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ABSTRACT
Differential privacy (DP) data synthesizers are increasingly pro-
posed to afford public release of sensitive information, offering
theoretical guarantees for privacy (and, in some cases, utility), but
limited empirical evidence of utility in practical settings. Utility is
typically measured as the error on representative proxy tasks, such
as descriptive statistics, multivariate correlations, the accuracy of
trained classifiers, or performance over a query workload. The abil-
ity for these results to generalize to practitioners’ experience has
been questioned in a number of settings, including the U.S. Census.
In this paper, we propose an evaluation methodology for synthetic
data that avoids assumptions about the representativeness of proxy
tasks, instead measuring the likelihood that published conclusions
would change had the authors used synthetic data, a condition
we call epistemic parity. Our methodology consists of reproducing
empirical conclusions of peer-reviewed papers on real, publicly
available data, then re-running these experiments a second time on
DP synthetic data and comparing the results.

We instantiate ourmethodology over a benchmark of recent peer-
reviewed papers that analyze public datasets in the ICPSR social
science repository. We model quantitative claims computationally
to automate the experimental workflow, and model qualitative
claims by reproducing visualizations and comparing the results
manually. We then generate DP synthetic datasets using multiple
state-of-the-art mechanisms, and estimate the likelihood that these
conclusions will hold. We find that, for reasonable privacy regimes,
state-of-the-art DP synthesizers are able to achieve high epistemic
parity for several papers in our benchmark. However, some papers,
and particularly some specific findings, are difficult to reproduce
for any of the synthesizers. Given these results, we advocate for
a new class of mechanisms that can reorder the priorities for DP
data synthesis: favor stronger guarantees for utility (as measured
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by epistemic parity) and offer privacy protection with a focus on
application-specific threat models and risk-assessment.
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1 INTRODUCTION
Differential privacy (DP) has been studied intensely for over a
decade, and has recently enjoyed uptake in both the private and pub-
lic sectors. In situations where the downstream analysis is known,
one can design specialized mechanisms with high utility [41, 42].
But an active research area is to design general DP data synthesizers
(henceforth, synthesizers) that model the entire data distribution,
inject noise, then sample the noisy model to generate synthetic
datasets intended to be broadly usable in a variety of unantici-
pated applications. Evidence to support claims of general utility
is typically presented as results on proxy tasks over common pub-
lic datasets (e.g., the ubiquitous Adult dataset [37]). Proxy tasks
may include descriptive statistics, queries involving one or two
variables [28, 29, 61, 62], classification accuracy [16, 61, 67], and
information theoretic measures [67]. Although these proxy tasks
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are procedurally representative of real tasks, the implicit claim of
generalization to practice is rarely explored.

Limited empirical evidence on relevant tasks undermines trust
in the practical use of DP. The US Census Bureau adopted DP for
disclosure avoidance in the 2020 census, interpreting federal law
(the Census Act, 13 U.S.C. § 214, and the Confidential Information
Protection and Statistical Efficiency Act of 2002) as a mandate to use
advanced methods to protect against computational reconstruction
attacks unforeseen when the laws were passed. But the adoption
of DP for the Census was met with resistance among many in the
research community, who contend that data infused with DP noise
affects demographic totals [58] and exacerbates underrepresenta-
tion of minorities [25, 36]. Besides the research implications, there
are potential consequences for policy: Block grants are allocated
based on minority populations as measured by the census data,
and underrepresentation can lead to underfunding integral services
including Medicaid, Head Start, SNAP, Section 8 Housing vouchers,
Pell Grants, and more [12]. Although the Census Bureau held work-
shops, released demonstration datasets, and published technical
reports to support the community, these outreach efforts realized
limited success; multiple lawsuits are still pending as of May 2023.

Despite these challenges, DP still offers stronger guarantees
of disclosure protection than, and similar utility to, alternative
proposals (e.g., k-anonymity, swapping [12]). DP, when used cor-
rectly, ensures that any inferences conducted on data do not reveal
whether a single individual’s information (including, for example,
their gender or race) was included in the data for analysis [19]. DP
can therefore not only protect privacy, but also enable access to
protected demographic attributes necessary for research on fairness
and equity in machine learning [33].

Characterizing DP Error. A practical method of operationalizing
DP is to learn a (noise-infused) model of a dataset, then sample that
privatized model to generate synthetic data that can be released
publicly [20, 26, 41, 55, 63, 65]. Ideally, this approach would provide
a drop-in replacement for the original data that can be used in any
downstream context to produce reasonably faithful results with
strong privacy guarantees. But this ideal is unrealizable, both the-
oretically and practically. Overly accurate estimates of too many
statistics are blatantly non-private, affording full reconstruction
of the original dataset [17]. For any DP synthetic dataset, some
statistics will tend to be faithful to the original data, while oth-
ers will incur essentially arbitrary error. If the privacy budget is
allocated uniformly across features, descriptive statistics of each
individual feature will be faithful, but the conditional probabilities
and marginals needed to construct the joint probability distribution,
which is needed for general inference, will be unreliably noisy, and
vice versa. Utility loss may also be non-uniform across subsets of a
dataset, in some cases exacerbating inequity and leading to under-
representation [4, 36] or to error rate disparities [53]. Designers of
DP synthesizers must therefore make some kind of educated guess
about which tasks should be preserved and which can be ignored.
Further, the error introduced by DP methods can and should be
incorporated into statistical models explicitly, just as other sources
of error are modeled explicitly. However, current DP synthesizers
tend not to provide formal descriptions of the error they introduce;
this lack of error guarantees is a major drawback of private data

Figure 1: A visual finding from Fairman et al. [23],
describing the rate of drug use across demographic groups
(top) and our qualitative reproduction under DP, using MST
at 𝜖 = 𝑒. Agreement is subjectively high, though imperfect.

release. Our work does not address this limitation, but does help
provide an empirical motivation for doing so.

Methodology. We propose an evaluation methodology for DP
synthesizers based on reproducibility: that published findings on
the original dataset should be replicable on a noise-infused dataset.
We identify conclusions in the text of published papers, extract
relevant findings supporting those conclusions, implement the cor-
responding statistical tests using the authors’ data, generate syn-
thetic datasets using state-of-the art DP synthesizers, re-apply the
statistical tests over the synthetic data, and then determine if the
findings still hold. If all findings hold, we say that the DP synthesizer
achieves epistemic parity for that paper.

We instantiate our methodology over a benchmark of peer-
reviewed sociology papers that are based on public data from
the Inter-university Consortium for Political and Social Research
(ICPSR) repository. We model quantitative results as an inequality
between two numbers, for example, “Those using marijuana first
(vs. alcohol or cigarettes first) were more likely to be Black, Ameri-
can Indian/Alaskan Native, multiracial, or Hispanic than White or
Asian.” [23] In addition to quantitative results, we consider qualita-
tive results: a subjective assessment of whether key visualizations
in the paper expose the same relationships when recreated over syn-
thesized data. Figure 1 gives an example, presenting a visualization
from Fairman et al. [23]. In this figure, we show the break-down
of drug use across demographic groups, taken directly from the
publication (top of the figure), and compare it with a reproduction
of the plot based on DP synthetic data generated with the MST
synthesizer at 𝜖 = 𝑒 (bottom of the figure).

Following Errington et al. [22], and as is common in the repro-
ducibility literature, our aim was not to reproduce every finding in
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every paper; rather it was to identify and reproduce a selection of
key findings from each paper. For generality, interpretability and
simplicity, we consider whether a conclusion holds over synthetic
data to be true if the the two quantities are in the same relative
order, and do not attempt to measure the change in effect size or
the statistical significance of the difference between the original
and synthetic result.

Benchmark and results. ICPSR is an NSF-funded repository for
social science data holding over 100,000 publications associated
with 17,312 studies. A study typically involves hundreds of variables
and supports dozens of papers. Each paper can be considered to be
deriving its own dataset (selected variables and selected rows) from
the source data of the study. We apply DP methods to synthesize
data for these paper-specific, study-derived datasets.

ICPSR studies are publicly available by policy, which enables
us to instantiate the epistemic parity methodology and develop a
benchmark. Notably, there is increasing demand from the ICPSR
leadership and community to support keeping sensitive data private,
while generating DP synthetic subsets to support reproducibility.
Our methodology can be used to respond to this demand.

Paper selection. The benchmark we define consists of 4 datasets
and eight recent peer-reviewed papers selected for impact, accessi-
bility of the topic to non-experts, recency, and several other criteria.
We extracted findings and attempted to reproduce them, follow-
ing the "same data, different code, different team" approach to
reproducibility, encountering challenges commonly reported in
that literature including undocumented data versioning, unspe-
cific or incomplete methodologies, and irreconcilable differences
between our reproduction and what the authors report. Each pa-
per received, at a minimum, attention from two researchers with
advanced degrees in either computer science, statistics, or both,
and at least thirty hours of work. A complete list of papers that
we attempted to reproduce, and the issues we encountered dur-
ing reproduction, in our public GitHub repository, under archive,
available at https://github.com/DataResponsibly/SynRD.

DP synthesizer selection.We use six state-of-the-art DP synthesiz-
ers, namely, MST [41], PrivBayes [67], PATECTGAN [55], AIM [42],
PrivMRF [10], and GEM [39] executing each at their recommended
settings. We describe these methods in Section 2.

Summary of results. We find that marginals-based and Bayes-
net based state-of-the-art DP synthesizers are able to achieve high
epistemic parity for five out of eight papers in our benchmark,
but that some papers, and particularly some specific findings, are
difficult to reproduce for any of the synthesizers, suggesting a basis
for a new benchmark. The papers on which high epistemic parity is
achieved use relatively low-dimensional tabular data. However, as
we show empirically, large domain and high-dimensional settings
are still a bottleneck for increased adoption of DP synthesizers.

Roadmap and Contributions. We discuss related work on repro-
ducibility, DP synthesis and evaluation of DP in Section 2, give
background on DP in Section 3, and then present our contributions:

• We propose the epistemic parity evaluation methodology,
based on reproducing qualitative and quantitative empirical
findings in peer-reviewed papers over DP synthetic datasets
(Section 4).

• We instantiate the epistemic parity methodology for eight
peer-reviewed social science publications, creating a reusable
benchmark for evaluating synthesizers (Section 5).

• We present SynRD, an open-source benchmarking package
that automates epistemic parity evaluation, and can be ex-
tended to include additional DP synthesizers, publications,
and finding types (Section 6).

• We present experimental results on our benchmark, using
five state-of-the-art DP synthesizers (Section 7).

We conclude with a discussion of the results, identifying trade-
offs and motivating a new class of privacy techniques that favor
strong epistemic parity and de-emphasize privacy risk, in Section 8.

2 RELATEDWORK
DP synthesis. In our evaluation, we considered five state-of-the-

art private data releasemethods: MST, AIM, PrivMRF, PATECTGAN,
PrivBayes and GEM. We acknowledge that many other methods ex-
ist for generating DP data [20, 26, 63, 65].We chose this set informed
by recent work by McKenna et al. [42], Tao et al. [62] showing that,
over randomized query workloads on tabular data, MST, AIM and
PrivMRF are the highest-performing marginal-based methods, that
PrivBayes is the highest-performing Bayes-net-based method, and
that PATECTGAN and GEM are the highest-performing deep learn-
ing based methods. AIM, PrivMRF and GEM are more recent than
MST; they were not included in the recent dedicated DP synthe-
sizer benchmarking survey by Tao et al. [62] and are currently
considered to be the state-of-the-art DP synthesizers.

PrivBayes derives a Bayesian model and adds noise to all 𝑘-way
correlations to ensure differential privacy [67]. This method was
published in 2017, yet it remains competitive with and even outper-
forms other methods, described next. PrivBayes has demonstrated
efficacy in a number of settings, but is computationally inefficient
for high-dimensional data.

MST relies on the Private-PGM graphical model to construct
a maximum spanning tree among attributes in the data feature
space, where edges are weighted by mutual information [40]. By
measuring 1-, 2- and some 3-way marginals, MST is able to create a
high-fidelity low-dimensional approximation of the joint distribu-
tion between all attributes, leading to impressive statistical utility
on metrics like mean, standard deviation, and bivariate correlations.

AIM, like MST, relies on the Private-PGM for parameterizing
the underlying distribution [42]. However, unlike MST, AIM is
workload aware: It parameterizes a private synthetic distribution
through an iterative process akin to that of the fundamental DP
synthesis Multiplicative Weights Exponential Mechanism (MWEM)
algorithm [26], taking advantage of a set of queries of interest,
specified a priori. In their evaluation, the authors of AIM found that
it outperformed MST convincingly, especially for higher vales of 𝜖 .

PrivMRF is another marginal-based algorithm that relies on
Private-PGM [10]. Its novelty lies in a clever selection of marginals
to measure, which aligns with three main criteria: marginals should
be low-dimensional, the graph of marginals should be small, and
any junction tree transform on the graph of marginals should not
result in domain blowup. PrivMRF is competitive with PrivBayes
and MST, as demonstrated by both [10] and [42].
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PATECTGAN relies on a conditional generative adversarial net-
work tuned to tabular data, where the discriminator has privacy
constraints [55, 66]. The high up-front cost of initializing and updat-
ing the weights in a full discriminator network means that PATE-
CTGAN is limited in low dimensional settings, but shows particular
promise when the data is higher-dimensional.

GEM analyzes the “Adaptive Measurements” framework for pri-
vate synthetic data algorithms, inspired by the MWEM architecture
[26]. Iteratively, an algorithm (1) privately selects a set of queries;
(2) obtains noisy measurements of these queries; and (3) updates an
approximating distribution according to some loss function. The
GEM algorithm uses a similar loss function to the RAP private data
release algorithm [3], although with small modifications that lead
to significantly improved practical performance [39, 42].

Workload-aware synthesizers. The AIM and GEM synthesizers
in our study would be considered workload-aware in that they are
able to adaptively select marginals based on some a priori specified
workload of interest. In our setting, scientists pre-select a relatively
small subset of variables (say, twenty) of interest for analysis from
a large study with thousands of variables. We consider this pre-
selection, with any relationships among them permitted, to be the
workload specification; further limiting the queries would problem-
atically bias the data outcomes. We thus assume that relationships
between any of the selected variables of interest are permitted.
Thus, for the AIM and GEM algorithms, we automatically generate
a workload across all variables.

DP evaluation. Tao et al. [62] evaluated several DP synthesizers’
ability to preserve 1- and 2-variable distributions. Jayaraman and
Evans [34] studied privacy-utility tradeoffs for ML tasks and found
that commonly-used 𝜖 values and implementations in practice may
be ineffective: either unacceptable privacy leakage or unacceptable
utility tends to occur. Hay et al. [28] used 1- and 2-dimensional
range queries over 27 public datasets to study the influence of
dataset scale and shape that had led to inconsistent results in the
previous literature. While the datasets are diverse in relevant prop-
erties, the tasks are limited, and the link to conclusions drawn is
unexplored. Hill [29] studied the utility of DP on one longitudinal
behavioral science dataset involving a sexuality survey motivated
by real world attacks based on disclosing pregnancy, finding that
theoretical guarantees of DP were generally supported, but that
high-dimensional data was a challenge for utility. In this work, we
aim to facilitate and standardize these kinds of applied studies.

Reproducibility. Numerous reproducibility studies have been at-
tempted in various fields, typically reporting remarkably low rates
of success, leading to calls for significant changes to policy and in-
centive structures underlying scientific funding and publishing [43–
45]. In the social sciences, Camerer et al. [11] replicated 21 sys-
tematically selected experimental studies published in Nature and
Science between 2010 and 2015, finding a significant effect in the
same direction as the original study for 13 (62%) studies, with about
half the effect size, on average. The Reproducibility Project: Cancer
Biology Errington et al. [22] attempted to reproduce 193 experi-
ments from 53 papers, but succeeded in only 50 experiments from 23
papers. They found that only 2% of papers supplied open data, 0% of
protocols were completely described, 67% of experiments required

Figure 2: Epistemic parity workflow: Each study dataset
supports many papers, each using a subset of the features.

The paper’s findings are implemented as computable
inequalities. We generate many privatized datasets using
different random seeds, then compute the proportion of

these trials for which the findings hold (Figure 3).
study 

dataset
paper paper-relevant 

data subset

f(d)	>	k

S

findings

f(d)	>	k…
f(d)	>	k…

f(d)	>	k…

…

parity = proportion of 
trials where 
xxxxxxxxxx

privatized dataset 
method m, trial i

(see Figure 3)

modifications to complete, and replication effect sizes were 85%
smaller than in the original findings. A survey by Baker [5] found
that 52% of respondents agreed that reproducibility represents a
‘crisis’ for science.

The terms reproducibility and replicability are used inconsistently
across and even within fields [6]. We use reproducibility to mean
same data, different code, different team [6]. We use replicability
to mean acquiring new data in a new experiment to determine
whether the same conclusions hold. Our methodology amounts to
first reproducing conclusions found in peer-reviewed papers, and
then replicating these same conclusions on DP synthetic data. While
our focus is neither to reproduce nor to replicate the original study,
our framework supports reproducibility analysis as an intermedi-
ate step, and our insights regarding the difficulty (and, often, the
impossibility) of reproduction are consistent with prior findings.

3 PRELIMINARIES
Differential privacy (DP) is a strong privacy guarantee that ensures
that altering or removing one record from a given dataset does
not significantly affect the outcome of an analysis or query. Intu-
itively, DP prevents an observer of a private output from drawing
conclusions about which specific individuals’ information was in-
cluded in the input. DP is based on the concept of “neighboring”
datasets, which are datasets that result from the modification or
removal of one record that induces a “neighboring” dataset. There
is a distinction between modification and removal in this definition;
establishing which version of the privacy definition is normally
done a priori. In the scope of the private synthesizers considered
by this paper, datasets 𝑋 and 𝑋 ′ are considered neighboring if the
removal of a single element 𝑥𝑖 from one yields the other (except in
the case of PrivBayes; we account for this in our budget allocation).

The conventional understanding of DP is provided in Defini-
tion 3, while the alternative, zero-concentrated DP (𝜌-zCDP) is
provided in Definition 3.

Definition ((𝜖, 𝛿)-Differential Privacy). A randomized mechanism
M is said to be (𝜖, 𝛿)-differentially private if, for every pair of
neighboring datasets𝑋 and𝑋 ′, and all subsets 𝑅 of possible outputs,
the following holds:

Pr[M(𝑋 ) ∈ 𝑅] ≤ 𝑒𝜖 Pr[M(𝑋 ′) ∈ 𝑅] + 𝛿
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Definition (Concentrated Differential Privacy (𝜌-zCDP)[9]). We
use 𝐷𝛼 (M(𝑋 ) | |M(𝑋 ′)) to signify the 𝛼-Rényi divergence. Thus,
a randomized algorithm M upholds 𝜌-zCDP if, for every pair of
neighboring datasets 𝑋 and 𝑋 ′,

𝐷𝛼

(︁
M(𝑋 ) | |M(𝑋 ′)

)︁
≤ 𝜌𝛼,∀𝛼 ∈ (1,∞)

These two principles, (𝜖, 𝛿)-DP and 𝜌-zCDP, are intimately re-
lated but scale with different relative privacy parameters. As demon-
strated by Bunet al. [9], an established hierarchy of these guarantees
is: An (𝜖, 0)-DP mechanism gives 𝜖2

2 -zCDP, which in turn gives
(𝜖

√︁
2 log(1/𝛿), 𝛿)-DP for every 𝛿 > 0.
It is theoretically difficult to compare private mechanisms sat-

isfying differing versions of DP. However, in the case of private
synthesizers, practical, utility-based comparisons have become a
norm [10, 42, 55, 62]. The methods we consider provide different
guarantees: AIM and GEM both give 𝜌-zCDP guarantees, while
MST, PATECTGAN and PrivMRF give (𝜖, 𝛿)-DP guarantees, and
PrivBayes gives an (𝜖, 0)-DP guarantee. For comparison purposes,
all 𝜖 parameters are translated using the parameter relationships
given above, so as to compare at the same relative privacy settings
between synthesizers. As is accepted practice, we set our 𝛿 parame-
ter to be “cryptographically small,” at the very most 1

𝑛 where 𝑛 is
the size of our data, but usually much smaller [21].

4 THE EPISTEMIC PARITY METHODOLOGY
Informally, we say that epistemic parity holds if all conclusions one
draws on the original dataset also hold on the synthetic dataset. We
define epistemic parity operationally as follows.

Definition (Epistemic Parity). Let 𝐷 be a universe of datasets.
A finding is a function 𝐷 → {0, 1}. A synthesizer is a function
𝑆 : (𝑋, 𝐷) → 𝐷 where 𝑋 ∼ 𝑈 (0, 1) is a random seed. Given a
dataset 𝑑 ∈ 𝐷 , an associated finding 𝑓 , and a DP synthesizer 𝑆 , we
say the epistemic parity of 𝑆 for 𝑓 on 𝑑 is the fraction of random
trials 𝑖 ∈ 𝑋 such that 𝑓 (𝑆 (𝑖, 𝐷)) = 𝑓 (𝐷).

The overall workflow to compute epistemic parity is illustrated
in Figure 2. The input is a set of papers, and the output is a set of
scores indicating whether findings are supported under various
DP synthesizers. This framework, and the associated open source
software that partially automates it, is intended to expand over time.
Mechanism designers are encouraged to implement new DP meth-
ods, and researchers are encouraged to implement new findings
from relevant papers.

Beginning from the left in Figure 2: A study is associated with
one dataset and potentially many papers. Each paper typically uses
only a subset of the variables in the study. We assume public access
to the data on which the paper’s results were computed; our focus
is on evaluating DP methods (requiring ground truth) rather than
on protecting the privacy of subjects involved in the study. The vast
majority of evaluations of DP mechanisms requires access to the
original data for interpretation; indeed, inaccessible ground truth
undermined the US Census Bureau’s efforts to build trust regarding
DP [8].

Given a paper, we manually identify natural language claims
made by the authors as candidates for findings. Though these claims
may appear anywhere in the paper, most were found in the results

section. Domain expertise of course provides an advantage in this
exercise, but we contend that it should always be possible for non-
expert readers to identify major claims since the goal of a paper is
to communicate findings to a broader audience.

For each claim, we identify the quantitative (or qualitative) evi-
dence that supports the claim, recording the variables involved and
methods used. We then re-implement the analysis to (attempt to)
reproduce the salient findings and conclusions in the paper over
the original, public dataset, as discussed in Section 4.1.

While in principle this reproduction step is always possible,
in practice, it can be difficult or impossible [5, 44],and may in-
volve guesswork when the computational details are incomplete.
Moreover, inconsistent reproducibility can introduce bias in our
benchmark: we may be more likely to include findings for which
computational details are clear, which may be those that are sim-
pler to explain or better-known by the author, as opposed to a
representative sample of appropriate methods.

If the reproduction was successful, we generate 𝑘 ×𝑚 synthetic
datasets representing 𝑘 trials with different random seeds and𝑚
different DP methods, and then draw an additional 𝐵 samples from
each seeded DP method. In our initial benchmark, 𝑘 = 10 and
𝑚 = 5, and 𝐵 = 25. The additional 𝐵 draws allow us to bootstrap
a confidence interval for each (trained) synthesizer. That is, there
are two sources of randomness: the training procedure used by
the mechanism, and the random sampling of the learned model to
actually generate synthetic data. Although each synthetic dataset
could be scaled to any number of records — recall that we are
sampling a privatized model — we always use the same number
of records as the original data for each bootstrap sample. Given
this set of synthetic datasets, we again attempt to reproduce the
findings using each one. Finally, we contrast the findings based
on original and DP data by measuring the proportion of trials, for
each method, where a given finding holds. Our methodology is
implemented in an open-source framework, described in Section 6.

4.1 Reproducing Experimental Studies
We adapt three concepts of reproducibility—values, findings, and
conclusions—from Cohen et al. [13] into a practical taxonomy for
reproducing a statistical analysis in a peer-reviewed publication,
and implement a software framework that allows us to conduct
concrete experiments around this taxonomy (see Section 6).

The atomic element in reproducibility is a finding, defined by
Cohen et al. [13] as “a relationship between the values for some
reported figure of merit with respect to two or more dependent vari-
ables.” For the purposes of our study, a finding consists of a natural
language statement (i.e., a claim) reported in a publication, along
with evidence provided by one or more quantitative or qualitative
sub-statements about the analysis.

Evidence for a finding consists of a comparison between two
or more values that can be evaluated as a Boolean condition. A
value may be a scalar (i.e., 34.1%), an aggregated or computed result
(i.e., a regression coefficient of 1.2), or even an implicit threshold
expressed in natural language (e.g., “a low rate” or “a strong correla-
tion”). In these cases, we instantiate the language as a quantitative
threshold, applying conventions from the literature when they exist.
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For example, a common convention is that Pearson’s correlation is
considered “strong” when 𝑟 is larger than 0.7.

A special case of a finding is a qualitative visual finding that
often appears in the form of a figure, table or diagram. A figure
encodes many potential findings; we do not (necessarily) consider
each of these sub-findings on their own in our analysis, but rather
treat them as a single visual finding: we attempt to reproduce the
figure itself, and subjectively evaluate its similarity to the original.
Consider Figure 1, where the top sub-figure shows a percentage
breakdown of drug use across demographic groups from Fairman
et al. [23], and the bottom sub-figure shows the same breakdown
reproduced on DP synthetic data generated by MST at 𝜖 = 𝑒 .

Finally, following Cohen et al. [13], a conclusion is defined as “a
broad induction that is made based on the results of the reported
research.” A conclusion must be explicitly stated in a paper, and
comprises one or several findings. Conclusions are less concrete
than individual findings, and are often at the discretion of the
domain expert tasked with interpreting a set of findings.

4.2 Generating DP Synthetic Data
Each of the papers that we reproduced using DP synthetic data
derived findings from a subset of the full study’s data. For example,
HSLS:09 consists of over 7000 columns, but Jeong et al. [35] used
only a subset of 57. We synthesize the subset of data relevant for the
reproduced findings and conclusions, as discussed in Section 4.1.
In the case where a paper relies on longitudinal data from a study,
we collapse the data such that it is “one row to one person.”

The DP methods for private data release are executed for the
range of 𝜖 values 𝜖 ∈ {𝑒−3, 𝑒−2, 𝑒−1, 𝑒0, 𝑒1, 𝑒2}, which represents
a small to medium privacy regime [7]. Each DP mechanism is
run 10 times to produce, at each 𝜖 value, 10 × 𝐵 sampled datasets
using the same sample size but different random seeds (where
𝐵 is the bootstrap parameter). Each DP method involves different
hyperparameters and varying levels of tunability, but we use author-
recommended settings to avoid biasing results towards our own
expertise. We then re-compute the findings for each sample.

If all findings are reproduced regardless of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 or random
seed, we say that the DP mechanism achieves complete epistemic
parity. But we measure parity as the proportion of iterations for
which the finding holds. The goal is to overlook small variations in
the exact value in favor of maintaining the relative relationships of
the computed statistics for interpretability and practical utility.

4.3 Analysis of Variability for DP Synthetic Data
Räisä et al. [51] considers a set of rules proposed by Raghunathan
and Rubin as a potential approach to calculating uncertainty over
the results of DP synthetic data [50]. Consider synthetic datasets
𝑥1, ...𝑥𝑚 ∈ 𝑋 , and test statistic 𝜏 . Running 𝜏 (𝑋𝑖 ) produces a point
estimate 𝑞𝑖 with variance 𝑣𝑖 for dataset 𝑋𝑖 . Standard hypothesis
testing might calculate a confidence interval and power over the
distribution of all 𝑞𝑖 . In the case where 𝑋 consists of synthetic data,
Rubin’s rules for producing such calculations can be applied under
normality assumptions [50, 51]. In brief, these rules are as follows:
to compute confidence intervals, the estimated locations 𝑞1, ...𝑞𝑚

and variances 𝑣1, ...𝑣𝑚 are combined:

�̂� =
1
𝑚

𝑚∑︂
𝑖=1

𝑞𝑖 𝑣 =
1
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𝑣𝑖 (1)
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And then we use a 𝑡-distribution centered at �̂�, with variance
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)︃
𝑏 − 𝑣, (3)

and degrees of freedom:

df =

(︄
1 − 1
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𝑚

𝑣

𝑏

)︄2
(𝑚 − 1) . (4)

This method crucially relies on a normality assumption for the
distribution over each 𝜏 (𝑋𝑖 ) = 𝑞𝑖 . If the 𝜏 statistic is a mean and
variance over a well understood distribution, this could be a reason-
able assumption to make. However, in the case of our benchmark,
we consider a wide variety of more complex, multivariate statis-
tical tests over multiple high dimensional datasets. For example,
weighted least-squares regression produces a set of coefficients for
covariates, and we compare the magnitude of these covariates in
relation to a target variable of interest. Assuming a normal distri-
bution over covariate values across different randomly initiated
trainings of a synthesizer, with the addition of DP noise, is strong.
Thus, we are uncomfortable making this normality assumption.

We take a more conservative approach. Instead of computing the
statistical power of each point estimate 𝑞𝑖 , we turn each test into a
“soft” finding, given informally by Equation 5. The function 𝑓 𝑖𝑛𝑑𝑖𝑛𝑔

here takes in 𝜏 , some ground truth data 𝑞𝑟𝑒𝑎𝑙
𝑖

and synthetic data
𝑞
𝑠𝑦𝑛𝑡ℎ

𝑖
drawn from a privatized distribution intending to match the

distribution of 𝑞𝑟𝑒𝑎𝑙
𝑖

. The parameter 𝛼 manages the tolerance of
the comparison, acknowledging that the DP noise and the nature
of synthetic data will certainly alter the true values slightly. 𝛼 is
necessarily assigned according to the context of a 𝑓 𝑖𝑛𝑑𝑖𝑛𝑔 (for
example, if for groups A and B, we compare `𝐴, `𝐵 ∈ (0, 1), where
in the real data `𝐴 ≈ `𝐵 , a tolerance of 𝛼 = 0.01 might suffice).

𝑓 𝑖𝑛𝑑𝑖𝑛𝑔(𝜏, 𝑞𝑠𝑦𝑛𝑡ℎ
𝑖

, 𝑞𝑟𝑒𝑎𝑙𝑖 ) = 1[|𝜏 (𝑞𝑠𝑦𝑛𝑡ℎ
𝑖

) − 𝜏 (𝑞𝑟𝑒𝑎𝑙𝑖 ) | ≤ 𝛼] (5)

Recall that the goal of our benchmark is primarily to determine the
viability of a synthesizer for reproducing a specific paper’s findings,
so that we draw the same overall conclusions. Parity is then the
proportion of agreement for a given paper and given synthesizer
over a fixed set of discrete, statistical tests posed as 𝑓 𝑖𝑛𝑑𝑖𝑛𝑔𝑠 . This
approach allows us to compare across findings of different types,
and to score synthesizers for each paper on the reproducibility of
their results.

But how should we address the multiple sources of variance in
synthetic data? There are two main elements of randomness. Each
parametric DP synthesizer is trained conditioned on a random seed,
which dictates the privatizing random noise introduced during
model fitting. Varying the seed changes the random initialization
bias significantly for DP synthesizers. Then, after training, once a
synthesizer is parameterized, a specific draw from that synthetic
distribution is again conditioned on a different random seed, which
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dictates the bias of a particular realized sample from the synthetic
distribution. The variance effect for the post training draw is much
lower, as no private noise need be added during sampling.

The latter source of randomness (in drawing from a synthetic
distribution) is easier to deal with. Conditioned on synthesizer 𝑆𝑖 ,
for fixed finding 𝑓 𝑖𝑛𝑑𝑖𝑛𝑔(𝜏, 𝑞𝑠𝑦𝑛𝑡ℎ

𝑖
, 𝑞𝑟𝑒𝑎𝑙

𝑖
), we perform a bootstrap

over 𝐵 samples of size 𝑛 (where 𝑛 is the size of the real ground truth
empirical sample we trained on). Over 𝐵 datasets, we calculate the
average statistic and average variance of 𝑓 𝑖𝑛𝑑𝑖𝑛𝑔, �̂� = 1

𝑚

∑︁𝑚 𝑞𝑖 and
𝑣 = 1

𝑚

∑︁𝑚 𝑣𝑖 , as well as a 95% confidence interval.
The former source of randomness (in fitting a synthetic distribu-

tion) is more difficult to deal with, as fitting a synthetic distribution
is computationally expensive for high dimensional data [42, 55, 62].
Despite running extensive tests, we were unable to run enough
trainings per synthesizer to say anything convincing about the sta-
tistical power of our sample of random synthesizer initializations.
Instead, we simply report on the variance of the aforementioned
soft finding bootstraps over 10 randomly initialized synthesizers,
per paper, per privacy level (around 1400 trained synthesizers in
total). Though this is standard practice [4, 7, 62], we believe there’s
an opportunity to improve the norms here through model sharing
and well supported open source synthesizers.

5 BENCHMARK CONSTRUCTION
We used a standardized approach for study and paper selection.
Each study, which has an associated dataset, was selected for broad
impact (at least 100 papers). For each selected study, we selected
peer-reviewed papers published during the past 5 years that are
publicly available, use publicly available data, and are no more than
30 pages long. We describe selected studies and papers below, see
https://github.com/DataResponsibly/SynRD and the full version of
the paper [54] for details.

5.1 Selected Studies
HSLS:09: High School Longitudinal Study [14], is a nationally
representative, longitudinal study of U.S. 9th graders who were
followed through their secondary and postsecondary years. We
attempted to reproduce four papers that use HSLS:09, and were
able to fully or partially reproduce three of them.

AddHealth, National Longitudinal Study of Adolescent and
Adult Health [27], consists of a nationally representative sample of
U.S. adolescents in grades 7 through 12 during the 1994-1995 school
year. We attempted to reproduce four papers that use Add Health,
and were able to fully or partially reproduce two of them.

NSDUH, National Survey onDrugUse andHealth 2004-2014 [64],
measures the prevalence and correlates of drug use in the U.S.. We
attempted to reproduce four papers that use NSDUH, but we were
able to reproduce only one, partially and with substantial effort.
The main obstacle was that the study is broken down by year, and
multiple versions of the study for each year have been released,
without a record of what the new version modifies.

ACL, The Americans’ Changing Lives Survey [30], is an ongoing
longitudinal study of the lives of U.S. adults. The study has several
waves, the first of which was conducted in 1986, and each wave
follows up with the same sample of U.S. adults, asking questions to
determine how social connections, work, and other factors affect

health throughout their lifetimes. We attempted to reproduce 2
papers that use ACL, and were able to partially reproduce both.

5.2 Selected Papers
Saw et al. [59] use HSLS:09 to examine cross-sectional and longi-
tudinal disparities in STEM career aspirations among high school
students. Methods include singular and trivariate disparity analysis
w.r.t. gender, race/ethnicity and socioeconomic status, and analysis
of disparities among students who persist in their STEM interest
from 9th to 11th grade vs. those who first emerge with STEM in-
terest in 11th grade. This paper was reproducible, with effort - we
were able to replicate each finding and agree with all conclusions.

Lee and Simpkins [38] use HSLS:09 to evaluate the impact of
factors, such as “low teacher support,” and self-perceptions of “math
ability” and “parental support”, on the performance of students on
the 11th grade math exam. The authors construct these factors by
aggregating across survey responses with a weighted average, and
control for demographic variables and historical math performance
to isolate the effects. They compute Pearson’s correlation and train
linear regression models to predict math performance. This paper
was partially reproducible, with substantial effort. The authors
did not detail their regression techniques, although results of a
simple weighted linear regression turned out to align well with
their findings. We were unable to reproduce a finding that involves
a covariance slope analysis figure from a complex R package.

Jeong et al. [35] use HSLS:09 to interrogate potential racial bias
in classifiers that predict student performance on a standardized 9th
grade math exam. The authors assign each student the privileged
(White/Asian) or disadvantaged (Black/Hispanic/Native American)
group. They trained random forest, SVM and logistic regression
models to predict whether a student would receive a top-50% test
score. We found this paper to be reproducible, with effort. The
authors did not specify how the data was preprocessed (e.g., how
missing values were imputed) or how it was split into training and
test. We were ultimately able to reproduce the results sufficiently
to agree with the conclusions, but were unable to reproduce the
values in the findings exactly.

Fruiht and Chan [24] use AddHealth to investigate the role
of mentors in the educational outcomes of first-generation college
students. The authors fit a statistical mediation model by Preacher
and Hayes [49] (PROCESS Model, variation 1) to test direct and
interaction effects of parental educational attainment and mentor-
ship on students’ educational attainment. This paper was partially
reproducible, with substantial effort. We were unable to reproduce
findings based on manual qualitative coding of free text responses,
because the authors did not publish the coding scheme. Still, we
were able to reproduce most of the observed trends and agree with
the conclusions.

Iverson and Terry [31] analyze the effect of having played high
school football on depressive and suicidal tendencies in men later in
life using the first wave (1994-95) and the most recent wave (2016-
2018) of AddHealth. The authors conduct a bivariate analysis across
two groups of men (those who did or did not play football in high
school), controlling for demographics and risk factors, and report on
simple percent comparisons, statistical significance and odds ratios.
This paper was easy to reproduce. The authors provided precise

3184

https://github.com/DataResponsibly/SynRD


Table 1: Properties and meta-features of the datasets in our benchmark, and of two datasets that are commonly used for DP
benchmarking, Adult and Mushroom. Mutual Information, Skewness and Sparsity are the average for each of these metrics
across all variables in the dataset. Our results (Section 7.1) reinforce that synthesizers may struggle with large sample sizes

(Fairman et al. [23]), large domain sizes (Jeong et al. [35]), and low mutual information (Iverson and Terry [31]).

Paper Sample Size Variables Domain Size Outliers Mutual Info. Skewness Sparsity

Assari and Bazargan [2] 3361 16 9.03e+09 9 0.051 ± 0.153 0.563 ± 1.557 0.253 ± 0.231
Fairman et al. [23] 293581 6 2.03e+05 0 0.255 ± 0.432 0.185 ± 0.462 0.174 ± 0.165
Fruiht and Chan [24] 4173 11 2.20e+05 6 0.104 ± 0.256 0.607 ± 1.694 0.394 ± 0.183
Iverson and Terry [31] 1762 27 5.71e+15 5 0.004 ± 0.010 NaN 0.307 ± 0.180
Jeong et al. [35] 15054 57 7.04e+42 32 0.020 ± 0.026 0.338 ± 2.850 0.261 ± 0.166
Lee and Simpkins [38] 14575 9 5.11e+17 5 2.862 ± 1.242 0.080 ± 0.440 0.111 ± 0.156
Pierce and Quiroz [46] 1585 17 7.19e+11 11 0.030 ± 0.050 0.001 ± 1.050 0.146 ± 0.158
Saw et al. [59] 20242 9 4.30e+04 3 0.143 ± 0.145 1.291 ± 1.218 0.354 ± 0.171

Adult [37] 32561 15 9.06e+14 96 0.066 ± 0.053 17.455 ± 22.992 0.125 ± 0.164
Mushroom [60] 8124 23 2.44e+14 74 0.199 ± 0.209 6.211 ± 8.955 0.297 ± 0.219

guidance on which questions (columns) they used and applied
relatively simple methods. We were able to exactly match nearly
all values reported in the paper, reproducing all findings.

Fairman et al. [23] use NSDUH to investigate predictors and
potential consequences of initiating the use of marijuana before
other types of substance (e.g., cigarettes and alcohol) for U.S. youth.
The primary methods of analysis were counts and percentage com-
parisons by group, and computing adjusted relative risk ratio (aRRR)
and adjusted odds ratio (aOR). This paper was partially reproducible,
with substantial effort. The main obstacle to reproducibility is the
inappropriate versioning of the data by NSDUH, as discussed in
Section 5.1. Additionally, the paper inadequately describes their
calculations of aRRR and aOR, making them difficult to replicate.
We were unable to reproduce exact reported values but reproduced
general trends and agree with most conclusions.

Assari and Bazargan [2] use ACL to investigate the predictive
role of obesity on long-term risk of mortality due to cerebrovas-
cular disease, and, further, to test racial variation in this effect.
The authors use the first wave of ACL (1986) to establish baseline
factors, including obesity as the main predictor, and demograph-
ics, socioeconomic status, health behaviors, and health status as
baseline covariates. They used data from subsequent waves to deter-
mine time to death due to cerebrovascular causes. This paper was
partially reproducible, with substantial effort. To reverse-engineer
their analysis, we used history of cerebrovascular disease combined
with death to represent this feature, and successfully reproduced
16 of the 18 findings we attempted.

Pierce and Quiroz [46] use ACL to study how social support
and social strain stemming from spouses, children, and friends
impact emotional states. The authors modeled the variables by
combining answers from multiple survey questions and used a
mixed-effects model. This paper was partially reproducible, with
substantial effort. The authors did not clearly state which variables
they used as basis for demographic attributes, and we were thus
unable to fully reproduce their analysis. We were able to reproduce
10 out of 14 reported findings.

Note on study/dataset dimensionality. We did not explicitly
filter papers based on the size of the dataset they used. The studies
we considered were very high dimensional (many thousands of

variables), but the corresponding papers in our benchmark each
follow a standard subsetting procedure, where they select a small
collection of variables of interest for analysis. Thus, our benchmark
datasets are not as high-dimensional as other benchmarks [42].

5.3 Comparison to Other DP Benchmarks
Our benchmark papers introduce a collection of 8 new datasets.
In this section, we briefly analyze these new datasets, and discuss
characteristics that differentiate them from standard ML datasets,
like Adult [37] or Mushroom [60], which were used in prior DP
benchmarks [28, 55]. We perform this analysis through the lens of
principled dataset and ML task characterization, sometimes called
“meta-learning.” Prior work in the meta-learning community pro-
vides guidance [48, 52] and tooling [1], of which we take advantage.

In Table 1, we show several properties and meta-features for
eight datasets from our benchmark, as well as for two popular
datasets from the UCI Machine Learning repository [18], Adult [37]
and Mushroom [60]. Four of the meta features (Number of outliers,
Mutual information, Skewness, and Sparsity) might be of particular
interest to DP data synthesis. We discuss these further in the full
version of the paper [54].

Overall, Table 1 demonstrates that the datasets in our benchmark
are diverse and cover a wide range of values for the aforementioned
metrics. Interestingly, one of our most challenging datasets to re-
produce, Iverson and Terry [31], had the lowest average mutual
information score and one of the highest sparsity scores. Many of
the synthesizers we test depend on mutual information to select
the marginal measurements for distribution learning. Selecting the
most relevant 2-way marginals when mutual information is uni-
formly low and there are many features is clearly a challenge. We
further note that Adult, a common challenge dataset, had uniquely
skewed distributions, which aligns with prior work suggesting that
this dataset is idiosyncratic, and so one should reconsider using it
for evaluation and benchmarking [15].

6 EXTENSIBLE BENCHMARKING PACKAGE
We organize the epistemic parity workflow and existing papers
and datasets into an open-source differentially private (DP) syn-
thetic data benchmarking package called SynRD, available at https:
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//github.com/DataResponsibly/SynRD. This package helps answer
the question: “Can a DP synthesizer produce private (tabular) data
that preserves scientific findings?” In other words, to what degree
does a DP synthesizer satisfy epistemic parity for a particular set
of findings?

We used SynRD to automate empirical evaluation of epistemic
parity of five state-of-the-art DP synthesizers (see Section 2) over all
publications in our benchmark (see Section 5). The SynRD package
is built to be naturally extensible to include additional DP synthe-
sizers, datasets, publications, and finding types.

The main classes implemented by SynRD are Synthesizer,
Publication, Finding, and Benchmark. The Synthesizer class
provides a unified interface to the implementations of five DP syn-
thesizers, specifying recommended parameter values for each, and
implementing the fit and sample methods. This class wraps im-
plementations of MST, PATECTGAN and AIM from the SmartNoise
package, and an implementation of PrivBayes from the DataSyn-
thesizer package [47]. PrivMRF is implemented separately.

The Publication class contains descriptive attributes of each
paper, specifies input files and any necessary data transformations.
This class also contains a collection of findings, described next. The
Finding class implements each analysis method from Table 2 as
finding type, and automates the process of checking whether a
finding is reproduced over a given dataset.

Finally, the Benchmark class takes as input a publication, along
with execution parameters (such as the number of bootstrap sam-
ples), checks all findings for that publication over the real data,
generates synthetic datasets for each DP synthesizer, checks find-
ings over synthetic data, and, finally, generates an epistemic parity
score for each (synthesizer, finding) pair, and for the synthesizer
overall (over all findings).

An example instance of Publication, for Saw et al. [59], along
with an implementation of evaluating epistemic parity for MST
using Benchmark, is shown below.

from SynRD.papers import Saw2018Cross
from SynRD.benchmark import Benchmark
from SynRD.synthesizers import MSTSynthesizer
benchmark = Benchmark ()
B = 25 # Bootstrap parameter
synth = MSTSynthesizer(epsilon=1.0)
papers = benchmark.initialize_papers([Saw2018Cross])
for paper in papers:

synth.fit(paper.real_dataframe)
dataset = synth.sample(len(paper.real_dataframe) * B)
paper.set_synthetic_dataframe(dataset)
benchmark.eval(paper , B=B)

An example function that implements checking a finding that
“Obesity at baseline was not associated with cerebrovascular death
in the pooled sample” fromAssari and Bazargan [2], is shown below.

def finding_6_9(self):
corr_df = self.get_corr ()
corr_obesity_death = \

corr_df['Obesity '].loc['Cerebrovascular death ']
soft_finding = abs(corr_obesity_death) < 0.05

To support empirical evaluation of our benchmark, we pre-
processed publication-relevant subsets of the ICPSR studies, and
deposited them in the Harvard Dataverse repository. The auxiliary
DatasetLoader class retrieves this data, and makes it available to
an instance of the Publication class.

7 RESULTS
Computational resources. Our benchmark consists of eight pa-

pers, each evaluated on six synthetic data algorithms for six values
of 𝜖 , for a total of 36 mechanisms for each paper, each repeated
with 10 random seeds. We draw 25 samples of size 𝑛, where 𝑛 is
the real data sample size, and bootstrap over this set of samples
when calculating average parity over our finding set. Benchmark-
ing extensively with DP synthesizers is computationally expensive
[42, 55, 62]. Fitting many synthesizers took 100s of compute hours.
Training PrivMRF and PATECTGAN was done using NYU’s Greene
High Performance Computing cluster using A100 and RTX8000
NVIDIA GPUs with 80GB and 48GB of RAM respectively. CPUs
from that same cluster were used to train AIM, MST, PrivBayes,
and GEM. The benchmark itself (assessing parity per paper) was
also run on the cluster. Though this was computationally less in-
tense (with some exceptions), bootstrapping to report variance per
synthesizer did incur additional overhead.

7.1 Quantitative results
Figure 3 shows parity for all findings across all papers, for each
of the five synthesizers, with 𝜖 regimens of 𝑒−3, 𝑒−2, 𝑒−1, 𝑒0, 𝑒1,
and 𝑒2. Darker color indicates lower average parity, while lighter
indicates higher average parity. Each paper is a block of rectangles,
where the 𝑥-axis represents findings and the 𝑦-axis shows the five
synthesizers. The crosshatched cells indicate that a synthesizer was
unable to fit to a dataset in under 6 hours.

Baseline: Bayesian bootstrap. An important element of our eval-
uation framework is an accurate assessment of replicability and
variability. We subject private synthesizers to a rigorous bootstrap
process to assess the epistemic parity of findings presented in each
paper; however, it is then reasonable to ask whether the findings
themselves, assessed via a bootstrap procedure on the real data,
would hold up under similar scrutiny? In order to check this, we per-
form a standard Bayesian bootstrap procedure [57]. The Bayesian
bootstrap assigns weights to each observation in a given dataset,
where those weights w = (𝑤1,𝑤2, ...,𝑤𝑛) are drawn from a sym-
metric Dirichlet distribution, i.e. w ∼ D(1, 1, ..., 1) (the Dirichlet
distribution is a standard Bayesian prior, a smoothed version of the
multinomial distribution). We then compute the epistemic parity of
each finding with these new weighted samples for 𝐵 iterations of
the bootstrap, matching the number of iterations of the bootstrap-
ping procedure on the private synthetic data. Each statistic is then
an independent and identically distributed realization from the pos-
terior predictive distribution, which offers a Bayesian perspective
on the data-generating mechanism. The variability among these
samples reflects the uncertainty about the underlying population.

The final row, labeled “real, bootstrap,” in Figure 3 shows the
results of our Bayesian bootstrapping control procedure. We note
that over 97% of our findings are reproduced in 100% of our Bayesian
bootstrap iterations. For the remaining inconsistent three findings
over the bootstrap, it is unfair to expect the private synthesizers to
have higher epistemic parity than the bootstrap control.

Epistemic parity: overall performance. The overall performance
of the synthesizers was impressive. All six synthesizers achieved
100% parity for Lee and Simpkins [38], and Fruiht and Chan [24].
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Figure 3: Epistemic parity for six competitive mechanisms for synthesizing data across four 𝜖 values (𝑒−3,𝑒−2,𝑒−1, 𝑒0, 𝑒1, 𝑒2). All
mechanisms achieve perfect parity on Fruiht and Chan [24] and Lee and Simpkins [38], and all but one achieve perfect parity

on Pierce and Quiroz [46]. Only PATECTGAN can scale to support Jeong et al. [35]. All methods struggled with the high
dimensionality of Iverson and Terry [31]. PrivMRF was too slow to be viable; we report results only for 𝜖 = 𝑒0. Only PrivBayes
and MST achieved reasonable parity for Fairman et al. [23]. For datasets associated with Assari and Bazargan [2] and Saw et al.
[59], only one finding was difficult to reproduce, and all methods struggled. Surprisingly, parity is relatively insensitive to 𝜖.

Besides PrivMRF (which was computationally infeasible to fit to
the data), AIM, MST, PrivBayes, PATECTGAN, and GEM achieved
100% parity for Pierce and Quiroz [46] as well. Both Saw et al. [59],
and Assari and Bazargan [2] also had very high levels of parity
between findings on real and on synthetic data, although each of
these papers had at least one finding that was difficult to reproduce.

Two of the papers provided the greatest challenge, and the most
interesting results, across privacy regiments and synthesizer types:
Fairman et al. [23], and Iverson and Terry [31]. These papers were
challenging for very different reasons. Fairman et al. [23] had the
second-smallest domain size, and the fewest variables. However, it
had by far the largest sample, consisting of nearly 300K records. This
combination made it very sensitive to noise in marginal measure-
ments (as they are essentially counts), in turn making the findings
difficult to replicate in low-privacy settings. Still, PrivBayes and

MST exhibited impressive performance in comparison to AIM, PA-
TECTGAN and GEM. On the other hand, Iverson and Terry [31],
had both one of the largest domains and the most variables of
the papers in our benchmark, as well as a low mutual informa-
tion between variables. No synthesizer with the exception of GEM
exhibited convincing parity performance on this paper.

GEM was the strongest performing synthesizer on one paper
(Iverson and Terry [31]). For the other papers in our benchmark,
neither PATECTGAN nor GEM were the strongest performing.
However, these methods were the most computationally tractable
on high-dimensional large-domain data, and were the only methods
that were feasible to run on Jeong et al. [35], where they both
achieved 100% parity. Interestingly, PrivBayes often outperformed
MST on our benchmark. We believe that this can be explained
by two factors: (1) MST is tailored to work on high-dimensional
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Figure 4: Average epistemic parity across papers achieved by
AIM, PrivMRF, MST, PrivBayes, PATECTGAN, and GEM as a
function of the privacy parameter 𝜖 ∈ {𝑒−3, 𝑒−2, 𝑒−1, 𝑒0, 𝑒1, 𝑒2}.
Parity, on the 𝑦-axis, is on [0,1] and represents the fraction

of reproduced findings over all experiments at each 𝜖.

datasets such as NIST, where explicitly parameterizing a conditional
structure (like PrivBayes does) is costly and unstable, while the
datasets in our benchmark are relatively low-dimensional; and (2)
the findings that comprise the epistemic parity metric are based
on conclusions that often rely on conditional relationships, which
PrivBayes represents explicitly, while MST does not.

PrivMRF was the slowest synthesizer to run, and required a GPU.
This requirement limited our ability to fully assess the capabilities
of PrivMRF, although we observe that it performed well on the
datasets on which it was able to run successfully. PrivBayes was
the second-slowest method to run, due to a known limitation in
handling high-dimensional data. However, PrivBayes performed
competitively on datasets on which it was able to run successfully.

Notably, no synthesizer succeeded across all papers, and, remark-
ably, some findings were never reproduced by any of the synthesiz-
ers. We will revisit these findings further in Section 7.2.

Epistemic parity across 𝜖 values. Figure 4 compares synthesizer
performance across reasonable 𝜖 values, shown on the𝑥-axis in both
sub-figures. The left side of the figure shows aggregated epistemic
parity as the percentage of reproduced findings on the 𝑦-axis, over
all iterations of each synthesizer, averaged over all publications in
our benchmark. We observe that synthesizer performance (average
parity) improves — although not substantially — for higher 𝜖 val-
ues for marginals-based methods PrivMRF, MST, and AIM. At the
smallest values (𝜖 = 𝑒−3, 𝑒−2), the performance of PrivBayes, AIM,
and MST all begin to noticeably (and understandably!) degrade,
especially on certain findings (e.g., 16-21). Interestingly, PrivBayes
achieves best performance at 𝜖 = 𝑒 , and PATECTGAN and GEM
appear insensitive to the value of 𝜖 . These trends are consistent
with the observations in Figure 3, and support the choice of 𝜖 = 𝑒

as a reasonable privacy budget. Overall, we observe that restricting
the privacy budget to 𝜖 = 𝑒−3) does not significantly affect the
ability of the synthesizers to reproduce the “easy” findings, while
increasing it to 𝜖 = 𝑒2 does not help with reproducing the “difficult”
findings. We conjecture that the modeling structure employed by
the synthesizer is more important than the scale of private noise.

Table 2: Methods used in benchmark papers, each
corresponding to a type of finding in our framework.

Descriptive Statistics 8

Regression Between-Coefficients 4
Fixed Coefficient (Sign) 2

Causal Paths
Variability 1
Interaction 1
Coefficient Difference 19

Logistic Regression

PBR, FNR, FPR 2 (each)
Accuracy 2

Mean Difference Between-Class 24
Temporal (FC) 26

Correlation Pearson 12
Spearman 1

The right side of Figure 4 shows average variance of epistemic
parity. We observe that variance is lowest for PrivMRF, followed by
PrivBayes. Further, we observe that the value of 𝜖 has little impact
on parity variance; AIM is the only synthesizer that benefits from
a higher value of 𝜖 in terms of reduced average parity variance.

The observation that epistemic parity is insensitive to 𝜖 is signif-
icant. It suggest that our metric is substantially different compared
to other metrics that were previously used for assessment of DP
synthesizers. Parity may provide insight into a more fundamental
question about whether a DP synthesizer’smethodology — the types
of measurements it takes to constitute a synthetic distribution — is
appropriate to preserve the statistical properties of the dataset that
are necessary to reproduce findings.

7.2 Qualitative results
Epistemic parity across finding types. Table 2 summarizes the

methods used in the publications in our benchmark, each corre-
sponding to a type of finding. We observe Mean Difference (both
Between-class and Temporal) is by far the most common finding
type, followed by Coefficient Difference. Whether a finding can be
reproduced over DP synthetic data depends on several factors, in-
cluding dataset size (as in Fairman et al. [23]) and dimensionality (as
in Iverson and Terry [31]). However, finding type likely also plays
a role: The majority (19 out of 26) of Mean Difference / Temporal
findings are in these two papers that were difficult to reproduce.
However, we must be cautious to interpret this as a trend: the re-
maining 7 findings of type Mean Difference / Temporal (FC) were
in Saw et al. [59], and they were reproduced successfully by all
synthesizers. In what follows, we qualitatively evaluate the impact
of finding type (and, possibly, of other properties of the finding) on
its reproducibility over DP synthetic data.

That some findings are easier to reproduce than others is un-
surprising. Though each synthesizer relies on a fundamentally
different approach to replicating the joint distribution across all of
the data, they each struggle with high dimensional data. Further, for
general-purpose synthetic data, PrivMRF, AIM, MST and PrivBayes
prioritize lower dimensional 2- or 3-way relationships among vari-
ables, and thus it is unsurprising that simple mean comparison
findings are easily preserved by these methods.

We were surprised at the high number of findings across all our
papers (even those that we were unable to replicate) relying only on
1- or 2-dimensional comparisons: The low-dimensionality suggests
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that earlier empirical studies (including Tao et al. [62] and Hay et al.
[28]) may be suitable as proxy tasks. Targeted improvements to the
synthesizers may allow us to simultaneously support high utility for
individual findings and their composition into broad conclusions.

Next, we consider three findings that were difficult regardless of
synthesizer or privacy regimen: #4 (Assari and Bazargan [2]), #39
(Iverson and Terry [31]), and #96 (Saw et al. [59]), see Figure 3.

Finding #4 is of type Descriptive Statistics. It is based on the text
statement “Similarly, overall, people had 12.53 years of schooling at
baseline (95%CI = 12.34-2.73).” Finding #39 is also of type Descriptive
Statistics, and is based on a somewhat longer text statement that
refers to specific percentages of individuals being diagnosed with
specific disorders (5 such pairs of statistics in total). Finding #94 is of
typeMean Difference / Between-class. It’s based on the text statement
“From a longitudinal perspective, students from the two lower SES
groups—low-middle and low SES groups—had significantly fewer
persisters (31.9% and 29.9%) and emergers (6.1% and 5.4%) than their
high SES peers (45.1% and 9.0%, respectively).”

These findings were difficult to reproduce because they give
specific measurements for variables with large domains. Larger
domains require proportionally more DP noise to privatize, and so
the learned distribution over each of these variables was too noisy
to reproduce these findings within our specified tolerance.

Visual findings. Figure 1, described in the Introduction, highlights
a visual finding from Fairman et al. [23]. The results are subjectively
similar, though a number of relationships may change at the indi-
vidual level. Just as authors include visual findings in their papers,
we argue that a DP evaluation should include qualitative results.

7.3 Summary of experimental results
Overall, we were encouraged by the performance of current state-
of-the-art synthesizers on our benchmark. DP synthetic data has
become more widely used in the social sciences (for Census Data,
etc.) and these findings suggest that, in certain contexts, scientists
can use DP synthetic data to conduct their scientific inquiry. We
caveat this point: Certain contextsmeans relatively low-dimensional
tabular data. Our benchmark can be used to assess if those data
characteristics hold for a particular dataset, and researchers can
proceed with their private analysis with increased confidence.

However, large domain and high-dimensional settings are still
a challenge for DP synthesizers: as the domain/number of vari-
ables grows, the ease of fingerprinting individuals in a dataset in-
creases dramatically. Our findings suggest that existing synthesiz-
ers struggle to scale (PrivMRF, MST, AIM, PrivBayes), or are far
from achieving reasonable utility (PATECTGAN, GEM). We sug-
gest incorporating more principled methods of data preprocessing,
like DP-binning, DP variable pruning, or other domain/variable
count reduction techniques into DP synthesizers, so that successful
marginals-based methods can be utilized for more complex data.

8 CONCLUSIONS AND FUTUREWORK
Summary of contributions. In this paper, we proposed epistemic
parity as methodology for measuring the utility of DP synthetic
data in support of scientific research. We assembled a benchmark
of peer-reviewed papers that analyze one of four studies in the
ICPSR social science repository. We then experimentally evaluated

epistemic parity achieved by state-of-the-art DP synthesizers over
the papers in our benchmark. Overall, we found epistemic parity
to be a compelling method for evaluating DP synthesizers. Further,
we found that, of the six DP synthesizers we evaluated, no single
synthesizer outperformed all others on all papers. Finally, some
findings were never reproduced by any of the synthesizers.

Despite facing well-known reproducibility challenges during
benchmark construction, we are confident that our results will
lead to generalizable insights. We are continuing to expand the
benchmark with additional studies and papers, and invite others to
use our open-source extensible framework, SynRD, to contribute.

Future work: Characterizing false discoveries. Replicating pub-
lished findings using synthetic versions of the original data can
reveal some implications of DP for scientific research. However,
our epistemic parity methodology does not assess the possibility
of findings that would have occurred if the original research had
been done on synthetic data, or, more generally, the replicability of
any hypotheses for which tests were not published. This challenge
has been referred to as the file-drawer problem [32, 56] or publica-
tion bias. It may be a more severe issue when the original dataset
contains more variables that could be used to formulate potential
hypotheses. In future work, epistemic parity could be extended to
quantify the effect of DP noise in producing false discoveries by
simulating data with both “real” and spurious relationships.

Future work: Rebalancing utility and privacy. Though DP was
developed to provide formal guarantees of privacy with best-effort
utility, many practitioners and data providers may want the inverse:
strong guarantees of utility with quantifiable, flexible risk of pri-
vacy violations that can be managed with policy and accountability
rather thanmathematical guarantees.We see this benchmark as pro-
moting a more holistic discussion of socio-technical-legal systems
for managing privacy-utility trade-offs. Besides, DP synthesizers,
once already trained, can generate arbitrarily large samples at low
cost. This makes the power of statistical hypothesis tests another
concern for scientific research. Epistemic parity could be extended
to use for calculating sample sizes, for example by Monte Carlo
estimation of the sample size required to achieve a desired power
for a particular finding, or for all findings in a given study.

Future work: Improving reproducibility and replicability of sci-
entific discovery. Replicating published findings using synthetic
versions of the original data can reveal some implications of DP
for scientific research. However, our methodology does not assess
the possibility of findings that would have occurred if the original
research had been done on synthetic data, or, more generally, the
replicability of any hypotheses for which tests were not published.
This has been referred to as the file-drawer problem [32, 56] or
publication bias. In future work, epistemic parity could be extended
to quantify the effect of DP noise in producing findings that would
not have been identified from the original data.
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