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ABSTRACT

As multi-layer graphs can give a more accurate and reliable picture

of the complex relationships between entities, cohesive subgraph

mining, a fundamental task in graph analysis, has been studied

on multi-layer graphs in the literature. However, existing cohesive

subgraph models are designated for special multi-layer graphs such

as multiplex networks and heterogeneous information networks.

In this paper, we propose generalized core (gCore), a new notion

of cohesive subgraph on general multi-layer graphs without any

prede�ned constraints on the interconnections between vertices.

The gCore model considers both the intra-layer and cross-layer

cohesiveness of vertices. Three related problems are studied in this

paper including gCore search (GCS), gCore decomposition (GCD),

and gCore indexing (GCI). A polynomial-time algorithm based

on the peeling paradigm is proposed to solve the GCS problem.

By considering the containment among gCores, a “tree of trees”

data structure called KP-tree is designed for e�ciently solving the

GCD problem and serving as a compact storage and index of all

gCores. Several advanced lossless compaction techniques including

node/subtree elimination, subtree transplant, and subtree merge

are proposed to help reduce the storage overhead of the KP-tree and

speed up the process of solving GCD and GCI. Besides, a KP-tree-

based GCS algorithm is designed, which can retrieve any gCore in

linear time in the size of the gCore and the height of the KP-tree.

The experiments on 10 real-world graphs verify the e�ectiveness

of the gCore model and the e�ciency of the proposed algorithms.
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1 INTRODUCTION

Motivation. Cohesive subgraph mining (CSM), as a fundamental

task in graph analysis, aims at �nding densely connected vertices.

It has witnessed considerable applications, such as community de-

tection/search [6], graph visualization [1], product promotion [9],

and biological module discovery [37]. While CSM has been ex-

tensively studied on single-layer graphs [20], the limitations of
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Figure 1: An example of a pillar multi-layer graph extracted

from the AUCS dataset [8] with three layers representing

di�erent relationships between employees in a university.
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Figure 2: An example of a general multi-layer graph repre-

senting a 3-layer academic network. The layers from left to

right represent the paper citation relationships, author col-

laborations, and paper similarities. Each author is connected

to his/hers published papers through cross-layer links.

single-layer graphs in capturing multiple types of relationships,

such as diverse social relationships [8], have led to growing re-

search interest in CSM on multi-layer graphs (referred to as ML-

CSM) [3, 12, 18, 22, 37].

A multi-layer graph is represented as a collection of intercon-

nected layered graphs (layers for short), with each layer correspond-

ing to a speci�c type of relationship [4, 19]. There are two main

kinds of multi-layer graphs [18]. Figure 1 gives an example of a

pillar multi-layer graph that has the same set of vertices (entities)

on all layers, and every vertex in a layer has exactly one cross-layer

link to its copy (mirror) on every other layer. In contrast, a general

multi-layer graph, as depicted in Figure 2, allows di�erent sets of

vertices in di�erent layers, and any vertex in a layer has zero to

many cross-layer links to the vertices on every other layer.

Based on the multi-faceted relationships captured by multi-layer

graphs, ML-CSM enables the discovery of more reliable cohesive

subgraphs [28, 37]. For instance, in the general multi-layer graph

shown in Figure 2, cohesive author groups are of our interest. Obvi-

ously, the vertices in &1 form a cohesive group in the author layer.

Moreover, their cross-layer neighbors, representing the papers they
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have published, also show dense connections in terms of both sim-

ilarity and citation relationships. This information complements

the existing author group and enhances its cohesiveness.

Existing work investigates ML-CSM on a special pillar multi-

layer graphmodel namedmultiplexnetwork (MPN) [11, 12, 37] and

a typical general multi-layer graph model termed heterogeneous

information network (HIN) [10, 17, 34]. MPNs are commonly em-

ployed when diverse relationships among entities of the same type

are considered, while HINs are used to studyML-CSM in the context

of complex relationships between heterogeneous entities.

Unfortunately, there is currently a lack of cohesive subgraph

models and algorithms that can e�ectively handle a generic scenario

involving relationships between both homogeneous entities and

heterogeneous entities, i.e., on a general multi-layer graph (GMG),

as illustrated in Figure 2.

PriorWork. In the literature, twomajor types of cohesive subgraph

models have been proposed for solving ML-CSM on MPNs, namely

cross-layer quasi-clique [5, 28, 35] and multi-layer core [11, 22, 37].

They can be seen as simple extensions from the classical W-quasi-

clique [25] model and the :-core [29] model in single-layer graphs.

Speci�cally, a cross-layer quasi-clique (resp. multi-layer core) is

de�ned as a subset of vertices that forms a W-quasi-clique (resp.

:-core) in every layer. Certainly, such concepts are not suitable for

GMGs where di�erent layers may have di�erent vertex sets.

A well-known branch of ML-CSM models proposed for HINs

such as (:,P)-core [10] and (:,Ψ)-NMC [17] are based on meta-

paths, which are sequences of vertex types and edge types between

two given vertex types. Meta-paths de�ne new adjacency relation-

ships between vertices. For example, in Figure 2, authors 04 and 05
are considered adjacent under a commonly used meta-path P∗ =

author-paper-author as they both connect to the paper ? . Given

a meta-path P and a set Ψ of meta-paths, the (:,P)-core [10] is

exactly the :-core [29] of the graph describing the new adjacency

relationship de�ned by P, and the (:,Ψ)-NMC [17] refers to the

multi-layer core [37] of the MPN de�ned by meta-paths in Ψ. How-

ever, these models su�er from the following limitations: (1) They

overlook the most direct and informative relationships between

homogeneous entities, such as the co-authoring among authors and

the similarity between papers, as shown in Figure 2. (2) Meta-path

instances only re�ect the connections between entities under a spe-

ci�c pattern, lacking the ability to capture the cohesiveness among

intermediate entities. For example, when considering the author

collaboration and paper similarity layers in Figure 2, the vertices in

&1 and &2 yield the same adjacency pattern under meta-path P∗.

The information on the cohesiveness of their connected papers is

completely hidden from higher-level models and algorithms.

Another type of ML-CSM model designed for HINs, namely re-

lational community [15], �nds a vertex set that satis�es a collection

of user-speci�ed constraints describing “each vertex of type A has

≥ : neighbors of type B”. However, it’s challenging for users unfa-

miliar with the HIN schema to provide meaningful constraints [17].

Additionally, as each constraint is imposed on a pair of vertex types,

it fails to distinguish multiple relationships between homogeneous

types of entities. For example, the constraints cannot express the

requirement that each paper has ≥ :1 neighbors in the similarity

layer and meanwhile ≥ :2 neighbors in the citation layer.

Solution. In this paper, we propose a new cohesive subgraph model

called generalized core (gCore) to solve the ML-CSM problem on

GMGs. It overcomes the limitations of the existing models discussed

before. To obtain reliable and robust cohesive subgraphs, we expect

the vertices to show cohesiveness in each layer [16, 37]. A thorny

problem is to de�ne the cohesiveness of vertices on di�erent layers

based on the many-to-many cross-layer mappings between vertices.

Our idea is to use a fraction [36] of cross-layer neighbors of a vertex

to represent its engagement in di�erent layers. Then, by extending

the extension scheme used in cross-layer quasi-cliques [16, 28] and

multi-layer cores [11] with the :-core model [29], which requires

each vertex to connect to at least : other vertices in the :-core, we

have the gCore model described below. Suppose there are ; layers in

a GMG and the ;-th layer is of users’ interest. Let :1, :2, . . . , :; ∈ N

and ?1, ?2, . . . , ?;−1 ∈ [0, 1]. A subset & of vertices on the ;-th

layer forms a gCore if 1) & is a :; -core on the ;-th layer; 2) in each

other 8-th layer, there exists a :8 -core &
′ ⊆ # (&) such that every

vertex in & has at least a fraction ?8 of neighbors on the 8-th layer

participating & ′, where # (&) is the set of all vertices in the 8-th

layer that link to vertices in & ; and 3) & is maximal.

Let us see an example. In the GMG shown in Figure 2, we number

the layers from left to right as 1, 3, and 2. Given (:1, :2, :3) = (3, 2, 2)

and (?1, ?2) = (1, 0.5), &1 is a gCore. Speci�cally, &1 itself forms

a 2-core in the author layer. �1 and �2 are a 3-core and 2-core on

the paper citation and similarity layers, respectively, covering all

and at least a half of cross-layer neighbors of each vertex in &1.

Obviously, the authors in the gCore exhibit cohesiveness in both

their direct connections and each possible relationship between

their published papers. &2 is not a gCore due to the low similarity

between the papers published by the authors in this group.

Application. Here are typical applications of the gCore model: (1)

Collaboration analysis. On an academic multi-layer network like

Figure 2, gCore facilitates the identi�cation of cohesive groups of

authors who have collaborated on a series of similar papers, possi-

bly on the same topic. These groups are well-suited to be invited

to present tutorials on the topic and share their related papers. (2)

Recommendation/Product promotion. E-commerce platforms often

maintain HINs of products (items) and users [10], while social me-

dia platforms like Last.fm (https://www.last.fm/) have bipartite data

describing the “like” relationships between users and shared items.

By enriching the existing HINs with additional homogeneous rela-

tionships like friendships or similarities between users, as well as

similarities between items, gCore can be utilized to discover groups

of users who are not only friends but also share similar preferences

in speci�c items. This information can be leveraged to boost sales

or user engagement by recommending the items purchased or liked

by users in the group to other users within the same group. (3) Bio-

logical analysis. Diseases can exhibit similarities in various ways,

such as sharing a signi�cant number of therapies [7] or having com-

monly associated pathways [21]. Besides, communities of genes

can also unveil similarities between diseases [31]. By representing

these relationships in a GMG, gCore can be employed to identify

meaningful disease clusters, providing new insights into disease

etiology, classi�cation, and shared biological mechanisms [21].

Technical Contributions. To address the gap in solving the ML-

CSM problem on GMGs, we propose the gCore model and fully

investigate its properties. One notable property is that given vectors
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k = (:1, :2, . . . , :; ) and p = (?1, ?2, . . . , ?;−1), there exists a unique

gCore, which we therefore refer to as the (k, p)-core.

Based on the gCore model, we study three related problems in

this paper, namely gCore search (GCS), gCore decomposition (GCD),

and gCore indexing (GCI). GCS �nds the (k, p)-core in an ;-layer

GMG for given vectors k and p. This is crucial for retrieving cohesive

subgraphs with particular features. GCD �nds all nonempty gCores

in a GMG, which is essential for exploring the structure of a GMG.

GCI constructs an index to speed up GCS.

To solve the GCS problem, we propose a polynomial-time algo-

rithm based on the vertex peeling paradigm.

To address the GCD problem, we propose a “tree of trees” data

structure called KP-tree to organize all gCores in a systematic way

by leveraging their containment relationships. The KP-tree deter-

mines a DFS-order generation of all gCores, which reduces redun-

dant computations and enables fast identi�cation of empty gCores.

Moreover, the KP-tree derives an index structure to support fast

gCore retrieval. Based on this index, a more e�cient algorithm is

proposed to solve the GCS problem, which runs in linear time in

the size of the queried gCore and the height of the KP-tree. Due

to the redundancy of information in the KP-tree index, we design

a series of lossless compaction schemes, including node/subtree

elimination, subtree transplant, and subtree merge, to further save

storage and improve the index construction e�ciency.

Extensive experiments have been conducted to evaluate the

gCore model and the proposed algorithms. The results show that:

(1) Vertices in the gCore attain more closeness with each other com-

pared with those in the :-core and other variations of the existing

ML-CSMmodels adapted to suit GMGs. (2) The index helps improve

the e�ciency of gCore search by up to 1–4 orders of magnitude.

(3) The index compaction techniques signi�cantly reduce both the

index construction time, which includes the time to solve the GCD

problem, and the storage overhead of the index.

2 RELATED WORK

CSM on MPNs. To characterize cohesive subgraphs on an MPN,

existingwork always uses a uni�ed classic cohesive subgraphmodel

to restrict the cohesiveness of vertices in some/all layers. Wang et

al. [33] and Zeng et al. [35] studied tominemaximal frequent cliques

and W-quasi-cliques in a series of graphs. Pei et al. [28] and Jiang

et al. [16] extended the notion of quasi-clique and introduced the

cross-layer quasi-clique model and the frequent cross-layer quasi-

clique model. Due to the NP-hardness of enumerating all (frequent)

cross-layer quasi-cliques, exact branch and bound approaches with

several pruning methods are proposed. Boden et al. [5] introduced

an MLCS cluster model for MPNs with edge labels, which is a

variant of cross-layer quasi-clique with consideration of similarities

between edge labels. A best-�rst search approach is presented in [5]

to �nd quali�ed MLCS clusters with low redundancy.

Due to the high computational cost and low �exibility in charac-

terizing large cohesive subgraphs of the cross-layer quasi-cliques,

Zhu et al. [37] proposed a notion of 3-coherent core (3-CC), which

requires a vertex subset to form a 3-core in a given subset of lay-

ers. Three approximation algorithms with provable guarantees are

proposed in [37] to extract a �xed number of 3-CCs that attain the

largest diversity. Liu et al. [22] studied the 3-CC decomposition

problem. Galimberti et al. [11] studied the multi-layer core model,

another extension of :-core. It allows using various values of : in

di�erent layers. Three decomposition algorithms based on di�erent

search orders are given in [11]. Hashemi et al. [12] introduced a

relaxed version of the 3-CC model called (:, _)-FirmCore and stud-

ied the FirmCore decomposition problem. Huang et al. [14] and

Behrouz et al. [3] further combined the extension scheme of 3-CC

and (:, _)-FirmCore with the :-truss model, respectively. All the

above models rely on the one-to-one cross-layer mappings between

vertices, which are hence inapplicable to GMGs.

CSM on HINs. Fang et al. [9] surveyed the existing CSM models

and algorithms designed for HINs. Here, we review several repre-

sentative works. Fang et al. [10] de�ned a (:,P)-core model based

on a given symmetric meta-path P, which requires each vertex in

a (:,P)-core is connected to at least : vertices through instances

of P. Two variants of (:,P)-core that require the meta-path in-

stances contributing to : are vertex-disjoint and edge-disjoint are

also studied in [10]. Yang et al. [34] combined the extension scheme

of (:,P)-core and the vertex-disjoint (:,P)-core with the :-truss

model. Jian et al. [15] proposed another extension of :-core called

relational community. It allows using a series of meta-paths P

of �xed length 2 and integers : speci�c to each P. A relational

community may contain heterogeneous vertices. Hu et al. [13] de-

signed an extension of the clique model called m-Clique based on a

given meta-subgraph. Due to the challenge of selecting meaningful

meta-paths or relational constraints, Jiang et al. [17] introduced

a (:,Ψ)-NMC model, where Ψ is a set of non-nested meta-paths.

A set of vertices is a (:,Ψ)-NMC if it forms a (:,P)-core for each

meta-path P ∈ Ψ. Algorithms to search the (:,Ψ)-NMC containing

a given set of query vertices while maximizing the size of Ψ are

proposed in [17]. However, as discussed in Section 1, the above

models cannot be directly applicable to GMGs that involve multiple

types of relationships between homogeneous entities.

3 PRELIMINARIES

3.1 The General Multi-layer Graph Model

A simple graph � = (+ , �) is a pair, where + is the set of vertices,

and � is the set of edges. By joining multiple simple graphs via the

connections among them, we have a general multi-layer graph:

De�nition 3.1 ([24]). A general multi-layer graph (GMG) is a

pair M = (G, C), where G = {�1,�2, . . . ,�; } is a set of simple

graphs (also called layers) �8 = (+8 , �8 ), where 8 ∈ {1, 2, · · · , ;},

and C = {�8, 9 |1 ≤ 8 < 9 ≤ ;} is the collection of sets of edges

�8, 9 ⊆ +8 ×+9 linking the vertices of �8 to the vertices of � 9 .

We denote the edges in �1, �2, . . . , �; as “intra-layer edges” and

the edges in �8, 9 as “cross-layer edges”. We use � (G) and � (C) to

denote the set of all intra-layer edges and all cross-layer edges,

respectively, i.e., � (G) =
⋃;

8=1 �8 and � (C) =
⋃

�8,9 ∈C �8, 9 .

Obviously, pillar multi-layer graphs are special cases of GMGs

where all layers have identical vertex sets, and a cross-layer edge

only exists between two copies of a vertex lying in di�erent layers.

In GMGs, a vertex E ∈ +8 can have both intra-layer and cross-

layer neighbors. The set of neighbors of E in � 9 is denoted by

# 9 (E). If 9 = 8 , the vertices in # 9 (E) are called intra-layer neighbors;

otherwise, they are called cross-layer neighbors. The degree of E in
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� 9 is denoted as 346 9 (E), where 346 9 (E) = |# 9 (E) | is the intra-layer

degree of E if 9 = 8 , and the cross-layer degree of E otherwise.

A GMGM′ = (G′, C′) is a subgraph ofM if |G| = |G′ |, � ′8 is

a subgraph of �8 for �
′
8 ∈ G

′, and �′8, 9 ⊆ �8, 9 for �
′
8, 9 ∈ C

′. Given

a simple graph � = (+ , �), the subgraph of � induced by & ⊆ +

is � [&] = (&, � [&]), where � [&] ⊆ � is the set of edges with

both endpoints in & . Similarly, let Q = {&1, &2, . . . , &; }, where

&8 ⊆ +8 for 1 ≤ 8 ≤ ; , the subgraph ofM induced by Q isM[Q] =

(G[Q], C[Q]), where G[Q] = {�1 [&1],�2 [&2], . . . ,�; [&; ]} and

C[Q] = {�8, 9 [&8 , & 9 ] |1 ≤ 8 < 9 ≤ ;} with �8, 9 [&8 , & 9 ] ⊆ �8, 9 being

the set of edges having one endpoint in &8 and the other in & 9 .

Besides, the presence of cross-layer edges in a GMG enables us to

de�ne cross-layer induced subgraphs. For a vertex subset &8 ⊆ +8
and 9 ≠ 8 , let & 9 =

⋃

E∈&8
# 9 (E) be &8 ’s cross-layer neighbors in

� 9 . The induced subgraph� 9 [& 9 ] is called the cross-layer subgraph

of � 9 induced by &8 , denoted by � 9 [&8 ].

3.2 gCores in General Multi-layer Graphs

As stated in Section 1, a generalized core (gCore) & on the layer

of users’ interest, say �8 , is expected to show cohesiveness under

various relationships, including the direct one captured by�8 and

the indirect ones represented by �8, 9 and � 9 for 9 = 1, 2, · · · , ;

and 9 ≠ 8 . The former can be characterized by the elegant :-core

model [29], which requires each vertex E ∈ & to be adjacent to at

least : vertices in�8 [&], i.e., the degree of E in�8 [&] is at least : . To

characterize the latter, we extend the concept of fraction proposed

in [36] and rephrase it as neighbor coverage fraction in De�nition 3.2.

De�nition 3.2. For E ∈ +8 and & 9 ⊆ +9 , the fraction of E ’s neigh-

bors in � 9 falling in & 9 , i.e., q (E,& 9 ) =
|# 9 (E)∩& 9 |

|# 9 (E) |
, is called the

neighbor coverage fraction of E within & 9 .

A higher value of q (E,& 9 ) indicates that & 9 covers more neigh-

bors of E in� 9 , thereby capturing more information about E ’s cross-

layer neighborhood. Based on De�nition 3.2, we can de�ne the

concept of generalized core (gCore) on GMGs.

De�nition 3.3. Given an ;-layer graphM, a speci�c layer �8 , ;

thresholds :1, :2, . . . , :; ∈ N and ?8, 9 ∈ [0, 1] for 9 = 1, 2, . . . , ; and

9 ≠ 8 , a vertex subset &8 ⊆ +8 is a generalized core (gCore) inM if

(1) &8 is a :8 -core in �8 .

(2) For 9 = 1, 2, . . . , ; and 9 ≠ 8 , there exists a nonempty : 9 -core& 9

in � 9 [&8 ] such that q (E,& 9 ) ≥ ?8, 9 for all E ∈ &8 .

(3) None of the proper supersets of &8 satis�es (1) and (2).

Without loss of generality, we suppose the selected layer in

De�nition 3.3 is �; in the rest of the paper. For simplicity, let k =

(:1, :2, . . . , :; ) and p = (?;,1, ?;,2, . . . , ?;,;−1). A gCore de�ned with

respect to (w.r.t.) vectors k and p is referred to as a (k, p)-core.

Example. Figure 3 shows a 3-layer GMG,where�2 is of users’ inter-

est. Let k = (3, 3, 3), p1 = (0, 0), p2 = (1/2, 0), and p3 = (1/2, 2/3).

The entire vertex set of�2,+2, forms a (k, p1)-core as p1 does not im-

pose any constraints on the cohesiveness of the vertices on �0 and

�1, and +2 itself is a 3-core. The vertex set {1, 2, 3, 4, 5, 6, 7, 8} forms

a (k, p2)-core. Vertices 9 and 10 are excluded from the (k, p2)-core

because they have no cross-layer neighbors in�0.& = {1, 2, 3, 4} is

a (k, p3)-core. The sets {22, 23, 24, 25, 26} and {13, 14, 15, 16, 17} of

23 26

2524
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28 30

3132

29

27

G
0

5 8

7

9

10

1 4

32

13

1617

14

15

12

11

18 19

2021

G
2

G
1

6

Figure 3: An example of a general multi-layer graph (GMG).

vertices on �0 and �1 are both 3-cores, and they cover at least 1/2

and 2/3 neighbors of each vertex in & , respectively.

Generalization. The gCore model is a generalization of the multi-

layer core model [11] and the 3-CC model [37] proposed for MPNs.

Given an ;-layer graphM, ifM is an MPN, a (k, p)-core inM,

where p = 1;−1, is a multi-layer k-core. Moreover, when considering

a subset ! of layers, the gCore w.r.t. k = [:8 ]1≤8≤; and p = 1;−1,

where :8 = 3 if �8 ∈ ! and :8 = 0 otherwise, is a 3-CC on !.

Properties. The concept of gCore has several elegant properties.

Property 1. Given k and p, the (k, p)-core is unique.

As a notation, let x and y be two vectors of the same dimension,

we say x ≤ y if x[8] ≤ y[8] for every dimension 8 , and we say x < y

if x ≤ y and x ≠ y.

Property 2. Given k1, k2, and p, if k1 ≤ k2, the (k2, p)-core is a

subset of the (k1, p)-core.

Property 3. Given k, p1, and p2, if p1 ≤ p2, the (k, p2)-core is a

subset of the (k, p1)-core.

Due to limited space, we leave the proofs of all the properties,

lemmas, and theorems in Appendix M of the full paper [23].

3.3 Problem Formulation

This paper studies the following three problems related to the

proposed gCore model on general multi-layer graphs:

(1) gCore Search (GCS). Given an ;-layer graphM, k ∈ N; , and

p ∈ [0, 1];−1, �nd the (k, p)-core inM.

(2) gCore Decomposition (GCD). Given an ;-layer graph M,

enumerate all nonempty gCores inM.

(3) gCore Indexing (GCI). Given an ;-layer graphM, store all

nonempty gCores inM in a compact data structure to support

fast retrieval of the (k, p)-core for given k and p.

4 GCORE SEARCH (GCS)

Given an ;-layer graphM, k ∈ N; , and p ∈ [0, 1];−1, we propose

a polynomial-time algorithm called GCS to �nd the (k, p)-core in

M. The algorithm follows the vertex peeling paradigm that has

been successfully used by the existing core search/decomposition
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Algorithm 1 GCS (gCore Search)

Input: An ; -layer graphM, a vector k ∈ N; , and a vector p ∈ [0, 1];−1

Output: The (k, p)-core inM
1: &; ← +; ⊲+; is the vertex set of�;
2: repeat
3: &145 >A4 ← &;

4: &; ← peel(�; [&; ], k[; ] )
5: for 8 ← 1, 2, . . . , ; − 1 do
6: &8 ← peel(�8 [&; ], k[8 ] )
7: for E ∈ &; do
8: if q (E,&8 ) < p[8 ] then
9: &; ← &; − {E}

10: until&; = &145 >A4

11: return&;

algorithms [2], that is, it iteratively removes from �; the vertices

that violate Constraint (1) or (2) speci�ed in De�nition 3.3.

Algorithm 1 presents the pseudocode of GCS. We use&; to store

the remaining vertices in �; during vertex peeling. Initially, &; is

set to the vertex set+; of�; in line 1. The repeat loop in lines 2–10

performs the peeling process on&; as follows. In line 3, a copy of&;

is saved in&145 >A4 to support checking the variation of&; in line 10.

In line 4, we call the peel function to iteratively remove vertices with

degrees less than k[;] from �; [&; ] (i.e., violating Constraint (1) in

De�nition 3.3). The output is the k[;]-core in�; [&; ], which is used

to update &; . Then, for each other layer �8 , where 1 ≤ 8 < ; , we

compute the cross-layer subgraph of �8 induced by &; , i.e., �8 [&; ],

and call peel to obtain the k[8]-core in�8 [&; ]. The result is saved in

&8 . In lines 7–9, we check the neighbor coverage fraction q (E,&8 )

for each vertex E ∈ &; . If q (E,&8 ) < p[8], E violates Constraint (2)

in De�nition 3.3, so we remove E from&; (line 9). If&; is changed in

this iteration, i.e., &; ≠ &145 >A4 , the repeat loop continues to peel

more vertices. Otherwise, the algorithm returns &; and terminates.

Theorem 4.1. The output of Algorithm 1 is the (k, p)-core inM.

Usingwell-designed arrays, Algorithm 1 can run in$ ( |M|+; |+; |)

time and$ (; ·+max) space, where |M| =
∑;
8=1 |+8 | + |� (G)| + |� (C)|

and +max = max1≤8≤; |+8 |. The details are described in Appendix B

of the full paper [23]. In addition, the complexity analysis for all

algorithms can be found in Appendix N of [23].

5 GCORE DECOMPOSITION (GCD)

As with the multi-layer cores [11], the number of nonempty gCores

can be exponential in the number of layers, and not all of them

are nested into one another. Hence, we cannot expect to apply the

vertex peeling paradigm used in core decomposition on simple

graphs to solve the gCore decomposition (GCD) problem. To this

end, we �rst present a naïve solution in Section 5.1. By exploiting

the containment relationships among gCores as described in Prop-

erties 2 and 3, a tree-based structure called KP-tree is introduced to

model the search space of the GCD problem in Section 5.2, which

determines a good order for fast computing all gCores.

5.1 Naïve GCD Algorithm

A naïve solution to the GCD problem consists of two phases. In

phase 1, we enumerate all (k, p) pairs such that the (k, p)-core is

nonempty. In phase 2, we use the GCS algorithm (Algorithm 1) to

compute the (k, p)-core for each (k, p) pair enumerated in phase 1.

Obviously, phase 1 is the key to the algorithm design.

k = (0,0,0)

k = (0,0,1)

k = (0,0,2) k = (0,1,1) k = (0,2,0)

k = (0,1,0) k = (1,0,0)

k = (1,0,1) k = (1,1,0) k = (2,0,0)

(0,0)

… … … …

P-tree

(0,1) (1,0)

(0,2) (1,1) (2,0)

(0,0)

… … …

(0,1) (1,0)

(0,0)

… … …

(0,1) (1,0)

(0,0)

… … …

(0,1) (1,0)

(0,0)

… …

(0,0)

… …

(0,0)

… …

(0,0)

… …

(0,0)

… …

(0,0)

… …

Figure 4: The structure of the KP-tree for a 3-layer graph.

All elements of k are integers. For 8 = 1, 2, . . . , ; , we have 0 ≤

k[8] ≤ ^ (�8 ), where ^ (�8 ) is the degeneracy of �8 , the largest

integer : such that the :-core of �8 is nonempty. If k[8] > ^ (�8 )

for some 8 ∈ {1, 2, . . . , ;}, the k[8]-core of �8 is certainly empty,

thereby violating Constraint (1) or (2) speci�ed in De�nition 3.3.

Therefore, we only need to consider possible values for k ranging

from (0, 0, . . . , 0) to (^ (�1), ^ (�2), . . . , ^ (�; )).

Every element of p is a real number in [0, 1]. It is de�nitely

infeasible to enumerate all values of p. However, we found that it

is su�cient to choose p[8] from the �nite set �8 de�ned below.

Lemma 5.1. For any (k, p)-core & in an ;-layer graphM, there

exists a vector p̂ with p̂[8] ∈ �8 for 8 = 1, 2, · · · , ; − 1 such that the

(k, p̂)-core inM is identical to & , where

�8 =

{

9

3468 (E)

�

�

�

�

E ∈ +; , 9 = 0, 1, . . . , 3468 (E)

}

. (1)

After computing each �8 using Equation (1), we can then generate

all possible values for p.

The overall time complexity of the two-phase naïve solution is

$ (
∏;

8=1 ^ (�8 ) ·
∏;−1

8=1 |�8 | · ( |M| + ; |+; |) +
∑;−1
8=1 3

2
8 log38 ), and the

space complexity is$ (; · (
∏;

8=1 ^ (�8 ) +
∏;−1

8=1 |�8 | ++<0G )), where

38 is the maximum cross-layer degree of vertices in +; on layer �8 .

The naïve approach su�ers from two main drawbacks. Firstly, it

computes the (k, p)-core for all enumerated (k, p) pairs, although

many of them are empty. Secondly, each (k, p)-core is independently

computed by Algorithm 1 from scratch. A large number of repeated

computations are carried out for di�erent (k, p) pairs.

5.2 GCD Algorithm based on KP-trees

To overcome the disadvantages of the naïve approach, we design a

“tree of trees” data structure called KP-tree to represent the search

space of the GCD problem. We will show later that by traversing

a KP-tree, it is possible to fast identify empty gCores and reduce

repeated computations when computing di�erent gCores.

5.2.1 KP-trees. As illustrated in Figure 4, the overall structure

of a KP-tree is a tree. Each node in the KP-tree is associated with

an ;-dimensional vector k ∈ N; . We call the node associated with a

vector k the k-node. The root of the KP-tree is the 0; -node. In the
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KP-tree, the k-node is the parent of the k′-node if and only if k′ is

an immediate su�x successor of k as de�ned below.

De�nition 5.2. Let x and y be two integer vectors of the same

dimension. y is an immediate su�x successor of x if

(1) x and y are di�erent in exactly one element, say x[8] and y[8];

(2) x[8] + 1 = y[8];

(3) x[ 9] = y[ 9] = 0 for all 9 > 8 .

Obviously, if y is an immediate su�x successor of x, we have

x < y. Let 4=30(k) be the number of consecutive zeros at the end

of a vector k. It’s easy to see that the k-node in the KP-tree has

4=30(k) + 1 children if k ≠ 0; and ; children if k = 0; .

Inside every node of the KP-tree is nested another tree called P-

tree. Each node in the %-tree is associatedwith an (;−1)-dimensional

real vector p ∈ [0, 1];−1, and the node is called the p-node. In fact,

as the 8-th element of p is chosen from the set �8 of fractional

numbers formulated in Equation (1), we actually store in each p[8]

the index of the corresponding fractional value in �8 after sorting

�8 in increasing order. It helps de�ne the P-tree and save storage.

Speci�cally, in a P-tree, the root is the 0;−1-node, the p-node is

the parent of the p′-node if and only if p′ is an immediate su�x

successor of p. Thus, the p-node has 4=30(p) +1 children if p ≠ 0;−1

and ; − 1 children if p = 0;−1.

The following lemma ensures that the KP-tree is a systematic

organization of gCores: a p-node nested in a k-node represents a

distinct (k, p) pair that uniquely corresponds to the (k, p)-core.

Lemma 5.3. For each possible value of k, there is exactly one k-node

in the KP-tree. And in every k-node, for each possible value of p, there

is exactly one p-node in the P-tree nested in the k-node.

5.2.2 KP-tree-based GCD Algorithm. It’s easy to see that both

KP-tree and each P-tree inside the KP-tree maintain an ordering

relationship “<” between the vectors associated with any pair of

parent and child nodes. The following lemma utilizes these orders

to overcome the disadvantages of the naïve method.

Lemma 5.4. Given an ;-layer graphM, for any (k, p)-core & and

(k′, p′)-core & ′ inM,Mk′ [&
′] is a subgraph ofMk [&] if k ≤ k′

and p ≤ p′. Here,Mk [&] denotes the subgraph ofM induced by the

set {&1, &2, · · · , &; }, where&8 is the k[8]-core of�8 [&] for 1 ≤ 8 < ; ,

and &; = & .

The lemma has two implications: (I1) If & = ∅, we also have

& ′ = ∅, so it is unnecessary to compute & ′ by the GCS algorithm

(Algorithm 1); (I2) If & ≠ ∅, & ′ can be computed on the subgraph

Mk [&] instead of on the entire M. Implication I1 enables fast

identi�cation of empty gCores, and Implication I2 helps reduce

repeated computations when computing di�erent gCores.

The two implications and the orders between vectors associated

with parent and child nodes in the KP-tree and P-trees pave the way

to a depth-�rst-search (DFS) order generation of all gCores, which

computes gCores during the DFS on the KP-tree and the DFS on the

P-tree nested in each visited k-node (Algorithm 2). The pseudocode

is self-explanatory. Note that the function GCS used in line 5 needs

to be simply adapted to return&; as well as&1, &2, . . . , &;−1, where

each &8 for 1 ≤ 8 < ; is obtained in line 6 of Algorithm 1.

Theorem 5.5. Algorithm 2 performs generalized core decomposi-

tion, returning all nonempty gCores inM.

Algorithm 2 GCD+ (KP-tree-based gCore Decomposition)

Input: An ; -layer graphM
Output: The collection ' of all nonempty gCores
1: ' ← ∅
2: KPTreeDFS(M, 0; , ')
3: return '
4: procedure PTreeDFS(M, k, p, ')
5: {&1,&2, . . . ,&; } ← GCS(M, k, ToFrac(p) )
6: if &; ≠ ∅ then
7: ' ← ' ∪ { (&; , k, p) }
8: for 8 ← ; − 1, ; − 2, . . . , ; − 4=30(p) − 1 do
9: if 8 > 0 and p[8 ] < |�8 | then
10: p′ ← p
11: p′ [8 ] ← p′ [8 ] + 1
12: PTreeDFS(M[{&1,&2, . . . ,&; } ], k, p

′, ')

13: return {&1,&2, . . . ,&; }

14: procedure KPTreeDFS(M, k, ')

15: {&1,&2, . . . ,&; } ← PTreeDFS(M, k, 0;−1, ')
16: if &; ≠ ∅ then
17: for 8 ← ;, ; − 1, . . . , ; − 4=30(k) do
18: if 8 > 0 and k[8 ] < ^ (�8 ) then
19: k′ ← k
20: k′ [8 ] ← k′ [8 ] + 1
21: KPTreeDFS(M[{&1,&2, . . . ,&; } ], k

′, ')

22: procedure ToFrac(p)
23: return (�1 [p[1] ], �2 [p[2] ], . . . , �;−1 [p[; − 1] ] ) ⊲ Convert p to its fractional form

The time complexity of Algorithm 2 is$ (
∏;

8=1 ^ (�8 ) ·
∏;−2

8=1 |�8 | ·

( |M| +; |+; |) +; ·
∏;

8=1 ^ (�8 ) ·
∏;−1

8=1 |�8 | +
∑;−1
8=1 3

2
8 log38 ). The space

complexity of Algorithm 2 is $ (; · (+<0G +
∑;−1
8=1 |�8 |)).

6 GCORE INDEXING (GCI)

In this section, we study how to store and index the results of the

GCD problem to enable fast search of any (k, p)-core.

6.1 Storage and Index Structure

When GCD+ (Algorithm 2) terminates, it conceptually generates a

subtree of the KP-tree where a p-node nested in a k-node uniquely

represents a nonempty (k, p)-core. By materializing this subtree of

KP-tree, a storage and index structure can be designed.

Speci�cally, we use a hash table to map k to the k-node to support

fast locating each k-node. To store all nonempty gCores in the P-

tree nested in the k-node, say ) , we augment the structure of ) in

the following way:

(1) For any leaf node # in) , we add a dummy node ! to represent

an empty gCore and designate # as the parent of !.

(2) Let # and # ′ be two nodes in) representing gCores& and& ′,

respectively, and # ′ is the leftmost child of # . We store the set

& −& ′ along with the edge between # and # ′. # ′ is said to be

the leftmost child of # if # ′ ≺ # ′′ for all siblings # ′′ of # ′,

where ≺ is a total order of # ’s children as given below.

De�nition 6.1. Let # ′ and # ′′ be two children of a node # . We

have # ′ ≺ # ′′ if 4=30(p′) < 4=30(p′′), where p′ and p′′ are the

vectors associated with # ′ and # ′′, respectively.

Figure 5(a) illustrates an augmented P-tree. Theorem 6.2 ensures

that the augmented P-tree is a compact storage of all gCores corre-

sponding to the nodes in the P-tree. In the rest of the paper, when

we mention a KP-tree or a P-tree, we are referring to its augmented

version that can serve as a storage and index structure.

Theorem 6.2. Let # be the node representing the gCore & . We

have that & equals the union of the vertex sets associated with the

edges on the leftmost path from # to a leaf node, where the leftmost
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Figure 5: Augmented structures nested in the k-node of the

KP-tree index of the example GMG in Figure 3, where k =

(3, 3, 3). (a) The original augmented P-tree. (b)-(d) Compact

structures obtained using di�erent compaction techniques.

Algorithm 3 GCS+ (Index-based gCore Search)

Input: The KP-tree for an ; -layer graphM, a vector k ∈ N; , and a vector p ∈ [0, 1];−1

Output: The (k, p)-core inM
1: Find the k-node from the hash table of the KP-tree with the key k
2: ) ← the P-tree nested in the k-node
3: # ← Search(), p)
4: return Recover(# )
5: procedure Search(), p)
6: # ← the root of the P-tree)
7: 8 ← 1
8: while 8 < ; do
9: (#, 8 ) ← Forward(#, 8, p)

10: return #
11: procedure Forward(#, 8, p)
12: if p′ [8 ] < p[8 ] then ⊲ p′ is the vector (in the fractional form) associated with #
13: for each child # ′ of # do
14: if the vectors associated with # ′ and # are di�erent in their 8-th element then
15: return (# ′, 8 )

16: else
17: return (#, 8 + 1)

18: procedure Recover(# )
19: & ← ∅
20: while # is not a dummy leaf do
21: # ′ ← the leftmost child of #
22: ( ← the set of vertices associated with the edge between # and # ′ in the P-tree
23: & ← & ∪ (
24: # ← # ′

25: return&

path of # is obtained by following the leftmost child of # , the leftmost

child of the leftmost child of # . . . until a leaf node is reached.

6.2 Index-based GCS Algorithm

The KP-tree index proposed in Section 6.1 enables a fast two-phase

gCore search (GCS) algorithm (Algorithm 3). Given vectors k ∈ N;

and p ∈ [0, 1];−1, it retrieves the (k, p)-core as follows:

(1) Find a node # in the P-tree nested in the k-node of the KP-tree

that represents the (k, p)-core.

(2) Compute the union of all vertex sets associated with the edges

on the leftmost path of # (Theorem 6.2).

The k-node can be easily found from the hash table of the KP-tree

with the key k (line 1). Since p is a real vector, it is very likely that

p ∉ �1 × �2 × · · · × �;−1, and therefore the p-node is not indexed in

the KP-tree. To handle this, we �nd a p̂-node in the P-tree such that

the (k, p)-core is identical to the (k, p̂)-core. The proof of Lemma 5.1

(Appendix M of [23]) provides us a method to e�ciently identify p̂:

For 8 = 1, 2, . . . , ; − 1, p̂[8] is the smallest element in �8 that is not

less than p[8]. If p ∈ �1 × �2 × · · · × �;−1, we have p̂ = p.

After knowing p̂, Algorithm 3 calls Procedure Search (lines 5–

10) in line 3 to search for the p̂-node. Then, Procedure Recover

(lines 18–25) is called in line 4 to get the union of the vertex sets on

the leftmost path of the p̂-node, which is returned as the (k, p)-core.

The pseudocode is straightforward, so the description is omitted.

Theorem 6.3. Algorithm 3 returns the (k, p)-core inM.

Algorithm 3 runs in $ (
∑;−1
8=1 |�8 | + |& |) time and $ ( |& |) space,

where |& | is the size of the result (k, p)-core.

7 COMPACTION OF P-TREES

The gCores represented by the nodes in a P-tree may be not distinct.

For example, in Figure 5(a), the p-nodes for p = (2, 1), (2, 2), (2, 3),

and (2, 4) all represent the gCore {1, 2, 3, 4}. Storing these nodes

incurs unnecessary storage overheads and computational costs. In

this section, we explore methods to eliminate unnecessary nodes

from a P-tree while ensuring that all gCores can still be correctly

retrieved using Algorithm 3 on the resulting compact structure.

7.1 Foundations

In a P-tree, two nodes # and # ′ are considered redundant, denoted

as # ≅ # ′, if they represent the same gCore. Obviously, the binary

relation ≅ is re�exive, symmetric, and transitive, making it an

equivalence relation. The equivalence class of a node # under ≅ is

denoted as [# ] = {# ′ |# ′ ≅ # }.

De�nition 7.1. The vector p associated with a node # ∈ [# ] is

maximal if p′ ≤ p for all vectors p′ associated with nodes# ′ ∈ [# ].

The maximal vector provides a unique characterization of the

equivalence class [# ]. Below are several theoretical foundations:

Theorem 7.2. The maximal vector for [# ] is unique.

Theorem 7.3. Let & be the (k, p)-core represented by # in the

P-tree, and p̂ be the maximal vector for [# ]. For 8 = 1, 2, . . . , ; − 1, we

have p̂[8] = minE∈& q (E,&8 ), where &8 is the k[8]-core of �8 [&].

Lemma 7.4. For two nodes # and # ′ in a P-tree, we have # ≅ # ′

if and only if the maximal vectors for [# ] and [# ′] are identical.

7.2 Node Elimination

For any two nodes # and # ′ in a P-tree, if # ≅ # ′ and # ′ is # ’s

only child, we can remove # because the gCore represented by #

can be identically obtained by searching for the gCore represented

by # ′. If # has a parent, we link # ′ to # ’s parent as a new child.

We call the process “node elimination”.

Example. An example of node elimination is shown in Figure 6(a).

Let #0, #1, and #2 be the nodes with p = (2, 0), (2, 1), and (2, 2),

respectively. We have #1 ≅ #2 and #2 is #1’s only child. Therefore,

#1 can be removed. After removing #1, #0 becomes #2’s parent.
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Figure 6: Illustration of P-tree compaction schemes: (a) and (b) node elimination, (c) subtree elimination, and (d) subtree merge.

After applying node elimination, the obtained tree is no longer

a P-tree as the vector associated with # ′ is not an immediate su�x

successor (De�nition 5.2) of the new parent’s vector. We name the

new tree P+-tree, which satis�es the following property.

Property 4. Let # and # ′ be two nodes in a P+-tree, and let p

and p′ be the vectors associated with # and # ′, respectively. If # is

the parent of # ′, p′ is a su�x successor of p, that is: (1) p and p′ are

di�erent in exactly one element, say p[8] and p′ [8]; (2) p[8] < p′ [8];

and (3) p[ 9] = p′ [ 9] = 0 for all 9 > 8 .

The node elimination procedure presented above can be repeat-

edly applied to a P+-tree until no node can be removed anymore.

The correctness of applying Algorithm 3 on a P+-tree to solve the

GCS problem is guaranteed by the following theorem.

Theorem 7.5. Given a P-tree and the P+-tree obtained by repeat-

edly applying the node elimination procedure, when the (k, p)-core

represented by a node # in the P-tree is queried, Procedure Search in

Algorithm 3 returns a node # ∗ in the P+-tree. We have (1) # ≅ # ∗;

(2) The sets (except ∅) on the leftmost path from # ′ to a leaf node in

the P-tree are all retained on the leftmost path from # ∗ to a leaf node

in the P+-tree, where # ′ is the copy of # ∗ in the P-tree.

Example. The P+-tree shown in Figure 6(b) is obtained by elim-

inating the nodes with vectors p = (2, 1), (2, 2), and (2, 3). When

the (k, p)-core for p = (2, 2) is queried, Procedure Search in Algo-

rithm 3 returns the p∗-node # ∗, where p∗ = (2, 4). The vertex set

{1, 2, 3, 4} on the leftmost path of # ∗ is returned as the (k, p)-core.

Redundant Node Detection. Lemma 7.4 implies an easier way to test

the equivalence between two nodes # and # ′ in a P-tree if # ′ is

# ’s only child as described in the following theorem.

Theorem 7.6. Let # and # ′ be two nodes in a P-tree, and # ′ is

# ’s only child. Let p̂ be the maximal vector for [# ], and p′ be the

vector associated with # ′. We have # ≅ # ′ if and only if p′ ≤ p̂.

7.3 Subtree Elimination

If a node # in a P-tree has more than one child, node elimination

can never be applied to # . To overcome this limitation, we extend

node elimination to subtree elimination in this subsection.

First, let us de�ne some concepts. For a node # in a P-tree, based

on the order ≺ (De�nition 6.1) on # ’s children, we have a node # ′

is the rightmost child of # if # ′′ ≺ # ′ for all siblings # ′′ of # ′.

#1, #2, · · · , #< is the rightmost path of # if #1 = # , #8+1 is the

rightmost child of #8 for 1 ≤ 8 < <, and #< is a leaf node.

De�nition 7.7. For a non-leaf node # in a P-tree, let # ′ be the

rightmost child of # . The subtree rooted at # except the subtree

rooted at # ′ is called the preceding subtree rooted at # .

De�nition 7.8. Let) and) ′ be two subtrees in a P-tree rooted at

' and '′, respectively. ) and ) ′ are redundant if

(1) ' ≅ '′, that is, ' and '′ are redundant;

(2) ' and '′ have the same number of children, and for each 8-th

child #8 of ' and the 8-th child # ′8 of '′, the subtrees rooted at

#8 and # ′8 are redundant.

In other words, ) is isomorphic to ) ′ in terms of the node redun-

dancy relation ≅. We denote it by ) ≅ ) ′.

If ) ≅ ) ′, ) and ) ′ have the same number of nodes, and there

exists a bijection 5 from the nodes of ) to the nodes of ) ′:

5 (# ) =

{

'′ if # = ',

the 8-th child of 5 (# ′ ) if # is the 8-th child of its parent # ′

(2)

Under the bijection 5 , we have: (1) # ≅ 5 (# ) for all nodes #

in ) ; and (2) # ′ is the parent of # in ) if and only if 5 (# ′) is the

parent of 5 (# ) in ) ′. Therefore, every node # in ) is redundant

with regards to 5 (# ) in ) ′, and all the redundant nodes in ) make

) a redundant subtree. To remove such redundant subtree from a

P-tree, we propose the following subtree elimination procedure.

For two nodes # and # ′ in a P-tree, and # ′ is # ’s rightmost

child, if the preceding subtree rooted at # , say ) , is isomorphic to

the preceding subtree rooted at # ′, say ) ′, we remove ) from the

P-tree. If # has a parent, we link # ′ to # ’s parent as a new child.

An example of subtree elimination is illustrated in Figure 6(c).

Clearly, node elimination presented in Section 7.2 is a special

case of subtree elimination when # ′ is # ’s only child. After subtree

elimination, the obtained tree is also a P+-tree. Hence, subtree

elimination can also be repeatedly applied to a P+-tree. Theorem 7.5

still holds if “node elimination” is replaced by “subtree elimination”.

Redundant Subtree Detection. By extending the redundant node

detection method described in Theorem 7.6, we provide an e�cient

way to identify redundant subtrees in a P-tree. The basic idea is

to compute a unique signature for a subtree as will be de�ned in

De�nition 7.9 and test if two subtrees are isomorphic by comparing

their signatures using the following Theorem 7.10.
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De�nition 7.9. Let ) be a subtree in a P-tree. The signature of )

is de�ned as the element-wise minimum of the maximal vectors of

[# ] for all nodes # in ) .

Theorem 7.10. Let # and # ′ be two nodes in a P-tree with vectors

p and p′, respectively, and # ′ is a descendant of # on # ’s rightmost

path. Let ) and ) ′ be the preceding subtrees rooted at # and # ′,

respectively. We have ) ≅ ) ′ if and only if p′ [8] ≤ p̂[8], where p̂ is

the signature of ) , and 8 is the dimension at which p di�ers from p′.

7.4 Subtree Transplant

Generating P-tree nodes in a DFS order (Algorithm 2) guarantees

that for any node # and its rightmost child # ′ in a P-tree, the

preceding subtree rooted at # , say ) , is generated prior to # ′

and the preceding subtree ) ′ rooted at # ′. Once # ′ is generated,

we can determine whether the subtrees ) and ) ′ are isomorphic

using Theorem 7.10, even though ) ′ has not been generated yet.

If we �nd that ) ≅ ) ′, we can reuse the structure of ) to directly

obtain) ′ without removing) and generating) ′ from scratch. This

approach is called “subtree transplant". Due to space limitations, the

implementation details are given in Appendix F of [23].

7.5 Subtree Merge

The condition for subtree elimination is strict. For any preceding

subtrees ) and ) ′ rooted at # and # ′, respectively, subtree elimi-

nation cannot be applied to ) if # ′ is not # ’s rightmost child or )

and ) ′ are not isomorphic. The latter case is more likely to happen

if # has more children. In this subsection, a subtree merge approach

is proposed to further reduce the redundancy between ) and ) ′.

The idea is to conceptually divide) and) ′ into smaller substruc-

tures called “branches”, in which we seek redundant subtrees that

can be eliminated. The concept of branch is de�ned as follows:

De�nition 7.11. Given two nodes # and # ′ in a P-tree and # ′

is a child of # , the subtree formed by # and the subtree rooted at

# ′ is called a branch, denoted by �#8 , where 8 is the dimension at

which the vectors associated with # and # ′ di�er.

The subtree merge approach works as follows. Let # and ' be

two nodes in a P-tree, and # is a child of '. We consider each pair

of branches �'8 and �#8 within the preceding subtrees of ' and # ,

respectively. If there exist nodes '1 and #1 on the rightmost path

of ' in �'8 and # in �#8 , respectively, such that the subtrees rooted

at them, say) and) ′, are isomorphic, we merge) into) ′. This can

be done by removing ) and making #1 a new child of '1’s parent.

Example. Figure 6(d) illustrates an example of subtree merge. Let

', '1, # , #1 be the nodes with vectors p = (0, 0), (0, 1), (1, 0), (1, 1),

respectively. The subtrees rooted at '1 and #1 are denoted as) and

) ′, respectively. ' and ) form the branch �'2 , while # and ) ′ form

the branch�#2 . In this example,�'2 and�#2 are exactly the preceding

subtrees rooted at ' and # , respectively. Although �'2 ≇ �#2 , the

subtrees) and) ′ within them are isomorphic. Therefore, we merge

) into ) ′ by removing ) and making ' the parent of #1.

Applying subtree merge, as shown in the example above, leads to

a node having more than one parent, so the obtained data structure

is no longer a tree but a directed acyclic graph (DAG). We call it

P+-DAG. Obviously, subtree merge can be repeatedly applied to a

P+-DAG until no subtrees can be merged.

Table 1: Properties of graphs used in experiments.

Graph |V | |� (G) | |� (C) | #Vertex Types ;

SacchCere (SC) [11] 6750 247,152 39,420 1 7
ObamaInIsrael (Oii) [27] 2,279,535 3,827,964 4,559,070 1 3
Friendfeed (FF)[8] 505,104 18,673,521 1,010,208 1 3

6-NG [26] 4,500 15,787 24,001 5 5
9-NG [26] 6,750 24,264 36,015 5 5
DBLP [30] 41,892 280,707 381,176 2 2

Twitter1 47,280 445,287 89,775 3 3

Movie2 251,742 1,183,167 502,821 2 4
Aminer-5 [32] 2,890,443 14,536,094 7,730,034 3 5
Aminer-10 [32] 4,650,693 118,763,984 14,384,941 3 5

Notably, subtree elimination and subtree merge complement

each other. By applying subtree merge to a P+-tree obtained by

applying the subtree elimination procedure, we can get a more

succinct storage of all gCores. The following theorem ensures that

Algorithm 3 can be applied to solve the GCS problem on a P+-DAG.

Theorem 7.12. Given a P+-tree and the P+-DAG obtained by

repeatedly applying the subtree merge procedure, when the gCore

represented by a node # in the P+-tree is queried, Procedure Search

in Algorithm 3 returns a node# ∗ in the P+-DAG.We have (1)# ≅ # ∗;

(2) The sets (except ∅) on the leftmost path from # ′ to a leaf node in

the P+-tree are all retained on the leftmost path from # ∗ to a leaf

node in the P+-DAG, where # ′ is the copy of # ∗ in the P+-tree.

Redundant Subtree Detection. By utilizing the subtree signatures

(De�nition 7.9), we can determine the redundancy between two

subtrees within separate branches. For the details, please refer to

Appendix G of the full paper [23], where we also demonstrate an

e�cient implementation of subtree merge that runs in linear time

in the lengths of the rightmost paths of two given branches.

Pu�ing It All Together. Consider the P-tree shown in Figure 5(a),

which consists of 19 nodes and 15 edges associated with vertex

sets. Figure 5(b), (c), and (d) show the P+-tree/P+-DAG obtained by

applying the proposed compaction techniques. Through repeated

node elimination, 10 nodes and 6 edges associated with vertex sets

are retained in the P+-tree, as shown in Figure 5(b). Subsequent

applications of subtree elimination further reduce the size of the P+-

tree, which has 7 nodes and 4 edges with sets (see Figure 5(c)). By

continuing applying the subtree merge, we �nally have a P+-DAG

in Figure 5(d), in which only 5 nodes and 3 sets are retained.

8 EXPERIMENTS

8.1 Experimental Setup

We obtained the source code for (:,Ψ)-NMC search from [17] and

implemented other algorithms in C++. All experiments were per-

formed on a server with an Intel Xeon Gold 5218R processor and

754GB of RAM, running 64-bit Ubuntu 22.04.

Datasets. We select 3 real-world pillar multi-layer graphs and

construct 7 GMGs using publicly available datasets. The statistics

of these graphs are presented in Table 1, where |V| denotes the

total number of distinct vertices among all layers, and |� (C)| counts

cross-layer edges with one endpoint on the layer of users’ interest.

The details of these graphs are given in Appendix H of [23].

1https://www.twitter.com/
2https://www.themoviedb.org/
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Figure 7: Size matrices of gCores on DBLP and Twitter.

Algorithms. To the best of our knowledge, no existing cohesive

subgraph models can directly handle GMGs. Therefore, we compare

our gCore model with the :-core [2], multi-layer core (3-CC) [37],

and relational community [15] models designed for simple graphs,

MPNs, and HINs, respectively. Besides, the meta-path-based (:,Ψ)-

NMC [17] model is also compared in the e�ectiveness evaluation.

Speci�cally, we compare the following algorithms:

• KC: :-core computation algorithm in [2]. By default, we run KC

only on the layer of users’ interest.

• DCC: 3-CC computation algorithm in [37]. In our implementa-

tion, we extend DCC to compute the multi-layer k-core.

• RCD: Relational community detection algorithm in [15]. We

adapt the algorithm to GMGs by designating vertices in each

layer�8 a type C8 and using constraints (C8 , C8 , :8 ) for 1 ≤ 8 ≤ ;

and (C; , C8 , 1) for 1 ≤ 8 < ; as the community schema. The

result is denoted by k-rc, where k = (:1, :2, · · · , :; ).

• CSSH: The (:,Ψ)-NMC search algorithm in [17], which is adapted

to GMGs as described in Appendix I of the full paper [23].

• GCS: Our gCore search algorithm (Algorithm 1).

• GCS+: Our KP-tree-based gCore search algorithm (Algorithm 3).

• TN: GCD+ (Algorithm 2) with KP-tree constructed (Section 6.1).

• TE: TN with node and subtree elimination (Sections 7.2–7.3).

• TM: TN with subtree merge (Section 7.5).

• TEM: TN with both subtree elimination and subtree merge.

Note that we do not evaluate the naïve GCD algorithm proposed

in Section 5.1 because it is slow and cannot generate a KP-tree index

to support gCore search. Besides, the subtree transplant technique

introduced in Section 7.4 is incorporated in the implementations of

subtree elimination and subtree merge.

8.2 E�ectiveness Evaluation

8.2.1 gCore Sizes. To demonstrate how the cohesiveness constraint

imposed on di�erent layers a�ects gCores, we examine the size of

the (k, p)-core w.r.t. :8 and ?;,8 (?8 for short) for 1 ≤ 8 < ; . Figure 7

visualizes the size matrices obtained on DBLP and Twitter with

rows and columns representing :8 and ?8 , respectively, and each

cell (G,~) representing the size of the (k, p)-core with :8 = G and

?8 = ~. When varying :8 and ?8 , we �x :; = 10 for DBLP and 5 for

Twitter, and �x : 9 = 0 and ? 9 = 0 for 1 ≤ 9 < ; and 9 ≠ 8 .

We can observe that the size of the (k, p)-core is always monoton-

ically decreasing when either :8 or ?8 becomes larger. It’s consistent

with the containment relationships among gCores given in Prop-

erties 2 and 3. Note that all cells in the �rst column correspond to

?8 = 0, meaning no constraint is imposed on the neighbor coverage

fraction and thereby the cohesiveness of the vertices shown on �8 .

In this case, the (k, p)-core is exactly the :; -core. A signi�cant drop

in size exhibits when increasing ?8 from 0 to 0.1. This is because the

:; -core contains massive vertices with seldom, even no, cross-layer

neighbors. By properly setting ?8 , the (k, p)-core can well �lter

out these vertices. Besides, a trade-o� between higher intra-layer

cohesiveness and higher neighbor coverage fraction, i.e., a larger

:8 and a larger ?8 , can be seen. Each boundary cell corresponding

to the last nonempty (k, p)-core as :8 or ?8 increases exhibits the

highest cohesiveness w.r.t. �8 for di�erent :8 /?8 trade-o�s.

8.2.2 Closeness. We compare the closeness of vertices in :-core,

k-rc, (:,Ψ)-NMC, and (k, p)-core exhibited on di�erent layers. To

measure this, we introduce two metrics:

(1) k-number: Given a vertex subset & ⊆ +; and a real number

?∗ ∈ [0, 1], the k-number of a vertex E ∈ & w.r.t.�8 is de�ned as the

%-th percentile of the coreness of vertices in #8 (E) within �8 [&],

where % = (1−?∗)×100. Here, the coreness of a vertex is the largest

: such that there is a nonempty :-core containing the vertex in

the graph. If a fraction ?∗ of E ’s cross-layer neighbors in �8 can

capture enough information about E ’s neighborhood in �8 , a large

k-number of E indicates that E ’s neighbors strongly engage in the

community formed by neighbors of other vertices in & , implying

the close interactions between E and other vertices in & w.r.t. �8 .

(2) p-number: Given a vertex subset & ⊆ +; and an integer :∗,

the p-number of a vertex E ∈ & w.r.t. �8 is de�ned as the neighbor

coverage fraction of E within the :∗-core on �8 [&]. Assume that

the :∗-core is enough to characterize a desired cohesiveness in �8 ,

when the p-number of E is large, many neighbors of E cohesively

interact with neighbors of other vertices in& within�8 , which also

implies E ’s close interactions with other vertices in & w.r.t. �8 .

We inspect the k-number and p-number for vertices in the cohe-

sive subgraphs characterized by these models on DBLP and Twitter.

For DBLP, we set : = 10, k = (10, 10), and p = (0.7); and for Twitter,

we use : = 5, k = (5, 5, 5), and p = (0.5, 0.5). When computing the

k-number (resp. p-number) of vertices w.r.t �8 , we set ?
∗
= p[8]

(resp. :∗ = k[8]).

The distributions of the k-numbers are given in Figure 8. We

can observe that the :-core contains massive vertices with small

k-numbers, especially on DBLP and Twitter (8 = 1), where vertices

with k-numbers smaller than 6 and 4 account for 23% and 37% of all

vertices, respectively. The k-rc and (:,Ψ)-NMC also have vertices

with small k-numbers, accounting for 21% and 7% on DBLP and

Twitter (8 = 1), respectively. These vertices show weak interactions

with other vertices w.r.t.�8 , which may be broken by only removing

several edges in �8 . However, all vertices in the (k, p)-core have

relatively large k-numbers (no less than 10 for DBLP and 5 for

Twitter). Note that the other three models may contain a larger

proportion of vertices with large k-numbers than the (k, p)-core (see

Figure 8(c)). It is because the massive vertices with small k-numbers

enrich the subgraph induced by their cross-layer neighbors in �8 ,

and thereby many vertices have the coreness values increased.

Figure 9 shows the results on p-numbers, which exhibit similar

distributions to the k-numbers. As DBLP is very dense in�0 (a term

similarity layer), only a small proportion of vertices in the :-core,

k-rc, and (:,Ψ)-NMC have small p-numbers (about 3% vertices

with p-numbers less than 0.5). The :-core on Twitter has 28% and

7% vertices with p-numbers equal to 0 for 8 = 1 and 2, respectively.
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Figure 8: Distributions of the k-numbers of vertices in the :-

core, k-rc, (:,Ψ)-NMC, and (k, p)-core on DBLP and Twitter.

Figure 9: Distributions of the p-numbers of vertices in the :-

core, k-rc, (:,Ψ)-NMC, and (k, p)-core on DBLP and Twitter.
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No. Size Top-5 Terms

① 566 data, system, database, query, databases

② 11 demonstration, repository, xml, active, views
③ 11 application, design, technology, oracle, replication
④ 26 manager, performance, storage, database, memory
⑤ 11 system, incomplete, advanced, inconsistent, infomix
⑥ 11 hosting, sql, server, runtime, microsoft
⑦ 11 distributed, continuous, server, media, database
⑧ 12 distributed, stream, engine, operation, borealis

Figure 10: Comparison between the :-core and (k, p)-core

on DBLP, where : = 10, k = (10, 10), and p = (0.757).
Figure 11: Runtime of cohesive subgraph search algorithms.

These vertices have no interactions with other vertices w.r.t. �8 ,

making the :-core show very sparse connections in terms of�8 . It is

consistent with the signi�cant (k, p)-core size drop we observed in

Section 8.2.1 when increasing ?8 from 0 to 0.1. The k-rc and (:,Ψ)-

NMC have a smaller proportion of vertices with small p-numbers

than the :-core, while each vertex in the (k, p)-core has a large

p-number (no less than 0.7 for DBLP and 0.5 for Twitter).

8.2.3 Case Study on DBLP. We apply the gCore model to conduct

collaboration analysis on the DBLP dataset. We set k = (10, 10) and

p = (?), where ? is the largest real number such that the (k, p)-core

is nonempty. In this case, ? = 0.757. Figure 10 visualizes the largest

connected component (CC) of the 10-core (No. ①) and all CCs of the

(k, p)-core within it. These CCs correspond to groups of cohesively

collaborated authors. For each group, we compute its size and the

top-5 frequently connected terms to represent the research interests

of the authors, which are also presented in the �gure.

We can observe that the CC of the 10-core characterizes an

extremely large group of authors with research interests in data

management and database systems, which are both broad �elds.

In contrast, each 7 small CC of the (k, p)-core within it captures a

group of authors collaborating on a speci�c research �eld, e.g., the

one labeled No. ④ corresponds to an author group working in the

�eld of database storage management. These focused groups are

ideal for inviting to present tutorials on certain topics.

8.2.4 Case Study on Last.Fm. We apply the gCoremodel to discover

users sharing friendships and similar musical tastes on Last.Fm, an

online music sharing platform (https://www.last.fm/), and show

how the result guides artist recommendation in Appendix K of [23].

8.3 E�ciency Evaluation

8.3.1 Cohesive Subgraph Search. We compare the e�ciency of our

gCore search algorithm with other core-based cohesive subgraph

search algorithms on both pillar multi-layer graphs and GMGs. On

pillar multi-layer graphs, KC, DCC, and GCS are compared; and

on GMGs, KC, RCD, GCS, and GCS+ are tested. The total runtime

of 100 queries is reported. Queries are generated by randomly sam-

pling 100 (k, p) pairs, and for each pair, we apply k[;] to KC, k to

DCC and RCD, and (k, p) to GCS and GCS+. To avoid excessive

empty results, we restrict k[8] ≤ ^ (�8 )/4 for 1 ≤ 8 ≤ ; . Besides,

we distinguish GCS+ using di�erent KP-trees. GCS+-N, GCS+-M,

GCS+-E, and GCS+-EM represent GCS+ searching the KP-tree gen-

erated by TN, TM, TE, and TEM, respectively. Figure 11 reports the

results. Empty bars mean that the KP-tree used by GCS+ cannot be

generated within 12 hours or due to exceeded memory.

On pillar multi-layer graphs, KC usually uses the least time,

which is expected as it only considers one layer. DCC runs faster

than GCS because it can directly access the cross-layer neighbor of

a vertex by its ID. However, GCS, designed for GMGs, has to scan

the adjacent list to obtain all cross-layer neighbors of a vertex.

On GMGs, KC also runs the fastest among all algorithms without

using indexes. GCS takes a slightly longer runtime than RCD as it

has to check whether each vertex meets the constraints imposed

on the neighbor coverage fractions. With a pre-computed KP-tree,

GCS+ signi�cantly outperforms GCS by 1 − 4 orders of magnitude

on the execution time on most datasets, except for 9-NG where

GCS+ achieves a speedup of 2.4 to 2.9. We next inspect the e�ciency

of GCS+.GCS+-E andGCS+-EM generally run faster thanGCS+-N

andGCS+-M. This is because subtree elimination reduces the height

of P+-trees, leading to fewer traversed tree nodes during gCore

retrieval. Moreover, GCS+-EM is usually marginally slower than

GCS+-E. In our implementation, nodes of P+-trees/P+-DAGs are

stored in linked blocks in the DFS order, with each node followed

by its rightmost child. GCS+-E bene�ts from better cache locality

during traversal on P+-trees, while GCS+-EM incurs more cache

misses as subtree merge disrupts the sequential storage of the nodes.

8.3.2 KP-tree Construction. We evaluate our gCore decomposition

(indexing) algorithm and P-tree compaction techniques. Speci�cally,

we compare TN, TM, TE, and TEM in terms of the runtime as
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Figure 12: Construction time and scale of the KP-tree.

Figure 13: Memory consumption of the KP-tree.

well as the scale (number of nodes) and storage overhead of the

output KP-tree index. Since the Movie, Aminer-5, and Aminer-10

datasets have about 105, 109, and 1011 distinct values of k, each of

which corresponds to a P-tree, constructing a complete KP-tree is

infeasible under limited time and memory constraints. Moreover,

not all values of k are of users’ interests. Therefore, we randomly

sample 1000 values of k and compute corresponding P-trees for

these 3 datasets. Each element k[8] of k is chosen in [0, ^ (�8 )/4] .

Total runtime, scale, and storage overhead are reported.

Runtime and Scale. Figure 12 reports the runtime and the scale

of the generated KP-trees. We set a timeout (OOT) of 12 hours. Ex-

ecution of TN on Twitter is aborted due to exceeded memory. We

have the following observations. 1) TE outperforms TN in both run-

time and scale of the output, con�rming the promising compaction

ability of subtree elimination. 2) TM runs signi�cantly faster than

TN on 6-NG, 9-NG, and Movie, while falls behind on DBLP. This is

because subtree merge only works for graphs with more than 2 lay-

ers. Additional redundant subtree detection operations slow down

the execution on DBLP. 3) TEM consistently yields the smallest

KP-tree, and in most cases, uses the shortest time.

Storage Overhead. Figure 13 reports the storage overhead of the

generated KP-tree index, including the tree structure and the map-

ping that maps each fraction in �8 to its index, denoted by “f2i”.

We can observe that: 1) F2i has neglected space cost, which is 2 − 8

orders of magnitude smaller than the KP-tree for all tested datasets.

2) Both subtree merge and subtree elimination contribute to reduc-

ing the storage overhead. By integrating both of them into TN, the

index generated by TEM achieves a 41% − 98% space reduction.

8.3.3 Scalability. We test GCS, GCS+, and TEM, the champion

in solving the GCD and GCI problems, using di�erent versions of

the Aminer-10 dataset obtained by selecting variable numbers of

layers and subsets of vertices. The detailed results are presented in

Appendix J of the full paper [23]. Here are several key �ndings: 1)

GCS andGCS+ exhibit linear and sub-linear scalability, respectively,

in terms of the runtime, with the size of the multi-layer graph when

the number of layers is �xed. 2) Introducing a new layer has both

positive and negative impacts on the e�ciency of GCS and GCS+.

3) The scale of the KP-tree generated by TEM grows linearly with

the number of vertices on the layer of users’ interest. 4) Introducing

a new layer increases both the runtime of TEM and the scale of the

generated KP-tree.

9 CONCLUSIONS AND FUTUREWORK

The generalized core (gCore) model is proposed on general multi-

layer graphs (GMGs) by extending the :-core model designed for

simple graphs. The gCore model has several elegant properties

including uniqueness and containment hierarchy. Three related

problems, gCore search (GCS), gCore decomposition (GCD), and

gCore indexing (GCI), based on the gCore model are solved by

designing e�cient algorithms and data structures. The polynomial-

time GCS algorithm is comparable to other algorithms for searching

core-based cohesive subgraphs in multi-layer graphs in terms of

execution time. The KP-tree structure represents the whole search

space of the GCD problem and can serve as a compact storage and

index (GCI) of all gCores. The KP-tree supports fast retrieval of any

gCore& in linear time in the size of& and the height of the KP-tree.

The compaction techniques, including node/subtree elimination,

subtree transplant, and subtree merge, signi�cantly speed up the

construction of GCI and reduce the storage overhead of the KP-tree.

Extensive experiments show that the vertices in gCores attain high

closeness with each other, and the proposed algorithms are e�cient

in solving the three problems studied in the paper.

We outline two promising research directions for future work.

First, developing e�cient update mechanisms for the KP-tree index

against frequent graph dynamics. By addressing this issue, we can

further enhance the applicability of the gCore model and related al-

gorithms in real-world scenarios. Second, exploring more extension

schemes such as the one used in the (:, _)-FirmCore. These exten-

sions have the potential to provide further insights and solutions

to the ML-CSM problem on GMGs.
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