
Out-of-Order Sliding-Window Aggregation with
Efficient Bulk Evictions and Insertions

Kanat Tangwongsan

Mahidol University International College

kanat.tan@mahidol.edu

Martin Hirzel

IBM Research

hirzel@us.ibm.com

Scott Schneider

Meta

scottas@meta.com

ABSTRACT
Sliding-window aggregation is a foundational stream processing

primitive that efficiently summarizes recent data. The state-of-the-

art algorithms for sliding-window aggregation are highly efficient

when stream data items are evicted or inserted one at a time, even

when some of the insertions occur out-of-order. However, real-

world streams are often not only out-of-order but also bursty, caus-

ing data items to be evicted or inserted in larger bulks. This paper

introduces a new algorithm for sliding-window aggregation with

bulk eviction and bulk insertion. For the special case of single insert

and evict, our algorithm matches the theoretical complexity of the

best previous out-of-order algorithms. For the case of bulk evict,

our algorithm improves upon the theoretical complexity of the best

previous algorithm for that case and also outperforms it in practice.

For the case of bulk insert, there are no prior algorithms, and our

algorithm improves upon the naive approach of emulating bulk

insert with a loop over single inserts, both in theory and in prac-

tice. Overall, this paper makes high-performance algorithms for

sliding window aggregation more broadly applicable by efficiently

handling the ubiquitous cases of out-of-order data and bursts.
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1 INTRODUCTION
In data stream processing, a sliding window covers the most re-

cent data, and sliding-window aggregation maintains a summary

of it. Sliding-window aggregation is a foundational primitive for

stream processing, and as such, is both widely used and widely

supported. In various application domains, stream processing must

have low latency; for example, late results can cause financial losses

in trading or harm property and lives in security or transportation.

Furthermore, streaming data often arrives out-of-order, but new

data items must be incorporated into a sliding window at their

correct timestamps and the aggregation may not be commutative.
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Finally, data streams do not always have a smooth rate: in the real

world, data items often enter and depart sliding windows in bursts.

When streaming data is bursty, sliding-window aggregation

needs to support efficient bulk evictions and insertions to keep

latency low. In other words, it needs to evict or insert a bulk of𝑚

data items faster than it would take to evict or insert them one by

one, lest it incur a latency spike of𝑚× that of a single operation.

Bulk evictions are common in time-based windows, where the

arrival of one data item at the youngest end of the window can

trigger the eviction of several data items at the oldest end. For

example, consider a window of size 60 seconds, with data items at

timestamps [0.1,0.2,0.3,0.4,0.5,10,20,30,40,50,60] seconds. If the next
data item to be inserted has timestamp 61, the window must evict

the items at timestamps [0.1,0.2,0.3,0.4,0.5]. Since these are𝑚 = 5

items, evicting them one by one would incur a 5× latency spike.

While a small bulk (e.g.,𝑚 = 5) is harmless, bursts can result

in 𝑚 in the thousands of data items or more. For instance, data

streams may experience transient outages, causing bursts during

recovery [7]. Besides time-based windows, applications may use

other window types such as sessions [28] or data-driven adaptive

windows [4]. Streaming systems may internally use implementa-

tion techniques that introduce disorder [17]. When a streaming

system receives multiple streams from different data sources, their

logical times may drift against each other [15]. Real-world events,

such as breaking news, severe weather, rush hour traffic, sales, ac-

cidents, opening of stores or stock markets, etc. can cause bursty

streams [19]. All these scenarios necessitate sliding-window aggre-

gation with efficient bulk evictions and insertions—without harm-

ing the tuple-at-a-time performance.

The literature has few solutions to this problem, and none match

our solution in completeness or algorithmic complexity. List-based

approaches such as Two-Stacks handle neither out-of-order nor

bulk operations [23]. The AMTA algorithm only handles in-order

windows and only offers bulk eviction but not bulk insertion [29].

CPiX has a linear factor in its algorithmic complexity for bulk

eviction and is limited to commutative aggregation over time-based

windows [6]. The FiBA algorithm is optimal for out-of-order sliding-

window aggregation with single evictions and insertions but does

not directly support bulk operations [22]. While the literature on

balanced tree algorithms provides partial solutions to bulk evictions

and insertions [8, 11, 14], each paper solves a different part of the

problem using a different data structure, and none offer incremental

aggregation. Section 2 discusses related work in more detail.

Our new solution builds on FiBA [22], a B-tree augmented with

fingers and with location-sensitive partial aggregates. The fingers

help efficiently find tree nodes to be manipulated when the window

slides. The location-sensitive partial aggregates avoid propagating

local updates to the root in most cases. Intuitively, our bulk eviction

and insertion have three steps:
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• a finger-based search to find the affected nodes of the tree;

• a single shared pass up the tree to insert or evict items in

bulk while also repairing any imbalances this causes; and

• a single shared pass down the affected spine(s) of the tree to

repair location-sensitive partial aggregates stored there.

The trick for efficient bulk evict is to not look at each evicted

entry individually, but rather, only cut the tree along the boundary

between the entries that go and those that stay. The trick for efficient

bulk insert is to share work caused by multiple inserted entries as

low down in the tree as possible, i.e., to process paths from insertion

sites together as soon as they converge.

Let 𝑛 be the window size (the number of data items currently

in the window); 𝑚, the bulk size (the number of data items be-

ing evicted or inserted); and 𝑑 , the out-of-order insertion distance

(the number of data items in the part of the window that overlaps

with the bulk). Our algorithm performs bulk eviction in amortized

𝑂 (log𝑚) time and bulk insertion in amortized 𝑂 (𝑚 log
𝑑
𝑚 ) time.

Neither of these two time bounds depend on the window size 𝑛

and bulk eviction is sublinear in the bulk size𝑚. For𝑚 = 1, the

amortized time matches the proven lower bounds of 𝑂 (1) for evic-
tion and 𝑂 (log𝑑) for out-of-order insertion, which means 𝑂 (1) for
in-order insertion at the smallest 𝑑 . The worst-case time complexity

is𝑂 (log𝑛) for bulk evict and𝑂 (𝑚 log(𝑚+𝑛
𝑚 ) + log𝑑) for bulk insert,

because the pass up the tree can reach the root in the worst case.

This worst case is guaranteed to be so rare that in the long run,

the amortized complexity prevails. It uses 𝑂 (𝑛) space, with the

constant depending on the B-tree’s arity.

We implemented our algorithm in C++ and made it available at

https://github.com/IBM/sliding-window-aggregators, along with

our implementations of other sliding-window aggregation algo-

rithms we compare with experimentally. Commit f3beed2 was

used in the experiments of this paper. Our experimental results

demonstrate that our bulk evict yields the best latency compared

to several state-of-the-art baselines, and our bulk insert yields the

best latency for the out-of-order case (which most algorithms do

not support at all in the first place). Overall, this paper presents

the first algorithm for efficient bulk insertions in sliding windows,

and the algorithm with the best time complexity so far for bulk

evictions from sliding windows.

2 RELATEDWORK
Before our work, the most efficient algorithm for in-order sliding

window aggregation with bulk eviction was AMTA [29]. AMTA

supports single inserts or evicts in amortized 𝑂 (1) time. Given

a window of size 𝑛, it supports bulk evict in amortized 𝑂 (log𝑛)
time. However, AMTA does not directly support bulk insertion,

so inserting 𝑚 items takes amortized 𝑂 (𝑚) time. Our algorithm

matches AMTA’s amortized complexity for single inserts and evicts,

and improves bulk evict to amortized 𝑂 (log𝑚) time. Unlike our

algorithm, AMTA does not support out-of-order insert.

CPiX supports both bulk eviction and bulk insertion, including

out-of-order insertion [6]. The paper states the time complexity

of bulk insert or evict as (𝑝1 + 1) log( | 𝑛
𝑘
|) + 3𝑝2, where the num-

ber 𝑘 of checkpoints is recommended to be

√
𝑛; 𝑝1 is the num-

ber of affected partitions in the oldest checkpoint; and 𝑝2 is the

number of affected partitions in the remaining checkpoints. Given

𝑂 (log( | 𝑛√
𝑛
|)) = 𝑂 (log𝑛), and assuming 𝑝1 and 𝑝2 are proportional

to the batch size 𝑚, this corresponds to an amortized time of

𝑂 (𝑚 log𝑛). This is worse than AMTA’s 𝑂 (log𝑛) and our 𝑂 (log𝑚)
for bulk evict. Moreover, unlike our algorithm, CPiX only works

for time-based windows and commutative aggregation.

The most efficient prior algorithm for out-of-order sliding win-

dow aggregation is FiBA [22]. It supports a single insert or evict in

amortized 𝑂 (log𝑑) time, where 𝑑 is the distance of the operation

from either end of the window. FiBA can emulate bulk insert or

evict using loops of𝑚 single inserts or evicts for a time complexity

of 𝑂 (𝑚 log𝑑). Our new algorithm improves upon this baseline.

Some streaming systems limit out-of-order distance to a water-

mark [3]; instead, our algorithm implements the more general case

that requires no such a priori bounds.

Our algorithm is inspired by the literature on bulk operations

for balanced trees. Brown and Tarjan show how to merge two

height-balanced trees of sizes𝑚 and 𝑛, where𝑚 < 𝑛, in𝑂 (𝑚 log
𝑛
𝑚 )

steps [8]. The keys of the two trees can be interspersed, so their

algorithm corresponds to our out-of-order bulk insertion scenario.

Unlike our algorithm, theirs supports neither aggregation nor bulk

eviction. Furthermore, our algorithm improves the complexity to

𝑂 (𝑚 log
𝑑
𝑚 ), where 𝑑 is the overlap between the two trees. Kaplan

and Tarjan show how to catenate two height-balanced trees in

worst-case 𝑂 (1) time [14]. But they do not allow keys to be inter-

spersed, so their approach is restricted to the in-order case. Also,

unlike our algorithm, their approach does not perform aggrega-

tion and does not support bulk eviction. Hinze and Paterson show

how to both split and merge balanced trees in amortized 𝑂 (log𝑑)
time [11]. However, their merge does not allow keys to be inter-

spersed, so it corresponds to in-order bulk insertion. Also, their

approach does not perform sliding window aggregation.

The sliding-window aggregation literature also pursues other ob-

jectives besides bulk eviction and out-of-order bulk insertion. Scotty

optimizes for coarse-grained sliding, performing pre-aggregation

to take advantage of co-eviction [28]. Their work shows how to

handle all combinations of order, window kinds, aggregation oper-

ations, etc., and is complementary to this paper. ChronicleDB uses

a temporal aggregate B+-tree and optimizes writes to persistent

storage while handling moderate amounts of out-of-order data by

leaving some free space in each block [20]. Hammer Slide uses

SIMD instructions to speed up sliding-window aggregation [25];

SlideSide generalizes it to the multi-query case [27]; and LightSaber

further generalizes it for parallelism [26]. DABA Lite performs both

single in-order insert and single evict in worst-case 𝑂 (1) time but

does not support out-of-order insert [23]. FlatFIT focuses on win-

dow sharing for the in-order case, with amortized 𝑂 (1) time for

single insert and single evict, but does not support out-of-order

insert [21]. None of the above directly support bulk operations; they

can do𝑚 inserts or evicts using simple loops, with an algorithmic

complexity of𝑚 times that of their single-operation complexity.

3 BACKGROUND
This section formalizes the problem solved in this paper and reviews

known concepts such as monoids and finger B-trees upon which

our work builds.

3228

https://github.com/IBM/sliding-window-aggregators


3.1 Problem Statement
Monoids. Amonoid is a triple (𝑆, ⊗, 1) with a set 𝑆 , an associative

binary combine operator ⊗, and a neutral element 1. Several com-

mon aggregation operators are monoids, including count, sum, min,

and max. Furthermore, several more common aggregation opera-

tors can be lifted into monoids, including arithmetic or geometric

mean, standard deviation, argMax, maxCount, first, last, etc. Even

several sophisticated statistical and machine learning operators can

be lifted into monoids, including mergeable sketches [2] such as

Bloom filters or algebraic classifiers [13]. Associativity means that

∀𝑣1, 𝑣2, 𝑣3 ∈ 𝑆 : (𝑣1 ⊗ 𝑣2) ⊗ 𝑣3 = 𝑣1 ⊗ (𝑣2 ⊗ 𝑣3). That means we can

omit the parentheses and simply write 𝑣1 ⊗ 𝑣2 ⊗ 𝑣3; furthermore,

in this paper, we sometimes even omit the ⊗ and simply use 𝑣1𝑣2𝑣3
product notation. By giving flexibility over how values are grouped

during combining, associativity is essential to most incremental

sliding-window aggregation algorithms. The identity element 1
satisfies ∀𝑣 ∈ 𝑆 : 1 ⊗ 𝑣 = 𝑣 = 𝑣 ⊗ 1. It gives meaning to aggregation

over empty (sub)windows. For a monoid, while the combine op-

erator ⊗ must be associative, it does not need to be invertible or

commutative. Thus, any sliding-window aggregation algorithm that

works for general monoids must handle the case of non-invertible

and non-commutative operators.

Abstract Data Type. Below we define an abstract data type with

three operations query, bulkEvict, and bulkInsert. Our formula-

tion decouples these three operations to make them as versatile as

possible, so they can be used in any order, with any kind of window

specification, including windows that grow and shrink dynamically.

Of course, an abstract data type is not itself an algorithm; instead,

it merely specifies the behavior that a given algorithm should im-

plement. While it is easy to implement the abstract data type with

a brute-force algorithm that recomputes everything from scratch,

our problem statement is to design, analyze, and evaluate an in-

cremental algorithm
1
with native support for bulk operations that

have better asymptotic and practical time complexity than before.

Query. The operation query() makes no changes to the window

and computes the monoidal combination of all values currently in

the window in the order of their timestamps. Let the window con-

tents be𝑊 =
[︁
𝑡1
𝑣1

]︁
, . . . ,

[︁
𝑡𝑛
𝑣𝑛

]︁
where 𝑡𝑖 < 𝑡𝑖+1. Then query() returns

𝑣1 ⊗ . . . ⊗ 𝑣𝑛 , or the neutral element 1 if the window is empty.

Bulk Eviction. The operation bulkEvict(𝑡) removes all entries

with timestamps ≤ 𝑡 from the window, leaving the entries with

timestamps> 𝑡 . Let thewindow contain𝑊 pre =

{︃[︁ 𝑡pre
1

𝑣
pre

1

]︁
, . . . ,

[︁ 𝑡pre𝑛

𝑣
pre

𝑛

]︁}︃
before eviction. Then, the window contents post-eviction are

𝑊 post =

{︃[︁ 𝑡post
𝑣post

]︁
:

[︁ 𝑡post
𝑣post

]︁
∈𝑊 pre ∧ 𝑡post > 𝑡

}︃
.

Bulk Insertion. The operation bulkInsert(𝐵in), where the con-

tents of the bulk to be inserted are 𝐵in =

{︃[︁ 𝑡 in
1

𝑣in
1

]︁
, . . . ,

[︁ 𝑡 in𝑚
𝑣in𝑚

]︁}︃
with

𝑡 in
𝑖

< 𝑡 in
𝑖+1, interleaves the previous window contents with the bulk

in temporal order, and in case of collisions, combines them. Let

1
An incremental algorithm keeps partial results to avoid from-scratch recomputations

where possible.
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Figure 1: FiBA data structure example.

the window contents pre-insertion be𝑊 pre =

{︃[︁ 𝑡pre
1

𝑣
pre

1

]︁
, . . . ,

[︁ 𝑡pre𝑛

𝑣
pre

𝑛

]︁}︃
.

Then, the window contents post-insertion are

𝑊 post =

{︂[︁
𝑡post

𝑣post

]︁
:

[︁
𝑡post

𝑣post

]︁
∈𝑊 pre ∧ ∄𝑣 in :

[︁ 𝑡post
𝑣in

]︁
∈ 𝐵in

}︂
∪
{︂[︁

𝑡post

𝑣post

]︁
:

[︁
𝑡post

𝑣post

]︁
∈ 𝐵in ∧ ∄𝑣pre :

[︁
𝑡post

𝑣pre

]︁
∈𝑊 pre

}︂
∪
{︂[︁ 𝑡post

𝑣pre⊗𝑣in
]︁
:

[︁
𝑡post

𝑣pre

]︁
∈𝑊 pre ∧

[︁ 𝑡post
𝑣in

]︁
∈ 𝐵in

}︂
.

3.2 FiBA Data Structure
The FiBA data structure is a finger B-tree augmented for sliding-

window aggregation. It was first introduced to optimize single

out-of-order eviction and insertion [22]. This paper uses the same

data structure but introduces a new algorithm for bulk eviction and

bulk insertion operations. Figure 1 gives a running example.

Node Contents. Each node stores a partial aggregate agg and two

parallel arrays of times and values

[︁
𝑡𝑖
𝑣𝑖

]︁
. For example, the aggregate

of the second leaf from the right in Figure 1 is agg = 𝑞𝑟𝑠 . Recall

that 𝑞𝑟𝑠 is shorthand for 𝑞 ⊗ 𝑟 ⊗ 𝑠 . While the data structure works

with any monoid, assume for illustration that the monoid here is

⊗ = max and that the values are 𝑞 = 4, 𝑟 = 2, and 𝑠 = 5. Then

agg = 𝑞 ⊗ 𝑟 ⊗ 𝑠 = max(4, 2, 5) = 5. In this example, timestamps are

integers with almost no gaps, but there is a gap between times 15

and 17. In general, any totally ordered set will do for timestamps,

and the data structure allows any number of gaps of any sizes.

Location-Sensitive Partial Aggregates. At first glance, it would
seem intuitive to set agg as the aggregation of a node and all its

children and descendants. However, that would be suboptimal for

sliding-window aggregation, because it would require propagating

all window changes to the root, with time complexity𝑂 (log𝑛). For
a better time complexity, FiBA stores one of four different kinds of

aggregate at each node depending on its location in the tree. Below

are definitions of those four kinds of aggregates: up aggregate Π↑,
inner aggregate Π |ˆ, left aggregate Π↙, and right aggregate Π↘. In

each of these definitions, let the current node under discussion be

𝑦 with arity 𝑎, children 𝑐0, . . . , 𝑐𝑎−1, and values 𝑣0, . . . , 𝑣𝑎−2.

• The up aggregate includes all children of 𝑦 and all of 𝑦’s own

values in timestamp order:

Π↑(𝑦) = Π↑(𝑐0) ⊗ 𝑣0 ⊗ . . . ⊗ 𝑣𝑎−2 ⊗ Π↑(𝑐𝑎−1)
For example, the node with timestamps 9 and 12 in the middle

of Figure 1 has agg = ℎ𝑖..𝑛, which is the ordered monoidal

combination starting from its left-most child, through all values
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and children, up to and including its right-most child. For a

more concrete example, assume ℎ = 4, 𝑖 = 5, 𝑗 = 1, 𝑘 = 3, 𝑙 = 5,

𝑚 = 4, 𝑛 = 2 and the max monoid, then agg=5.

• The inner aggregate includes all of 𝑦’s own values and inner

children but excludes the left-most and right-most child:

Π |ˆ(𝑦) = 𝑣0 ⊗ Π↑(𝑐1) ⊗ . . . ⊗ Π↑(𝑐𝑎−2) ⊗ 𝑣𝑎−2

For example, the root in Figure 1 has agg = 𝑔ℎ..𝑜 , which com-

bines its left value 𝑔 with the aggregate of only the middle child

ℎ𝑖..𝑛 and the right value 𝑜 . This means that the root stores an

aggregate of the entire tree except for the left and right spines

and their descendants.

• The left aggregate excludes the leftmost child but includes all

of 𝑦’s own values and the rightmost child, and then combines

that with the parent 𝑥 (unless 𝑥 is the root):

Π↙ (𝑦) = Π |ˆ(𝑦) ⊗ Π↑(𝑐𝑎−1) ⊗
(︃
1 if 𝑥 is root
Π↙ (𝑥) otherwise

)︃
For example, the left-most leaf of Figure 1 has aggregate agg =

𝑎𝑏..𝑓 , which combines its own values 𝑎𝑏 with the aggregate

𝑐𝑑𝑒 𝑓 of its parent, resulting in an aggregate of the entire left

spine and all its descendants.

• The right aggregate combines the aggregate of the parent 𝑥

(unless 𝑥 is the root) with all of𝑦’s own values andmost children

but excludes the rightmost child:

Π↘ (𝑦) =
(︃
1 if 𝑥 is root
Π↘ (𝑥) otherwise

)︃
⊗ Π↑(𝑐0) ⊗ Π |ˆ(𝑦)

For example, the right-most leaf of Figure 1 has aggregate agg =

𝑞𝑟 ..𝑣 , which combines the aggregate 𝑞𝑟𝑠𝑡 of its parent with its

own values𝑢𝑣 , resulting in an aggregate of the entire right spine

and all its descendants.

Representation. The tree is represented by three pointers: left
finger to the left-most child; the root; and right finger to the right-

most child. Each node stores its location-sensitive partial aggregate

agg, times, and values, and in addition, has pointers to its parent

and children, if any. Finally, each node stores two Boolean flags to

indicate whether it is on the left or right spine, respectively.

Invariants. The following properties about height, order, arity,
and aggregates hold before each eviction or insertion and must be

established again by the end of each eviction or insertion.

The height invariant requires all leaves to have the exact same

distance from the root.

The order invariant says that the times 𝑡0, . . . , 𝑡𝑎−2 within each

node are ordered, i.e., ∀𝑖 : 𝑡𝑖 < 𝑡𝑖+1; and furthermore, if a node has

children 𝑐0, . . . , 𝑐𝑎−1, then for all 𝑖 , 𝑡𝑖 is greater than all times in 𝑐𝑖 or

its descendants and smaller than all times in 𝑐𝑖+1 or its descendants.
The arity invariants constrain the sizes of nodes to keep the tree

balanced. Each node has an arity 𝑎, and different nodes can have

different arities. For non-leaf nodes, 𝑎 is the number of children. All

nodes have 𝑎− 1 entries, i.e., parallel arrays of 𝑎− 1 timestamps and

𝑎 − 1 values. There is a data structure hyperparameter MIN_ARITY,

which is an integer > 1, and MAX_ARITY = 2 · MIN_ARITY. They con-

strain the arity of all non-root nodes to MIN_ARITY ≤ 𝑎 ≤ MAX_ARITY.

And for the root, 2 ≤ 𝑎 ≤ MAX_ARITY. For example, MIN_ARITY is 2

in Figure 1, so all non-leaf nodes have 2 ≤ 𝑎 ≤ 4 children, and all

nodes have 1 ≤ 𝑎 − 1 ≤ 3 timestamps and values.

The aggregates invariants govern which nodes store which kind

of location-sensitive aggregates, color-coded in Figure 1. All non-

spine, non-root nodes store the up aggregate. Nodes that are on the

left spine but not the root store the left aggregate. Nodes that are

on the right spine but not the root store the right aggregate. And

the root stores the inner aggregate. This means that the aggregate

of the entire tree is simply the combination of the aggregates of

the left finger, the root, and the right finger. In other words, we can

implement query() in constant time by returning

Π↙ (leftFinger) ⊗ Π |ˆ(root) ⊗ Π↘ (rightFinger)

Imaginary Coins. To help prove the amortized time complexity,

we pretend that each node stores imaginary coins. Figure 1 shows

these as small copper circles. Nodes that are close to underflowing

store one coin to pay for the rebalancing work in case of underflow.

Nodes that are close to overflowing store two coins to pay for the

rebalancingwork in case of overflow. Then, the proofs for amortized

time complexity show that for any possible sequence of operations,

the algorithm always stores up enough coins in advance at each

node before it has to perform eventual actual rebalancing work.

4 BULK EVICTION
As defined in Section 3.1, bulkEvict(𝑡) removes all entries with

timestamps ≤ 𝑡 from the window. So our algorithm must discard

nodes to the left of 𝑡 , keep nodes to the right of 𝑡 , and for nodes that

straddle the boundary, locally evict all entries up to 𝑡 and repair any

violated invariants. Our bulk eviction algorithm has three steps:

Step 1 A finger-based eviction boundary search that returns a list,

called boundary, of triples (node, ancestor, neighbor).

Step 2 A pass up the boundary, and beyond as needed to repair

invariants, that does the actual evictions and most repairs.

Step 3 A pass down the left spine, and if needed also the right spine,
that repairs any leftover invariant violations.

Bulk eviction Step 1: Eviction boundary search. This step finds
the boundary to enable any subsequent rebalancing operations

during Step 2 to be constant-time at each level. For rebalancing to

be efficient, it cannot afford to trigger any searches of its own, and

must instead rely on all required searching to have already been

done upfront. Whereas textbook algorithms for B-trees with single

evictions (such as [10]) can repair arity invariants by rebalancing

with a node’s left or right sibling, bulk eviction leaves no left sibling.

That means the only eligible neighbor to help in rebalancing is

the right one, and that may have a different parent and thus not

be a sibling. Furthermore, rebalancing requires the least common

ancestor of the node and its neighbor, and that might not be their

parent. Hence, the job of the finger-based search is to find a list of

(node, ancestor, neighbor) triples, one for each relevant level of

the tree. The search first starts at the left or right finger, whichever

is closest to 𝑡 , and walks up the corresponding spine to find the

top of the boundary, i.e., the lowest spine node whose descendants

straddle 𝑡 . Then, the search traverses down to the actual eviction

point while populating the boundary data structure. This downward

traversal always keeps at most two separate chains for the node and

its neighbor, and can thus happen in a single loop over descending

tree levels. If the search finds an exact match for 𝑡 in the tree, it

stops early; otherwise, it continues to a leaf and stops there.
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Figure 2: Move batch.

Bulk eviction Step 2: Pass up. This step of the algorithm does

most of the work: it performs the actual evictions, and along the

way, it also repairs most of the invariants that those evictions may

have violated. Recall from Section 3.2 that there are invariants

about height, order, arity, and location-sensitive partial aggregates.

The pass up never violates invariants about height or order. It

immediately restores arity invariants, using some novel rebalancing

techniques described below. Regarding aggregate invariants, the

pass up only repairs aggregates that follow a strictly ascending

direction (up aggregates Π↑ and inner aggregates Π |ˆ). The pass up

leaves aggregates that involve the parent (left aggregates Π↙ and

right aggregates Π↘) to the later pass down to repair.

The pass up has two phases: an eviction loop up the boundary

returned by the search, followed by a repair loop further up be-

yond the boundary as long as there is more to repair. At each

level, the eviction loop performs the local eviction, repairs arity

underflow, and repairs local up aggregates or inner aggregates. At

each level that still needs such repair, the repair loop repairs ar-

ity underflow and repairs local up aggregates or inner aggregates.

Aggregate repair happens in constant time per level by simply re-

computing aggregates of surviving affected nodes after eviction

and rebalancing are done. Arity repair, also known as rebalancing,

either moves entries from the neighbor to the node or merges the

node into the neighbor, depending on their respective arities. Let

nodeDeficit be MIN_ARITY − node.arity and let neighborSurplus be

neighbor.arity − MIN_ARITY. If nodeDeficit ≤ neighborSurplus, re-

balancing does a move; otherwise, it does a merge.

Figure 2 illustrates the move operation, representing each pair[︁
𝑡𝑥
𝑣𝑥

]︁
of timestamp and value as an entry 𝑒𝑥 . In this figure, 𝑘 cor-

responds to nodeDeficit, i.e., the number of entries and children

to move to node to repair its underflow by bringing its arity back

to MIN_ARITY. In contrast to the textbook move operation [10], 𝑘

ea

ek-2

ancestor

e0 …node neighbor

c0 ck -1

ancestor

neighborek-2e0 …

c0 ck -1

ea

merge where neighbor
is not sibling

Figure 3: Merge with neighbor (non-sibling).

may exceed 1 and neighbor may not be a sibling of node. The only

entry of the ordered window that is between node and neighbor is

𝑒𝑎 in their least common ancestor. So the move rotates 𝑒𝑎 into node,

along with 𝑒0, . . . , 𝑒𝑘−2 and all associated children, and rotates 𝑒𝑘−1
to the ancestor. In the end, node has arity MIN_ARITY and neighbor

has arity ≥ MIN_ARITY, because it started with sufficient surplus. Of

course, neighbor still has arity ≤ MAX_ARITY, because it started out

that way and did not grow any bigger. Figure 18 in the extended

version [24] shows pseudocode and a concrete example for move.
Figure 3 illustrates merge, which adds what is left of node to

neighbor and then eliminates node. Unlike in the textbook B-tree

setup, node and neighbormay not be direct siblings. Since any other

vertices on the path from node to ancestor are entirely < 𝑡 , those

vertices will also be eliminated. On the other hand, 𝑒𝑎 has a times-

tamp > 𝑡 , so it remains in the tree, and we rotate it into neighbor. Let

oldNodeArity and oldNeighborArity refer to the arity of the node

and its neighbor before the merge. Then, after the merge, we have

neighbor.arity

= oldNodeArity + oldNeighborArity

= MIN_ARITY − nodeDeficit+ MIN_ARITY + neighborSurplus

= 2 · MIN_ARITY + (neighborSurplus − nodeDeficit)
This means that there is no overflow, because merge only hap-

pens when nodeDeficit > neighborSurplus, and there is no under-

flow, because nodeDeficit ≤ MIN_ARITY and neighborSurplus ≥ 0.

See code and example in Figure 19 in the extended version [24].

For bulkEvict(𝑡) to be fully general, it must handle the case

where 𝑡 is all the way on the right spine. This implies that the root

itself is to the left of 𝑡 and must be eliminated. Eliminating the root

shrinks the tree from the top, thus preserving the height invariant,

and requires giving the tree a new root lower down. There are two

sub-cases for shrinking the tree given a node on the right spine. If,

after the local eviction, the node still has arity > 1, the algorithm
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makes it the root (Figure 4); otherwise, the node has arity = 1 and

the algorithm makes its single child the root (Figure 5). Figure 20

in the extended version [24] shows pseudocode and an example.

Bulk eviction Step 3: Pass down. The last step of the algorithm

repairs left aggregates and spine flags on the left spine. In case the

eviction touched the right spine, it also repairs right aggregates

and spine flags on the right spine. Recall that the left aggregate and

right aggregate of a node are computed using the aggregate result

from its parent. Hence, the pass down loops over tree levels and

performs a local recompute to propagate these changes.

Theorem 1. The algorithm for bulkEvict(𝑡) takes𝑂 (log𝑚) amor-
tized time and 𝑂 (log𝑛) worst-case time.

Proof. Consider the steps of the algorithm separately. Step 1,

the finger-based search, takes time 𝑂 (log𝑚) worst-case, since it
takes a single traversal up from a finger to the lowest ancestor

containing 𝑡 followed by a single traversal down at most to a leaf.

Step 2, the pass up, comprises an eviction loop followed by a repair

loop. The eviction loop takes time 𝑂 (log𝑚) worst-case, since it

traverses the boundary list returned by the search. The repair loop

might continue to repair overflow past the top of the boundary.

In the worst case, it might reach the root, bringing the total time

complexity of the evict loop plus repair loop to𝑂 (log𝑛) worst-case.
However, since the repair loop starts above the boundary, at its

start, it can at most have to deal with an underflow of a single

entry. Therefore, it meets the conditions of Lemma 9 from the FiBA

paper [22], which uses virtual coins to show that the amortized

cost for the repair loop is𝑂 (1). This brings the total amortized time

of the pass up to 𝑂 (log𝑚 + 1) = 𝑂 (log𝑚). Finally, Step 3, the pass

down, traverses the same number of levels as the pass up. □

5 BULK INSERTION
As defined in Section 3.1, bulkInsert(𝐵in) inserts one or more en-

tries into the window. The bulk of entries is modeled as an iterator

of (timestamp, value) pairs, which are assumed to be timestamp-

ordered. Our bulkInsert algorithm processes the bulk in three steps:

Step 1 A finger-based insertion sites search that, without making

any modifications, locates all the sites in the tree where

new entries need to be inserted.

Step 2 A pass up: interleave&split loop that, starting at the leaves,

interleaves the new entries into their respective nodes, split-

ting the node and promoting keys as necessary to satisfy

the arity invariants. This happens from the leaves up until

no level requires further processing.

Step 3 A pass down the right spine, and if needed also the left spine,
that repairs any leftover aggregation invariant violations.

The remainder of this section delves deeper into the details of

these steps and their cost analysis. Later, Section 6 discusses their

implementation and optimization maneuvers.

Bulk insertion Step 1: Insertion sites search. To locate the in-

sertion sites, the algorithm conducts the search in timestamp order,

beginning with the earliest timestamp in the bulk using finger

search. Each subsequent search never has to go higher than the

least common ancestor between the previous node and its insertion

site. This step associates each (timestamp, value) pair from the

input with the corresponding node into which it will be inserted.

Like in a standard B-tree structure, each new timestamp (key)

that is not yet in the tree will be inserted at a leaf location. Such a

key can cause cascading changes to the tree structure and, in the

context of FiBA, can additionally trigger a chain of recomputation

of aggregation values starting from the insertion site. On the other

hand, a timestamp that is already in the tree is destined to the node

where that timestamp is present, where the aggregation monoid

combines its value with the existing value. This results in no struc-

tural changes, but in the context of FiBA, this triggers a chain of

recomputation of aggregation values starting from that node. We

see both cases as events that require processing: an insertion event
adds a real entry to the target node and recomputes the aggregation

value, whereas a recomputation event merely indicates the node

where recomputation must take place.

▷ Treelets. Concretely, the implementation represents each event as

a treelet tuple (target, timestamp, value, childNode, kind). This

indicates that this particular (timestamp, value) pair with a child

childNode (possibly NULL) is to be inserted into the target node

unless the kind is a recomputation event, in which case it simply

triggers a recomputation of aggregate values on the target node.

Treelets form the backbone of the bulkInsert logic, with Step 1

(the insertion sites search) creating the initial timestamp-ordered

sequence of treelets targeting all the relevant insertion sites.

Bulk insertion Step 2: Pass up: interleave&split loop. As the
next step, the algorithm proceeds level by level, working its way

from the leaf level towards the root until no more changes happen.

At any point, the algorithm aims to maintain only two levels of

treelets—the current level and the next level. In this view, as illus-

trated in Figure 6, each level takes as input a sequence of treelets

and produces a sequence of treelets for the next level. Since the

treelets in the input are timestamp-ordered, the entries destined

for the same node appear consecutively in the sequence and are

easily identified. Conceptually, each level is processed as follows:

For each target 𝑡 in the input sequence of treelets:

(i) Gather all the treelets that target 𝑡 into TL.
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Figure 6: Interleave and split for one level of a tree

(ii) Interleave the contents of 𝑡 with TL. Since both

of these are ordered, the interleave routine is

the merge step of the well-known merge-sort

algorithm. Interleaving takes time linear in the

total length of its input sequences to produce

an ordered output sequence without requiring a

separate sort step.

(iii) If 𝑡 has aritymore than MAX_ARITY, apply bulkSplit

to split it into smaller nodes.

When multiple entries are added to the same node, a node can

temporarily overflow to arity 𝑝 > MAX_ARITY = 2𝜇, often 𝑝 ≫ 2𝜇.

The bulkSplit routine then splits it into invariant-respecting nodes,

consisting of one or more arity-(𝜇+1) nodes and one last node with
arity between 𝜇 and 2𝜇. The following claim, which is intuitive and

whose proof appears in the extended paper [24], shows that it is

possible to split such a node into legitimate FiBA nodes in this way:

Claim 1. Let 𝑝 > MAX_ARITY = 2𝜇 be an integral temporary arity.
The number 𝑝 can be written as

𝑝 = 𝑏0 + 𝑏1 + · · · + 𝑏𝑡−1 + 𝑏𝑡 ,
where 𝑏0 = 𝑏1 = . . . 𝑏𝑡−1 = 𝜇 + 1 and 𝜇 ≤ 𝑏𝑡 ≤ 2𝜇.

For example, if 𝑝 = 2𝜇 + 3 with 𝜇 = 4, we can write 𝑝 as

𝑝 = (𝜇 + 1) + (𝜇 + 2). That is, this split yields one arity-(𝜇+1) node,
one entry to send up to the next level, and one arity-(𝜇 + 2) node. If
𝑝 = 7𝜇+2with 𝜇 = 2, we canwrite 𝑝 as 𝑝 = 𝜇+1+𝜇+1+𝜇+1+𝜇+1+2𝜇.
That is, this split yields four arity-(𝜇 + 1) nodes and one arity-2𝜇

node, interspersed with 4 entries to send up to the next level.

▷ Promotion to the next level. Splitting an overflowed node also

generates treelets, representing entries promoted for insertion into

nodes in the next level. Importantly, by processing current-level

treelets in timestamp order, new treelets for the next level generated

in this manner are already sorted in timestamp order. This helps

avoid the costly step of sorting them or the need for a priority

queue. Additionally, the parent of each existing node is the target

insertion site of the corresponding promoted entry.

The discussion so far left out recomputation events. There are

two ways a recomputation event is created: (a) inserting an entry

with an existing timestamp and (b) incorporating entries into a

node without causing it to overflow. Case (a) happens in Step 1

(insertion sites search) but can target nodes anywhere in the tree,

not just the leaves. Case (b) happens throughout Step 2 (making a

pass up). Because of how Step 1 is carried out and to sidestep the

need to store treelets for future levels and interleave in treelets for

recomputation events when their levels are reached, we start all the

recomputation events/treelets at the leaf level. These treelets will

ride along with the other treelets but will not have a real effect until

their levels are reached. This turns out to have the same asymptotic

complexity as if we were to start them at their true levels—but

without the additional code complexity.

Bulk insertion Step 3: Pass down. Like in the bulkEvict algo-

rithm, the final step repairs right aggregates on the right spine and

potentially left aggregates on the left spine if it also touches the left

spine. For both spines, the aggregate of a node is computed using

the value from its parent, so this computation is a pass on the spine

towards the finger (i.e., rightmost and leftmost leaf).

Bulk insertion: Time complexity analysis. The time complex-

ity of bulkInsert can be broken down into (i) the search cost (Step 1),

(ii) insertion and tree restructuring (Step 2), and (iii) aggregation

repairs (during Steps 2 and 3). To analyze this, we begin by proving

a lemma that quantifies the footprint—the worst-case number of

nodes that can be affected—when there are𝑚 insertion sites.

For a bulkInsert call, the top node, denoted by 𝜏 , is the least-

common ancestor of all insertion sites and the rightmost finger. By

definition, this is the node closest to the leaf level where paths from

all these sites towards the root converge.

Lemma 2. In a FiBA structure with MAX_ARITY= 2𝜇, if there are𝑚
insertion sites, the paths from all the insertion sites, as well as the node
at the right finger, to the top 𝜏 contain at most𝑂 (𝑚(1 + log

2𝜇 (
𝑁𝜏

𝑚 )))
unique nodes, where 𝑁𝜏 is the total number of nodes in the subtree
rooted at 𝜏 .

Proof. Consider the subtree rooted at the top node 𝜏 . For level

ℓ = 0, 1, . . . away from the top, the total number of nodes at that

level 𝑛ℓ satisfies

𝜇ℓ ≤ 𝑛ℓ ≤ (2𝜇)ℓ , (1)

which holds because the fan-out degree for non-root
2
nodes is

between 𝜇 and 2𝜇 (inclusive). Now we will assume all the insertion

sites are at the leaf level. This can be arranged by projecting every

insertion site onto a leaf within its own subtree, and doing so can

only increase the number of nodes contributing to the bound.

By (1), the leaves must be at level 𝐿 ≤ log𝜇 𝑁𝜏 and the smallest

level ℓ that has no more than𝑚 nodes is ℓ ≥ log
2𝜇𝑚. This means

the paths from the leaf insertion sites can travel without necessarily

converging together for 𝐿−ℓ levels. During this stretch, the number

of unique nodes is at most𝑚(𝐿 − ℓ) = 𝑂 (𝑚 log
2𝜇 (𝑁𝜏/𝑚)). From

level ℓ to the top node, the paths must converge as constrained

by the shape of the tree. In a B-tree with𝑚 leaves, the number of

nodes at each level decreases geometrically towards the top. Hence,

there are at most𝑂 (𝑚) unique nodes from levels ℓ and above, for a

grand total of 𝑂 (𝑚(1 + log
2𝜇 (

𝑁𝜏

𝑚 ))) unique nodes. □

2
If 𝜏 is the root, the bound is slightly different since the root can have as few as two

children, but the statement of the lemma remains the same.
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Next, we address the tree restructuring cost:

Lemma 3. Let 𝜇 ≥ 2. The tree restructuring cost of inserting 𝑚
entries in a bulk is amortized 𝑂 (𝑚) and worst-case 𝑂 (𝑚 log(𝑚+𝑛

𝑚 )),
where 𝑛 is the number of entries prior to the bulk insertion operation.

The worst-case bound can be easily seen: the𝑚 insertions can

only change the nodes from𝑚 leaves to the root, touching at most

𝑂 (𝑚 log(𝑚+𝑛
𝑚 )) nodes (Lemma 2). For the amortized bound, the

proof is analogous to Lemma 9 in the FiBA paper [22], arguing that

charging 2 coins per new entry is sufficient in maintaining the tree.

More details appear in the extended paper [24].

Theorem 4. The algorithm for bulkInsert runs in amortized
𝑂 (log𝑑 +𝑚(1 + log( 𝑑𝑚 ))) time and 𝑂 (log𝑑 +𝑚 log(𝑚+𝑛

𝑚 )) worst-
case time, where𝑚 is the number of entries in the bulk and 𝑑 is the
out-of-order distance of the earliest entry in the bulk.

Proof. The running time of bulkInsert is made up of (i) the

search cost (Step 1), (ii) insertion and tree restructuring (Step 2),

and (iii) aggregation repairs (during Steps 2 and 3).

The first search for the insertion site takes 𝑂 (log𝑑), thanks to
finger searching from the right finger. Each subsequent search only

traverses the path from the previous entry to their least common

ancestor and down to the next entry. The whole search cost is

therefore covered by Lemma 2. After that, the actual insertion takes

𝑂 (1) time per entry since interleaving takes time that is linear in

its input. The cost to further restructure the tree is as described

in Lemma 3. Finally, it is easy to see that the cost of aggregation

recomputation/repairs is subsumed by the first two costs because

the aggregation of a node has to be recomputed only if it was part

of the restructuring or sits on the search path (spine or on the way

to the top node). Adding up the costs yields the stated bounds. □

This means asymptotically bulkInsert is never more expensive

than individually inserting entries. On the contrary, bulk insertion

results in cost savings as insertion-site search and restructuring

work can be shared.

6 IMPLEMENTATION
We implemented our algorithm in C++ because of its strong and

predictable raw performance in terms of both time and space. Using

C++ avoids latency spikes from runtime services, such as garbage

collection or just-in-time compilation, common in managed lan-

guages such as Java or Python. Such extraneous latency spikes

would obscure the latency effects of our algorithm. The results

section contains apples-to-apples comparisons with other sliding-

window aggregation algorithms from prior work that was also

implemented in C++. We reuse code between our new algorithm

and those earlier algorithms. In particular, we use C++ templates to

specialize each algorithm for each given aggregation monoid, and

share the same implementation of the aggregation monoids across

all algorithms. The C++ compiler then inlines both the monoid’s

data structure and its operator code into the sliding-window aggre-

gation data structure and algorithm code as appropriate.

Deferred free list. Our implementation has to avoid reclaiming

memory eagerly. If bulk eviction reclaimed memory eagerly, the

promised algorithmic complexity would be spoiled: Given that

the arity of the tree is controlled by a constant hyperparameter

MIN_ARITY, eagerly evicting a bulk of𝑚 entries would require re-

claiming the memory of 𝑂 (𝑚) nodes. Those 𝑂 (𝑚) calls to delete

would be worse than the amortized complexity of𝑂 (log𝑚) for bulk
evict. Therefore, we avoid eager memory reclamation as follows:

Recall that the eviction loop iterates over 𝑂 (log𝑚) nodes on the

boundary and, for each node, performs local evictions, which will

proceed to evict the children of that node. Instead of recursively

deleting all the descendants eagerly, the local evict places their

children on a deferred free-list. Since at most 𝑂 (log𝑚) nodes can
be removed, the cost of adding only the children to the free list dur-

ing bulk eviction is worst-case 𝑂 (log𝑚). Later, when an insertion

would require a new allocation, it first checks the free-list. If that

is non-empty, it pops one node, pushes its children, and reuses its

memory for the new node. Thus, each insert only spends worst-case

𝑂 (1) time on memory reuse.

Memorymangement during bulkInsert. Conceptually, we allow

a node to grow to an arbitrary size before splitting it into invariant-

respecting smaller nodes. For performance, the implementation

does this differently. The main goal is to minimize memory allo-

cation and deallocation for intermediate storage. To combine keys

from an existing node with keys to be inserted into that node, it

employs an ordered interleaving routine from merge sort. Here the

interleaving is lazy: instead of generating the combined sequence

of keys upfront, our implementation offers an iterator for the inter-

leaved sequence that computes the next element on the fly, reading

directly from two sources—the existing node and the sequence of

treelets for the current level. We also have an optimization where if

the node is not going to overflow after incorporating the new keys

(“small insertion”), then simple insertion is used as there would be

no memory allocation involved.

Additional optimization includes (i) using alternating buffers

for treelet processing and (ii) consolidating treelets. For treelet

processing, the dataflow pattern is reading from the current level

and writing to the next level. Each sequence is progressively smaller

as the algorithm works its way up the tree. Hence, we allocate two

vectors with enough capacity at the start and alternate between

them as the algorithm proceeds. Furthermore, treelets that will be

inserted into the same node are consolidated together. This reduces

the struct size because the target node does not need to be repeated

for each of these treelets.

Miscellanea.As described, our algorithm already combines entries

with the same timestamp at insert, thus reducingmemory. Users can

choose to coarsen the granularity of timestamps, thus causing more

cases of equal timestamps, recovering basic batching. However, it

would require additional work to take full advantage of batching,

such as for energy efficiency [18]. Our implementation does not

directly use SIMD instructions, but the C++ optimizing compiler

sometimes uses them automatically. We did not implement parti-

tioning but it is straightforward: when the aggregate is partitioned

by key, keep disjoint state, i.e., a separate tree for each key; that

would enable fission [12] for parallelization, either user-directed

or automatically. Previous work describes an algorithm for range

queries [22], and that algorithm also works in the presence of bulk

insertion and eviction. Future work could pursue a new algorithm

for multi-range queries.
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Figure 7: Latency, bulk evict only, window size 𝑛 = 4,194,304, bulk size𝑚 = 1,024, in-order data 𝑑 = 0.
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Figure 8: Latency, bulk insert only, window size 𝑛 = 4,194,304, bulk size𝑚 = 1,024, in-order data 𝑑 = 0.

7 RESULTS
This section explores how the theoretical algorithmic complexity

from the previous sections play out in practice. It explores how

performance correlates with the number 𝑛 of entries in the window,

the number𝑚 of entries in the bulk insert or bulk evict, and the

number 𝑑 of entries between an insertion and the youngest end of

the window. The experiments use multiple monoidal aggregation

operators to cover a spectrum of computational cost: sum (fast),

geomean (medium), and bloom [5] (slow).

This section refers to different sliding-window aggregation al-

gorithms as follows: The original non-bulk FiBA algorithm [22] is

nb_fiba4 and nb_fiba8, with MIN_ARITY of 4 or 8. Similarly, the new

bulk FiBA algorithm introduced in this paper is b_fiba4 and b_fiba8.

Both of these algorithms can handle out-of-order data. As baselines,

several figures include three algorithms that only work for in-order

data, i.e., when 𝑑 = 0. The amortized monoid tree aggregator, amta,

supports bulk evict but not bulk insert [29]. The twostacks_lite

algorithm performs single insert or evict operations in amortized

𝑂 (1) and worst-case 𝑂 (𝑛) time [23]. The daba_lite algorithm per-

forms single insert or evict operations in worst-case𝑂 (1) time [23].

Since amta, twostacks_lite, and daba_lite require in-order data,

they are absent from figures with results for out-of-order scenarios.

We ran all experiments on a machine with dual Intel Xeon Silver

4310 CPUs at 2.1 GHz running Ubuntu 20.04.5 with a 5.4.0 kernel.

We compiled all experiments with g++ 9.4.0 with optimization level

-O3. To reduce timing noise and variance in memory allocation

latencies, we use mimalloc [16] instead of the stock glibc allocator,

and we pin all runs to core 0 and the corresponding NUMA group.

7.1 Latency
In streaming applications, late results are often all but useless: with

increasing latency, the value of a streaming computation reduces

sharply—for example, dangers become too late to avert and oppor-

tunities are missed. Therefore, our algorithm is designed to support

both the finest granularity of streaming (i.e., when𝑚 = 1) as well as

bursty data (i.e., when𝑚 ≫ 1) with low latencies. Even in the latter

case, our algorithm still retains the ability of tuple-at-a-time stream-

ing, unlike systems with a micro-batch model. The methodology

for the latency experiments is to measure how long each individual

insert or evict takes, then visualize the distribution of insertion or

eviction times for an entire run as a violin plot. The plots indicate

the arithmetic mean as a red dot, the median as a thick blue line,

and the 99.9
th
and 99.999

th
percentiles as thin blue lines. At 2.1 GHz,

10
4
processor cycles correspond to 4.8 microseconds.

Figure 7 shows the latencies for bulk evict with in-order data.

This experiment loops over evicting the oldest𝑚 = 1, 024 entries in

a single bulk, inserting 1,024 new entries one by one, and calling

query, measuring only the time that the bulk evict takes. In the-

ory, we expect bulk evict to take time 𝑂 (log𝑚) for b_fiba4 and

b_fiba8, and 𝑂 (log𝑛) for amta. The remaining algorithms, lacking

a native bulk evict, loop over single evictions, taking𝑂 (𝑚) time. In

practice, b_fiba4, b_fiba8, and amta have the best latencies for this

experiment, confirming the theory.

Figure 8 shows the latencies for bulk insert with in-order data.

This experiment loops over evicting the oldest𝑚 = 1, 024 entries in

a single bulk, inserting𝑚 = 1, 024 new entries in a single bulk, and

calling query, measuring only the time that the bulk insert takes.

In theory, since 𝑑 = 0 in this in-order scenario, the complexity of

bulk insert boils down to 𝑂 (𝑚) for all considered algorithms. In

practice, daba-lite and twostacks-lite yield the best latencies for

this scenario since they incur no extra overhead to be ready for an

out-of-order case that does not occur here.

Figure 9 shows the latencies for bulk insert with out-of-order

data. This experiment differs from the previous one in that each bulk

insert happens at a distance of 𝑑 = 1, 024 from the youngest end

of the window. Since amta, twostacks_lite, and daba only work for

in-order data, they cannot participate in this experiment. In theory,

we expect bulk insert to take𝑂 (𝑚 log
𝑑
𝑚 ) for b_fiba and𝑂 (𝑚 log𝑑)

for nb_fiba, which is worse. In practice, b_fiba has lower latency

than nb_fiba, confirming the theory.
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Figure 9: Latency, bulk insert only, window size 𝑛 = 4,194,304, bulk size𝑚 = 1,024, out-of-order data 𝑑 = 1,024.
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bulk evict only, 𝑛 = 4,194,304,𝑚 = 4,096, 𝑑 = 0).

Figure 10 shows an ablation experiment for memory-manage-

ment related implementation details. It compares results with mi-

malloc (mm) vs. the default memory allocator (libc), and with or

without (nofl) the deferred free list from Section 6. Consistent with

the theory, the deferred free list is indispensible: nofl performs

much worse. On the other hand, mimalloc made little difference;

we use it to control for events that are so rare that they did not

manifest in this experiment.

7.2 Throughput
Throughput is the number of items in a long but finite stream di-

vided by the time it takes to process that stream. The throughput

experiments thus do not time each insert or evict operation indi-

vidually. While the time for each individual operation may differ,

we already saw those distributions in the latency experiments, and

here we focus on the gross results instead. The experiments include

a memory fence before every insert to prevent the compiler from

optimizing (e.g., using SIMD) across multiple stream data items, as

that would be unrealistic in fine-grained streaming. All throughput

charts show error bars based on repeating each run five times.

Figure 11 shows the throughput for running with bulk evict

for in-order data as a function of the bulk size𝑚. This experiment

loops over a single call to bulkEvict for the oldest𝑚 entries,𝑚 calls

to single insert, and a call to query. The throughput is computed

from the time for the entire run, which includes all these operations.

In theory, we expect the throughput of b_fiba and amta to improve

with larger bulk sizes as they have native bulk eviction. In practice,

while that is true, even for algorithms that do not natively support

bulk evict, throughput also improves with larger𝑚. This may be

because their internal loop for emulating bulk evict benefits from

compiler optimization. For in-order data, twostacks_lite yields the

best throughput (but not the best latency, see Section 7.1).

Figure 12 shows the throughput for runningwith both bulk evict
and bulk insert for in-order data as a function of the bulk size𝑚.

In theory, we expect that since the data is in-order, bulk insert

brings no additional advantage over looping over single inserts. In

practice, all algorithms improve in throughput as𝑚 increases from

2
0
to around 2

12
. This may be because fewer top-level insertions

means fewer memory fences, even for algorithms that emulate

bulk insert with loops. Furthermore, throughput drops when 𝑚

gets very large, because the implementation needs to allocate more

temporary space to hold data items before they are inserted in bulk.

Figure 13 shows the throughput as a function of the out-of-

order degree 𝑑 when running with both bulk evict and bulk insert.

The amta, twostacks_lite, and daba algorithms do not work for out-

of-order data and therefore cannot participate in this experiment.

In theory, we expect that thanks to only doing the search once per

bulk insert, higher 𝑑 should not slow things down. In practice, we

find that that is true and b_fiba outperforms nb_fiba.

Figure 14 shows the throughput as a function of the out-of-

order degree𝑑 when running with neither bulk evict nor bulk insert,

i.e. with𝑚 = 1. As before, this experiment elides algorithms that

require in-order data. In the absence of bulk operations, we expect

b_fiba to have no advantage over nb_fiba. In practice, b_fiba does

worse on sum and geomean but slightly better on bloom.

7.3 Window Size One Billion
To understand how our algorithm behaves in more extreme scenar-

ios, we ran b_fiba4 with geomean with a window size of 1 billion

(𝑛 = 10
9
). In theory, FiBA is expected to grow to any window size

and have good cache behaviors, like a B-tree. In practice, this is the

case at window size 1B: The benchmark ran uneventfully using 99%

CPU on average, fully utilizing the one core that it has. Memory

occupancy per window item (i.e., the maximum resident set size

for the process divided by the window size) stays the same (64 − 70

bytes), independent of window size.

However, at 𝑛 = 1B, the benchmark has a larger overall mem-

ory footprint, putting more burden on the memory system. This

directly manifests as more frequent cache misses/page faults and

indirectly affects the throughput/latency profile. While no major

page faults occurred, the number of minor page faults per million

tuples processed increased multiple folds (657 at 4M vs. 15,287 at

1B). Compared with the 4M-window experiments, the throughput

numbers for 𝑛 = 1B mirror the same trends as the bulk size is

varied. In absolute numbers, the throughput of 𝑛 = 1B is 1 − 1.12×
less than that of 𝑛 = 4M. For latency, the theory promises log𝑑

average (amortized) bulk-evict time, independent of the window

size. With a larger memory footprint, however, we expect a slight

increase in median latency. The log𝑛 worst-case time should mean

the rare spikes will be noticeably higher with larger window sizes.

In practice, we observe that the median only goes up by ≈ 7.5%.

The 99.999-th percentile markedly increases by around 2×.
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Figure 11: Throughput, bulk evict only, window size 𝑛 = 4,194,304, varying bulk size𝑚, in-order data 𝑑 = 0.

20 21 23 25 27 29 211 213 215 217 219 2210

20

40

60

80

th
ro

ug
hp

ut
 [m

illi
on

 it
em

s/
s] sum

20 21 23 25 27 29 211 213 215 217 219 221

bulk size
0

10

20

30

40

50

60
geomean

20 21 23 25 27 29 211 213 215 217 219 2210

1

2

3

bloom
b_fiba4 b_fiba8 nb_fiba4 nb_fiba8 amta twostacks_lite daba_lite

Figure 12: Throughput, bulk evict+insert, window size 𝑛 = 4,194,304, varying bulk size𝑚, in-order data 𝑑 = 0.
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Figure 13: Throughput, bulk evict+insert, window size 𝑛 = 4,194,304, bulk size𝑚 = 1,024, varying ooo distance 𝑑 .
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Figure 16: Throughput, citi bike, varying window size 𝑛, bulk size𝑚 and ooo distance 𝑑 from real data.

7.4 Real Data
The previous experiments carefully controlled the variables 𝑛,𝑚,

and 𝑑 to explore tradeoffs and validate the theoretical results. It

is also important to see how the algorithms perform on real data.

Specifically, real applications tend to use time-based windows (caus-

ing both 𝑛 and 𝑚 to fluctuate), and real data tends to be out-of-

order (with varying 𝑑). In other words, all three variables vary

within a single run. Figure 15 shows this for the NYC Citi Bike

dataset [1] (Aug–Dec 2018). The figure shows a histogram of win-

dow sizes𝑛 (left) and a histogram of bulk sizes𝑚 (middle), assuming

a time-based sliding window of 1 day. Depending on whether that

1 day currently contains more or fewer stream data items, 𝑛 ranges

broadly, as one would expect for real data whose event frequencies

are uneven. Similarly, depending on the timestamp of the newest

inserted window entry, it can cause a varying number 𝑚 of the

oldest entries to be evicted. Most single insertions cause only a

single eviction, but there are a non-negligible number of bulk evicts

of hundreds or thousands of entries. The figure also shows a his-

togram of out-of-order distances 𝑑 (right). While the vast majority

of insertions have a small out-of-order distance 𝑑 , there are also

hundreds of insertions with 𝑑 in the tens of thousands.

Figure 16 shows the throughput results for the Citi Bike dataset

on a run that involves bulk evicts with varying𝑚 and single inserts

with varying 𝑑 . Since amta, twostacks_lite, and daba require in-

order data, we cannot use them here. In theory, we expect the bulk

operations to give b_fiba an advantage over nb_fiba. In practice,

we find that this is indeed the case for real-world data.

7.5 Java and Apache Flink
To experiment with our algorithm in the context of an end-to-end

system, we reimplemented it in Java inside Apache Flink 1.17 [9].
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Figure 17: Throughput, Flink, bulk evict only, window size
𝑛 = 8,192, varying bulk size𝑚, in-order data 𝑑 = 0.

We ran experiments that repeatedly perform several single inserts

followed by a bulk evict and query. Using awindow of size𝑛 = 2
22 ≈

4M, the FiBA algorithms perform as expected but the Flink baseline

was prohibitively slow, so we report a comparison at 𝑛 = 8, 192

instead. At this size, the trends are already clear. Figure 17 shows

that even without our new bulk eviction support, FiBA is much

faster than Flink. Using bulk evictions further widens that gap.

As expected, throughput improves with increasing bulk size 𝑚,

consistent with our findings with C++ benchmarks.

8 CONCLUSION
This paper describes algorithms for bulk insertions and evictions

for incremental sliding-window aggregation. Such bulk operations

are necessary for real-world data streams, which tend to be bursty.

Furthermore, real-world data streams tend to have out-of-order

data. Hence, besides handling bulk operations, our algorithms also

handle that case. Our algorithms are carefully crafted to yield the

same algorithmic complexity as the best prior work for the non-bulk

case while substantially improving over that for the bulk case.
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