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ABSTRACT

Modern data analytics services are coupled with external data stor-
age services, making I/O from remote cloud storage one of the
dominant costs for query processing. Techniques such as columnar
block-based data organization and compression have become stan-
dard practices for these services to save storage and processing cost.
However, the problem of effectively skipping irrelevant blocks at
low overhead is still open. Existing data-skipping efforts maintain
lightweight summaries (e.g., min/max, histograms) for each block
to filter irrelevant data. However, such techniques ignore patterns
in real-world data, enabling ineffective use of the storage budget
and may cause serious false positives.

This paper presents Sieve, a learning-enhanced index designed
to efficiently filter out irrelevant blocks by capturing data patterns.
Specifically, Sieve utilizes piece-wise linear functions to capture
block distribution trends over the key space. Based on the captured
trends, Sieve trades off storage consumption and false positives by
grouping neighboring keys with similar block distributions into a
single region. We have evaluated Sieve using Presto, and experi-
ments on real-world datasets demonstrate that Sieve achieves up
to 80% reduction in blocks accessed and 42% reduction in query
times compared to its counterparts.
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1 INTRODUCTION

Modern cloud-based data analytics services adopt various tech-
niques to minimize data movement and access, so as to handle
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the ever-increasing large volumes of data efficiently. One common
practice involves employing columnar storage, which helps avoid
unnecessary access to irrelevant columns during query execution.
Typically, these services separate computing resources from cloud
storage services [3, 4, 6], making I/O from remote storage one of
the dominant costs for query processing. These systems organize
data records into blocks, each with tens of thousands to millions of
records, to maximize compression ratios. To optimize throughput
and minimize I/O operations per second, the smallest I/O unit from
remote storage is a block or a subset of columns from a block.

To enhance query efficiency, cloud-based data analytics services
usually maintain lightweight Small Materialized Aggregates (SMAs)
[33] per block to avoid unnecessary access to irrelevant data blocks
(i.e., skip data) during query processing. The most common form
of SMAs is ZoneMap, which stores the minimum and maximum
values for each column within a data block. For instance, if a block’s
ZoneMap indicates that its records encompass dates ranging from
April toMay, and the query filters for records with dates in February,
then this particular block can be skipped during the execution of
the query, eliminating the need to read it from storage.

ZoneMaps [1, 8, 10] are cheap to maintain and incur low storage
overhead, but their effectiveness is highly dependent on the data
layout. ZoneMaps are most effective on ordered attributes. For un-
ordered attributes, which are much more common, ZoneMaps com-
promise too much on query performance because the value ranges
(minimum and maximum values) in blocks may cover most query
predicates, and numerous irrelevant blocks have to be scanned.

B+ trees are promising indexing structures to address the effec-
tiveness problem of ZoneMaps. Essentially, B+ trees are multi-level
indexing structures with inner nodes guiding the key search and
leaf nodes storing individual keys and pointers to blocks. Such a
fine-grained structure allows B+ trees to offer efficient indexing for
both sorted and unsorted attributes compared to ZoneMaps.

However, the storage overhead of B+ trees prohibits their de-
ployment in modern cloud-based data analytics services with large
volumes of data. In our evaluation, we find that a B+ tree created
on the Lineitem table from the TPC-H benchmark with 200GB size
can consume about 25GB storage space. Such additional storage
overhead results in non-ignorable dollar costs and significantly
degrades the indexing performance because numerous nodes might
have to be read to locate a key.

Various compression schemes [11, 12, 19, 45] have been devel-
oped to mitigate the storage overhead of B+ trees. These techniques
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Figure 1: An intuition of how Sieve works based on the real-world Wikipedia dataset. The indexed attribute is ViewCount.

Step 1 builds a sorted array of key->block pairs. Step 2 groups contiguous keys mapping to the same set of blocks to a partition.

Step 3 further merges narrow-width partitions into a single segment by accepting minor false positives. After Step 3, partition

𝑝4 highlighted in red color can cause false positions (i.e., Sieve answers the query ViewCount=1005 with block 𝐵1, but value
1005 actually does not exist in any blocks). Note that false positives do not affect the correctness since the query execution

engine will ultimately filter the data at the row level.

aim to eliminate redundancy among keys and/or minimize the size
of each key within an index node. For instance, the reduction of
the overall tree size can be achieved by utilizing prefix and suffix
truncation, which stores common parts of keys only once at each
index node. Nevertheless, despite the benefits of this compression
scheme in reducing individual index node sizes, the storage require-
ments for these indexes continue to scale linearly with the number
of distinct keys to be indexed [18].

Recently, learned indexes have been proposed in the traditional
database to overcome the mentioned problems of B+ trees. Learned
indexes output the position of a given key in a sorted array by replac-
ing the multi-level tree structure with piece-wise linear functions
such that the models can not only reduce the index size but also
improve the key lookup efficiency. Nevertheless, all the individual
key-block pairs are still maintained in order to skip blocks.

This paper proposes Sieve, a novel indexing structure that trades
off storage overhead and false positives by capturing patterns in
data. The key observation of Sieve is that neighboring keys often
exhibit similar trends in block distribution. That is, a series of con-
secutive keys are likely to belong to the same block set or be associ-
ated with different ones. Based on this observation, Sieve balances
storage consumption and false positives by grouping neighboring
keys into regions according to the identified trends. More specifi-
cally, Sieve clusters the key space that maps to the same block set
into a broad region, effectively reducing storage costs. On the other
hand, for the key space mapping to different blocks, Sieve divides
the space into multiple narrow regions to mitigate false positives.
By recording information about a region of the key space, instead

of indexing individual keys, Sieve not only saves storage space but
also reduces the searching time. At the core of Sieve lies piece-wise
linear functions utilized to capture block distribution trends and
determine the best-suited width for each region.

We have incorporated Sieve with Presto [37] and performed
evaluations on both real and synthetic datasets. Experimental re-
sults demonstrate that (a) on range queries, Sieve reduces data
accesses by up to 80% and achieves query speedup by up to 1.7x
compared to best counterparts at a comparable storage cost. (b) on
point queries, Sieve occupies up to two orders of magnitude less
storage space than a recently announced set member filter while
still achieving comparable performance.

2 OVERVIEW OF SIEVE

At a high level, data-skipping indexes can be represented by a func-
tion that maps a key to blocks containing it. The key observation of
Sieve is that neighboring keys often exhibit similar trends in block
distribution. In other words, a series of consecutive keys are likely
to belong to the same block set or be associated with different ones.
We find such trends are common in cloud datasets.

As an example, real-time applications like monitoring sensors
[20] and Facebook [13] have a constant ingest of timestamped
data, which causes close timestamps placed in the same block. As
another example, consider the real-world Wikipedia dataset shown
in Figure 1. Each block is a log file that records page view statistics,
including how many people (the ViewCount column) have visited
an article (the PageName column) in a given period. The indexed
attribute is ViewCount.
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The small ViewCounts (key ranges 31-36 in Figure 1) are dis-
tributed in almost all the periodic blocks since a majority of the
pages receive a low number of visits. Conversely, larger ViewCounts
(key ranges 1001-1006 in Figure 1) are typically confined to different
periodic blocks due to emerging hot topics.

Leveraging this observation, Sieve clusters the key space that
maps to the same block set into a broad region, effectively reduc-
ing storage costs. On the other hand, for the key space mapping
to different blocks, Sieve divides the space into multiple narrow
regions to mitigate false positives.

Below, we give an intuition of how Sieve works step by step
based on the real-world Wikipedia dataset.
Step 1: Sorting. Similar to traditional B+ tree-based indexing struc-
tures, Sieve needs to sort the indexed attribute. As shown in Fig-
ure 1, the individual keys on the leaf nodes (called "indirection
layer") are kept in sorted order. Each key is associated with a pointer
to the blocks containing it.
Step 2: Partitioning. For a range of contiguous keys mapping to
the same set of blocks, Sieve groups them into a single partition.
For example, keys 31-36 exist in the same block set {𝐵1, 𝐵2, 𝐵3, 𝐵4},
so they are grouped into partition 𝑝1. By storing information about
a region of the key space on the leaf nodes instead of indexing
individual keys, Sieve saves the storage space.
Step 3: Segmenting. To further minimize the storage requirements,
Sieve needs to merge the narrow partitions that arise from distinct
block sets (i.e., 𝑝2, 𝑝3, 𝑝4 in Figure 1). To achieve this, Sieve orga-
nizes multiple narrow-width partitions that are adjacent to each
other into a single segment by tolerating minor false positives.

For example, in Figure 1, Sieve normalizes the key ranges of parti-
tion 𝑝2, 𝑝3, 𝑝4 to be equal size and groups them into a single segment
𝑠2. In this case, Sieve causes false positives when answering query
ViewCount=1005 (i.e., Sieve answers query ViewCount=1005 with
block 𝐵1, but value 1005 actually does not exist in any blocks).
Therefore, instead of storing all partitions in the leaf nodes, Sieve
stores only (1) the start and end key of a segment and (2) the nor-
malized key ranges inside a segment in order to quickly compute
the partition a key belongs to, and (3) corresponding block IDs for
each partition (partition metadata). By doing so, Sieve not only
saves storage space but also reduces the searching time.

To capture the block distribution, Sieve leverages a CDF that
models the total number of times the block set mapped by con-
tiguous keys has changed, as shown in Figure 2. Based on the
CDF, Sieve divides the underlying key-block pairs into a series of
variable-sized segments that approximate the block distribution.

The approximated linear functions represent the change period
of the mapped block set between keys (i.e., for how many contigu-
ous keys, a block set change occurs). According to this approximated
frequency, Sieve divides a segment into partitions of equal width.

3 SEGMENTATION AND PARTITIONING

In this section, we first show how Sieve models and captures the
block distribution trends. Then, we describe how Sieve organizes
the key space of indexed attributes into segments and partitions
based on captured trends. After this process, each segment is in-
serted into a B+ tree to enable efficient lookup and insert operations
(Section 4). Table 1 summarizes the notations used in this paper.
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Figure 2: The cumulative distribution function that captures

the block distribution. The Y-axis represents the total num-

ber of times the block set mapped by contiguous keys has

changed. Points are approximated with a linear function

shown in red color. The multiplicative inverse of the slope

indicates the change period of the mapped block set between

keys (i.e., for how many contiguous keys, a block set change

occurs) and is utilized to decide the optimal width for parti-

tions inside a segment.

Table 1: Notations

Notation Explanation

𝑏𝑐𝑘 Whether mapped block(s) has changed at key 𝑘
𝑡𝑏𝑐𝑘 Cumulative value of 𝑏𝑐 at key 𝑘 .
𝑝𝑟𝑒𝑑_𝑡𝑏𝑐 Predicted 𝑡𝑏𝑐 value by approximated linears.
𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 Actual 𝑡𝑏𝑐 value by the CDF model.
𝑠 .𝑤𝑖𝑑𝑡ℎ Number of keys managed by segment 𝑠 .

𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ

Number of keys managed by a partition in
segment 𝑠 based on the approximated linear
function and storage budget.

𝑆𝜀 Number of segments for an error threshold 𝜀.
𝑝𝑛𝑢𝑚 Number of partitions of a segment or dataset.
𝐵𝑘 The block set containing key 𝑘 .
𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚 Number of blocks of a segment or dataset.
𝜀 Maximum error when constructing the segments

3.1 Trends of Block Distribution as CDF Models

A segment is essentially a key space region with similar trends of
block distribution. To formally capture the difference of block dis-
tribution between keys, Sieve uses Block Change (𝑏𝑐𝑘 ) to represent
whether the mapped blocks between key 𝑘 and 𝑘 − 1 are identical:

Definition 1 (Block Change and Total Block Change.) Block
Change (𝑏𝑐) indicates whether the mapped block(s) has changed be-
tween contiguous keys. More specifically, if 𝑘 and 𝑘 − 1 point to the
same set of blocks, the value of 𝑏𝑐𝑘 is 0; otherwise, it is 1. Total Block
Change (𝑡𝑏𝑐) is defined as the cumulative value of 𝑏𝑐 that represents
the total number of occurrences of block changes before a key.

The cumulative distribution function (CDF) of 𝑏𝑐 models block
change frequency between keys. With such CDF models, Sieve
divides the key space into several linear segments that are able to
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The segmentation and partitioning results from the approxi-

mated trends. The key space is organized into segments, and

further divided into equal-width partitions.

accurately reflect the trends of block distribution between keys.
For example, Figure 2 shows the CDF model of Block Change for
keys 1001 − 1006 from Figure 1, which is approximated by a linear
function (in red color). Since key 1002 points to block set 𝐵2 while
key 1003 points to 𝑁𝑜𝑛𝑒 (i.e., a missing key), 𝑡𝑏𝑐 increases by 1.
Similarly, 𝑡𝑏𝑐 increases at key 1006 since key 1006maps to different
sets of blocks from key 1005.

The resulting piece-wise linear approximation, however, exhibits
imprecision. Therefore, we define the 𝑒𝑟𝑟𝑜𝑟 associated with our
approximation as the difference between any key’s actual and pre-
dicted total number of block changes. This is illustrated below,
where 𝑝𝑟𝑒𝑑_𝑡𝑏𝑐 (𝑘) and 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑘) return the predicted and ac-
tual number of block changes of an element 𝑘 , respectively.

𝑒𝑟𝑟𝑜𝑟 = |𝑝𝑟𝑒𝑑_𝑡𝑏𝑐 (𝑘) − 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑘) | (1)

Intuitively, the approximated linear functions represent the change
period of the mapped block set between keys (i.e., for how many
contiguous keys, a block set change occurs).

Although more complex functions (e.g., higher order polyno-
mials) can be used to approximate the true functions, the benefit
of using piece-wise linear function approximations is two-fold for
Sieve. First, linear segments are able to accurately reflect various
trends of block distribution among keys. The linearity of a segment
enables Sieve to subdivide the segment into a series of equal-width
partitions to balance false positives and storage space (Section 3.3).
Second, compared to complex functions, piece-wise linear approxi-
mations are more cost-effective. This dramatically (1) reduces the
initial index construction cost, and (2) improves lookup and insert
latency (see Section 4).

Algorithm 1: Segmentation Process
Input: keys of indexed attribute 𝑟 , segment error threshold

𝜀, missing key ranges𝑚.
Output: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

1 Initialization: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← ∅, 𝑠 ← [ ], 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 ← 0, 𝑖 ← 0.
2 while 𝑖 < 𝑟 .𝑠𝑖𝑧𝑒 do

3 if 𝐵𝑟 [𝑖 ] ≠ 𝐵𝑟 [𝑖−1] then
4 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 += 1
5 end

6 if 𝐵𝑟 [𝑖 ] ! = ∅ then

7 s.cal_err(𝑟 [𝑖], 𝑡𝑏𝑐)
8 if 𝑠 .𝑒𝑟𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜀 then

9 segments.add(s)
10 make new segment 𝑠 from key 𝑟 [𝑖]
11 end

12 s.add(𝑟 , 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐)
13 else

14 missing key range 𝑙 ←𝑚𝑟 [𝑖 ] − 𝑟 [𝑖]
15 if 𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜀 then

16 segments.add(s)
17 make new segment 𝑠 from key𝑚𝑟 [𝑖 ]
18 else

19 assign keys from 𝑟 [𝑖] to𝑚𝑟 [𝑖 ] to 𝑠
20 end

21 end

22 end

3.2 Segmentation Algorithm

Various optimal piece-wise linear approximation algorithms [16,
24, 30] have been proposed. However, these techniques either suf-
fer from prohibitively high computational costs or fail to ensure a
maximal error. To efficiently support construction and inserts while
guaranteeing a maximal error, we seek a highly efficient one-pass
error-bounded linear algorithm. In the following, we describe a pro-
posed segmentation algorithm, similar to FSW [18, 31, 42], which is
linear in runtime, has low constant memory usage, and guarantees
a maximal error in each segment. Importantly, though, we (1) prove
that we can limit false positives by binding the maximal error for
these linear approximations (Section 5.3) and (2) address how to
balance the extra storage consumption and false positives caused
by gaps (e.g., keys 924 − 932 in Figure 3) in the key space.

The core concept underlying the segmentation approach (Algo-
rithm 1) is that a new key can be included in a segment only if it
satisfies the error constraint and does not cause any existing keys
within that segment to violate it.

More specifically, the algorithm defines a cone using three com-
ponents: an origin point, a high slope, and a low slope. The com-
bination of the starting point with the low slope determines the
lower bound of the cone, while the combination with the high slope
determines the upper bound. Intuitively, the cone represents the
set of viable linear functions for a segment originating from the
cone’s origin point (the high and low slopes define the permissible
range of slopes).
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Figure 4: Given the error threshold, Sieve decides whether

an entire gap starts a new segment or is added to a segment.

Point 1 is the origin of the cone. Point 2 (starting key of the

gap) is then added, resulting in the dashed cone. In Figure 4(a),

Point 3 (ending key of the gap) is added next, yielding the

dotted cone. In Figure 4(b), Point 5 (ending key of the gap) is

outside the dotted cone and therefore starts a new segment.

When the new key intended for inclusion in the segment falls
within the cone, it does not violate the error threshold. In such
cases, the cone is either narrowed or maintains its size based on the
added new key. Specifically, the algorithm determines the lowest
high-slope value and the highest low-slope value by comparing the
newly computed slopes with the previous slopes. However, if the
new key falls outside the cone, it indicates that at least one existing
key within the segment violates the error constraint. Consequently,
the new key cannot be included in the segment, and serves as the
origin point for a new segment (lines 6-13).

Sieve handles gaps by considering their boundaries. When a gap
is added to a segment, the high and low slopes are calculated using
the starting key of the gap and the key’s Y-axis value plus error
and minus error (respectively). A gap whose ending key is inside
the cone is included in the segment (point 3 in Figure 4(a)). Then,
the lowest high slope and the highest low slope values are updated
according to the starting and ending key’s cone (line 19).

On the contrary, a gap whose ending key is not inside the cone
cannot be included in the segment (e.g., point 5 in Figure 4(b)),
and becomes the origin point of a new segment (lines 14-17). After
this process, the key space is divided into several linear segments
that are able to accurately reflect the trends of block distribution
between keys (red lines in Figure 3).

3.3 Partitioning Algorithm

To find the optimal key range of a partition inside a segment, Sieve
divides the length of the segment (𝑠 .𝑤𝑖𝑑𝑡ℎ) by the number of parti-
tions determined by the changes to mapped blocks of the segment.

𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑠 .𝑤𝑖𝑑𝑡ℎ

𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑠 .𝑒𝑛𝑑) − 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑠 .𝑠𝑡𝑎𝑟𝑡) + 1 (2)

Intuitively, 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 represents the change period of the mapped
blocks between keys (i.e., for howmany contiguous keys, a block set
change occurs) in a linear segment. Ideally, there should be no false
positives when grouping 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 consecutive keys into a partition.
In Figure 2, the best-suited partition width is 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 = ⌊ 63 ⌋ = 2.

However, in some settings, a system user may want to give the
indexing structure a storage budget to use. In this scenario, we need
to fit a limited amount of partition metadata (i.e., corresponding

Algorithm 2: Partitioning Process
Input: output from the segmentation processing 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ,

total number of partitions for the dataset 𝐷.𝑝𝑛𝑢𝑚
Output: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

1 𝑤𝑖𝑑𝑡ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ←
∑

𝑠𝑖 ∈𝑆 𝑠𝑖 .𝑤𝑖𝑑𝑡ℎ

𝐷.𝑝𝑛𝑢𝑚

2 available number of partitions 𝑃 ← 𝐷.𝑝𝑛𝑢𝑚

3 foreach 𝑠 ∈ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
4 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑠.𝑤𝑖𝑑𝑡ℎ

𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑠.𝑒𝑛𝑑 )−𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑠.𝑠𝑡𝑎𝑟𝑡 )+1
5 if 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 >= 𝑤𝑖𝑑𝑡ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

6 𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ = 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑

7 𝑠 .𝑝𝑛𝑢𝑚 = 𝑠.𝑤𝑖𝑑𝑡ℎ
𝑠.𝑝𝑤𝑖𝑑𝑡ℎ

8 𝑃 ← 𝑃 − 𝑠 .𝑝𝑛𝑢𝑚
9 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 − 𝑠

10 end

11 end

12 foreach 𝑠 ∈ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
13 if 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 < 𝑤𝑖𝑑𝑡ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

14 𝑠 .𝑠𝑐𝑜𝑟𝑒 = 𝑠 .𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚 · 𝑠 .𝑤𝑖𝑑𝑡ℎ
15 end

16 end

17 foreach 𝑠 ∈ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
18 if 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 < 𝑖𝑑𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ then

19 𝑠 .𝑝𝑛𝑢𝑚 = 𝑃 · 𝑠.𝑐𝑜𝑟𝑒∑
𝑠𝑖 ∈𝑆 𝑠𝑖 .𝑠𝑐𝑜𝑟𝑒

20 end

21 end

22 foreach 𝑠 ∈ 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
23 𝑠𝑡𝑎𝑟𝑡 ← 𝑠 .𝑠𝑡𝑎𝑟𝑡

24 for 𝑖 = 1 to 𝑠 .𝑝𝑛𝑢𝑚 do

25 𝑒𝑛𝑑 ← 𝑠𝑡𝑎𝑟𝑡 + 𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ

26 assign 𝑠 .𝑝𝑖 .𝑏𝑙𝑜𝑐𝑘𝑠 with blocks containing key in
range (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)

27 𝑠𝑡𝑎𝑟𝑡 ← 𝑒𝑛𝑑

28 end

29 end

block IDs for a partition) to the storage. In other words, the goal
becomes to limit the number of generated partitions to fit into the
specified space budget while minimizing false positives.

For a given storage budget 𝑆𝑟𝑒𝑞 , assume the maximum number
of partitions that can be generated to fit into 𝑆𝑟𝑒𝑞 for a dataset is
𝐷.𝑝𝑛𝑢𝑚 (See Section 5.1 for more details about the estimation of
𝐷.𝑝𝑛𝑢𝑚). Now, the question follows: how to fit 𝐷.𝑝𝑛𝑢𝑚 partitions
into 𝑆𝜀 segments?

Based on the above consideration, we use a partition approach
(Algorithm 2) to avoid false positives as much as possible under a
given storage budget. First, we assume all the 𝐷.𝑝𝑛𝑢𝑚 partitions
are of equal width among the 𝑆𝜀 segments. With this assumption,
the width of the partitions is:

𝑤𝑖𝑑𝑡ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

∑
𝑠𝑖 ∈𝑆 𝑠𝑖 .𝑤𝑖𝑑𝑡ℎ

𝐷.𝑝𝑛𝑢𝑚
(3)

For a segment whose 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 is larger than the width threshold,
we can directly assign its desired number of partitions (e.g., 𝑠1 in
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Figure 3). Therefore, for this type of segments, their final width is
𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ = 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 (lines 3-11).

On the other hand, a segment whose 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 is smaller than
the width threshold means more partitions are required for this
segment to satisfy its optimal width.

Limited by the storage budget, Sieve may not be able to provide
enough partitions to satisfy s.period.

We introduce a heuristic score for each segment to decide how
many partitions should be allocated to each segment. Based on the
partitioning result, we can get the final 𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ .

Heuristic #1: segment with more blocks and larger width

leads to more false positives.

Intuitively, we should give more space to segments that may
cause more false positives. The false positives of a segment depend
on two variables: (1) the number of blocks the segment contains
and (2) the width of the segment. As the number of blocks in a
segment increases, the likelihood of having distinct blocks between
keys also increases, leading to a higher potential for false positives.
Given a certain number of partitions for a segment, increasing the
segment’s width leads to a larger corresponding 𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ , which
in turn causes grouping over a larger key space. Since 𝑠 .𝑝𝑒𝑟𝑖𝑜𝑑 is
small, this results in more false positives.

Based on this observation, we can obtain the score for each
segment using the following equation (lines 12-16):

𝑠 .𝑠𝑐𝑜𝑟𝑒 = 𝑠 .𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚 · 𝑠 .𝑤𝑖𝑑𝑡ℎ (4)

Given the score for a segment, we can determine the number
of partitions allocated to this segment (e.g., 𝑠2 and 𝑠3 in Figure 3)
according to its weight over all the segments (lines 17-21).

After this process, segments are partitioned based on their as-
signed width, and the corresponding block set will be recorded for
each partition (lines 22-29).

4 OPERATIONS

Lookup and Insert operations make up the majority of index op-
erations. Here, we describe the process used by Sieve to perform
point queries, followed by an explanation of how this approach
can be expanded to cover range queries. Then, We present a highly
efficient insert strategy designed to reduce the insert overhead.

4.1 Look Up

The process of searching a Sieve for block(s) containing a single key
consists of two steps: (1) searching the tree to locate the segment
that the key belongs to, and (2) finding the partition where the key
is located. These steps are outlined in Algorithm 3.
Tree Search As described in Section 3, each segment is stored
in a B+ tree, and we must first search the B+ tree to locate the
segment containing the key. Standard tree traversal algorithms
can be used to traverse the B+ tree from the root to the leaf (as
outlined in the 𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒 function of Algorithm 3). This process
stops when reaching a leaf node pointing to the segment where the
key is located. The runtime for searching for the segment that a
key belongs to is 𝑂 (𝑙𝑜𝑔𝑎 (𝑆)), where 𝑎 represents the fanout of the
B+ tree, and 𝑆 is the number of segments.
Segment Search Once Sieve locates the segment for a key, it
then finds the partition to which the key belongs (𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑒𝑔𝑚𝑒𝑛𝑡

Algorithm 3: Lookup Algorithm
1 Function SearchTree(𝑘𝑒𝑦, 𝑛𝑜𝑑𝑒):
2 Binary search of the root node and read the appropriate

child node;
3 Recursive search for internal nodes until a leaf is

reached;
4 Read𝑚𝑖𝑛𝑘𝑒𝑦 and𝑚𝑎𝑥𝑘𝑒𝑦 from the leaf node.
5 if 𝑘𝑒𝑦 ∈ [𝑚𝑖𝑛𝑘𝑒𝑦,𝑚𝑎𝑥𝑘𝑒𝑦] then
6 return 𝑙𝑒𝑎𝑓

7 else

8 𝑘𝑒𝑦 is a missing key
9 return

10 end

11

12 Function SearchSegment(𝑠𝑒𝑔, 𝑘𝑒𝑦):
13 𝑝𝑜𝑠 ← 𝑘𝑒𝑦−𝑠𝑒𝑔.𝑠𝑡𝑎𝑟𝑡

𝑠𝑒𝑔.𝑝𝑤𝑖𝑑𝑡ℎ

14 return 𝑠𝑒𝑔.𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 [𝑝𝑜𝑠]
15

16 Function LookUp(𝑘𝑒𝑦, 𝑡𝑟𝑒𝑒):
17 𝑠𝑒𝑔← 𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒 (𝑘𝑒𝑦, 𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡)
18 𝑝 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑒𝑔𝑚𝑒𝑛𝑡 (𝑘𝑒𝑦, 𝑠𝑒𝑔)
19 return𝑝.𝑏𝑙𝑜𝑐𝑘𝑠

function). Recall partitions inside a segment are of equal size. So
we can directly locate the partition containing the key using the
following equation.

𝑝 = ⌊𝑘𝑒𝑦 − 𝑠 .𝑠𝑡𝑎𝑟𝑡
𝑠 .𝑝𝑤𝑖𝑑𝑡ℎ

⌋ (5)

As shown in Equation 5, we subtract the starting key of the
segment (𝑠 .𝑠𝑡𝑎𝑟𝑡 ) from the searched key (𝑘𝑒𝑦) and then divide the
result by the segment’s 𝑝𝑤𝑖𝑑𝑡ℎ width.

For range queries, Sieve utilizes Algorithm 3 to efficiently locate
the start partition and end partition. It then examines the partitions
intersecting the specified range to obtain blocks that need to be ac-
cessed. This search process is fast because the number of partitions
is significantly smaller compared to the entire key space.

4.2 Insert

Unlike typical B+ trees, insert operations in Sieve require addi-
tional consideration (Algorithm 4) since the newly added key might
introduce distinct blocks to the partition it belongs to, increasing
false positives of the corresponding partition.

Note that insert operations only increase false positives of the
partition the key belongs to. However, from the perspective of
the segment, the increased false positives from a single partition
might be negligible. So, in order to measure the influence of the
insert operation on the whole segment, Sieve calculates the average
number of newly inserted blocks per partition in the segment, as
shown below in the following equation. Obviously, the more newly
inserted blocks, the more false positives are likely to be.

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑛𝑠𝑒𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 :
∑
𝑝∈𝑠 |𝑝𝑛𝑒𝑤 𝑏𝑙𝑜𝑐𝑘𝑠 |

𝑠 .𝑝𝑛𝑢𝑚
(6)
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Algorithm 4: Insert Algorithm
1 Function InsertKey(𝑡𝑟𝑒𝑒 , 𝑘𝑒𝑦, 𝑏𝑙𝑜𝑐𝑘):
2 𝑠𝑒𝑔← 𝑆𝑒𝑎𝑟𝑐ℎ𝑇𝑟𝑒𝑒 (𝑘𝑒𝑦, 𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡)
3 𝑝 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝑒𝑔𝑚𝑒𝑛𝑡 (𝑠𝑒𝑔, 𝑘𝑒𝑦)
4 update 𝑝.𝑏𝑙𝑜𝑐𝑘𝑠 with 𝑏𝑙𝑜𝑐𝑘
5 if 𝑠𝑒𝑔.𝑖𝑛𝑠𝑒𝑟𝑡_𝑓 𝑝_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑟𝑒𝑏𝑢𝑖𝑙𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

6 sort key-block pairs from seg.blocks
7 𝑠𝑒𝑔𝑠 ← 𝑆𝐸𝐺𝑀𝐸𝑁𝑇𝐴𝑇𝐼𝑂𝑁 (𝑠𝑜𝑟𝑡𝑒𝑑 𝑎𝑟𝑟𝑎𝑦)
8 𝑠𝑒𝑔𝑠 ← 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁 (𝑠𝑒𝑔𝑠)
9 foreach 𝑠 ∈ 𝑠𝑒𝑔𝑠 do
10 tree.insert(𝑠)
11 end

12 tree.remove(seg)
13 end

14 return

To decide whether the segment should be re-built, Sieve lever-
ages a parameter called segment insert fp density. A segment’s insert
false positive density is defined as the ratio of segment insert block
density to the total number of blocks in the dataset.

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑛𝑠𝑒𝑟𝑡 𝑓 𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 :
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑖𝑛𝑠𝑒𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑐𝑘 𝑛𝑢𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(7)

Once a segment’s insert fp density reaches the rebuild threshold
set by the system user, Sieve builds a sorted array of key-block
pairs from the segment’s blocks. Then, the sorted array will be
re-divided using the previously described segmentation (Algorithm
1) and partition (Algorithm 2) algorithm to create a series of valid
segments that satisfy the rebuild threshold (lines 6-8). Note that
depending on the data, the number of segments after this process
can be one (i.e., the data inserted into the origin segment does not
violate the rebuild threshold) or several. Finally, each of the new
segments generated from the process is inserted into the tree, and
the old segment is removed (lines 9-12).

The overall runtime for inserting a new element into Sieve is
the time required to locate the partition and union the mapped
blocks of the element with those of the partition. With 𝑆 segments
stored in a Sieve, and a fanout of 𝑎 (i.e., the number of keys in each
internal separator node), inserting a new key into a Sieve has the
following runtime:

𝑖𝑛𝑠𝑒𝑟𝑡 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 : 𝑂 (𝑙𝑜𝑔𝑎 (𝑆)) (8)

Note that when the insert ratio is violated and the segment needs
to be re-segmented, the runtime has an additional cost of 𝑂 (𝑑 +
𝑠𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 (𝑠 .𝑤𝑖𝑑𝑡ℎ)) due to sorting, segmenting, and partitioning,
where 𝑑 is the total number of records in the segment’s blocks and
𝑠 .𝑤𝑖𝑑𝑡ℎ represents the length of the segment.

5 COST MODEL

This section deduces cost models for Sieve. First, we will show how
to estimate the index size of Sieve. Then, we give the estimation of
the cost of searching a Sieve index. Finally, we estimate the false
positive rate caused by a Sieve index.

5.1 Space Estimation

We can estimate the size of Sieve for a given error threshold of 𝜀
using the following equation, where 𝑆𝜀 is the number of segments
that are created for an error threshold of 𝜀, 𝑎 is the fanout of the
tree, and 𝐷.𝑝𝑛𝑢𝑚 is the number of partitions that are created for
an error threshold of 𝜀 for a dataset.

𝑆𝐼𝑍𝐸 (𝑒) = 𝑆𝜀 · 𝑙𝑜𝑔𝑎 (𝑆𝜀 ) · 16𝐵︸                 ︷︷                 ︸
𝑇𝑟𝑒𝑒

+ 𝑆𝜀 · 24𝐵︸  ︷︷  ︸
𝑆𝑒𝑔𝑚𝑒𝑛𝑡

+𝐷.𝑝𝑛𝑢𝑚 · 𝑛 · 𝑏𝑖𝑡︸             ︷︷             ︸
𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

(9)

The first term is a pessimistic bound on the storage cost of the
tree (leaf + internal nodes using 8-byte keys/pointers). The second
term is additional metadata about each segment (i.e., each segment
has a start key, an end key, and a partition width). The third term
represents the additional metadata about each partition. This meta-
data is essentially a bit array used for storing the blocks for each
partition. 𝑛 represents the total number of blocks in the dataset.

5.2 Search time complexity

As discussed, lookups require finding the segment and then locating
the partition for the relevant blocks. Since the number of segments
created is influenced by the error threshold (i.e., a smaller error
threshold results in more segments), we use a function that esti-
mates the number of segments created for a given dataset and error
threshold. This function can either be learned for a specific dataset
or a general function can be used [18]. Let 𝑆𝜀 denote the number of
resulting segments for a given dataset when the error threshold is
𝜀. Therefore, the estimated lookup latency for an error threshold
of 𝜀 can be represented by the following expression, where 𝑎 is the
tree’s fanout.

𝐿𝐴𝑇𝐸𝑁𝐶𝑌 (𝜀) = 𝑂 (𝑙𝑜𝑔𝑎 (𝑆𝜀)) (10)
Since partitions inside a segment are normalized to have equal

width, Sieve can simply determine the partition the searched key
belongs to in 𝑂 (1) by subtracting the starting key of the segment
from the searched key and dividing by the normalized width.

5.3 False positive rate

We first quantify the relationship between error and false positives.
Ideally, there should be no block set changes (thus no false positives)
inside a partition from the perspective of the linear segment. The
real total number of block set changes in a partition 𝑝 is:

𝑟𝑒𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 = 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑝.𝑒𝑛𝑑) − 𝑡𝑟𝑢𝑒_𝑡𝑏𝑐 (𝑝.𝑠𝑡𝑎𝑟𝑡) (11)

In the worst case, the difference between the predicted and true
𝑡𝑏𝑐 value is still bounded by the error 𝜀:

⇒ (𝑝𝑟𝑒𝑑_𝑡𝑏𝑐 (𝑝.𝑒𝑛𝑑) + 𝜀) − (𝑝𝑟𝑒𝑑_𝑡𝑏𝑐 (𝑝.𝑠𝑡𝑎𝑟𝑡) − 𝜀)
= 2𝜀 (12)

The false positive rate (𝑓 𝑝𝑟 ) of a partition (𝑝) depends on the
real total number of block set changes, and we can obtain the rate
via the following equation:

𝑝 𝑓 𝑝𝑟 = 1 − 1
2𝜀

(13)

Given a storage budget 𝑆𝑟𝑒𝑞 , Sieve needs to adjust the width of
partitions inside some segments to enable fewer number of parti-
tions so as to fit a limited amount of partition metadata (i.e., cor-
responding block IDs for a partition) to the storage. Along with
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the error threshold, this adjustment can also cause false positives
because it eagerly groups more neighboring keys into a partition.

Assume we have a total of 𝐷.𝑝𝑛𝑢𝑚 partitions for a given 𝑆𝑟𝑒𝑞 in
the dataset (See Section 5.1 for more details about the estimation
of 𝐷.𝑝𝑛𝑢𝑚), and 1 −𝑚 percent of the 𝐷.𝑝𝑛𝑢𝑚 partitions are not
adjusted. For these 1 −𝑚 percent of partitions, their 𝑝 𝑓 𝑝𝑟 are only
bounded by 𝜀. On the contrary, the rest 𝑚 percent of partitions
violate 𝜀, so their 𝑝 𝑓 𝑝𝑟 is 1 in the worst case.

Assume there are 𝐷.𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚 blocks in the dataset, so the num-
ber of false positive blocks (𝑓 𝑏) of a partition is estimated as follows:

𝑝 𝑓 𝑏 = (𝑚 · 1 + (1 −𝑚) (1 − 1
2𝜀
)) · 𝐷.𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚

𝐷.𝑝𝑛𝑢𝑚
(14)

For range queries, the query’s selectivity (𝑆𝐹 ) (i.e., the number
of tuples that satisfy the predicate) also affects the false positive
rate. Consider the example in Figure 1 in which the {1005->None}
key-block pair is merged with {1006->𝐵1} into a partition. In this
example, Sieve answers the query key=1005 with block 𝐵1, result-
ing in false positives. However, for range query key=1005 and
key=1006, Sieve also answers with block 𝐵1, incurring no false
positives. Since the false positives incur only at the starting and
ending partition of a range query, the final false positive rate is:

𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
2 · 𝑝 𝑓 𝑏

𝑆𝐹 · 𝐷.𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚
=

2 · (1 − 1−𝑚
2𝜀 )

𝑆𝐹 · 𝐷.𝑝𝑛𝑢𝑚
(15)

In conclusion, the false positive rate is determined by (1) error
threshold (𝜀) and (2) storage budget (𝑆𝑟𝑒𝑞 ), and (3) query selectivity
factor (𝑆𝐹 ).

Given Equation 15, we observe the following: (1) For a certain 𝜀
and 𝑆𝑟𝑒𝑞 , the higher the value of 𝑆𝐹 , the fewer false positives there
exist. (2) when 𝑆𝑟𝑒𝑞 and 𝑆𝐹 are fixed, the higher 𝜀 there is, the more
false positives there are. (3) when 𝑆𝐹 and 𝜀 are fixed, the smaller
𝑆𝑟𝑒𝑞 there is, the more false positives there exist.

When working on sparse data with a fixed storage budget, Sieve
has to either (1) group the missing keys with the neighboring ex-
isting keys to the same region, or (2) record those missing key
ranges as individual regions. The former approach requires a larger
𝜀, which imposes more false positives according to Equation 15.
The latter method requires more storage budget for generating
segments. In this case, the value of 𝐷.𝑝𝑛𝑢𝑚 gets lower (Equation 9),
leading to more false positives.

6 LIMITATIONS OF SIEVE

Sparse Data. In general, for a given storage budget, Sieve performs
better on dense datasets than on sparse datasets. Sparse data would
introduce gaps between keys. In this case, Sieve has to either group
the missing keys with the neighboring existing keys to the same
region, or record those missing key ranges as individual regions.
The former approach stretches the CDF over a larger key range,
making slopes less steep and partitions wider, which can lead to
increased false positives. The latter approach pays the cost of larger
storage space.

To balance the storage consumption and false positive rate, Sieve
utilizes a greedy streaming algorithm that, given the starting point
of a segment, attempts to maximize the length of a segment while
satisfying a given error threshold. As shown in Figure 4, a gap can

be added to a segment if and only if the entire gap does not violate
the error constraint of any previous key in the segment.

In Section 5.3, we provide a theoretical analysis of the false
positive rate of Sieve on sparse data. In Section 7, we conduct an
extensive performance evaluation of Sieve on sparse data.
Correlation Between the Indexed Attribute and the Under-

lying Block Distribution. Sieve is effective when applied to
datasets characterized by consistent block distribution patterns
among neighboring keys. In other words, a series of consecutive
keys are likely to belong to the same block set or be associated with
different ones.

For instance, real-time applications such as sensor monitoring
[20] and Facebook [13] continuously receive timestamped data,
resulting in close timestamps being stored in the same block. An-
other example is the analysis of page view statistics for Wikipedia
pages, which provides insights into the number of visitors a page
receives within a specific time frame. The ViewCount attribute is
indexed to record the cumulative number of page visits per hour.
ViewCounts with small values (key ranges 31-36 in Figure 1) are
spread across nearly all the periodic blocks, reflecting the fact that
most pages attract a relatively low number of visits. Conversely,
larger ViewCounts (key ranges 1001-1006 in Figure 1) tend to be
allocated to distinct periodic blocks, primarily due to the presence
of emerging hot topics.

7 EVALUATION

In Section 7.2, we compare the overall performance of Sieve with
existing data-skipping techniques using both sparse and dense
datasets. In Section 7.3, we measure the construction cost of Sieve.
Section 7.4 measures Sieve’s maintenance performance when in-
serting various amounts of data. In Section 7.5, we show the impact
of block size on the filtering performance of Sieve. Finally, Sec-
tion 7.6 shows how Sieve performs for adversarial synthetically
generated datasets (i.e., worst-case data distribution).

7.1 Setup

Infrastructure: All experiments were conducted using Presto 3.7.0
on an eight-node cluster, each with Linux 4.15, 2.20 GHz dual-socket
hex-core Intel Xeon with 20 hyperthreading cores, 192GB memory,
1TB HDD, and 480GB SSD. All data is stored as Parquet files with a
block size of 50𝐾 records reference to production practice [44] (we
also show the influence of block size in Section 7.5).
Compared Schemes: We experimentally compare Sieve with the
following schemas: (1) Fingerprint (FP) [28]: a recently announced
data-skipping method that uses heuristic-based histograms to rep-
resent the data distribution within each block. (2) Cuckoo index[25]:
a recently announced set membership filter that extended Cuckoo
filters with variable-sized fingerprints to avoid key shadowing. (3)
ZoneMap: a widely used index that maintains the minimum and
the maximum value of each block. (4) FIT [18]: a learned index opti-
mized for a full B+ tree. Theoretically, FIT should have the optimal
filtering performance because it maintains all the key-block pairs.
Workloads: Cloud-based data analytics services typically push
predicate evaluation down to the data source for early data filtering.
Thus, we focus on scan-intensive queries in our analysis. Following
previous work [34], we use queries of the template below to avoid
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Figure 5: Scan ratio (i.e., the fraction of blocks accessed out of the total number of blocks) at different selectivity factors.
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Figure 6: Index size on different datasets.

large overhead in the output of the resulting tuples, which may
affect the measurement time (𝑂𝑃 : <, >,=):
SELECT agg(A), agg(B), ..., agg(N) FROM R
WHERE A OP X (AND A OP Y)
Datasets: Since the performance of Sieve depends on the distribu-
tion of blocks in a given dataset, we evaluate its performance on
three real-world datasets with different distributions, including two
sparse datasets and one dense dataset. Similar to previous works
[26, 32, 36], we use Sparsity Degree to describe the sparsity of a
keyset. Formally, we denote a key by 𝑘 and its key universe as K ,
where |K | =𝑚. The set of all keys of an index is denoted as 𝐾 ⊆ K .
The set of keys 𝐾 has size 𝑛 and contains no multiplicities. The
Sparsity Degree of a keyset is defined as 1− |𝐾 |/|K | = 1−𝑛/𝑚. The
Wikipedia dataset [2], with a high Sparsity Degree of 0.99, records

how many people have visited an article per hour for the period
from December 2007 to July 2016. The indexed attribute is View-
Count. The Maps dataset[5] contains the longitude of 2B features
(e.g., museums, coffee shops) across the world. The longitude of
locations in this dataset shows a Sparsity Degree of 0.7. The Store-
Sales dataset from the decision support benchmark TPC-DS[9] is
dense with Sparsity Degree equal to 0. The indexed attribute is
TicketNumber in StoreSales.

7.2 Exp.1: Overall Performance

This section studies the overall performance of Fingerprint (FP),
Cuckoo index, ZoneMap, and Sieve (with different storage budgets).
Sieve-0.1 means the index size of Sieve is limited to 0.1% of the
indexed column.
7.2.1 Performance on Dense Data.
Index size on dense data: ZoneMap shows the lowest storage
overhead since it only maintains the min/max values for each block.
Fingerprint also achieves low storage cost since it tends to maintain
lightweight summaries, and Sieve incurs a similar space when the
index budget is limited to 0.1% (Sieve-0.1). Moreover, the Cuckoo
index gives a much higher storage budget (two orders of magnitude
larger than Sieve-0.1).
Accessed blocks with different selectivity factors: Figure 5
shows the scan ratio (i.e., the fraction of blocks accessed out of the
total number of blocks) on the dense dataset StoreSales.

FIT achieves optimal performance at the cost of maintaining all
the key-block pairs. Sieve is also able to achieve closer to optimal
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Figure 7: Breakdown of end-to-end query response time. The Y-axis is split into two portions. The bottom portion represents

the index processing time (The index processing time of Cuckoo is orders of magnitude higher than Sieve on range queries.),

while the top portion denotes the time spent on query execution.

performance across all selectivities, even using the smallest storage
budget (Sieve-0.1). In addition, we can also see that the performance
of Sieve improves as the query selectivity and storage budget size
increase, which confirms our cost model in Section 5.3.

For point query, we can see Sieve-0.1 achieves comparable per-
formance with Cuckoo index and achieves 82% reduction in block
accesses compared to Fingerprint. The reason is StoreSales shows
similar block distribution trends for neighboring keys and is almost
unaffected by missing keys. For range queries, we can see Sieve-0.1
achieves 45%-80% reduction in block accesses compared to the best
alternative method.
Response time with different selectivity factors: Figure 7
presents the breakdown of query response time. For point queries,
Cuckoo index, FIT, and Sieve have similar end-to-end time because
they are all able to filter most of the blocks, and thus the query
execution dominates the end-to-end time.

As described in Cuckoo’s paper and source code, Cuckoo Index
is limited to equality predicates and does not support range predi-
cates. To make Cuckoo support range queries, we have to do hash
checking for every key (including both missing keys and existing
keys) in the specified range. As depicted in Figure 7(b), Figure 7(c),
and Figure 7(d), Cuckoo Index imposes a much higher overhead in
indexing time than other techniques for range queries.

For range queries, we can see the reduction in query execution
time (20% to 25%) is not as pronounced as for access blocks, when
compared to the best counterpart. The reason is the large number
of filtered data makes the I/O bottleneck less evident.

7.2.2 Performance on Sparse Data.
Index size on sparse data: As shown in Figure 6, Fingerprint and
Sieve-0.1 still show low storage overhead on both sparse datasets,
Wikipedia andMaps. Cuckoo index occupies 0.82 to 11.6 times more
storage space compared to Sieve-10 on these datasets.
Accessed blocks with different selectivity factors: Figure 5
shows the scan ratio on Sparse datasets Wikipedia and Maps.

As expected, Sieve achieves lower performance on sparse data.
The reason is that sparse data causes gaps (i.e., missing keys) in the
key space, forcing Sieve to either allocate more space to capture
the gaps or tolerate more false positives by grouping the gaps with
neighboring keys (Section 6).

It is interesting to note that the distribution of gaps over the key
space has a great impact on Sieve’s performance. More specifically,
although Wikipedia has a much higher sparsity degree than Maps,
Sieve achieves closer to optimal performance in terms of scan
ratio in the Wikipedia dataset. This is due to the fact that the
missing keys of Wikipedia dataset show a clustered pattern over
the key space, primarily because of the rare occurrence of large
ViewCounts. In this case, Sieve is able to capture these gaps with
a small number of segments. On the contrary, the missing keys
of Maps have a dispersed pattern, since the longitude of locations
is scattered across the world. Therefore, Sieve needs to pay more
false positives given the same storage space on the Maps dataset.

Cuckoo index is essentially an enhanced bloom filter that enables
data skipping for secondary columns by associating a key for the
column to the multiple blocks containing it. Since Cuckoo index is
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Figure 8: Index initialization time (logarithmic scale) on dif-

ferent datasets. The shaded parts in Sieve represent the time

to build a sorted array of key->block pairs.

designed for equality predicates, it exhibits poor performance on
range queries.

For point queries, we observe that compared with Maps and
StoreSales, Cuckoo index pays less storage space to achieve a similar
scan ratio in the Wikipedia dataset because low ViewCounts in
Wikipedia are common and distributed in a majority of blocks.
Furthermore, Sieve exhibits a storage space reduction of at least
45% compared to Cuckoo index, while maintaining comparable
performance on sparse datasets. This is due to the fact that Cuckoo
index focuses on indexing individual keys, while Sieve leverages
block distribution patterns over the entire key space.
Response time with different selectivity factors: As shown,
on point queries, Sieve-10 achieves similar performance to Cuckoo
index on Wikipedia but causes 2.3x more time on the Maps dataset
(although still significantly less than ZoneMap and Fingerprint).
On range queries, Sieve-0.1 achieves up to 42% reduction in query
execution time when compared to the best counterparts.

7.3 Exp.2: Initialization overhead

In Figure 8, we quantify the cost of index construction. Same as
typical B+ trees, Sieve’s initialization process starts with building
a sorted array of key->block pairs. Based on the sorted array, Sieve
uses a one-pass algorithm to generate segments and partitions that
record the information about a region of the key-block pairs.

As shown in the shaded parts of Figure 8, the major cost in
Sieve’s initialization is to scan the records and build the sorted array.
FIT and Sieve achieve comparable performance because FIT does
similar operations in initialization. Same as Sieve, Cuckoo index
also needs to examine every element in the data. However, Cuckoo
index has a relatively higher initialization overhead than Sieve
due to its heavy use of hash computation. As expected, ZoneMap
has the lowest initialization overhead because it simply records
summarized statistics. On average, the initialization in Sieve takes
about 3x longer than ZoneMap.

7.4 Exp.3: Impact of data insertion

This section investigates the impact of data insertion. This exper-
iment uses a fair setting which counts the insert time and search
time after randomly inserting a certain amount (0.001%, 0.01%, 0.1%,
1%, 10%, 20%, 50%) of records. Due to space limitation, we only
show the performance on the sparse dataset Maps because Sieve
exhibits the poorest performance on this dataset. As described in
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Figure 9: Impact of data insert at different insertion percent-

ages on Maps(Sparse) dataset.

10000 50000 100000 150000 200000
Records Num Per Block

0

20

40

60

80

Sc
an

 R
at

io
(%

) ZoneMap
Fingerprint
Cuckoo(Bloom)
Sieve-0.1
FIT(Learned)

(a) Maps(Sparse): point queries

10000 50000 100000 150000 200000
Records Num Per Block

0

20

40

60

80

Sc
an

 R
at

io
(%

)

ZoneMap
Fingerprint
Cuckoo(Bloom)

Sieve-0.1
FIT(Learned)

(b) Maps(Sparse): range queries

Figure 10: Impact of block size on filtering performance.

Cuckoo’s paper [25] and source code [7], it is designed for a read-
only (immutable) setting and does not support inserts, so its insert
performance is not listed in Figure 9.
Insert Time.When inserting less than 1% of data, Sieve outper-
forms Fingerprint by up to 3.3x because the segment rebuild thresh-
old is not violated, whereas Fingerprint needs to update the his-
tograms of the affected block for each insertion. Sieve is 12x slower
than ZoneMap because Sieve needs to search the tree for the cor-
responding segment and partition of the newly inserted key.

In Figure 9(a), when 1% of data is inserted, Sieve takes 2.2x
longer than Fingerprint due to re-segments. Sieve is slower than
FIT because FIT may trigger re-segment only when new keys are
inserted, while Sieve considers block set changes from any partition.
Note that when more than 1% of data is inserted, the amount of
extra overhead imposed by Sieve is correlated with the number of
re-segments, which grows linearly with the volume of data inserted.
Search Time. As shown in Figure 9(b), Sieve scales better than
other indexes in terms of lookup latency. This is because the search
time of ZoneMap and Fingerprint grows linearly with the total
number of blocks, but Sieve’s search time grows logarithmically
with the number of segments.

7.5 Exp.4: Block Size Scalability

As shown in Figure 10, the performance of all existing indexes is
significantly affected by the block size (i.e., the number of tuples in
each block). As expected, a smaller block size yields better filtering
performance. Sieve’s scan ratio increases by 3% for point queries
and 21% for range queries when the block size grows from 10,000
to 200,000. Even though, Sieve still achieves the best performance
on range queries across all block sizes, and only causes 4% more
scan ratio than Cuckoo index on point queries.
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(c) Index size on worst-case dense dataset.
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(d) Scan ratio on worst-case dense dataset.
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(e) Index size on worst-case sparse dataset.
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(f) Scan ratio on worst-case sparse dataset.

Figure 11: Worst Case Analysis.

7.6 Exp.5: Worst Case Data

Since the data distribution influences the performance of Sieve, we
synthetically generated data to illustrate how our index performs
with both sparse and dense data representing a worst-case.
Worst-case for dense data For dense data, we define the worst-
case as a dataset which maximizes the number of segments given
a specific error, and every two consecutive keys map to different
blocks. To do this, we generate data using a step function with a
fixed step size of 200, as shown in Figure 11(a) (blue line).

As shown in Figure 11(c), for error thresholds less than 100, the
size of Sieve is larger than Fingerprint but still smaller than Cuckoo
index and FIT. This is due to the fact that for error thresholds less
than 100, Sieve creates segments of width 200, resulting in a large
number of nodes in the tree. For an error threshold that is larger
than 100, Sieve is able to represent the dataset with only a single
segment, dramatically reducing the index’s size while achieving
comparable performance with Fingerprint.
Worst-case for sparse data For sparse data, we define the worst-
case as a dataset in which every two consecutive existing keys are
separated with a gap. As shown in Figure 11(b), we set the sparsity
degree of synthetic data to 0.99.

As shown in Figure 11(e) and Figure 11(f), when the error thresh-
old is set to 1, Sieve causes a similar storage cost to the FIT index
and achieves no false positives since no key is grouped at this
threshold. On the other hand, as the error threshold increases, the
index size of Sieve decreases, and Sieve achieves comparable fil-
tering performance with Fingerprint when the error threshold is
set to 1000.

8 RELATED WORK

8.1 Data Skipping

While ZoneMap[33, 35, 40] is widely used to filter data, its perfor-
mance is impacted by gaps in the blocks. Column Imprints [38] and
Column Sketches [22] speed up scans by maintaining lossy index
structures, but would resemble Zonemap when used on larger data
blocks than cache lines [25]. GRT [14], Hippo [43], and Fingerprints
[28] try to capture gaps within blocks with specific structures (e.g.,
histograms) but may incur severe false positives. Set-membership
filters[25, 29] achieve a low false positive ratio but unsuitable for
practical distributed storage systems due to the relatively sizable
required space [23]. (Tree-based) index[41] eliminates all false posi-
tives but causes unacceptable index overhead. (Compressed) bitmap
indexes[21, 39] can reduce storage cost but mainly suit low cardinal-
ity attributes which are quite rare. Unlike existing methods, Sieve
groups keys into key ranges based on captured block distribution
trends, thus achieving a balance between false positives and space.

8.2 Learned Index

In cloud-based OLAP systems, a basic fine-grained index stores all
key->block pairs in a sorted array. Although learned index [15, 17,
18, 27] can quickly output the position of a given key in the sorted
array by replacing the traditional index structure with machine
learning models, it still needs to maintain all the key-block pairs.
Different from the learned index, Sieve is designed to optimize the
storage space of the sorted array by storing information about a
region of the key space with similar block distributions, instead of
indexing individual keys.

Although both learned index and Sieve use piece-wise linear
functions to approximate the CDF model, CDF models are built over
different variables, and the approximate linear functions are also
used in different scenarios: (1) learned index uses CDF functions
to model the physical position of a key while Sieve employs CDF
functions to model the block distribution differences between keys
and (2) unlike learned index, which replaces the B+ tree structure
with approximated linear functions to quickly locate the position
of a key, Sieve employs linear functions to find the optimal key
ranges to group to balance false positives and storage space.

9 CONCLUSION

Modern data analytics need to handle large amounts of block-based
data stored in remote storage, making I/O a bottleneck. To effec-
tively balance false positives and storage overhead, we present
Sieve, a learning-enhanced index that exploits piece-wise linear
functions to approximate the block distribution trends. Based on
captured trends, Sieve groups individual keys into regions to re-
duce index size. Our evaluation of Sieve using real-world datasets
demonstrates that it can effectively eliminate the I/O bottleneck.
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