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ABSTRACT
Convolutional Neural Networks (CNNs) are commonly used in
computer vision. However, their predictions are difficult to explain,
as is the case with many deep learning models. To address this
problem, we present POEM, a modular framework that produces
patterns of semantic concepts such as shapes and colours to explain
image classifier CNNs. POEM identifies patterns such as “if sofa
then living room”, meaning that if an image contains a sofa and
the model pays attention to the sofa, then the model classifies the
image as a living room. We illustrate the advantages of POEM over
existing work using quantitative and qualitative experiments.
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1 INTRODUCTION
Convolutional neural networks (CNNs), commonly used in com-
puter vision, are deep learning models designed to detect concepts
such as shapes, objects, and textures in images. However, CNNs are
difficult to explain, as is the case with many deep learning models.
This makes them hard to debug and limits their adoption, especially
in critical applications such as healthcare and law [20].

Explanations can be local, to understand individual predictions,
or global, to interpret the general decision-making of a model. Local
explanations of CNNs identify pixels in an image that influenced the
model’s decision [2, 19, 21, 22, 27, 29]. Global explanations identify
the concepts learned by a CNN. Some global methods additionally
summarize the relationships between concepts and predictions
using rules or decision trees [8, 15, 24, 28]. We focus our attention
on the problem of global CNN explanations.

Global CNN explanation approaches face three challenges: in-
specting the model to determine which parts of images it pays atten-
tion to during inference, identifying concepts located in those parts,
and summarizing how these concepts are related to the model’s
predictions. In this paper, we propose a three-step process to ad-
dress these challenges. The first step, Concept Identification, finds
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the concepts learned by the model. The second step, Concept At-
tribution, associates images with the concepts that the model pays
attention to when classifying the images. The third step, Concept
Pattern Mining, summarizes how concepts are linked to prediction
decisions. This three-step design allows us to analyze existing meth-
ods and identify their limitations: false positives during concept
identification and attribution, and pattern verbosity. To overcome
these limitations, we propose POEM: a system that explains image
classifier CNNs using concise and informative patterns of concepts.

POEM takes in a pretrained CNN model and a target dataset
containing images the CNN is trained to classify. The output is a set
of patterns linking concepts occurring in images with the model’s
predictions. For example, suppose we apply POEM to explain a CNN
that classifies images of rooms into living rooms and bedrooms.
POEM may identify a pattern “if sofa then living room”, indicating
that if an image contains a sofa and the model pays attention to
the sofa during inference, then the model classifies the image as a
living room. As explained in Sections 2 and 3, the novelty of POEM,
enabled by the three-step design, consists of using state-of-the-art
methods in the first two steps to avoid false positives, and using
concise and informative rule mining methods (which have not been
used before for CNN explanation) in the third step.

An explanation is a set of such patterns, describing the inner
workings of the model to build end user trust and assist experts
with model debugging. Specifically, POEM can be used to verify
that the CNN is paying attention to the right concepts instead of
overfitting. Furthermore, model engineers can use POEM to identify
model weaknesses through concepts whose presence is associated
with incorrect predictions; one solution may be to collect more
examples containing these concepts. Finally, the patterns produced
by POEM can serve as data quality tools to identify mislabelled
images and bias in training data.

In Section 2, we give an overview of CNNs and existing work
on explaining them, along with their limitations. In Section 3, we
present the modular design of POEM. Section 4 presents our ex-
perimental evaluation, including efficiency improvements due to
our filtering of insignificant concepts, and we conclude in Section 5
with directions for future work.

2 BACKGROUND AND RELATEDWORK
2.1 Convolutional Neural Networks
A CNN takes an image as input, encoded as matrices of pixel inten-
sities of each of the three primary colours, and outputs a predicted
label for the image. During inference, the input passes through the
layers of the CNN. Some layers are convolutional, whose purpose
is to transform the input pixels to detect objects and shapes. Con-
volutional layers are implemented using filters, whose outputs are
called activation maps: matrices indicating the locations within a
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given image that were activated by the filter. For example, filters in
the first few layers may identify pixels that correspond to straight
lines, whereas filters in the deeper layers are more likely to detect
complex objects and shapes [3, 4, 18, 21].

During training, labelled images are passed through the model,
and the convolutional filters are updated by backpropagating the
classification errors. The gradients of the errors with respect to the
filters determine how much and in what direction each filter should
be updated. The filters thus learn to identify features in images that
minimize the classification error of the model.

2.2 Explaining Convolutional Neural Networks
Some concept identification methods analyze a pretrained model
without modifying it [3, 9, 11, 16], and others modify the CNN archi-
tecture to reveal the concepts learned [6, 28]. In the former category,
which is the focus of POEM, CNN2DT [15] builds a decision tree to
predict the model’s predictions based on the concepts found in im-
ages. CNN2DT uses Network Dissection [3], which works as follows.
First, a secondary image dataset is assembled in which images are
labeled as containing a set of predefined concepts. Second, these
images are passed through the CNN to determine which filters
(in the last convolutional layer) detect these concepts, producing
a filter-to-concept mapping. However, these predefined concepts
may not appear in the target dataset or may not be relevant to
the classification decisions over the target dataset. For example,
detecting a car may not be relevant when distinguishing between
living rooms and bedrooms. As we will show in Section 3, POEM
addresses this by using only the concepts that exist in the target
dataset, leading to 30-60% improvements in concept relevance.

ACDTE [8] proposed a concept identification method to explain
a single prediction. First, images similar to the one being explained
are identified and segmented. Then, the image segments are clus-
tered according to the filters they activate, assuming that each
cluster corresponds to a concept. However, this approach requires
human inspection tomap the clusters to the corresponding concepts.
Moreover, a cluster may include image segments corresponding to
multiple concepts. ERIC [24], which computes rules relating filters
to model predictions, has the same shortcomings since it requires
manual inspection of images to identify filter-concept mappings.

After identifying the concepts, the next step is to tag each image
in the target dataset with the concepts that played a role in the
model’s prediction for that image. A naive solution only checks
whether a concept exists in the image, while a more accurate so-
lution also ensures that the model pays attention to the concept
during inference. In most of the related work [8, 15, 24], filter-
concept mappings from concept identification are used in concept
attribution: the concept must exist in the image and must activate
the corresponding filter during inference. However, while high
activation can indicate that a filter pays attention to a concept, it
does not guarantee that the filter has played a significant role in
the prediction of the model. Furthermore, the locations activated
by the filter may not correspond to the location of the concept in
the image. As we explain in Section 4.3.2, POEM addresses these
shortcomings and improves concept attribution by a factor of 6-10.

For mining patterns of concepts, related methods use decision
trees [8, 15, 24, 28]. Since decision trees are known to be quite

verbose, POEM instead uses recently proposed rule miningmethods,
including decision trees, explanation tables [10] and interpretable
decision sets [17], for concise and informative explanations.

3 SYSTEM DESIGN
Figure 1 summarizes the architecture of POEM. The modular design
allows us to address the shortcomings of prior work by implement-
ing state-of-the-art solutions in each module.

3.1 Concept Identification
The goal of this step is to find the concepts learned by a CNN
model, i.e., concepts detected by the filters in the last convolutional
layer. Figure 1 shows three filters mapped to their corresponding
concepts: ‘cabinet’, ‘sofa’ and ‘table’.

POEM uses the latest version ofNetwork Dissection [4]. Instead of
using a pre-segmented secondary dataset, each image in the target
dataset is segmented down to its concepts. This is done using the
UPerNet semantic segmentation method, which is based on Unified
Perceptual Parsing [26]. This method is pretrained on a dataset called
Broden to identify a variety of concepts such as objects, object parts,
materials and colours. The Broden dataset itself includes multiple
segmented scene and object datasets. This method can potentially
be pretrained on other segmented datasets such as medical images
for domain-specific explanations.

After identifying the concepts, we pass each image through the
CNN and measure the pixel overlap between concepts and filter
activation maps. We identify locations in a filter activation map
whose values are higher than 99% of this filter’s activation map’s
values over all the images, which is the recommended threshold
for network dissection. We call these locations highly activated. For
this, activation maps need to be upsampled (i.e., resized) to the size
of the input image.

Figure 2 shows an example of concept identification for a single
image and a single filter. On the right, semantic segmentation iden-
tifies the ‘bed’ concept in the image. On the left, we show the filter
activation map when this image passes through the CNN (yellow
areas are highly activated). After upsampling the activation map,
we compute the overlap between the highly activated areas in the
filter’s activation map and the location of the ‘bed’ concept.

After repeating this process for every image, we map each filter
to the most likely concept it is detecting. This is the concept having
the most overlap with the filter’s highly activated areas over all the
images. Overlap is computed using Intersection over Union (IoU),
which measures the ratio of the total intersection between concepts
and highly activated areas of the activation map over their union.
As in network dissection, we ignore weak filter-concept mappings
with an IoU lower than 0.04. While each filter is only mapped to a
single concept, multiple filters may map to the same concept.

As explained in Section 2, related work on filter-concept map-
pings (ERIC [24]) requires manual examination of activation regions
in images, and ACDTE [8] finds clusters of image segments that
may not correspond to concepts. Furthermore, CNN2DT imple-
ments network dissection by passing pre-segmented images from
the Broden dataset through the CNN for concept identification,
which may lead to concepts that do not exist in the target dataset.
The critical difference in POEM is that network dissection is applied
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Figure 1: Overview of POEM

Figure 2: POEM’s concept identification process

directly to segment the images in the target dataset, which are then
passed through the CNN. As a result, unlike CNN2DT, the concepts
used by POEM are a subset of the Broden concepts that actually
exist in the target dataset. This allows us to explain a CNN using
concepts relevant to the classification task at hand.

3.2 Concept Attribution
The goal of concept attribution is to correlate concepts with the
model’s decisions. Figure 1 shows examples of the output of this
step, in which each image is tagged with the most likely concepts
that played a role in the model’s prediction.

POEM attributes a concept to an image if the following three
conditions are true: 1) the concept exists in the image; 2) a filter
mapped to the concept (during concept identification) has played a
role in the model’s prediction for the image, as indicated by filter
activations and gradients; and 3) the area of the image containing
the concept overlaps significantly with the corresponding filter’s
highly activated area.

To check condition 1, we use the semantic segmentation model
explained earlier (UPerNet), which allows us to locate the concept
mapped to each filter in the image. Specifically, we reuse the same
segmentations produced during concept identification.

We check condition 2 using a process inspired by Grad-CAM [21],
which is a method for explaining an individual prediction based on
model gradients. A CNN classifier outputs a value for each class, and
the class with the highest value is selected as the prediction. Similar
to Grad-CAM, we compute the gradients of the predicted class
values for the image with respect to each filter’s activation values.
We then multiply the gradients by the corresponding activation
values element-wise, to capture the effects of both the gradients and
activations. We then apply the ReLU function to focus on activation

values that have a positive effect on the predicted class. We finally
obtain an activation-gradient map for each filter, which we call the
filter saliency map. The values in the filter saliency map represent
importance for the model’s prediction.

Our approach differs fromGrad-CAM in that we do not aggregate
the saliency maps of different filters to create a single saliency map
for the image. The reason is that wewant to evaluate the importance
of each individual filter (concept). Moreover, unlike Grad-CAM, we
do not average the gradients of a filter before multiplying by the
activations. This is because we need to know the importance of
each value in a filter’s activation map when we later check the
overlap with the concept’s location in the image.

To identify the high-importance parts of the saliency map for
each filter, we use as a threshold the 95th percentile of all the
activation gradient values over all the filters for the given image.
Activation gradient values higher than this threshold have the most
impact on the prediction of the model. Our experiments show that
most values below this threshold are very close to zero and have
little impact on the prediction.

Given the high-importance mask for each filter, we check the
overlap with the concept mapped to the filter, which corresponds to
condition 3. To check this concept-saliency overlap, we need to up-
sample the filter’s activation-gradient map to the size of the image.
We then check if at least 50% of the high-importance area of the
filter is covered by the concept found in the image (our experiments
showed that thresholds higher than 50% can be too strict because
of errors in upsampling the activation gradient maps). In this case,
our conditions for attributing the concept to the image are satisfied,
and we set the concept value to 1 for this image. Otherwise, we
set the concept to 0. Note that it may be possible to give different
weights to the attributed concepts based on their level of overlap
with high-importance filter areas or the number of related filters
activated. However, for simplicity, we only consider binary concept
attribution in the current version of POEM.

Figure 3 shows an example of concept attribution for an image
containing a bed that is predicted as a bedroom. On the left, we
show the filter saliency map that checks condition 2 (by multiplying
the activation map by the gradients of the predicted class label and
passing the output through the ReLU function). The filter saliency
map is upsampled to check the overlap with the location of the
‘bed’ concept (found in the concept identification step).

Upon completion of concept attribution for all the images in the
target dataset, we discard the weakest concepts, which we define
as those associated with less than 1% of images. If no such concepts
exist in the given dataset then we can reduce the threshold to,
say, 0.5%. Furthermore, we only keep the top 10 concepts having
the highest mutual information with the model’s prediction. This
filtering of weak concepts not only enables faster pattern mining
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Figure 3: Concept attribution process used in POEM

in the next step but also leads to more concise patterns based on
the most important concepts, as we will show experimentally in
Section 4.3.

The output of the concept attribution step is a new dataset 𝐷 ,
with one row for each image in the target dataset. Every important
concept is a binary feature, corresponding to the attribution (or
not) of the concept to an image. The labels of 𝐷 are the predictions
of the CNN model for the target images. The 𝑖th row of 𝐷 can be
thought of as a local explanation for the model’s decision-making
process on the 𝑖th image. In the next step of POEM’s design, we
go one step further to find patterns over the concept attributions
encoded in 𝐷 to explain the overall decision making of the model.

Finally, we point out that related methods such as CNN2DT and
ERIC omit conditions 1 and 3 and only use activations to check
condition 2, leading to false positives compared to POEM.

3.3 Concept Pattern Mining
In contrast to related work that uses only decision trees [8, 15, 24,
28], we use a set of rule mining methods to find patterns linking
concepts to model predictions: Classification and Regression Trees
(CART) [5], Explanation Tables [10], and Interpretable Decision Sets
(IDS) [17]. Figure 1 shows three example patterns.

In CART, each node represents a concept and each root-to-leaf
path represents a pattern of concepts. We control the size of the tree
by setting a minimum number of samples per leaf. This is equivalent
to a minimum support of each pattern, which is the number of
examples matching the concepts referenced in the pattern.

Explanation tables find a set of patterns that provide the most
information about the distribution of an outcome, which is the
model’s predicted class in our case. Information is defined as the
ability to reconstruct the distribution of the outcome from the distri-
butions within the reported patterns. In other words, patterns with
unusual or unexpected distributions of the outcome are prioritized.

IDS, originally proposed as an interpretable classification model,
finds rules by taking into account conciseness, confidence and
support. We selected IDS for our set of rule mining methods because
all three of these properties are important for interpretable and
accurate explanations of CNNs based on concepts. The minimum
support of the candidate patterns and the weights of the different
optimization criteria are user-defined parameters.

3.4 Pattern Analysis and Visualization
While patterns reveal how concepts are related to model predic-
tions, visual analysis of the images related to each pattern provides
further insights into the weaknesses and strengths of the model and
potential data quality issues. For this purpose, POEM displays three
categories of images for each pattern: matching, non-matching, and
wrongly-predicted (see [7] for details of the POEM front end).

Matching images agree with both the concepts and the predic-
tion stated in the pattern. For example, for “if sofa then living
room”, matching images are attributed to the concept ‘sofa’ and
predicted as living rooms by the CNN. Inspecting these images,
with their high-importance areas highlighted, helps to verify the
correct attribution of concepts to images.

Non-matching images agree with the concepts of a pattern, but
not with the prediction stated in the pattern. For “if sofa then living
room”, non-matching images are attributed to the concept ‘sofa’
but not predicted by the model as living rooms. If we define the
confidence of a pattern as the fraction of images that match its
concepts but not the prediction, then non-matching images exist
for patterns with confidence below 100%. For instance, we may
want to know whether there are rare images of bedrooms including
sofas in the target dataset, or if there are images of living rooms
that the model predicts incorrectly despite the existence of sofas.

Wrongly predicted images agree with the concepts and the
model’s prediction in the pattern, but have a label in the target
dataset. For “if sofa then living room”, wrongly predicted images
are attributed to ‘sofa’, predicted by the model as living rooms,
but not labelled in the target dataset as living rooms. If we define
the accuracy of a pattern as the fraction of images matching the
concepts and prediction of the pattern that also have the same label
as the prediction, then wrongly predicted images exist when the
accuracy of a pattern is less than 100%. Inspecting these examples
can identify the characteristics of images that the model predicts
incorrectly, as defined by their concepts. For instance, some of these
images may include concepts found in both bedrooms and living
rooms. Including more such examples in the training dataset may
improve the model’s accuracy. Some wrongly predicted images may
be mislabeled as bedrooms – a data quality issue.

4 EXPERIMENTS
4.1 Implementation
The POEM back end is implemented using Python and PyTorch. Our
implementation of network dissection is based on its Github code1.
Similarly, for unified perceptual parsing, we used the code from the
project Github page2. For rule mining, we used the Scikit-Learn
implementation of CART, we obtained a copy of the explanation
tables code from the authors, and we used the publicly available
implementation of IDS from its Github page3.

For comparison to POEM, we implemented an approach similar
to CNN2DT [15] to represent previous work. Because we did not
have access to the code for CNN2DT or any other closely related
work, we implemented CNN2DT in our framework as follows. For
concept identification, we used the original network dissection
1https://github.com/davidbau/dissect
2https://github.com/CSAILVision/unifiedparsing
3https://github.com/lvhimabindu/interpretable_decision_sets
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method [3], with code from the corresponding Github repository4.
For concept attribution, we only check if a filtermapped to a concept
includes a high-activation area when an image is passed through
the model. As in network dissection, we use the 99th percentile of
the filter’s activation values over all images as the threshold for
high activation. For pattern mining, we use the CART decision tree.

4.2 Dataset and Evaluation Methodology
We use the Places dataset [30] containing labelled images of

indoor places such as bedrooms, kitchens or restaurants. There are
365 classes with 5000 images in each class. The two CNNs we ex-
plain are ResNet-18 [14] (Use Case 1) and VGG-16 [23] (Use Case 2),
which have achieved state-of-the-art accuracy in image classifica-
tion at some point during the last few years. Each CNN is pretrained
using images from all 365 classes of the Places dataset. Next, we
modify the classification layer of ResNet-18 to focus on three classes
(kitchen, bedroom, living room), fix the non-classification layers
of the CNN, and fine tune the classification layer using 70% of the
images from these three classes (a total of 0.7 * 3 * 5000 images) in
Places, and evaluate/explain on the other 30% of images from these
three classes (a total of 0.3 * 3 * 5000 images). Similarly, we modify
VGG-16 to focus on two classes: coffee shop vs. restaurant.

To evaluate concept identification, we define concept relevance
as the fraction of concepts that are relevant to the target dataset.
We consider a concept to be relevant if it is present in at least one
image in the target dataset that is attributed to that concept.

To evaluate concept attribution, we use the concept-saliency
overlap defined in Section 3.2. For both CNN2DT and POEM, we
compute the average concept-saliency overlap over the concepts
attributed to all the images in the target dataset.

To evaluate the quality of pattern explanations, we borrow cri-
teria used in related work [10, 13, 17]. Pattern size is the number
of concepts used in a pattern. Support is the fraction of images
matching the concepts within a pattern. Confidence is the fraction
of supporting images that also match the CNN prediction stated
in the pattern. Information gain measures how well a set of pat-
terns captures the distribution of an outcome (computed as in [10]),
which for us corresponds to the CNN prediction.

For CNN2DT, we compute these criteria for the patterns found
by CART based on the concepts found. For POEM, we evaluate
patterns from CART, IDS and Explanation Tables. This allows us to
compare CART patterns from CNN2DT with CART patterns from
POEM (whose concepts may be different), and also to determine if
IDS and explanation tables can provide better patterns than CART.

Because minimum support is a parameter in each of these pat-
tern mining methods, we experiment with a range of minimum
support values, including 0.01, 0.03, 0.05, 0.1, 0.15 and 0.2. For each
value, we evaluate the same top number of patterns from different
methods, for a fair comparison regardless of the number of patterns
produced by each method. Finally we report the average value of
each criterion over all the tested minimum support values.
4.3 Quantitative Evaluation
4.3.1 Concept Identification. Table 1 shows the concept relevance
score computed for CNN2DT and POEM for Use Case 1 (top) and 2
4https://github.com/CSAILVision/NetDissect-Lite

Table 1: Concept relevance and concept-saliency overlap for
CNN2DT and POEM for Use Case 1 (top) and 2 (bottom)

CNN2DT POEM
concept relevance 0.63 1.0

concept-saliency overlap 0.07 0.67

CNN2DT POEM
concept relevance 0.77 1.0

concept-saliency overlap 0.12 0.75

Table 2: Pattern statistics for CNN2DT and POEM for Use
Case 1 (top) and 2 (bottom)

CNN2DT POEM CART POEM Exp POEM IDS
pattern size 2.34 1.52 3.61 1.88
support 0.13 0.16 0.16 0.17

confidence 0.94 0.91 0.89 0.9
information gain 660 1038 1045 1044

CNN2DT POEM CART POEM Exp POEM IDS
pattern size 3.25 1.79 4.17 2.97
support 0.14 0.16 0.16 0.41

confidence 0.7 0.71 0.73 0.67
information gain 62 80 103 82

(bottom). Concepts identified by POEM are all relevant to the target
dataset, while a significant fraction of the CNN2DT concepts are
not. We will examine these concepts more closely in Section 4.4.1.

4.3.2 Concept-Saliency Overlap. As Table 1 shows, concepts attrib-
uted to images by POEM overlap 6-10 times more highly with the
high-importance image areas. In Section 4.4.2, we will show exam-
ples of high importance areas highlighted on images to illustrate
this performance difference in concept attribution.

4.3.3 Pattern Mining. Table 2 shows the average size, support, con-
fidence and information gain of patterns from CNN2DT and the
three methods used in POEM for Use Case 1 (top) and 2 (bottom).
When comparing CART patterns from CNN2DT with CART pat-
terns from POEM, we see that POEM patterns are more concise
and provide higher support and information gain. CNN2DT has
higher confidence, but the concepts found by CNN2DT may not
always be relevant, leading to spurious explanations (as we show
qualitatively in Section 4.4.3).

Comparing the rule mining methods used in POEM, we see that
IDS patterns obtain higher support, while explanation tables pro-
vide more informative patterns. This suggests that a set of methods
can provide a wide range of explanations along multiple explain-
ability criteria of interest.

4.3.4 Concept Filtering. IDS and Explanation Tables become very
slow for more than 15 features (concepts). These rule mining meth-
ods filter out weaker concepts naturally by generating patterns that
include more informative and high-support concepts. However,
they first need to generate and evaluate a large set of candidate
patterns, which can potentially lead to poor running times.
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Table 3: Concepts identified by CNN2DT (top) and POEM
(bottom) in Use Case 1

Objects: building, bed, airplane, person, pool table, car, water, dog, bus, shelf, road,
train, house, grass, tree, mountain, windowpane, bird, plant, ceiling, skyscrapper,
table, sofa, sky, chair, seat, sea, horse, bathtub, book, cabinet, painting, bottle,
stairway, boat, cat, stove, mirror, wardrobe, fence, snow
Parts: screen, wheel, head, coach, torso, body, crosswalk, shop window, hair
Materials: food, tile
Colours: red, orange

Objects: person, work surface, bed, sofa, window, plant, fireplace, chair, stove,
curtain, shelf, pane, door, painting, cushion, building, pillow, drawers
Parts: top, footboard, back pillow
Materials: polished stone, fur, tile, brick
Colours: red, blue, green, orange, pink

Table 4: Concepts identified by CNN2DT (top) and POEM
(bottom) in Use Case 2

Objects: building, person, tree, road, grass, ceiling, plant, mountain, bed, car,
windowpane, airplane, floor, water, bus, chair, table, sky, ground, painting, train,
horse, cat, skyscrapper, cabinet, sofa, curtain, book, shelf, pool table, boat, sink,
fence, dog, work surface, sidewalk, stairway, seat, stove, rock, house, sea, snow,
track, toilet, motorbike, field, chandelier, swivelchair
Parts: wheel, body, screen, head, crosswalk, drawer, torso, hair, roof, leg, seat
cushion, shop window, coach, arm, balcony, top, pot, back, column
Materials: food, carpet, wood, glass, painted, tile, metal, fabric, brick
Colours: red, yellow, white, blue, pink, green

Objects: food, ceiling, window, tree, sky, chair, cup, plant, shelf, plate, building,
sidewalk, floor, painting, signboard, person, bar, curtain, bottle, case, sea, road,
awning, cabinet, umbrella, car, column, chandelier
Parts: top, head, torso, body
Materials: food, hair, carpet, skin, paper, brick, ceramic, tile
Colours: blue, green, yellow, red, white, pink

As we mentioned in Section 3.2, we filter out concepts attributed
to less than 1% of data before the pattern mining step. To demon-
strate the resulting performance improvements, we evaluate the
running time and the pattern quality criteria when we apply the
rule mining methods with and without concept filtering. For this
experiment, we focus on a smaller subset of data including 500
images for each class in Use Case 1 and 2, so that the case without
concept filtering can finish in reasonable time.

The results are shown in Table 5. In Use Case 1, concept filtering
reduces the number of concepts from 10 to 5, and improves the
running time by a factor of more than 50, while the set of generated
patterns does not change at all. For Use Case 2, the number of
concepts drops from 11 to 3, leading to more than 17 times better
performance. Some of the pattern criteria improve when filtering
the concepts, including pattern size (conciseness) for all three meth-
ods. Other criteria get worse by factors between 0.1 to 2.5.

In terms of end-to-end running time, POEM was nearly four
times faster than CNN2DT in Use Case 1 (676 vs. 2571 seconds) and
nearly ten times faster in Use Case 2 (684 vs. 6646 seconds). POEM
spent more time on pattern mining (especially on IDS) but much
less time on concept identification and attribution.

4.4 Qualitative Evaluation
We now examine the concepts identified by CNN2DT and POEM,
and we analyze sample images with their high-importance areas

Table 5: Running time and pattern statistics with andwithout
concept filtering for Use Case 1 (top) and 2 (bottom)

without filtering with filtering
method CART Exp IDS CART Exp IDS

running time (seconds) 1 11 541 0.2 8 2
pattern size 2 4.5 1 2 4.5 1
support 0.04 0.34 0.04 0.04 0.34 0.04

confidence 0.85 0.63 0.85 0.85 0.63 0.85
information gain 30.5 24 30.5 30.5 24 30.5

without filtering with filtering
method CART Exp IDS CART Exp IDS

running time (seconds) 1 11 185 0.3 7 4
pattern size 2 5 1.6 1.5 1 1
support 0.01 0.05 0.33 0.01 0.02 0.5

confidence 0.99 0.89 0.85 0.99 0.99 0.78
information gain 7.9 6 5.7 5.5 6 3.2

Figure 4: Images from Use Case 1 with ‘bus’ high-activation
areas found by CNN2DT highlighted (pattern 7 in Figure 11)

Figure 5: Images from Use Case 2 with ‘toilet’ high-activation
areas found by CNN2DT highlighted (pattern 8 in Figure 12)

highlighted to determine if these areas correspond to locations of
concepts. We focus on the top 10 patterns from CNN2DT and POEM.
For POEM, we merge the patterns found by its three rule mining
methods and rank them by support × confidence2

size2 . This ordering em-
phasizes concise and confident patterns.

4.4.1 Concept Identification. Table 3 shows the concepts identified
by CNN2DT (top) and POEM (bottom) for Use Case 1, grouped by
their categories. CNN2DT finds some relevant concepts (bed, bottle,
cabinet, sofa, stove) but also many others unlikely to appear in
the target dataset (airplane, bathtub, bus, car, horse, train). Figure 4
shows sample images associated with the ‘bus’ concept by CNN2DT,
with the corresponding ‘bus’ filter high-activation areas highlighted.
Clearly, buses do not exists in these images. In contrast, all the
concepts identified by POEM in Use Case 1 are relevant, as also
seen in our quantitative evaluation in Section 4.3.1.
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Figure 6: Images from Use Case 2 with ‘sea’ high-importance
areas found by POEM highlighted

Figure 7: Images from Use Case 1 with ‘sofa’ high-activation
areas found by CNN2DT highlighted (pattern 8 in Figure 11)

Table 4 shows the concepts identified by CNN2DT (top) and
POEM (bottom) for Use Case 2. Again, CNN2DT finds many con-
cepts that are unlikely to appear in the images of coffee shops and
restaurants such as airplane, bed, car, motorbike, mountain, toilet,
etc. Figure 5 shows the high activation areas for some images at-
tributed to the ‘toilet’ concept. None include anything resembling a
toilet, though some are showing a coffee cup, which may be similar
to the body of a toilet and the water inside it. In fact, the same filters
that are activated on cups may be activated when images of toilets
from the secondary dataset were passed through them.

On the other hand, the concepts identified by POEM in Table 4 are
consistent with coffee shops and restaurants, such as bottle, chair,
cup, food, plate, shelf, etc. Some concepts may not seem relevant
at first glance, such as sea, sky, and tree. To check this further, in
Figure 6 we show sample images from the target dataset with the
‘sea’ concept highlighted. All of these images show outdoor coffee
shop or restaurant views where the sea is part of the landscape and
has led to activations of the corresponding filters in the model.

4.4.2 Concept Attribution. We now examine high activation areas
related to relevant concepts identified by CNN2DT to check their
overlap with the location of the concept in the image. Figure 7
shows sample images from Use Case 1 with their ‘sofa’ concept
high activation areas highlighted. In some images, either a sofa does
not exist or the high-activation areas do not match the location
of the sofa in the image. These examples imply that the concepts
attributed to images using CNN2DT may not be reliable indicators
of what the CNNmodel pays attention to, as we saw in Section 4.3.2.

Figure 8 shows sample images that POEM attributed to the same
concept ‘sofa’, with the related high-importance areas highlighted.
The highlighted areas cover sofas either partially or completely.

Figure 9 shows images from Use Case 2 associated with the
‘red’ concept by CNN2DT. While some of these correctly highlight
the red colour, others either do not include a red area, or the high
activation areas do not cover any red pixels. Figure 10 shows sample
images attributed to the ‘red’ colour using POEM, where the related
high-importance areas correspond to the red locations in images.

Figure 8: Images fromUse Case 1 with ‘sofa’ high-importance
areas found by POEM highlighted (pattern 2 in Figure 11)

Figure 9: Images from Use Case 2 with ‘red’ high-activation
areas found by CNN2DT highlighted

Figure 10: Images fromUse Case 2with ‘red’ high-importance
areas found by POEM highlighted (pattern 5 in Figure 12)

4.4.3 Pattern Mining and Analysis. Figure 11 shows the top 10
patterns mined by CNN2DT (top) and POEM (bottom) for Use Case
1. For each row (pattern), the concepts are labelled with “yes” or
“no”; a blankmeans that the given concept’s existence or lack thereof
is not relevant. Some patterns produced by CNN2DT are intuitive,
e.g., pattern 2 indicating that if the concepts ‘bottle’, ‘cabinet’ and
‘chair’ are attributed to an image, then the CNN classifies it as a
kitchen in 98% of cases. We also see patterns with lower confidence
levels, which include some of the irrelevant concepts mentioned
earlier such as the ‘bus’ concept in patterns 7 and 9.

Furthermore, all the patterns generated by CNN2DT include two
or more concepts, which leads to relatively narrow patterns. For
example, there are no single-concept patterns capturing important
concepts such as beds or stoves. On the other hand, Figure 11
shows that POEM finds several high-confidence single-concept
patterns such as patterns 1, 2, 4 and 7. These patterns highlight the
importance of the concept ‘bed’ for predicting bedrooms, ‘sofa’ for
living rooms, and ‘work surface’ and ‘tile’ for kitchens. From these
patterns, we learn that the model appears to be paying attention to
the right concepts, which can build end user trust and assist model
engineers with model validation prior to deployment.

Figure 12 shows the top patterns mined using CNN2DT (top)
and POEM (bottom) for Use Case 2. As in Use Case 1, patterns
extracted by CNN2DT include several concepts. Furthermore, the
issues with concept identification and attribution lead to patterns
that may not explain the model accurately. In contrast, patterns
found by POEM include fewer concepts, and we learn that the
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Figure 11: Top patterns for Use Case 1 for CNN2DT (top) and
POEM (bottom)

Figure 12: Top patterns for Use Case 2 for CNN2DT (top) and
POEM (bottom)

model pays attention to concepts such as ‘shelf’ for coffee shops
and ‘top’ (table top) for restaurants. Patterns 1 and 5 in Figure 12
also link ‘ceiling’ and ‘red’ with restaurant predictions, but with a
lower confidence. These concepts are not intrinsic to coffee shops
or restaurants, but may indicate that the CNN has seen shelves in
coffee shop training images, and table tops, ceilings and red colours
in restaurant images. These patterns assist model engineers with
identifying model weaknesses and issues in the training dataset.

Figure 13: Images matching POEM pattern 2 in Figure 11, but
wrongly predicted by the model

Figure 14: Non-matching images of POEM pattern 4 in Fig-
ure 12

In general, the patterns found by POEM are more concise and
provide more informative explanations about the CNN, as we also
demonstrated quantitatively in Section 4.3.3. This may be related to
the more accurate concept identification and attribution steps, as
well as the inclusion of patterns from Explanation Tables and IDS.

Using POEM, we can also examine other categories, such as
non-matching and wrongly predicted images. Figure 13 shows
sample images from Use Case 1 matching pattern 2 in Figure 11,
but predicted incorrectly as living rooms instead of bedrooms or
kitchens. These examples either include a sofa in the bedroom or
a bed similar to a sofa. These patterns can assist model engineers
withmodel debugging and data augmentation by revealing concepts
associated with model mispredictions.

To further analyze POEM patterns from Use Case 2, we exam-
ine sample images from other categories. Figure 14 shows non-
matching images of pattern 4 from Figure 12, which are attributed
to ‘shelf’ but predicted as restaurants rather than coffee shops. The
leftmost image is predicted incorrectly as a restaurant. However,
the other three examples are less obvious, and may even be misla-
beled as restaurants. This illustrates the value of POEM’s patterns
in finding potential errors in training data labelling.

5 CONCLUSIONS
POEM has several limitations that lead to directions for future work.
The network dissection method we use for concept identification
assumes that each CNN filter focuses on one concept. Recent work
has questioned this assumption [6, 9, 28], suggesting that some fil-
ters may be learning multiple concepts, or may jointly learn a single
concept. For concept attribution, we combine filter activations and
gradients as indicators of what the CNN is paying attention to. An
interesting direction for future work is to explore concept pattern
mining using counterfactual methods. Instead of analyzing filter ac-
tivations, these methods perturb an image to determine if masking
some pixels leads to a different prediction by the model [1, 12, 25].
Finally, we plan to extend POEM’s identification, attribution and
pattern mining modules to other models such as transformers.
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