6, 𝑦6), (𝑥7, 𝑦8), (𝑥8, 𝑦2)

M𝑋 /𝑟2
(𝑥1, 𝑦3), (𝑥2, 𝑦1), (𝑥3, 𝑦4)

⁓⁓⁓⁓⁓
, (𝑥4, 𝑦5)

56

(𝑥5, 𝑦2)
⁓⁓⁓⁓⁓

, (𝑥6, 𝑦6), (𝑥7, 𝑦8), (𝑥8, 𝑦7)
⁓⁓⁓⁓⁓

M𝑋 /S
(𝑥1, 𝑦5), (𝑥2, 𝑦4), (𝑥3, 𝑦3), (𝑥4, 𝑦8)

54(𝑥5, 𝑦2), (𝑥6, 𝑦7), (𝑥7, 𝑦6), (𝑥8, 𝑦1)

M𝑋 /𝑅 ˃M𝑌
(𝑥1, 𝑦7), (𝑥2, 𝑦8), (𝑥3, 𝑦2), (𝑥4, 𝑦1)

57(𝑥5, 𝑦6), (𝑥6, 𝑦4), (𝑥7, 𝑦3), (𝑥8, 𝑦5)

Antichain
Closed 
Subset

Example:

Figure 3: The cor-
responding directed
acyclic graph 𝐺 .

A subset A ⊆ 𝑅 is an antichain of 𝑅 if all rotations in A are

incomparable by any partial order, i.e., ∀𝑟𝑖 , 𝑟 𝑗 ∈ A, 𝑟𝑖 ∉ 𝑃𝑟𝑒𝑐 (𝑟 𝑗 ) ∧
𝑟𝑖 ∉ 𝑆𝑢𝑐𝑐 (𝑟 𝑗 ). A subset S ⊆ 𝑅 is a closed subset of 𝑅 if S contains an

antichainA and all its predecessors in 𝑅. By Theorem 1, eliminating

a closed subset S generates a corresponding stable marriageM.

Theorem 1. [23] Given a stable marriage instance 𝐼 , there is a

one-to-one correspondence among the set of stable marriagesM, the

set of closed subsets S, and the set of antichains A.

1
The interested reader may refer to [19, 23, 24] for details.

Given the 𝑋 -optimal stable marriage M𝑋 , we may generate

every other stable marriageM by eliminating all rotations in the

closed subset S that contains its corresponding antichain A. We

denote this operation asM𝑋 /S → M. Further, we getM𝑌 by

eliminating all rotations in 𝑅.

Example 3 (Antichain, Closed subset and Stable Marriage).

As Figure 3 shows, A = {𝑟4, 𝑟5} is an antichain, as there is no order

among the elements. The antichainA and its predecessors, {𝑟1, 𝑟2, 𝑟3},
derive the closed subset S = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. Table 3 shows the

corresponding stable marriageM𝑋 /S.

Given an antichain A, we find the corresponding closed sub-

set S by breadth-first search in𝐺 and generate the corresponding

matching stable marriageM by eliminating rotations [23] in𝑂 (𝑛2),
shown in Equation 2. Thus, if we enumerate all antichains A ∈ A,
we generate all stable marriagesM ∈ M; still, counting antichains

is #P-hard [23, 42].

A BFS on𝐺−−−−−−−→ S rotation elimination−−−−−−−−−−−−−−−−→M (2)

3.3 Solving ESMP
ESMP is easier than counting all stable marriages, as it only calls

to find a stable marriage having the lowest egalitarian cost. To

calculate the egalitarian cost𝐶 (M) of stable marriageM generated

byM𝑋 /S → M, we keep track of the egalitarian cost changes

incurred by eliminating the rotations in S. Equation 1 is rewritten

as:

𝐶 (M) = 𝐶 (M𝑋 ) −
∑︂
𝑟𝑖 ∈S

Δ𝑟𝑖 (3)

where Δ𝑟𝑖 is the cumulative difference of preferences between rota-

tion 𝑟𝑖 and its outcome position 𝑟 𝑖 :

Δ𝑟𝑖 =
∑︂

(𝑥𝜌 ,𝑦𝜌 ) ∈𝑟𝑖

[︂
𝑃𝑥𝜌 (𝑦𝜌 ) + 𝑃𝑦𝜌 (𝑥𝜌 )

]︂
−

∑︂
(𝑥𝜌 ,𝑦𝜌+1 ) ∈𝑟 𝑖

[︂
𝑃𝑥𝜌 (𝑦𝜌+1) + 𝑃𝑦𝜌+1 (𝑥𝜌 )

]︂
(4)

According to Equation 3, minimizing egalitarian cost amounts

to maximizing

∑︁
𝑟𝑖 ∈S Δ𝑟𝑖 , denoted as ΔS in the subsequent discus-

sion. As 𝐶 (M𝑋 ) is calculated by the Gale-Shapley algorithm, we

can minimize 𝐶 (M) by maximizing ΔS. ESMP is then reduced to

finding a maximum-weight closed subset Smax in the rotation

poset 𝑅, such that ΔS𝑚𝑎𝑥 is maximized. We can do so by a network

flow algorithm, Mincut, which finds Smax on 𝐺 in 𝑂 (𝑛4) time [24].

Example 4 (The maximum-weight closed subset andM1
).

Applying the Mincut algorithm on 𝐺 , we find the maximum-weight

closed subset S = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} with ΔS = 0 − 1 − 2 + 2 + 2 = 1.

In our example, it isM𝑋 /S →M1
with 𝐶 (M1) = 55 − 1 = 54.

Table 4 gathers the quantities and complexities we have intro-

duced. In summary, to address the ESMP problem, wemay construct

the rotation poset and subsequently findSmax within it, with a total

time complexity of 𝑂 (𝑛4).
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Table 4: Quantities and Complexities [12, 19, 23, 24]

Quantity Value Algorithm Complexity

Instance Size 𝑛 FindM𝑋 orM𝑌 (Gale-Shapley) 𝑂 (𝑛2)
Stable Marriage 𝑁 Find all rotations 𝑂 (𝑛2)
Rotations (𝑉𝑅 ) 𝑂 (𝑛2) Find all 𝐸≺ 𝑂 (𝑛2)
𝐸≺ 𝑂 (𝑛2) FindM1

(Mincut) 𝑂 (𝑛4)

4 THE 𝑘-BEST EGALITARIAN STABLE
MARRIAGE PROBLEM

The 𝑘-best Egalitarian Stable Marriage Problem (k-ESMP) can be

formally defined below:

Definition 1 (k-ESMP). Given a stable marriage instance 𝐼 =

(𝑋,𝑌, 𝑃), let the set of all stable marriages beM = {M1, . . . ,M𝑁 };
the k-ESMP finds 𝑘 (1 < 𝑘 ≤ 𝑁 ) stable marriages M(𝑘) = {M1,

. . . ,M𝑘 } such thatM(𝑘) ⊆ M and ∀M′ ∈ M \M(𝑘), 𝐶 (M1) ≤

. . . ≤ 𝐶 (M𝑘 ) ≤ 𝐶 (M′), where 𝐶 is the egalitarian cost.

We define 𝑘 > 1 in Definition 1 to differentiate the problem from

ESMP, which can be efficiently solved in 𝑂 (𝑛4) time, as discussed

in Section 3.3.

Theorem 2. k-ESMP is NP-hard.
Proof. There are at most 𝑛! stable marriages. Assume a polyno-

mial time algorithm𝑇 identifies the 𝑘th stable marriage by egalitar-

ian cost 𝐶 (M𝑘 ), if such exists. We could use 𝑇 to count all stable

marriages via binary search, i.e., findM𝑘
,M2𝑘

,M4𝑘
, . . . , until we

get 𝑁 , in time 𝑂 (log𝑛!) = 𝑂 (𝑛 log𝑛). This result contradicts the
fact that counting stable marriages is #P-hard [19, 42]. □

By Theorem 2, we cannot solve k-ESMP in polynomial time. A

brute-force solution is to enumerate all stable marriages, find and

sort a set of 𝑘 having the best egalitarian costs, maintainingM(𝑘)
by a max-heap structure of size 𝑘 . We build on this idea by applying

two lower bounds, namely the layer bound and the rotation bound,

to reduce the exploration space in stable-marriage enumeration. To

our knowledge, this is the first work to exploit partial order relation-

ships and apply bounding techniques on enumerating egalitarian

stable marriages.

4.1 Layer Lower Bound, LB
Since k-ESMP calls to find the 𝑘-best stable marriages by egalitarian

cost, we can prune from the enumeration process stable marriages

having large egalitarian costs given a lower bound for the unrevealed

exploration space. We carefully exploit the topological structure

of the rotation graph 𝐺 (cf. Figure 3) and propose two bounding

techniques, the layer bound LB and rotation bound RB. Table 5

summarizes some key notations used in the following discussion.

We first define the layer level of a rotation (vertex) 𝑟 in 𝐺 .

Definition 2 (Layer Level, 𝑟 .ℓ). The layer level 𝑟 .ℓ of a rota-

tion 𝑟 in 𝐺 is the longest-path length from the root of 𝐺 (i.e., the

X-optimal matching) to 𝑟 .

In Figure 4, 𝑟4 .ℓ is 2 and 𝑟10 .ℓ is 5. Based on the rotation layer

level 𝑟 .ℓ , we define the layer rotation subgraph 𝐺ℓ
as:

Definition 3 (Layer Subgraph, 𝐺ℓ
). A layer subgraph 𝐺ℓ =

(𝑉 ℓ , 𝐸ℓ ) is an induced subgraph of 𝐺 , where 𝑉 ℓ = {𝑟 ∈ 𝑉 |𝑟 .ℓ ≤ ℓ}
and 𝐸ℓ = {(𝑢, 𝑣) ∈ 𝐸≺ |𝑢.ℓ, 𝑣 .ℓ ≤ ℓ}.

Table 5: Key Notations of LBℓ and RB𝑟

Notation Description

LBℓ the layer lower bound of layer ℓ calculated by Eq 5

𝐺ℓ
the layer-ℓ subgraph (Def 3)

M(𝐺ℓ ) stable marriages derived from 𝐺ℓ
(see Example 5)

Sℓ
𝐿

the maximum-weight closed subset on 𝐺ℓ

Mℓ
𝐿

the stable marriage with the minimum egalitarian

cost inM(𝐺ℓ ), i.e.,M𝑋 /Sℓ𝐿 →M
ℓ
𝐿

RB𝑟 the rotation lower bound of 𝑟 calculated by Eq 7

𝑅+, 𝑅≥+ the rotation sets such that Δ𝑟 > 0, and Δ𝑟 ≥ 0

𝑃𝑟𝑒𝑐− (𝑟 ) all negative rotations in the predcessors of 𝑟

𝑆𝑢𝑐𝑐+ (𝑟 ) all positive rotations in the successors of 𝑟

For simplicity, we useM(𝐺ℓ ) to represent the set of stable mar-

riages generated from the layer subgraph, i.e,M(𝐺ℓ ) = {MS |∀S ⊆
𝐺ℓ }. We can find the stable marriageMℓ

𝐿
with the minimum egali-

tarian cost inM(𝐺ℓ ), by applying the Mincut algorithm (see Sec-

tion 3.3) on the layer subgraph 𝐺ℓ
to find the maximum-weight

closed subset Sℓ
𝐿
in 𝐺ℓ

.

Therefore, the egalitarian cost ofMℓ
𝐿
, 𝐶 (Mℓ

𝐿
), lower-bounds the

egalitarian cost of stable marriages in M(𝐺ℓ ). We calculate the

lower bound for a layer ℓ as follows.

LBℓ = 𝐶 (Mℓ
𝐿) = 𝐶 (M𝑋 ) − ΔSℓ𝐿 (5)

Lemma 1 (Layer Bound Monotonicity). The layer bound LBℓ
is a non-increasing function of layer ℓ .

Proof. We prove this by contradiction. Assume there exists a

case where LBℓ > LBℓ−1, with the corresponding closed subsets

of LBℓ and LBℓ−1 being Sℓ𝐿 and Sℓ−1
𝐿

, respectively. By construction,

Sℓ
𝐿
andSℓ−1

𝐿
are the best, in terms of egalitarian cost, closed subsets

of𝐺ℓ
and𝐺ℓ−1

, respectively. Since𝐺ℓ−1 ⊆ 𝐺ℓ
, LBℓ is at most equal

to LBℓ−1, a contradiction. □

With the aid of Lemma 1, we apply the following pruning rule

as we scan layers from right to left.

Pruning Rule 1. If the layer lower bound LBℓ is not lower than
the running result at position 𝑘 in max heap M(𝑘), i.e., if LBℓ ≥
𝐶 (M(𝑘) .𝑡𝑜𝑝 ()), then we prune the stable marriages at𝐺ℓ

, i.e.,M(𝐺ℓ ).

Example 5 (Layer Lower Bound). By Definition 2, 𝐺1
contains

the first rotation layer, {𝑟1, 𝑟2, 𝑟3} and𝐺2
contains {𝑟1−𝑟6} in Figure 4.

As we can infer from Table 6, it isM(𝐺1) = {M2−M8} andM(𝐺2) =
{M2−M17}. Assume 𝑘 =3 and the running 3-best results areM(𝑘) =
{M14,M9,M16}. Suppose the best stable marriage found by the

Mincut algorithm in 𝐺1
isM1

𝐿
=M2. If 𝐶 (M1

𝐿
) ≥ 𝐶 (M(𝑘) .𝑡𝑜𝑝 ()),

we prune the stable marriage enumeration at 𝐺1
by Pruning Rule 1,

i.e., we pruneM2 −M8.

4.2 Rotation Lower Bound, RB
Due to Equations (3) and (4), the egalitarian cost of any stable mar-

riage is lower-bounded by subtracting the cumulative differences of

all positive rotations 𝑅+ ⊆ 𝑅 from the cost of the 𝑋 -optimal stable

marriage:

Ω = 𝐶 (M𝑋 ) −
∑︂
𝑟𝑖 ∈𝑅+

Δ𝑟𝑖 ≤ 𝐶 (M) (6)
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Table 6: All Closed Subsets and Antichains
(antichains are marked with underline.)

Closed Subsets (i.e.,M𝑋 /S𝑖 →M𝑖 )

1. ∅ (i.e.,M𝑋 ) 9. {𝑟1, 𝑟2, 𝑟4} 17. {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6}
2. {𝑟1} 10. {𝑟1, 𝑟2, 𝑟3, 𝑟5} 18. {𝑟1 − 𝑟5, 𝑟7}
3. {𝑟2} 11. {𝑟2, 𝑟3, 𝑟6} 19. {𝑟1 − 𝑟5, 𝑟6, 𝑟7}
4. {𝑟3} 12. {𝑟1, 𝑟2, 𝑟3, 𝑟6} 20. {𝑟1 − 𝑟6, 𝑟7, 𝑟8}
5. {𝑟1, 𝑟2} 13. {𝑟1, 𝑟2, 𝑟3, 𝑟4} 21. {𝑟1 − 𝑟6, 𝑟8}
6. {𝑟1, 𝑟3} 14. {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} 22. {𝑟1 − 𝑟8, 𝑟9}
7. {𝑟2, 𝑟3} 15. {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟6} 23. {𝑟1 − 𝑟9, 𝑟10} (i.e.,M𝑌 )

8. {𝑟1, 𝑟2, 𝑟3} 16. {𝑟1, 𝑟2, 𝑟3, 𝑟5, 𝑟6}

Layer Level

Layer Subgraph

Figure 4: Layer Bound,
LB1 and LB2

✖

✖

Figure 5: Rotation Bound, RB𝑟6
RB𝑟6 = 𝐶 (M𝑋 ) − (Δ𝑟2 +Δ𝑟3 +Δ𝑟4 +
Δ𝑟5 + Δ𝑟6) = 55 − 0 = 55

However, the bound in Equation (6) is too loose, as it is valid for

any stable marriage. Given a rotation 𝑟 , we derive a tighter rotation

lower bound RB𝑟 for stable marriages derived from any antichain

that contains 𝑟 , based on the successors and predecessors of 𝑟 in 𝐺 ,

as follows:

RB𝑟 = 𝐶 (M𝑋 )−
⎛⎜⎝Δ𝑟 +

∑︂
𝑟𝑖 ∈𝑅+\{𝑟 }

Δ𝑟𝑖 +
∑︂

𝑟 𝑗 ∈𝑃𝑟𝑒𝑐− (𝑟 )
Δ𝑟 𝑗 −

∑︂
𝑟𝑧 ∈𝑆𝑢𝑐𝑐+ (𝑟 )

Δ𝑟𝑧
⎞⎟⎠

(7)

Compared to Equation (6), the rotation lower bound in Equa-

tion (7) has two additional terms. First, we subtract the cumulative

differences of all negative rotations in the predecessor set of 𝑟 ,

𝑃𝑟𝑒𝑐− (𝑟 ), since predecessors of 𝑟 are in any closed subset whose

corresponding antichain contains 𝑟 by the definition of closed sub-

set, hence necessarily enacted in any matching derived from an

antichain that contains 𝑟 . In Figure 5, the cumulative differences

of 𝑟2 and 𝑟3 are subtracted in the bound for 𝑟6. Second, we do not

subtract the cumulative differences of all positive rotations in the

successor set of 𝑟 , 𝑆𝑢𝑐𝑐+ (𝑟 ), since successors of 𝑟 cannot be in an

antichain that contains 𝑟 . In Figure 5, we exclude 𝑟9 from subtrac-

tions in the bound for 𝑟6. Further, 𝑟 should be in the antichain, no

matter if positive or negative.

We exploit the correctness of RB𝑟 as below:

Lemma 2 (Correctness of Rotation Bound). For any stable

marriageM corresponding to antichain A, and rotation 𝑟 ∈ A, it

holds that RB𝑟 ≤ 𝐶 (M).
Proof. By construction, 𝐶 (M) ≥ Ω +∑︁𝑟𝑧 ∈𝑆𝑢𝑐𝑐+ (𝑟 ) Δ𝑟𝑥 , since

the rotations in 𝑆𝑢𝑐𝑐+ (𝑟 ) are not exposed inM. Yet due to Equa-

tions (6) and (7), RB𝑟 ≤ Ω + ∑︁𝑟𝑧 ∈𝑆𝑢𝑐𝑐+ (𝑟 ) ; it follows that RB𝑟 ≤
𝐶 (M). □

We define our second pruning rule based on RB𝑟 as follows.

Pruning Rule 2. If the rotation bound of 𝑟 , RB𝑟 , is not lower than
the running result at position 𝑘 inM(𝑘), i.e., RB𝑟 ≥ 𝐶 (M(𝑘).𝑡𝑜𝑝 ()),
then we prune the stable marriages whose corresponding antichains

contain 𝑟 .

Example 6 (Rotation Lower Bound). For rotation 𝑟6, we can

calculate RB𝑟6 by Equation (7), as Figure 5 shows. RB𝑟6 lower-bounds
the costs of stable marriagesM11,M12,M15,M16,M17 andM19,

which can be pruned if RB𝑟6 ≥ 𝐶 (M(𝑘).𝑡𝑜𝑝 ()). Note that, even

though 𝑟6 is in closed subsetsS20−S23, it is not in their corresponding

antichains, hence the cost of the corresponding stable marriagesM20−
M23 is not bounded by RB𝑟6 .

4.3 ENUM* Enumeration Algorithm
Unfortunately, the two lower bounds we have proposed cannot

work with the classic enumeration algorithm, ENUM (Section 2).

As we saw in Lemma 1 and Example 5 in Section 4.1, the layer

bound is non-increasing with layer ℓ , following a breadth-first enu-

meration from right to left on the rotation poset. However, ENUM

enumerates stable marriages via depth-first search, exploring all

closed subsets of a given rotation 𝑟 before moving on. The rotation

bound of 𝑟 may not suffice to prune these subsets early on, as the

𝑘-best result M(𝑘).𝑡𝑜𝑝 () may still be far from the optimal result.

To utilize LB and RB fruitfully, we introduce a new, breadth-first-

search enumeration algorithm, ENUM*, and apply the two bounds

on it to yield ENUM*-LR, a pruning-intensive algorithm that finds

the 𝑘-best stable marriages.

ENUM*. As discussed in Section 3.2, we can generate a stable

marriageM via its corresponding antichainA and closed subset S
by Equation 2. Thereby, we can enumerate stable marriages by

antichain enumeration. ENUM enumerates all stable marriages by

expanding a closed subset with an exposed rotation in each step. In a

similar way, we expand an antichain with an incomparable rotation.

By the definition of antichains, the enumeration process recursively

expands an antichain A with a new rotation 𝑟𝑛𝑒𝑤 from among the

incomparable rotations 𝑅A (for A), to get a new antichain A ∪
𝑟𝑛𝑒𝑤 . Further, we exploit the incomparability property of antichains

(Corollary 1) to avoid redundant checks; this analysis resembles

that of lattice theory [10, 19].

Corollary 1 (Incomparability). Given an antichain A and

rotation 𝑟 ′ such that ∃𝑟 ∈ A, 𝑟 ′ ∈ 𝑆𝑢𝑐𝑐 (𝑟 ), the enumeration process

expanding A excludes 𝑟 ′.

Due to Corollary 1, we exclude rotations comparable to 𝑟 , 𝑅×𝑟 =

𝑆𝑢𝑐𝑐 (𝑟 ) ∪ 𝑟 , from the process expanding antichain A, for all ro-

tations 𝑟 ∈ A; thus, the incomparable rotations to be used for

expanding an antichain A are:

𝑅A = 𝑅 \ ∪𝑟 ∈A𝑅×𝑟
We add each 𝑟𝑛𝑒𝑤 ∈ 𝑅A to A to enumerate a new antichain A ∪
𝑟𝑛𝑒𝑤 , and update the incomparable rotations for expanding the new
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antichain A ∪ 𝑟𝑛𝑒𝑤 .
𝑅A∪𝑟𝑛𝑒𝑤 = 𝑅A \ 𝑅×𝑟𝑛𝑒𝑤

We enumerate all antichains by this recursive mechanism.

Algorithm 1 ENUM*

Input: M𝑋 , 𝑅, 𝑘

Output: M(𝑘 )
1: Max heapM(𝑘 ) ← ∅
2: EnumAntichain(∅, 𝑅,M(𝑘 ))
3: returnM(𝑘 )
4: function EnumAntichain(A, 𝑅A ,M(𝑘 ))
5: A → S → M ⊲ Generate matching using Eq. 2

6: UpdateKESM(M,M(𝑘 )) ⊲ Update the 𝑘 best solutions

7: for 𝑟𝑛𝑒𝑤 ∈ 𝑅A , in descending order of ℓ do
8: 𝑅A∪𝑟𝑛𝑒𝑤 = 𝑅A \ 𝑅×𝑟𝑛𝑒𝑤 \ {𝑟 ∈ 𝑅A |𝑟 <𝑖𝑑 𝑟𝑛𝑒𝑤 }
9: EnumAntichain(A ∪ 𝑟𝑛𝑒𝑤 , 𝑅A∪𝑟𝑛𝑒𝑤 ,M(𝑘 ))
10: function UpdateKESM(M,M(𝑘 ))
11: if 𝐶 (M) < 𝐶 (M(𝑘 ) .𝑡𝑜𝑝 ( ) ) then ⊲𝐶 is computed by Eq. 3

12: M(𝑘 ) .pop();M(𝑘 ) .push(M)

Algorithm 1 shows the pseudocode of our baseline enumeration

ENUM*. A recursive mechanism (Lines 4 and 9) enumerates feasi-

ble antichains. A running antichain A picks any feasible rotation

𝑟𝑛𝑒𝑤 from the incomparable rotation set 𝑅A (Line 7), initially set

to 𝑅 (Line 1). To enumerate the next antichain, we exclude 𝑅×𝑟𝑛𝑒𝑤
from 𝑅A . Redundant enumerations may occur in case two different

rotations are to be enumerated by each other’s antichains. To avoid

such redundancy, we enumerate rotations in a strict order (e.g., by

vertex id), excluding from the process any rotation whose order is

smaller than the newly added rotation 𝑟𝑛𝑒𝑤 (Line 8). We tabulate

each computed 𝑆𝑢𝑐𝑐 (𝑟 ) to avoid redundant re-computations thereof

in Line 8. We update the result set if the cost ofM is not worse than

the running stable marriage at position 𝑘 (Lines 6 and 12). Since we

maintainM(𝑘) by a heap structure, it can return the ranking result

by extracting the root element until empty.

Example 7 (ENUM*). Assume the current antichain is A = ∅
and𝑅A = 𝑅. In Line 7 we pick an incomparable rotation 𝑟5 in𝑅A after

we have completed the loops of 𝑟10, 𝑟9, . . . , 𝑟6). We then update A ∪
𝑟𝑛𝑒𝑤 = {𝑟5}, 𝑅A∪𝑟𝑛𝑒𝑤 = 𝑅 \ {𝑟1 − 𝑟5, 𝑟7 − 𝑟10} = {𝑟6}, where {𝑟 ∈
𝑅A |𝑟 <𝑖𝑑 𝑟5} = {𝑟1, 𝑟2, 𝑟3, 𝑟4}. We remove rotations with smaller

indexes to avoid repeated enumeration, e.g., if A = {𝑟4}, then 𝑟𝑛𝑒𝑤
can be 𝑟5.

Better Order. ENUM* enumerates all stable marriages without

omission or duplication since each rotation and its incomparable

rotations are enumerated in a strict order (from large index to small

index). For layer bound, it postpones the enumeration of the small

layer subgraphs. For rotation bound, it gives each rotation a chance

to prune unpromising antichains. As an example, when we enumer-

ate from 𝑟6, we only enumerateM11 andM19. Other antichains

that contain 𝑟6 will be enumerated later. This will increase the

pruning efficiency of the bound as the best-so-far result improves

throughout the execution.

Complexity. The time complexity of ENUM* is𝑂 (𝑛2+U·log𝑘+𝑄 ·
𝑁 ), where (i)𝑂 (𝑛2) is to construct𝐺𝑅

; (ii)𝑂 (U·log𝑘) is tomaintain

the max heap whereU is the count of updates, as it takes𝑂 (log𝑘)

time to remove the top element and insert a better result into the

heap for U times (Algorithm 1, Lines 11–12); in the worst case,

U can increase up to 𝑁 , where we enumerate all stable marriages

fromM𝑁 ,M𝑁−1, . . . ,M1
, i.e., from the worst result to the best

result; we also give the statistics ofU in experiments, whereU ≪
𝑁 in practice; and (iii) 𝑂 (𝑄 · 𝑁 ) is to scan the 𝑂 (𝑛2) successors of
each rotation in the running antichain, a cost we denote as 𝑄 for

each stable marriage. In ENUM, the cost is𝑂 (𝑛2 +U · log𝑘 +𝑛 ·𝑁 ),
as it only requires𝑂 (𝑛) time for each stable marriage. Our objective

is not to deploy ENUM* but rather to apply two lower bounds to

reduce the search space 𝑁 , which dominates the running time, as

we describe in the next section.

4.4 Our solution, ENUM*-LR
Algorithm 2 shows our enhanced recursive solution, ENUM*-LR.

Line 6 checks the layer lower bound before the rotation lower

bound RB𝑟 for rotation 𝑟 newly added in antichain set A, as the

former is more likely to reuse bookkept results.

Algorithm 2 ENUM*-LR

Input: M𝑋 , 𝑅, 𝑘

Output: M(𝑘 )
1: Max heapM(𝑘 ) ← ∅
2: EnumAntichain(∅, 𝑅, 𝑛𝑢𝑙𝑙,M(𝑘 ))
3: returnM(𝑘 )
4: function EnumAntichain(A, 𝑅A , 𝑟 ,M(𝑘 ))
5: ℓ = max

𝑟 ′∈A∪𝑅A
{𝑟 ′ .ℓ } ⊲ Max. level of possible antichains

6: if LBℓ ≥ 𝐶 (M(𝑘 ) .𝑡𝑜𝑝 ( ) ) or RB𝑟 ≥ 𝐶 (M(𝑘 ) .𝑡𝑜𝑝 ( ) ) then
7: return ⊲ Check layer bound and rotation bound

8: A → S → M ⊲ Generate matching using Eq. 2

9: UpdateKESM(M,M(𝑘 )) ⊲ Update the 𝑘 best results(in Alg. 1)

10: for 𝑟𝑛𝑒𝑤 ∈ 𝑅A , in descending order of ℓ do
11: 𝑅A∪𝑟𝑛𝑒𝑤 = 𝑅A \ 𝑅×𝑟𝑛𝑒𝑤 \ {𝑟 ∈ 𝑅A |𝑟 <𝑖𝑑 𝑟𝑛𝑒𝑤 }
12: EnumAntichain(A ∪ 𝑟𝑛𝑒𝑤 , 𝑅A∪𝑟𝑛𝑒𝑤 , 𝑟𝑛𝑒𝑤 ,M(𝑘 ))

Implementation details.We calculate the layer bound LBℓ by the
Mincut algorithm (Section 3.3) on a layer subgraph𝐺ℓ

in𝑂 (𝑛4) time.

In the worst case, the enumeration calls the Minuct algorithm 𝐿

times, where 𝐿 is the number of layers in the rotation graph 𝐺 . We

contain this number by a simple process. After we determine the

best closed subset Sℓ
𝐿
of 𝐺ℓ

, we find the maximum layer level ℓ′

of rotations in Sℓ
𝐿
. A closed subset Sℓ ′

𝐿
of 𝐺ℓ ′

is identical to that

of𝐺ℓ
since𝐺ℓ ′ ⊆ 𝐺ℓ

. Thereby, we safely eschew calling the Mincut

algorithm in intermediate layer subgraphs, 𝐺ℓ ′
, 𝐺ℓ ′+1

, . . . , 𝐺ℓ−1
. In

terms of Figure 4, suppose S = {𝑟1 − 𝑟5} is the maximum-weight

closed subset found in 𝐺4
. Since the maximum layer level in S is 2,

we eschew calling Mincut in 𝐺2
and 𝐺3

. Lastly, we bookkeep the

result of 𝐺ℓ
in the entire enumeration process.

We derive the rotation lower boundRB𝑟 by iterating over 𝑃𝑟𝑒𝑐− (𝑟 )
and 𝑆𝑢𝑐𝑐+ (𝑟 ) in 𝑂 (𝑛2) and bookkeep the resulting RB𝑟 in 𝑂 (𝑛2)
space. We prune unpromising rotations from the candidate set 𝑅A
by storing the set of computed RB𝑟 values in a max-heap. When

we update the 𝑘-best matching setM(𝑘), we screen the max-heap

and mark rotations as unpromising if their bound is not lower than

the cost of the 𝑘-𝑡ℎ best matching, i.e., if RB𝑟 ≥ 𝐶 (M(𝑘).𝑡𝑜𝑝 ()); we

3246



do not consider these unpromising rotations when constructing a

new rotation candidate set 𝑅A .

Complexity. The time complexity of ENUM*-LR (applying both

Pruning Rule 1 and Pruning Rule 2) is 𝑂 (𝑛4 +𝑄 · H𝐿𝑅 +U · log𝑘).
The𝑂 (𝑛4) cost is to calculate layer bounds and rotation bounds. In

practice, the bound calculation cost is much better than the worst

case since the number of rotations is much smaller than 𝑛2 (see

Section 5.2). ENUM*-LR is to reduce the enumeration space from

𝑁 to a pruned space H𝐿𝑅 . For layer bound, the search space H𝐿

is𝑁−∑︁𝑛
2

𝛼=1

(︁ |𝑉 ℓ |
𝛼

)︁
in the best case, where𝛼 is the size of an antichain,

which is at most the width of𝐺 . Assuming only one rotation bound

works, the search spaceH𝑅 in the best case is 𝑁 −∑︁𝑛/2
𝛼=1

(︁ |𝑅 |
𝛼

)︁
. The

enumeration space can be reduced further with more unpromising

rotations. In the experiments, the number of pruned rotations can

be more than half of |𝑅 |. Even while the pruning spaces of LBℓ
and RB𝑟 overlap, the search space of ENUM*-LR is smaller than

that of ENUM*-L and ENUM*-R, which only apply LB or RB.

4.5 Heuristic yet Stable Solutions
Finding the exact 𝑘-best stable marriages to k-ESMPmay still be in-

tractable if the problem instance is hard, requiring the enumeration

of an exponential number of stable marriages. To solve this problem,

we propose two heuristic solutions, ENUM*-𝜖 and ENUM*-LR-𝜖 .

Table 7: The antichains without negative rotations are likely
to be better solutions.

The 4-best closed subsets
(the antichains are marked by underline.)

S14 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5},𝐶 (M14 ) = 54

S9 = {𝑟1, 𝑟2, 𝑟4},𝐶 (M9 ) = 54

S17 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6},𝐶 (M17 ) = 55

S21 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟8},𝐶 (M21 ) = 55

ENUM*-𝜖. Our heuristic algorithm, ENUM*-𝜖 , enumerates an-

tichains by the same process as ENUM* (Alg. 1). To reduce the

search space, we retain only non-negative rotations, 𝑅≥+, in the

enumeration set 𝑅A (Line 4 of Algorithm 1). Our rationale is that, if

an antichain contains negative rotations, we can find an antichain

preferable in terms of egalitarian cost by excluding negative rota-

tions. For example, in Table 6, the corresponding antichain ofM17

is {𝑟4, 𝑟5, 𝑟6} and Δ𝑟6 < 0. After removing 𝑟6, we get the stable mar-

riageM14 where𝐶 (M14) < 𝐶 (M17). In effect, a matching derived

from the 𝑘 best non-negative antichains is likely to preserve good

matching quality. We use the example rotation graph𝐺𝑅 to explain

this observation. Table 7 shows the 4-best results in our example,

where there are two candidates having the same cost. Remarkably,

all antichains of the 4-best candidates are composed of non-negative

rotations only, as {𝑟4, 𝑟5, 𝑟6, 𝑟8} ⊂ 𝑅≥+. In the following, we analyze

the cost difference between ENUM*-𝜖 and ENUM*.

Theorem 3 (Error bound, 𝜖). The difference between the cost of

the 𝑘-th matching returned by ENUM*-𝜖 ,M𝑘
𝜖 , and the actual 𝑘-th

matching,M𝑘
, is bounded by

𝐶 (M𝑘
𝜖 ) −𝐶 (M𝑘 ) ≤ ΔS1 − ΔS𝑘𝜖 +maxΔ𝑟− (8)

where ΔS𝑘𝜖 =
∑︁
𝑟 ∈S𝑘𝜖 Δ𝑟 and maxΔ𝑟− = max

𝑟 −∈𝑅−
Δ𝑟− .

Proof. Given the𝑘-thmatching returned by ENUM* and ENUM*-

𝜖 , we can calculate their cost gap by Equation 3.

𝐶 (M𝑘
𝜖 ) −𝐶 (M𝑘 ) = ΔS𝑘 − ΔS𝑘𝜖 (9)

From Equation 3, we also know that the top matchingM1
has

the largest ΔS value, ΔS1. To transform any matching (e.g.,M𝑘
)

to the top matchingM1
, we should detach at least one negative

rotation therefrom, rendering the cost of its closed subset larger.

ΔS1 remains larger if we exclude from ΔS𝑘 the rotation of the

maximum negative value, which has the smallest possible effect

on ΔS𝑘 :
ΔS𝑘 −maxΔ𝑟− ≤ ΔS1 (10)

Combining Eq. 9 and Eq. 10, we get 𝐶 (M𝑘
𝜖 ) −𝐶 (M𝑘 ) ≤ ΔS1 −

ΔS𝑘𝜖 +maxΔ𝑟− . □

We can easily compute this after generating the 𝑘-th result

of ENUM*-𝜖 . We derive ΔS1 from the closed subset of the best

matching, which is the first result returned by ENUM*-𝜖 , and cal-

culate maxΔ𝑟− in 𝑂 (𝑛2) time by means of a linear scan of the

rotations.

ENUM*-LR-𝜖. Both the layer lower bound LBℓ and the rotation

lower bound RB𝑟 work seamlessly with the heuristic enumeration,

since both hold for the antichain set generated by the set of non-

negative rotations 𝑅≥+ ⊆ 𝑅. The error bound is identical to that of

ENUM*-𝜖 .

Stability and Complexity. ENUM*-𝜖 is stable since it computes an

antichain of non-negative rotations and then finds the correspond-

ing closed subset in the original rotation graph 𝐺 . In other words,

ENUM*-𝜖 provides a solution to k-ESMP in the subspace 𝑅≥+ ⊆ 𝑅.

Its time complexity is𝑂 (𝑛2+𝑄 ·H𝜖 +U·log𝑘). The search spaceH𝜖

is at most

∑︁𝑛/2
𝛼=1

(︁ |𝑅≥+ |
𝛼

)︁
. The exploration space of ENUM*-𝜖 is sig-

nificantly smaller than that of ENUM*, since 𝑅≥+ is a portion of

the rotation set 𝑅. In our experiments, the size of 𝑅≥+ is about 50%
of that of 𝑅, while 𝑅≥+ generates about 1%-10% of the antichains

generated by 𝑅.

5 EXPERIMENTS
We conduct a thorough experimental study on our enumeration

algorithm and bounding techniques.

5.1 Experimental Settings

Datasets.We use the following data. Table 8 lists the instance sizes

and Table 9 lists statistics on 𝐺 for a portion of data settings.

• BIKE. We use bike sharing data
2
to calculate distances from a

start point to an end point as agent preferences on the 𝑋 side.

Agent preferences on the𝑌 side are the values of orders for a bike

on its start point; order values of follow a uniform distribution.

• TAXI/TAXI+. As with the BIKE dataset, we construct a two-

sided market from taxi and user data in the NYC Taxi dataset
3
.

• FOOD. From the restaurant data
4
, we collect the locations of

restaurants and customers to calculate the distance and extract

the rating from restaurants.

2
bikeshare.metro.net/about/data/

3
www.nyc.gov/site/tlc/about/data.page

4
kaggle.com/datasets/uciml/restaurant-data-with-consumer-ratings
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(a) Time, BIKE (b) #Stable Marriage, BIKE (c) Time, TAXI (d) #Stable Marriage, TAXI

(e) Time, FOOD (f) #Stable Marriage, FOOD (g) Time, ADM (h) #Stable Marriage, ADM

(i) Time, JOB (j) #Stable Marriage, JOB (k) Time, RAP (l) #Stable Marriage, RAP

(m) Time, UNIFORM (n) #Stable Marriage, UNIFORM (o) Time, HARD (p) #Stable Marriage, HARD

Figure 6: Effect of 𝑛 (𝒌 = 5)

• ADM. University admission forms a classic scenario for the stable

marriage problem [2, 43]. We obtain university ranking data
5

and GRE and TOEFL score from anonymous admission data
6
.

We construct preference lists by a two-order sort, first by type

of institute, then by rank within each type.

• JOB. Person-fit is the core task in online recruitment platforms [11,

56]. We construct a two-sided market using work experience
7

and salary
8
as the preferences of recruiters and job hunters.

• RAP. Reviewer-paper assignment is a common service in con-

ference/journal systems. We derive preferences from affinity and

CoI scores using topics and collaboration networks inAminer [45]
9
.

5
kaggle.com/datasets/mylesoneill/world-university-rankings

6
kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university

7
kaggle.com/datasets/arashnic/hr-analytics-job-change-of-data-scientists

8
www.kaggle.com/datasets/andrewmvd/data-scientist-jobs

9
aminer.cn/aminernetwork

• UNIFORM. The preference list follow a uniform distribution.

• HARD. An easy instance may contain few stable marriages if

individuals have many common preferences [12, 39]. To demon-

strate performance in hard instances (i.e., worse cases), we con-

struct hard instances following previous studies [23, 44].

EvaluatedAlgorithms andMetrics.We implement all algorithms

discussed in Section 4.

• Mincut [24]: an 𝑂 (𝑛4) network-flow algorithm that finds the

best matchingM1
(used for 𝑘 = 1, see Section 3.3).

• ENUM [19], ENUM*: brute-force enumeration algorithms.

• ENUM*-L, ENUM*-R, ENUM*-LR: improved algorithms with

pruning techniques, i.e., applying LB, RB and LB+RB on ENUM*.

• ENUM*-𝜖, ENUM*-LR-𝜖 : heuristic algorithms.
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(c) Time, BIKE (d) #Stable Marriage, BIKE (e) Time, FOOD (f) #Stable Marriage, FOOD

Figure 7: Effect of 𝑘 (𝒏 = 5000)

Table 8: Dataset parameters (1 instance for each 𝑛 in TAXI+,
10 instances for each 𝑛 in others)

Dataset 𝒏 𝑿/𝒀 Preferences

BIKE 2000, 3000, 4000, 5000 bike/user distance/utility

TAXI 2000, 3000, 4000, 5000

taxi/user distance/utilityTAXI+ 10000, 50000, 100000

FOOD 2000, 3000, 4000, 5000 task/worker distance/rating

ADM
1000, 2000, 3000, 4000

college/student ranking/grades

JOB job/person salary/experi

RAP paper/reviewer affinity/COI

UNIFORM 100, 500, 1000, 5000 / /

HARD 128, 256, 512, 1024 / /

Table 9: Statistics of 𝐺𝑅

Dataset 𝒏 |𝑹 | |𝑬 | |𝑹+ | |𝑳 |

BIKE 5000 426 9284 219 221

FOOD 4000 437 3205 245 251

ADM 2000 248 3355 117 148

HARD 1024 454 20686 248 250

Table 10: Taxi stat. ofU

𝒏, 𝑘 = 5 2000 3000 4000 5000

ENUM* 3.20% 1.27% 0.32% <0.01%

ENUM*-R 3.20% 1.27% 0.27% <0.01%

ENUM*-𝜖 1.53% 0.73% 0.16% <0.01%

Implementation.We performed experiments on an Intel i9-9900K

machine @3.60GHz, with 64G memory running Linux. All methods

were implemented in C++. All evaluated methods, the data script,

and the evaluated datasets can be found in our Github repo
10
.

5.2 Efficiency

Varying 𝑛.We investigate the effect of instance size 𝑛 with 𝑘 = 5

on the datasets in Table 8. Figure 6 presents our results on the

time of exact algorithms, the time of heuristic algorithms, and the

number of enumerated stable marriages. The results reconfirm the

time complexity analysis of ENUM and ENUM* in Section 4.3, by

which ENUM performs better in brute-force enumeration. However,

as Figures 6(a), 6(b) illustrate, our best exact method ENUM*-LR

outperforms the non-pruning method ENUM by up to two orders

of magnitude, as the layer bound LB (Section 4.1) and the rotation

bound RB (Section 4.2) prune a large set of stable marriages; the

same figures also show the efficiency of heuristics ENUM*-𝜖 and

10
github.com/Asuka54089/KESMP

ENUM*-LR-𝜖 , which even improve their runtime as 𝑛 grows when

the corresponding number of stable marriages 𝑁 falls. However,

the non-pruning heuristic ENUM*-𝜖 performs worse than the exact

solution ENUM*-LR when the number of stable marriages 𝑁 is

large (i.e., 𝑁 ≥ 10
5
). This result vindicates the significance of our

bounding techniques. Likewise, ENUM*-LR-𝜖 outperforms ENUM*-

𝜖 by 1–2 orders of magnitude. Still, as Figures 6(k), 6(l), 6(m) and 6(n)

indicate, these bounding techniques are less effective in the RAP

and UNIFORM datasets, which have fewer stable marriages. We

record the counts of updates for our algorithms and calculate the

percentage of updates vs. the number of stable marriagesU/𝑁 ; the

results in Table 10 justify the cost of updating the 𝑘-best results.

Varying𝑘 .Weevaluate all proposedmethods by varying𝑘 in {1, 3, 5,
10, 15, 20}. The Mincut algorithm takes 0.0134 seconds in BIKE

and 0.0372 seconds in FOOD. While for 𝑘 = 1, the ESMP can be

solved in polynomial time (Section 3.3), for the sake of complete-

ness, we also evaluate our algorithms with 𝑘 = 1. Figure 7 shows

our results. ENUM* and ENUM*-𝜖 should be insensitive to 𝑘 since

the only overhead of𝑘 is to maintain the top-𝑘 rank results in a heap.

The runtime of other methods, ENUM*-R, ENUM*-LR, and ENUM*-

LR-𝜖 , increases with the value of 𝑘 . For instance, in the BIKE dataset,

ENUM*-LR takes 6.92 seconds when 𝑘 = 5 and increases to 10.64

seconds seconds when 𝑘 = 20. This moderate growth demonstrates

the robustness of our bounding techniques.

5.3 Pruning Techniques

Effect of layer bound LBℓ . Figure 8 shows how the layer bound

performs on different problem instances. ENUM*-L (stop) explores

about half the layers compared to ENUM (max). However, the

complexity of stable marriage enumeration grows exponentially

with the number of layers. Considering two instances,𝐺1 consisting

of 32 layers and𝐺2 consisting of 338 layers, the enumeration on𝐺1

terminates at layer 10, while on𝐺2 it terminates at layer 169. As a

result of layer bounds, the search space size on𝐺1 shrinks from 1,419

down to 1,125, while on 𝐺2 it drops from 4,169,824 to 1,317,888. As

Figure 7 shows, the response time of ENUM*-L is 10% faster than

that of ENUM* on average; the cost of calculating LB is justified

considering the total search time in Figure 8(b).

Effect of rotation bound RB𝑟 . Figure 9(a) shows the number of

rotations pruned by the rotation lower bound. In the BIKE data, on

average 97.18% of rotations are pruned due to RB, delivering a 1–2

orders of magnitude improvement in execution time. Notably, the
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(a) Stop Layer, BIKE (b) Calculate LB, BIKE

Figure 8: Statistics on the layer bound LB

(a) #𝑟 (Pruned), BIKE (b) Calculate RB, BIKE

Figure 9: Statistics on the rotation bound RB

(a) Stop Layer, BIKE (b) #𝑟 (Pruned), BIKE

Figure 10: Statistics on LB+RB (𝒌 = 5)
(a) BIKE (b) FOOD

Figure 11: Accuracy

pruning ratio is higher than that due to the layer bound, since the

number of rotations is much higher than the number of layers in𝐺 ,

hence the cost of calculating RB is also justified in Figure 9(b).

Effect of LBℓ+RB𝑟 . To study the effect of the two bounds, we show
some statistics on the uniform datasets in Figure 10. We observe

that ENUM*-LR outperforms other methods, with a trend similar

to those seen in Figures 8 and 9.

Table 11: Comparison ofM𝑖 vs. the best matchingM1

𝑖
FOOD (𝒏 = 3000) HARD (𝒏 = 1024)

#𝒓 #(𝒙,𝒚) 𝚫𝑪 #𝒓 #(𝒙,𝒚) 𝚫𝑪

2 1 6 14 1 4 1

3 1 25 72 1 4 11

5 2 45 332 1 2 270

10 4 65 460 2 14 314

20 9 119 803 5 61 471

5.4 Effectiveness

Statistics on exact matchings. To show the effectiveness of the

𝑘-best result, we compare the 𝑖-th matching resultM𝑖
to the best

result,M1
, where 𝑖 ∈ {2, 3, 5, 10, 20}. Table 11 shows (1) the number

of rotation changes #𝑟 , (2) the number of pair changes #(𝑥,𝑦), and (3)
the egalitarian cost difference Δ𝐶 = 𝐶 (M𝑘 ) −𝐶 (M1). Even though

a matching may consist of more than 10
3
pairs, a decision maker

may check the matchings at different positions in the ranking by

inspecting only the pairs in the associated rotations. In the FOOD

dataset, the number of pair changes (and the cost difference) is

more sensitive to 𝑖 than in other datasets. This result corroborates

the difficulty of k-ESMP.

Statistics on heuristic matchings. We also compare the exact

matching resultM𝑖
to the heuristic resultM𝑖

𝜖 (𝑖 ∈ {1, 2, 3, 5, 10}).
Table 12 shows the difference in terms of rotations #𝑟 , pairs #(𝑥,𝑦),

egalitarian cost gap Δ𝐶𝜖 = 𝐶 (M𝑖
𝜖 ) −𝐶 (M𝑖 ) and relative [29] egali-

tarian cost gap Δ𝐶𝜖/𝐶 (M𝑖 ). For small 𝑖 , the gap between the heuris-

tic and the exact solution is narrow.

Table 12: Comparison ofM𝑖 vs. heuristic matchingM𝑖
𝜖

𝑖
FOOD (𝒏 = 3000) HARD (𝒏 = 1024)

#𝒓 #(𝒙,𝒚) 𝚫𝑪𝝐 𝚫𝑪𝝐/𝑪 (M𝒊) #𝒓 #(𝒙,𝒚) 𝚫𝑪𝝐 𝚫𝑪𝝐/𝑪 (M𝒊)

1 0 0 0 0 0 0 0 0

2 2 9 123 0.0746% 2 8 10 0.0227%

3 2 15 228 0.1383% 2 6 43 0.0985%

5 20 362 1105 0.6706% 2 12 259 0.5897%

10 29 424 1109 0.6731% 3 10 280 0.6420%

Ranking Quality. Lastly, we compare the exact 𝑘-best matching

list to the heuristic 𝑘-best matching list with accuracy and Nor-

malized Discounted Cumulative Gain (NDCG@𝑘) [28]; we define

accuracy as follows:

𝐴𝑐𝑐 (M𝜖 (𝑘),M(𝑘)) =
1

𝑘
|{𝐶 (M1

𝜖 ), ...,𝐶 (M𝑘
𝜖 )}∩{𝐶 (M1), ...,𝐶 (M𝑘 )}|

where two matching results are considered identical if they share

the same egalitarian cost. Figure 11 shows our results. As 𝑘 grows,

the accuracy of the heuristic solution drops. Overall, our heuristic

achieves ∼40%-80% accuracy while its response time is 1–2 orders

of magnitude faster as observed in Figures 6 and 7.

We also compare the normalized discounted cumulative gain

(NDCG@𝑘) between M(𝑘) and M𝜖 (𝑘) (𝑘 ∈ {5, 20}) to assess the

quality of the heuristic. We define a relevance score in [0, 1], Egali-
tarian Contentment, by normalizing the egalitarian cost, as𝐸𝐶 (M) =
1 − 𝐶 (M)

2𝑛2
. NDCG is then defined as:

𝑁𝐷𝐶𝐺 (M𝜖 (𝑘 ),M(𝑘 ) ) =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
, (11)

where 𝐷𝐶𝐺 =
∑︁𝑘
𝑖

2
𝐸𝐶 (M𝑖

𝜖 )−1
log

2
(𝑖+1) and 𝐼𝐷𝐶𝐺 =

∑︁𝑘
𝑖

2
𝐸𝐶 (M𝑖 )−1
log

2
(𝑖+1) .
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Table 13 shows our NDCG@𝑘 results (on FOOD and HARD
datasets only due to space limit), which are all higher than 0.99, even

while the heuristic solutions ENUM*-𝜖 and ENUM*-LR-𝜖 are more

efficient than the exact solution. We conclude that our heuristics

achieve a good balance between efficiency and effectiveness.

Table 13: NDCG results

𝑁
Dataset:FOOD

𝑁
Dataset:HARD

NDCG@5 NDCG@20 NDCG@5 NDCG@20

2000 0.9999 0.9999 128 0.9991 0.9998

3000 0.9999 0.9999 256 0.9999 0.9999

4000 0.9999 0.9999 512 0.9999 0.9990

5000 0.9999 0.9998 1024 0.9998 0.9992

5.5 Scalability
To the best of our knowledge, recent works on task assignment and

stable matchings that considers asymmetric two-sided preference

typically set the number of agents (i.e., the instance size 𝑛) in the or-

der of magnitude of 10
3
[17, 31, 50, 60, 61]. The storage of preference

lists on rotations poses a significant memory challenge. For exam-

ple, an instance with 𝑛 = 10
5
requires approximately 2 × 4 × 1010

bytes, which is equivalent to approximately 74GB.

To evaluate ourmethods on large-scale datasets, we implemented

a progressive disk-based loading mechanism for preference lists

during rotation graph construction. Specifically, we store the pref-

erence lists on disk and load each preference list on demand, when

needed. The time complexity of this loading process is 𝑂 (𝑛2). As
Table 9 indicates, the size of the rotation graph, represented by

the number of rotations |𝑅 |, is typically much smaller than the

theoretically expected 𝑂 (𝑛2) (Table 4) in practice.

Figure 12 presents the scalability of our methods on TAXI+ data.

Since counting all stable marriages becomes intractable as 𝑁 grows,

we terminate algorithms ENUM, ENUM*, and ENUM*-L, when

their running time goes up to one hour, which indicates all these

instances have at least 10
7
stable marriages. Still, even as 𝑛 grows

to 10
5
, two exact algorithms, ENUM*-R and ENUM*-LR, and two

heuristics, ENUM*-𝜖 and ENUM*-LR-𝜖 , remain operational.

(c) Time, TAXI+ (d) #Stable Marriage, TAXI+

Figure 12: Scalability (𝑘 = 5)

5.6 A Use Case for 𝑘-best Assignments
Now we study a stable marriage instance with 𝑛 = 3000 in dataset

BIKE to discuss (i) the necessity of finding k-ESMP and (ii) how to

use the 𝑘-best assignments in real applications.

Figure 13 shows the 3-best task assignments and their egali-

tarian costs 𝐶 (M1) < 𝐶 (M2) < 𝐶 (M3). We report the rota-

tions in the 𝑘-best stable marriages and their corresponding closed

subsets to facilitate decision-making. For instance, the transfor-

mation from M1
to M2

re-assigns pairs (1790, 586), (2931, 503)
to (1790, 503), (2931, 586). Since other assigned pairs remain un-

changed inM1
andM2

, a decision maker may pick a result by

only checking the changed pairs in the rotation structure. In other

task assignment problems, the re-assigned pairs lack this inner con-

nection. Furthermore, bothM2
andM3

have a higher egalitarian

cost thanM1
, with a lower difference of satisfaction (i.e., the sum

of the positions for choices) between the task side and the worker

side. Our k-ESMP gives decision makers a collection of high-quality

findings to prevent them from overlooking practical good tasks.

1790 503

2931 586

1070 2164

1078 2170

1070 2170

1078 2164

1790 586

2931 503

Re-assign 2 pairs from 
(1 rotation)

Re-assign 2 pairs from 
(1 rotation)

the
satisfaction
of workers

the
satisfaction

of bikes

the position difference
of        and

the position difference
of        and

Figure 13: A Use Case for 3-best Assignments.

6 CONCLUSION
We proposed and studied the NP-hard 𝑘-best egalitarian stable mar-

riage problem for task assignment, which seeks a set of high-quality

matchings among workers and tasks based on egalitarian cost. To

our knowledge, this is the first work that extends the egalitarian

stable marriage problem to a 𝑘-best formulation. To efficiently

find matchings of high cumulative satisfaction, we proposed sev-

eral enhancements upon a brute-force enumeration harnessing the

topological structure of rotations and two effective lower-bounding

techniques, layer lower bound and rotation lower bound. Further,

we designed a heuristic yet stable solution. Our experimental study

demonstrates the efficiency and effectiveness of our solutions on

spatial and non-spatial datasets. In the future, we will study fair

spatial matchings on other variants of stable marriage problems,

such as stable roommates.
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