
Satisfying Complex Top-𝑘 Fairness Constraints
by Preference Substitutions

Md. Mouinul Islam
Dept. of Computer Science, NJIT, NJ, USA

mi257@njit.edu

Dong Wei
Dept. of Computer Science, NJIT, NJ, USA

dw277@njit.edu

Baruch Schieber
Dept. of Computer Science, NJIT, NJ, USA

sbar@njit.edu

Senjuti Basu Roy
Dept. of Computer Science, NJIT, NJ, USA

senjutib@njit.edu

ABSTRACT
Given𝑚 users (voters), where each user casts her preference for
a single item (candidate) over 𝑛 items (candidates) as a ballot, the
preference aggregation problem returns 𝑘 items (candidates) that
have the 𝑘 highest number of preferences (votes). Our work studies
this problem considering complex fairness constraints that have to
be satisfied via proportionate representations of different values of
the group protected attribute(s) in the top-𝑘 results. Precisely, we
study the margin finding problem under single ballot substitutions,
where a single substitution amounts to removing a vote from can-
didate 𝑖 and assigning it to candidate 𝑗 and the goal is to minimize
the number of single ballot substitutions needed to guarantee that
the top-𝑘 results satisfy the fairness constraints. We study several
variants of this problem considering how top-𝑘 fairness constraints
are defined, (i) MFBinaryS and MFMultiS are defined when the
fairness (proportionate representation) is defined over a single,
binary or multivalued, protected attribute, respectively; (ii) MF-
Multi2 is studied when top-𝑘 fairness is defined over two different
protected attributes; (iii) MFMulti3+ investigates the margin find-
ing problem, considering 3 or more protected attributes. We study
these problems theoretically, and present a suite of algorithms with
provable guarantees. We conduct rigorous large scale experiments
involving multiple real world datasets by appropriately adapting
multiple state-of-the-art solutions to demonstrate the effectiveness
and scalability of our proposed methods.

PVLDB Reference Format:
Md. Mouinul Islam, Dong Wei, Baruch Schieber, and Senjuti Basu Roy.
Satisfying Complex Top-𝑘 Fairness Constraints
by Preference Substitutions. PVLDB, 16(2): 317 - 329, 2022.
doi:10.14778/3565816.3565832

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/MouinulIslamNJIT/BallotChange.git.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565832

1 INTRODUCTION
Preference aggregation is important in finding top-𝑘 outputs that
represent plurality preference [34] and has wide variety of applica-
tions in recommender systems, search results listing [7], electoral
systems [33, 35], or allocating resources among candidates, such as,
in hiring or admission [46]. A natural variant of the top-𝑘 preference
aggregation problem is defined as follows: given𝑚 users (voters)
and 𝑛 items (candidates), each user (voter) casts her preference for
a single item (candidate) as a ballot, and the 𝑘 items (candidates)
from the 𝑛 that have the highest number of preferences are selected.
However, this variant may not produce a desired outcome when
applications need to promote fairness by ensuring proportionate
representation of the items (candidates) in the top-𝑘 results based
on their protected attributes. We study how to guarantee fairness
by single ballot substitutions, where each such substitution replaces
a vote for an item (candidate) 𝑖 by a vote for an item (candidate) 𝑗 .

Our goal in this work is to optimize preference substitution
to satisfy complex top-𝑘 fairness constraints, where the fairness
requirement is defined over a set 𝑅 of protected attributes. The
objective is to minimize the number of single ballot substitutions
that guarantee fairness in the top-𝑘 results. In voting theory [13], the
concept of margin of victory (MOV) is designed to measure electoral
competitiveness of the candidates, that we formalize as the smallest
number of single ballot substitutions to promote a given set of 𝑘
candidates as the top-𝑘 . To the best of our knowledge, we are one
of the first to formalize the computational problem - find margin
via single ballot substitutions to promote a set of 𝑘 candidates as
top-𝑘 , considering multiple protected attributes of the candidates
(Section 6 contains details on related work).

Our first contribution is to formalize several variants of the mar-
gin finding problem via single ballot (preference) substitutions consid-
ering complex fairness constraints (Section 2). (i) In MFBinaryS,
proportionate representation is required over a single binary pro-
tected attribute, such as male and female of the protected attribute
gender; (ii) In MFMultiS, it is defined over a single multi-valued
protected attribute, such as, race that contains more than 2 different
values; (iii) Contrarily, in MFMulti2, proportionate representation
is required over two different protected attributes, such as gender
and race; and finally, (iv) in MFMulti3+, we study the margin find-
ing problem via preference substitutions considering three or more
protected attributes, such as, race, gender, and ethnicity.

Our second contribution is to study the defined problems theo-
retically and make principled algorithmic contributions (Sections 3

317

https://doi.org/10.14778/3565816.3565832
https://github.com/MouinulIslamNJIT/BallotChange.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565832
https://www.acm.org/publications/policies/artifact-review-and-badging-current

and 4). We prove that both MFBinaryS and MFMultiS are com-
putationally easy, i.e., finding margin is polynomial time solvable
and we design exact algorithms Alg1AttBOpt and Alg1AttMOpt
for both these variants that run in 𝑂 (𝑛 log𝑛). Next, we consider
MFMulti2 and MFMulti3+ in which two or more attributes are
involved in defining fairness requirement. Clearly, a trivial solution
is to take a Cartesian product over the attribute values, enumerate
over all combinations of possible values of the cells in the Cartesian
product, and find the margin for each such combination by convert-
ing the requirement to a single multi-valued protected attribute.
However, if the domain size of the involved protected attributes
are not constant, the Cartesian product may create an exponential
number of possible combinations for the converted multi-valued
protected attribute, making the process computationally intractable.
When there are two different protected attributes involved in out-
lining the fairness requirement, we prove that the decision version
of that problem, i.e., MFMulti2, is (weakly) NP-hard by reducing
the well known NP-hard Partition problem to our problem [25].
We design an efficient algorithm Alg2AttApx that obtains a 2 ap-
proximation factor and runs in 𝑂 (𝑛2ℓ log𝑚) time, by casting this
problem as a min cost flow problem, where ℓ is the total number of
possible attribute values. Finally, for MFMulti3+, we prove that the
satisfiability problem itself is (strongly) NP-hard through a reduc-
tion from the 3-dimensional matching (3DM) problem [25]. Namely,
it is NP-hard just to decide whether there exists a feasible solution
that satisfies the fairness requirement defined over those 3 or more
attributes. Our technical results are summarized in Table 1. Our
final contribution is experimental (Section 5). We conduct rigorous
large scale experiments involving 3 real world (involving election
and movie applications) and one synthetic datasets and compare
multiple state-of-the-art solutions [22, 42] after appropriate adap-
tation. Despite non-trivial adaptation, these related works fail to
optimize margin values and do not turn out to be effective choices.
Our experimental results corroborates our theoretical analysis, the
designed algorithms match theoretical guarantees qualitatively, and
demonstrate to be highly scalable. We conclude in Section 7.

Table 1: Summary of technical results

Problem Protected
Attribute Hardness Algorithm Approx

Factor
Running
Time

MFBinaryS single attribute
binary valued p-time Alg1AttBOpt exact O(𝑛 log𝑛)

MFMultiS single attribute
multi (ℓ) valued p-time Alg1AttMOpt exact O(𝑛 log𝑛)

MFMulti2 2 attributes
ℓ possible values Weak NP-hard Alg2AttApx 2 O(𝑛2ℓ log𝑚)

MFMulti3+ 3+ attributes NP-hard

MFMulti2
MFMulti3+

2+ attributes
const size (𝑐) of
Cartesian prod

p-time AlgCartOpt exact O(𝑛𝑐+1)

2 DATA MODEL & PROBLEM DEFINITIONS
In this section, we describe the data model and illustrate that with a
running example, following which we define the studied problems.

2.1 A Toy Running Example
Table 2 describes the ballots of 12 voters and the outcome of a voting
process with 6 candidates (C1,C2,C3,C4,C5, C6). For example, V1, V2,
V4 and V7 vote for candidate C1, and C1 becomes the top candidate
with 4 votes. Each candidate has three protected attributes:Gender

Table 2: 12 voters, 6 candidates, and a voting outcome

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
∑
𝑉𝑖

C1
(M,Sr,si) 1 1 0 1 0 0 1 0 0 0 0 0 4

C2
(M,Jr,si) 0 0 1 0 1 0 0 0 1 0 0 0 3

C3
(M,Jr,ma) 0 0 0 0 0 1 0 0 0 0 0 1 2

C4
(F,Jr,si) 0 0 0 0 0 0 0 0 0 1 1 0 2

C5
(F,Jr,ma) 0 0 0 0 0 0 0 1 0 0 0 0 1

C6
(F,Sr,di) 0 0 0 0 0 0 0 0 0 0 0 0 0

(M, F), Seniority Level (Senior and Junior, abbreviated as Sr and
Jr, respectively), and Marital status (Married, Single, and Divorced,
abbreviated as ma, si, and di, respectively.

An Example Complex fairness constraint. Imagine the goal
is to select 𝑘 = 4 candidates from the voting outcome described in
Table 2 with the following fairness constraints described in Table 3.

Table 3: Fairness constraints in the
top-4 results of running example

Attribute Value Fairness
constraint

Gender M 2
F 2

Seniority
Level

Sr 2
Jr 2

Marital
Status

ma 2
si 1
di 1

Table 4: Table of notations

Notation Meaning
𝑛,𝑚, 𝑘 #candidates, #voters,#results
𝐴𝑖 protected attribute

ℓ𝑖
#values of a protected
attribute 𝐴𝑖

𝐿𝐶 list of candidates

𝐿𝑉
respective list of number
of votes

𝑡 threshold

𝑎∗ (𝑡)
#candidates from group 𝐺𝐴

with at least 𝑡 votes
𝐶, 𝑐 set of candidates, Πℓ

𝑖=1ℓ𝑖

Preference Elicitation and Aggregation. Each user (voter) casts
her top-1 preference (vote) through a ballot, and the 𝑘 items (candi-
dates) who get the highest number of votes are elected1.
Database. The database contains the outcome of a voting process
based on the top-1 preference of𝑚 voters over 𝑛 candidates. The
set of candidates will be denoted as 𝐶 , individual candidate will
be denoted by 𝑖 and 𝑗 . Considering the running example,𝑚 = 12
voters provide preferences over a set of 𝑛 = 6 candidates, and the
aggregated preference is shown in Table 2.

Note that the outcome may not be unique, and there may be
more than one set of 𝑘 candidates who get the highest number of
votes. We refer to such a situation as a tie. A reasonable tie breaking
is one in which none of the 𝑘 elected candidates have received less
votes than any non-elected candidate.
Protected Attribute. Each candidate has one or more protected
attribute, where each protected attribute 𝐴𝑖 can take any of ℓ𝑖 dif-
ferent values. When ℓ𝑖 = 2, it is a binary protected attribute; when
ℓ𝑖 ≥ 2 it is a multi-valued protected attribute. As an example, the
attributes Marital Status and Gender are multi-valued and binary
protected attributes, respectively.
Top-𝑘 [27, 32, 42] Fairness Constraints. A fairness constraint
defined over a single protected attribute containing ℓ different
1For the remainder of the paper, users and voters are synonymous, as well as items
and candidates are used interchangeably.

318

groups𝐺1,𝐺2,.,𝐺ℓ , requires that the representation of each group𝐺𝑖

is 𝑎𝑖 in a fair top-𝑘 , where
∑ℓ
𝑖 𝑎𝑖 = 𝑘 . Generalizing this, if fairness is

defined over a set 𝑅 of different protected attributes with a required
representation on each group of each attribute, a fair top-𝑘 result
must simultaneously satisfy proportionate representation for all
attributes in 𝑅.

One such complex fairness constraint is described using Table 3.
Based on this, {𝐶1,𝐶3,𝐶5,𝐶6} is a feasible top-4 outcome, as it
satisfies all these requirements.

2.2 Problem Definitions
Definition 2.1. Given two candidates 𝑖 and 𝑗 , a single ballot

substitution is defined as removing one vote from candidate 𝑖
and assigning it to candidate 𝑗 ; thus, after the ballot change, the
number of votes obtained by candidate 𝑖 is decreased by one, and
the number of votes obtained by candidate 𝑗 is increased by one.

Problem 1. MFBinaryS. Margin Finding for a Single Binary
Protected Attribute. Given a protected attribute 𝐴 with ℓ = 2
different protected groups, an outcome of a voting process, and a
fairness constraint that requires to have 𝑎1 candidates from group𝐺1
and 𝑎2 candidates from group 𝐺2 in the top-𝑘 , with 𝑎1 + 𝑎2 = 𝑘 , find
the margin that guarantees a fair outcome.

Using Example 2, consider a fairness constraint defined over the
binary protected attribute Gender, such that, 𝑎𝑀 = 𝑎𝐹 = 2. The
top-4 (C1,C2,C3,C4) candidates consist of 3 males and 1 female. To
satisfy the fairness constraint, one can remove a single vote from
C3 and assign that it to C5. After the substitution, C3 and C5 will
have 2 − 1 = 1 and 1 + 1 = 2 votes, respectively. The resulting top-4
(C1,C2,C4,C5) satisfies the fairness constraint and the margin is 1.

Problem 2. MFMultiS. Margin Finding for a Single Multi-
valued Protected Attribute. Given a protected attribute 𝐴 with
ℓ > 2 different protected groups, an outcome of a voting process,
and a fairness constraint that requires for every 𝑖 ∈ [1..ℓ], to have
𝑎𝑖 candidates from group 𝐺𝑖 in the top-𝑘 , with

∑ℓ
𝑖 𝑎𝑖 = 𝑘 , find the

margin that guarantees a fair outcome.

Consider Table 2 again with Marital Status as the multi-valued
protected attribute, with ℓ = 3. Consider a top-4 fairness constraint
such that, 𝑎𝑚𝑎 = 2 ∧ 𝑎𝑠𝑖 = 1 ∧ 𝑎𝑑𝑖 = 1. The top-4 candidates
(C1,C2,C3,C4) consist of 1married and 3 single candidates. To satisfy
the fairness constraint, remove two votes from C2 and one vote
from C4 and assign one vote to C5 and two votes to C6. After the
substitutions the votes of candidates C2, C4, C5, and C6 become
1, 1, 2, 2, respectively. The resulting top-4 (C1,C3,C5,C6) satisfies
the fairness constraint. In this case, the margin is 3.

Problem 3. Margin Finding over Multiple Protected At-
tributes. Given a set 𝑅 = {𝐴1, . . . , 𝐴 |𝑅 | } of protected attributes,
where attribute 𝐴𝑖 has ℓ𝑖 different protected groups, an outcome
of a voting process, and fairness constraints that require for every
𝑖 ∈ [1..|𝑅 |], and 𝑗 ∈ [1..ℓ𝑖] to have 𝑎[𝑖, 𝑗] candidates from group 𝐺 𝑗

of attribute 𝐴𝑖 in the top-𝑘 , with
∑ℓ𝑖

𝑗
𝑎[𝑖, 𝑗] = 𝑘 , for 𝑖 ∈ [1..|𝑅 |], find

the margin that guarantees a fair outcome.

MFMulti2. Margin Finding for two Protected Attributes.
When |𝑅 | = 2, this problem instantiates to finding the margin when
the fairness constraints are defined over two different attributes.

Consider Table 2 again, and let 𝑅 consist of the two attributes
Gender and Seniority level. The top-4 fairness constraints are as
follows: 𝑎𝑀 = 2 ∧ 𝑎𝐹 = 2 ∧ 𝑎𝑆𝑖 = 2 ∧ 𝑎 𝐽 𝑟 = 2. The top-4 candidates
(C1,C2,C3,C4) consist of 1 female and 3 male candidates, and 1
senior and 3 junior candidates. To satisfy the fairness constraints,
remove two votes from candidate C3 and assign them to candidate
C6. After the ballot substitutions, C3 has 0 votes, and C6 has 2 votes.
The resulting top-4 candidates C1, C2, C4, and C6 with 4, 3, 2, 2
votes, respectively, satisfy the fairness constraints. It is easy to
verify that a fair outcome cannot be obtained by performing a
single substitution. Thus, in this case, the margin is 2.

MFMulti3+. Margin Finding for More than two Protected
Attributes. When |𝑅 | > 2, this problem instantiates to finding
the margin when the fairness constraints are defined over three or
more different attributes.

Consider Table 2 again and the fairness constraint presented
in Table 3. To satisfy the fairness constraints, perform 3 single
ballot substitutions, by removing 2 votes from C2 and 1 vote from
C4 and assigning 2 votes to candidate C6 and 1 vote to C5. After
the substitutions the votes of candidates C2, C4, C5, and C6 are
1, 1, 2, 2, respectively. The resulting top-4 (C1,C3,C5,C6) with
votes 4, 2, 2, 2 satisfy the fairness constraints. It is easy to verify
that a fair outcome cannot be obtained by performing less than 3
substitutions. Thus, in this case, the margin is 3.

3 SINGLE PROTECTED ATTRIBUTE
We study two margin finding problems via single ballot substitu-
tions, namely MFBinaryS and MFMultiS, the first one considers
fairness constraint defined over a single binary protected attribute,
and the second one for a single multi-valued protected attribute.

3.1 Binary Protected Attribute
The inputs to the problem is an initial vote outcome, and a fairness
constraint defined by a single binary protected attribute. The binary
attribute partitions the candidates into two groups𝐺𝐴 and𝐺𝐵 . The
fairness constraint requires that the top-𝑘 consists of 𝑎 candidates
from 𝐺𝐴 and 𝑏 candidates from 𝐺𝐵 , where 𝑘 = 𝑎 + 𝑏. The initial
vote outcome is represented by two lists, 𝐿𝐶 - the list of candidates
and 𝐿𝑉 - the respective list of the number of votes casted to each
candidate. We sort both lists in non increasing order of number of
votes, implying that, 𝐿𝐶 (1) is a candidate with the most number of
votes 𝐿𝑉 (1), and so on. The output is, 𝐵, a set of ballot substitutions
of minimum size that guarantees a fair outcome (or guarantees, in
case of a tie, that all outcomes that can be produced by a reasonable
tie breaking are fair).

Our algorithms use the notion of threshold defined as follows.

Definition 3.1. The threshold 𝑡 of an election outcome is the
number of votes, such that each of the top-𝑘 candidates have got at
least 𝑡 votes and at least one such candidate got exactly 𝑡 votes.

Using the running example,𝐺𝑆𝑟 = {𝐶1,𝐶6},𝐺 𝐽 𝑟 = {𝐶2,𝐶3,𝐶4,𝐶5},
𝐿𝐶 = [𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6] , 𝐿𝑉 = [4, 3, 2, 2, 1, 0]. For𝑘 = 4, thresh-
old is 𝑡 = 2 where all top-4 candidates got at least 2 votes and both
C3 and C4 got exactly 2 votes. We note that for the original elec-
tion outcome the threshold is 𝐿𝑉 (𝑘), and that in case of a tie any
reasonable outcome will have the same threshold.

319

Algorithm 1 FindBallotSubB
Inputs: 𝑡 , 𝐿𝑉 , 𝐿𝐶 , 𝑎, 𝑏, 𝑖𝑎, 𝑖𝑏
Outputs: 𝑆 = number of ballot Substitutions
1: Calculate 𝑎∗ (𝑡), 𝑏∗ (𝑡)
2: 𝐼𝑎 = {(𝑎∗ (𝑡) + 𝑏∗ (𝑡) + 1), . . . , 𝑖𝑏 }
3: 𝐵𝑎 = 𝑡 (𝑏 − 𝑏∗ (𝑡)) −

∑
𝑖∈𝐼𝑎 & 𝐿𝐶 (𝑖) ∈𝐺𝐵

𝐿𝑉 (𝑖)
4: 𝐼𝑟 = {(𝑖𝑎 + 1), . . . , (𝑎∗ (𝑡) + 𝑏∗ (𝑡))}
5: 𝐵𝑟 =

∑
𝑖∈𝐼𝑟 & 𝐿𝐶 (𝑖) ∈𝐺𝐴

𝐿𝑉 (𝑖) − (𝑡 − 1) (𝑎∗ (𝑡) − 𝑎)
6: 𝑆 = max{𝐵𝑎, 𝐵𝑟 }
7: Return 𝑆

Intuitively speaking, our algorithms are based on the following
two observations. First, for any given election outcome and a given
threshold 𝑡 we can compute the minimum number of single ballot
substitutions that guarantee a fair outcome with threshold 𝑡 ; that
is, after performing these substitutions the top-𝑘 candidates will
consist of 𝑎 candidates from𝐺𝐴 and 𝑏 candidates from𝐺𝐵 , all these
candidates will get at least 𝑡 votes, and at least one of these 𝑘 can-
didates will get 𝑡 votes. This is shown in FindBallotSubB. Second,
any optimal algorithm can be viewed as an algorithm that searches
for the optimal value of the threshold 𝑡 , that is, the threshold 𝑡

that guarantees a fair outcome with the minimum number of ballot
substitutions. This is proven in Lemma 3.3. This implies that to
find the optimal solution we need to find the optimal threshold 𝑡 .
Naively, this can be done by checking all possible values of 𝑡 . To
make the algorithms more efficient we prove several properties
that enable us to perform a binary search for the threshold in a
relatively small space.

The pseudo code of FindBallotSubB and Alg1AttBOpt is
shown in Algotithms 1 and 2.

Let 𝑖𝑎 be the index in 𝐿𝐶 of the 𝑎-th candidate from 𝐺𝐴 . That is,
𝐿𝐶 (𝑖𝑎) ∈ 𝐺𝐴 and the number of candidates from 𝐺𝐴 in 𝐿𝐶 (1), . . . ,
𝐿𝐶 (𝑖𝑎) is exactly 𝑎. Similarly, let 𝑖𝑏 be the index of the𝑏-th candidate
from 𝐺𝐵 in 𝐿𝐶 . Below, we assume that 𝑖𝑎 < 𝑖𝑏 and thus 𝐿𝑉 (𝑖𝑎) ≥
𝐿𝑉 (𝑖𝑏). The other case is symmetric. In Lemma 3.5 we prove that
the optimal threshold 𝑡 must be in the interval [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)].
Thus, from now on we just consider this interval.

For any threshold 𝑡 in the open interval (𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)) the
optimal set of ballot additions and removals is determined in Case
3 of subroutine FindBallotSubB (described below). For a specific
𝑡 , ballots are added to candidates in group 𝐺𝐵 and removed from
candidates in group 𝐺𝐴 . Later we show how to replace the vote
additions and removals by single ballot substitutions. The number
of these single ballot substitutions is the maximum between the
number of vote additions and vote removals.

The number of votes subtracted from candidates in𝐺𝐴 declines
as 𝑡 grows in this interval and the number of votes added to can-
didates in 𝐺𝐵 grows as 𝑡 grows in this interval. The optimal 𝑡
can thus be found using binary search. We can make the binary
search even more efficient, and instead of doing it on the interval
(𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)) which may be Ω(𝑚) we can do it on the inter-
val (𝑖𝑎, 𝑖𝑏). After completing this binary search we identify an
index 𝑖 ∈ (𝑖𝑎, 𝑖𝑏), such that the optimal threshold is in the inter-
val [𝐿𝑉 (𝑖), 𝐿𝑉 (𝑖 + 1)). In our Technical Report we show how the
optimal threshold in this interval can be computed in constant time.

Algorithm 2 Alg1AttBOpt
Inputs: 𝐿𝑉 , 𝐿𝐶 , 𝑎, 𝑏
Outputs:𝑀 = minimum number of ballot substitutions
1: Calculate 𝑖𝑎, 𝑖𝑏
2: 𝑆𝑎 = num of single ballot substitution for threshold 𝐿𝑉 (𝑖𝑎)
3: 𝑆𝑏 = num of single ballot substitution for threshold 𝐿𝑉 (𝑖𝑏)
4: Binary Search over all 𝑖 ∈ (𝑖𝑎, 𝑖𝑏)

𝑡 = 𝐿𝑉 (𝑖)
𝑆𝑖 = FindBallotSubB(𝑡 ,𝐿𝑉 ,𝐿𝐶 ,𝑎, 𝑏, 𝑖𝑎, 𝑖𝑏)
If found 𝑖 such that𝑀 lies in 𝑆𝑖 , 𝑆𝑖+1; break

5: Calculate𝑀 for thresholds in the range [𝐿𝑉 (𝑖), 𝐿𝑉 (𝑖 + 1)]
6: Return min{𝑆𝑎, 𝑆𝑏 , 𝑀}

3.2 Subroutine FindBallotSubB
Given a threshold 𝑡 , FindBallotSubB finds the minimum number
of single ballot substitutions that result in a fair outcome with this
threshold. For simplicity we first assume that the fair outcome does
not have a tie. Later, we show how to remove this assumption.

Let 𝑎∗ (𝑡) and 𝑏∗ (𝑡) be the number of candidates from groups
𝐺𝐴 and 𝐺𝐵 respectively who received at least 𝑡 votes. Note that
𝐿𝑉 (𝑎∗ (𝑡) + 𝑏∗ (𝑡)) = 𝑡 and 𝐿𝑉 (𝑎∗ (𝑡) + 𝑏∗ (𝑡) + 1) < 𝑡 .

This subroutine is designed by distinguishing the following cases.
Case 1: 𝑡 ≤ 𝐿𝑉 (𝑖𝑏) (and 𝐿𝑉 (𝑖𝑏) > 0). In this case the numbers of
candidates from groups 𝐺𝐴 and 𝐺𝐵 who got at least 𝑡 votes are at
least 𝑎 and 𝑏, respectively; namely, 𝑎∗ (𝑡) ≥ 𝑎 and 𝑏∗ (𝑡) ≥ 𝑏. We
decrease the number of votes of the 𝑎∗ (𝑡) − 𝑎 candidates from 𝐺𝐴

in 𝐿𝐶 (𝑖𝑎 + 1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡)) and the number of votes of the
𝑏∗ (𝑡) − 𝑏 candidates from 𝐺𝐵 in 𝐿𝐶 (𝑖𝑏 + 1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡))
to 𝑡 − 1. To reconcile for the decrease of these votes, we add votes
of the candidate in 𝐿𝐶 (1).
Case 2: 𝑡 > 𝐿𝑉 (𝑖𝑎). In this case the numbers of candidates from
groups 𝐺𝐴 and 𝐺𝐵 who got at least 𝑡 votes are less than 𝑎 and 𝑏,
respectively; namely, 𝑎∗ (𝑡) < 𝑎 and 𝑏∗ (𝑡) < 𝑏. We increase the
number of votes of the 𝑎 − 𝑎∗ (𝑡) candidates from𝐺𝐴 in 𝐿𝐶 (𝑎∗ (𝑡) +
𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑎) and the number of votes of the 𝑏 − 𝑏∗ (𝑡)
candidates from 𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑏) to 𝑡 . To
reconcile for the increase, we decrease the number of votes of the
candidates from 𝐺𝐴 in 𝐿𝐶 (𝑖𝑎 + 1), . . . , 𝐿𝐶 (𝑛) and the number of
votes of the candidates from 𝐺𝐵 in 𝐿𝐶 (𝑖𝑏 + 1), . . . , 𝐿𝐶 (𝑛) to 0, as
needed. If this is not enough we can decrease the number of votes
of the candidates in 𝐿𝐶 (1), . . . , 𝐿𝐶 (𝑎∗ (𝑡 + 1) + 𝑏∗ (𝑡 + 1)) to 𝑡 , as
needed. Note that for this case to be feasible we must have 𝑛 ≥ 𝑘 · 𝑡 .
Case 3: 𝐿𝑉 (𝑖𝑏) < 𝑡 ≤ 𝐿𝑉 (𝑖𝑎). In this case the number of candidates
from group𝐺𝐴 who got at least 𝑡 votes is at least 𝑎 and the number
of candidates from group 𝐺𝐵 who got at least 𝑡 votes is less than 𝑏;
namely,𝑎∗ (𝑡) ≥ 𝑎, 𝑏∗ (𝑡) < 𝑏.We increase the number of votes of the
𝑏 −𝑏∗ (𝑡) candidates from𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) +𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑏) to
𝑡 . Then, we decrease the number of votes of the 𝑎∗ (𝑡) −𝑎 candidates
from 𝐺𝐴 in 𝐿𝐶 (𝑖𝑎 + 1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡)) (if such exist) to 𝑡 −
1. Finally, one has to reconcile the increase in the votes of the
candidates from𝐺𝐵 with the decrease in the votes of the candidates
from𝐺𝐴 . If this is not enough, further reconciliation is done similar
to the previous two cases. Note again that for this case to be feasible,
one must have 𝑛 ≥ 𝑘 · 𝑡 .

320

https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing

Using the running example, consider the binary attribute Senior-
ity Level and 𝑎 = 2, 𝑏 = 2. We have 𝑖 𝐽 𝑟 = 3, 𝑖𝑆𝑟 = 6, 𝐿𝑉 (𝑖 𝐽 𝑟) =

2, 𝐿𝑉 (𝑖𝑆𝑟) = 0. Consider a threshold, 𝑡 = 1 then 𝑎∗ (1) = 4 and
𝑏∗ (1) = 1. To satisfy fairness constraint, one can reduce votes of
𝑎∗ (1) − 𝑎 = 4 − 2 = 2 junior candidate to 𝑡 − 1 = 1 − 1 = 0. When
these two candidates are C4 and C5, the minimum ballot reduction
2 − 0 + 1 − 0 = 3 is obtained for this threshold 𝑡 = 1. Similarly, to
obtain fairness, votes of 𝑏 − 𝑏∗ (1) = 2 − 1 = 1 senior candidate has
to be increased to 𝑡 = 1. The minimum ballot increase will occur
when candidate C6 vote is increased from 0 to 1. To reconcile the 3
ballots that were removed from C4 and C5, one vote is matched to
vote added to candidate C6 and 2 of them are matched to two votes
added to candidate C1. After the ballot substitution the votes of
candidates C1, C2, C3, C4, C5, C6 are 6, 3, 2, 0, 0, 1 and the candidates
who got at least 𝑡 = 1 votes are C1, C2, C3, C6. For threshold 𝑡 = 1,
the minimum number of ballot substitution that guarantees fairness
is 3.
Handling ties. The optimal solution may have a tie only when
the threshold is either 𝐿𝑉 (𝑖𝑎) or 𝐿𝑉 (𝑖𝑏). For threshold 𝑡 = 𝐿𝑉 (𝑖𝑎)
we need to also consider the possibility of increasing the number
of votes of the 𝑏 − 𝑏∗ (𝑡 + 1) candidates from 𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡 + 1) +
𝑏∗ (𝑡 + 1) + 1), . . . , 𝐿𝐶 (𝑖𝑏) to 𝑡 + 1. Note that after this increase we
may have more than 𝑎 candidates from 𝐺𝐴 with at least 𝑡 votes,
but strictly less than 𝑎 candidates from 𝐺𝐴 with at least 𝑡 + 1 votes.
On the other hand we have exactly 𝑏 candidates from 𝐺𝐵 with at
least 𝑡 + 1 votes, but no candidates from 𝐺𝐵 with 𝑡 votes. Thus,
we have a tie only if 𝑎∗ (𝑡) − 𝑎∗ (𝑡 + 1) > 𝑎 − 𝑎∗ (𝑡 + 1), and any
reasonable way to break such a tie is by varying the subset of size
𝑎 − 𝑎∗ (𝑡 + 1) of elected candidates from 𝐺𝐴 with 𝑡 votes. Similarly,
for threshold 𝑡 = 𝐿𝑉 (𝑖𝑏) we need to also consider the possibility of
decreasing the number of votes of the 𝑎∗ (𝑡) − 𝑎 candidates from
𝐺𝐴 in 𝐿𝐶 (𝑖𝑎 + 1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡)) to 𝑡 − 1.

Consider the binary attribute Seniority Level with 𝐺𝐴 and 𝐺𝐵

the Junior and Senior groups, and 𝑎 = 2, 𝑏 = 2. At threshold 𝑡 = 2,
there is a tie situation for group junior because 𝑎∗ (2) − 𝑎∗ (3) =

3 − 1 = 2 > 𝑎 − 𝑎∗ (3) = 2 − 1 = 1. One way of achieving fairness
is to increase the votes of candidate C6 from 0 to 𝑡 + 1 = 2 + 1 = 3.
After the increase there are 3 junior candidates with votes at least
2 and there is no senior candidate with exactly 2 votes.
Running Time. We precompute 𝑎∗ (𝑡), 𝑎∗ (𝑡), for 𝑡 ∈ (𝑖𝑎, 𝑖𝑏) in
O(𝑛) time. We can also precompute required ballot additions and
removals for 𝑡 𝑖𝑛(𝑖𝑎, 𝑖𝑏) which also requires O(𝑛). As a result Sub-
routine FindBallotSubB takes constant time. This subroutine is
called O(log𝑛) times in Alg1AttBOpt. Overall running time is
O(𝑛 + log𝑛) = O(𝑛) . The time complexity is dominated by the
O(𝑛 log𝑛) time it takes to sort the lists 𝐿𝐶 and 𝐿𝑉 .

Lemma 3.2. Alg1AttBOpt always produces a fair outcome.

Proof. Consider Case 3, where 𝐿𝑉 (𝑖𝑏) < 𝑡 ≤ 𝐿𝑉 (𝑖𝑎). Before
the substitution, the number of candidates who got at least 𝑡 votes
were 𝑎∗ (𝑡) and 𝑏∗ (𝑡) from groups 𝐺𝐴 and 𝐺𝐵 respectively. After
the substitution, the number of candidates who got at least 𝑡 votes
from group 𝐺𝐵 increased by 𝑏 − 𝑏∗ (𝑡), and from 𝐺𝐴 decreased by
𝑎∗ (𝑡) − 𝑎. The total number of candidates from𝐺𝐵 who got at least
𝑡 votes = 𝑏∗ (𝑡) + (𝑏 − 𝑏∗ (𝑡)) = 𝑏. The total number of candidates
from𝐺𝐴 who got at least 𝑡 votes = 𝑎∗ (𝑡) − (𝑎∗ (𝑡) −𝑎) = 𝑎. The total
number of candidates from both𝐺𝐴 and𝐺𝐵 who got at least 𝑡 votes

= 𝑎 + 𝑏 = 𝑘 . Hence, candidates who got at least 𝑡 votes constitute
the top-𝑘 results and the top-𝑘 has 𝑎 and 𝑏 candidates from group
𝐺𝐴 and 𝐺𝐵 respectively. Similar arguments could be made for the
other cases or for a tie. □

Lemma 3.3. Any optimal algorithm for finding the minimum num-
ber of single ballot substitutions that guarantee fairness can be viewed
as a Alg1AttBOpt.

Proof. Any optimal algorithm will output a top-𝑘 set having
𝑎, 𝑏 candidates from group 𝐺𝐴 , 𝐺𝐵 respectively. We can define a
threshold 𝑡 such that, after the substitutions, the number of candi-
dates from𝐺𝐴 (similarly from𝐺𝐵) who got at least 𝑡 +1 votes is less
than 𝑎 (𝑏 for 𝐺𝐵) but the number of candidates from 𝐺𝐴 (similarly
from𝐺𝐵) who got at least 𝑡 votes is equal to or greater than 𝑎 (𝑏 for
𝐺𝐵). Thus, any optimal algorithm is essentially finding a threshold
𝑡 that requires minimum number of ballot substitutions. □

Lemma 3.4. For a threshold 𝑡 , subroutine FindBallotSubB returns
the minimum number of ballot substitutions and satisfies fairness.

Proof. Consider Case 3, to achieve fairness we need to reduce
votes of 𝑎−𝑎∗ (𝑡) candidates who already got 𝑡 votes from group𝐺𝐴

to 𝑡 − 1. Algorithm decreases the number of votes of the 𝑎∗ (𝑡) − 𝑎

candidates from𝐺𝐴 in 𝐿𝐶 (𝑖𝑎 +1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) +𝑏∗ (𝑡)) to 𝑡−1. This
is the minimum number of vote removals to satisfy 𝑎 candidates
in the top-𝑘 . Because if we reduce votes of candidates who are not
in the range of candidates 𝐿𝐶 (𝑖𝑎 + 1), . . . , 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡)), it will
either produce unfair result or the result will not be minimum. If we
reduce votes of candidates from 𝐺𝐴 in 𝐿𝐶 (1), . . . , 𝐿𝐶 (𝑖𝑎), then the
number of vote removals is not minimum because all candidates
in that range have higher votes than all the candidates in 𝐿𝐶 (𝑖𝑎 +
1), . . . , 𝐿𝐶 (𝑎∗ (𝑡)+𝑏∗ (𝑡)). We can not reduce votes of candidate from
𝐺𝐴 in 𝐿𝐶 (𝑎∗ (𝑡) +𝑏∗ (𝑡) +1), . . . , 𝐿𝐶 (𝑛) to 𝑡 −1, because they got less
than 𝑡 votes. Similarly, to achieve fairness we need to increase votes
of 𝑏∗ (𝑡) − 𝑏 candidates who got less than 𝑡 votes from group𝐺𝐵 to
𝑡 . We can show that number of vote additions is minimized when
we add votes from 𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑏). As the
number of vote substitutions is the maximum of vote additions and
vote removals, for a given threshold 𝑡 , subroutine FindBallotSubB
returns the minimum number of ballot substitutions that guarantee
fairness in Case 3. Similar arguments can be made for the other 2
cases and for tie. □

Lemma 3.5. The optimal threshold is in interval [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)].

Proof. Consider a threshold 𝑡 > 𝐿𝑉 (𝑖𝑎), to satisfy fairness, the
number of votes of the 𝑎 − 𝑎∗ (𝑡) candidates from𝐺𝐴 in 𝐿𝐶 (𝑎∗ (𝑡) +
𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑎) and the number of votes of the 𝑏 − 𝑏∗ (𝑡) can-
didates from 𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) + 𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑏) need to be
increased to at least 𝑡 . On the other hand vote removals are not
needed. It follows that the number of ballot substitutions equals the
total number of ballot additions. Clearly, the number of vote addi-
tions required to guarantee fairness in case the threshold is 𝐿𝑉 (𝑖𝑎)
is lower, and thus 𝑡 cannot be optimal. Similarly, for threshold
𝑡 < 𝐿𝑉 (𝑖𝑏), the number of vote removals required to guarantee fair-
ness is more than this number when the threshold is 𝐿𝑉 (𝑖𝑏). Hence,
the optimal threshold 𝑡 must be in the interval [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)]. □

321

Lemma 3.6. The minimum number of ballot additions to 𝐺𝐵 in-
creases and the minimum number of ballot removals from 𝐺𝐴 de-
creases monotonically with 𝑡 in the interval [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)].

Proof. We get minimum number of ballot additions when we
increase votes of the 𝑏 − 𝑏∗ (𝑡) candidates from 𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) +
𝑏∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑏) to 𝑡 . When 𝑡 increases, both 𝑏 − 𝑏∗ (𝑡) and
distance from 𝑡 to votes of candidates from𝐺𝐵 in 𝐿𝐶 (𝑎∗ (𝑡) +𝑏∗ (𝑡) +
1), . . . , 𝐿𝐶 (𝑖𝑏) increases. Hence, the minimum number of ballot
additions to 𝐺𝐵 increases monotonically with 𝑡 in the interval
[𝐿𝑉 (𝑖𝑎), 𝐿𝑉 (𝑖𝑏)]. Similarly, we can prove that the minimum num-
ber of ballot removals from 𝐺𝐴 decreases monotonically with 𝑡 in
the interval [𝐿𝑉 (𝑖𝑎), 𝐿𝑉 (𝑖𝑏)].

□

Theorem 3.7. Alg1AttBOpt produces optimal result.

Proof. We proved that for a given threshold 𝑡 , FindBallot-
SubB calculates minimum ballot substitutions required to satisfy
fairness. Optimal threshold 𝑡 is in the interval of [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)].
Since the minimum number of ballot additions to 𝐺𝐵 increases
and the minimum number of ballot removals from 𝐺𝐴 decreases
monotonically with 𝑡 in the interval [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)] the optimal
number of ballot substitutions can be found by performing a binary
search in the range [𝐿𝑉 (𝑖𝑏), 𝐿𝑉 (𝑖𝑎)]. Hence the optimality holds.

□

3.3 Multi-valued Protected Attribute
Next we consider a multi-valued protected attribute. Consider an
attribute 𝐴 with ℓ possible values, denoted 𝐴[1], . . . , 𝐴[ℓ]. The fair-
ness constraint requires that the top-𝑘 consists of 𝑎[𝑗] candidates
with attribute value 𝐴[𝑗], where ∑ℓ

𝑗=1 𝑎[𝑗] = 𝑘 .
We first describe the subroutine FindBallotSubM for multi

valued attribute. Then we use it to perform a binary search for the
optimal threshold similar to Alg1AttBOpt. For a given threshold
𝑡 , the subroutine FindBallotSubM computes the minimum num-
ber of single ballot substitutions that result in a fair outcome. For
simplicity we first assume that the fair outcome does not have a tie.
Later, we show how to remove this assumption. Define 𝑖𝑎[𝑗] as the
index in 𝐿𝐶 of the 𝑎[𝑗]-th candidate with attribute value𝐴[𝑗]. That
is, the candidate 𝐿𝐶 (𝑖𝑎[𝑗]) has attribute value 𝐴[𝑗] and the num-
ber of candidates with this attribute value in 𝐿𝐶 (1), . . . , 𝐿𝐶 (𝑖𝑎[𝑗])
is exactly 𝑎[𝑗]. Below, we assume that 𝑖𝑎[1] ≤ . . . ≤ 𝑖𝑎[ℓ] . Other
cases are symmetric. Define 𝑎 𝑗∗ (𝑡) as the number of candidates
with attribute value 𝐴[𝑗] who received at least 𝑡 votes (before
any ballot changes). Note that 𝐿𝑉 (𝑎1∗ (𝑡) + . . . + 𝑎ℓ∗ (𝑡)) = 𝑡 and
𝐿𝑉 (𝑎1∗ (𝑡) + . . . + 𝑎ℓ∗ (𝑡) + 1) < 𝑡 .

Below we distinguish several cases.
Case 1: 𝑡 ≤ 𝐿𝑉 (𝑖𝑎[ℓ]). We decrease the number of votes of the
𝑎 𝑗∗ (𝑡)−𝑎 𝑗 candidates with attribute value𝐴[𝑗] in 𝐿𝐶 (𝑖𝑎[𝑗] +1), . . . ,
𝐿𝐶 (𝑎1∗ (𝑡) + · · · + 𝑎ℓ∗ (𝑡)) to 𝑡 − 1 for all 𝑗 ∈ [1..ℓ].
Case 2: 𝑡 > 𝐿𝑉 (𝑖𝑎[1]). We increase the number of votes of the
𝑎[𝑗] − 𝑎 𝑗∗ (𝑡) candidates with attribute value 𝐴[𝑗] in 𝐿𝐶 (𝑎1∗ (𝑡) +
. . . + 𝑎ℓ∗ (𝑡) + 1), . . . , 𝐿𝐶 (𝑖𝑎[𝑗]) to 𝑡 for all 𝑗 ∈ [1..ℓ].
Case 3: 𝐿𝑉 (𝑖𝑎[𝑗+1]) < 𝑡 ≤ 𝐿𝑉 (𝑖𝑎[𝑗]). We increase the number of
votes of the 𝑎[𝑞] − 𝑎𝑞∗ (𝑡) candidates with attribute value 𝐴[𝑞] in
𝐿𝐶 (𝑎1∗ (𝑡) + · · · +𝑎ℓ∗ (𝑡) +1), . . . , 𝐿𝐶 (𝑖𝑎[𝑞]) to 𝑡 for 𝑞 ∈ [𝑗 +1..ℓ]. We
decrease the number of votes of the 𝑎𝑝∗ (𝑡) − 𝑎[𝑝] candidates with

attribute value 𝐴[𝑝] in 𝐿𝐶 (𝑖𝑎[𝑝] + 1), . . . , 𝐿𝐶 (𝑎1∗ (𝑡) + · · · + 𝑎ℓ∗ (𝑡))
(if such exist) to 𝑡 − 1 for all 𝑝 ∈ [1.. 𝑗].

In all three cases, we reconcile the ballot additions and removals
to obtain single ballot substitutions the same way it is done in the
binary case described previously.

Finally, we consider the case of a tie that may occur when the
threshold is any of 𝐿𝑉 (𝑖𝑎[𝑗]) (or multiple of them). We find the
maximum of the number of candidates with the same attribute
value who got exactly 𝑡 votes (after the vote manipulations). Let
this attribute value be 𝑝 . We do not change the votes of these
candidates. For the rest of the candidates we do the following. For
all candidates with attribute value 𝐴[𝑞], for which 𝑞 ≠ 𝑝 and 𝑡 ≥
𝐿𝑉 (𝑖𝑎[𝑞]), we increase the number of votes of the 𝑎[𝑞] − 𝑎𝑞∗ (𝑡 + 1)
candidates with attribute value𝐴[𝑞] in 𝐿𝐶 (𝑎1∗ (𝑡 + 1) + · · · +𝑎ℓ∗ (𝑡 +
1) + 1), . . . , 𝐿𝐶 (𝑖𝑎[𝑞]) to 𝑡 + 1. For all candidates with attribute value
𝐴[𝑞], for which 𝑞 ≠ 𝑝 and 𝑡 ≤ 𝐿𝑉 (𝑖𝑎[𝑞]), we decrease the number
of votes of the 𝑎𝑞∗ (𝑡) −𝑎[𝑞] bottom candidates with attribute value
𝐴[𝑞] in 𝐿𝐶 (𝑖𝑎[𝑞] + 1), . . . , 𝐿𝐶 (𝑎1∗ (𝑡) + · · · +𝑎ℓ∗ (𝑡)) (if such exist) to
𝑡 − 1.
Running Time. The running time of Alg1AttMOpt is also domi-
nated by the O(𝑛 log𝑛) time it takes to sort the lists 𝐿𝐶 and 𝐿𝑉 as
in Alg1AttBOpt. We note that we use a priority queue to imple-
ment FindBallotSubM efficiently. The initialization of this priority
queue takes O(𝑛) time, and each iteration takes O(log ℓ) time. Thus
the overall running time of Alg1AttMOpt (excluding the sorting)
is O(𝑛 + log𝑛 log ℓ) = O(𝑛).

Theorem 3.8. Alg1AttMOpt always produces a fair outcome.

Proof. The proof is similar to the proof of Theorem 3.7. □

4 MULTIPLE PROTECTED ATTRIBUTES
In this sectionwe assume that there are ℓ attributes, denoted𝐴1, . . . , 𝐴ℓ .
For 𝑖 ∈ [1..ℓ], attribute𝐴𝑖 has ℓ𝑖 possible values, denoted𝐴[𝑖, 𝑗], for
𝑗 ∈ [1..ℓ𝑖]. Each candidate is associated with a specific value from
each attribute. In addition, we are given target quantities 𝑎[𝑖, 𝑗], for
𝑖 ∈ [1..ℓ], and 𝑗 ∈ [1..ℓ𝑖], with property that all marginals some
to 𝑘 . Namely, for every 𝑖 ∈ [1..ℓ], ∑ℓ𝑖

𝑗=1 𝑎[𝑖, 𝑗] = 𝑘 . A fair election
outcome should satisfy the fairness condition that for 𝑖 ∈ [1..ℓ],
and 𝑗 ∈ [1..ℓ𝑖], exactly 𝑎[𝑖, 𝑗] candidates whose 𝐴𝑖 attribute value
is 𝐴[𝑖, 𝑗] are elected.

We begin the section by presenting a generic solution framework
AlgCartOpt that is exact and exponential in general. Next, we
consider the general 3 attribute case and show that even decid-
ing the feasibility of a fair outcome is NP-Complete in this case.
Then, we consider the 2 attribute case and show that it is weakly
NP-Complete. On the positive side, we show a 2 approximation
algorithm for this case by designing an algorithm that minimizes
the sum of ballot additions and removals.

4.1 Exact Solution AlgCartOpt
We propose AlgCartOpt by first converting multiple protected
attributes to a single multi-valued attribute by enumerating all
possible configurations. This step is exponential in the general case.
Then, for each such configuration, we check the feasibility of the
solutions. If the solution is feasible, then, Alg1AttMOpt is called

322

to produce the margin for that case. Finally, we return that feasible
configuration that has the smallest margin.

Suppose that Πℓ
𝑖=1ℓ𝑖 = 𝑐 . This means that we have total number

of 𝑐 of possible values of the ℓ-dimensional attribute vector. For
𝑖 ∈ [1..𝑐], let ®𝑉 [𝑖] = 𝑉 [𝑖, 1],𝑉 [𝑖, 2], . . . ,𝑉 [𝑖, ℓ] be the 𝑖-th possi-
ble value of ℓ-dimensional attribute vector. We enumerate over all
𝑐-tuples (𝑛1, . . . , 𝑛𝑐) such that

∑𝑐
𝑖=1 𝑛𝑖 = 𝑘 . Each such 𝑐-tuple rep-

resents a possible outcome of the election in which 𝑛𝑖 candidates
with attribute vector ®𝑉 [𝑖] are elected. For each such 𝑐-tuple we first
check that it is a feasible outcome by making sure that there are at
least 𝑛𝑖 candidates with attribute vector ®𝑉 [𝑖], for 𝑖 ∈ [1..𝑐]. If so,
we further check if having 𝑛𝑖 candidates with attribute vector ®𝑉 [𝑖]
results in the desired outcome. This is the case if the following is
satisfied:

∀ 𝑗 ∈ [1..ℓ] ∀𝑟 ∈ [1..ℓ𝑗]
𝑐∑︁
𝑖=1

𝑛𝑖 · 1𝑉 [𝑖, 𝑗]=𝐴[𝑗,𝑟] = 𝑎[𝑗, 𝑟] . (1)

After that, we call Alg1AttMOpt that produces the margin re-
quired to guarantee 𝑛𝑖 candidates with attribute vector ®𝑉 [𝑖], for
𝑖 ∈ [1..𝑐], by reducing this to the single attribute case, where the
single attribute has 𝑐 possible values corresponding to the possible
values of the attribute vector. Finally, we return that instance which
has the smallest margin.

Using the running example, consider the attributes Gender and
Marital Status where ℓ𝐺𝑒𝑛𝑑𝑒𝑟 = 2, ℓ𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 3 and 𝑐 = 3×2 =
6. The required numbers of candidates with each attribute value
are 𝑎[𝑀] = 2∧ 𝑎[𝐹] = 2∧ 𝑎[𝑚𝑎] = 2∧ 𝑎[𝑠𝑖] = 1∧ 𝑎[𝑑𝑖] = 1. Here,
𝑉 [1] = {𝑀, 𝑠𝑖}, 𝑉 [2] = {𝑀, 𝑠𝑖}, 𝑉 [3] = {𝑀,𝑚𝑎}, 𝑉 [4] = {𝐹, 𝑠𝑖},
𝑉 [5] = {𝐹,𝑚𝑎}, and𝑉 [6] = {𝐹, 𝑑𝑖}. One of the possible tuples that
satisfy fairness is (𝑛1, . . . , 𝑛6) = (1, 0, 1, 0, 1, 1) where ∑6

𝑖=1 𝑛𝑖 = 4.
Running time. Since the number of 𝑐-tuples is O(𝑛𝑐), we can solve
the 𝑐 attribute configurations by O(𝑛𝑐) calls to the single attribute
case and then choosing the call that produces the smallest mar-
gin. Alg1AttMOpt has a running time of O(𝑛). Overall running
time is O(𝑛𝑐+1). Clearly, when 𝑐 is a constant, AlgCartOpt takes
polynomial time to run.

Theorem 4.1. AlgCartOpt finds the optimal set of single ballot
substitutions.

Proof. In AlgCartOpt, each 𝑐-tuple represents a possible out-
come of the election in which 𝑛𝑖 candidates with attribute vector
®𝑉 [𝑖] are elected, and all 𝑐-tuples satisfy equation 1. As

∑𝑐
𝑖=1 𝑛𝑖 = 𝑘 ,

the output top-𝑘 has 𝑎[𝑗, 𝑟] candidates from group 𝐴[𝑗, 𝑟]. Hence,
AlgCartOpt always produces fair outcome. Since we enumerate
over all possible 𝑐-tuples (𝑛1, . . . , 𝑛𝑐) that satisfy fairness, AlgCar-
tOpt produces optimal result. □

4.2 MFMulti3+- 3 Attributes Case
In the 3 attribute case, each candidate has 3 attributes𝐴[1, 𝑗1], 𝐴[2, 𝑗2]
and 𝐴[3, 𝑗3], where 𝑗𝑖 ∈ [1..ℓ𝑖], for 𝑖 ∈ {1, 2, 3}. The outcome
needs to have exactly 𝑎[𝑖, 𝑗] candidates with attribute 𝐴[𝑖, 𝑗], for
𝑖 ∈ {1, 2, 3} and 𝑗 ∈ [1..ℓ𝑖].

Theorem 4.2. Deciding the feasibility of a general instance of the 3
attribute case (and thus any 𝑑 ≥ 3 attributes as well) is NP-Complete.

Proof. Given a solution that specifies the ballot substitutions
in an instance of the 3 attribute case it is easy to check whether the
solution satisfies the fairness conditions. To prove the hardness we
reduce the 3-Dimensional Matching problem (3DM) to our problem.
In a nutshell, given a 3DM problem instance with vertex set 𝑋1 ∪
𝑋2 ∪ 𝑋3, each vertex in 𝑋𝑖 corresponds to a distinct value of the
𝑖-th attribute. Each hyperedge (𝑥1,𝑎, 𝑥2,𝑏 , 𝑥3,𝑐) corresponds to a
candidate with the attributes 𝐴[1, 𝑎], 𝐴[2, 𝑏], 𝐴[3, 𝑐]. An outcome
with exactly one candidate for each attribute value is feasible iff the
3DM instance has a 3 dimensional matching. Our Technical Report
contains further details. □

4.3 MFMulti2- 2 Attributes Case
In the 2 attribute case, each candidate has 2 attributes𝐴[1, 𝑗1], 𝐴[2, 𝑗2],
where 𝑗1 ∈ [1..ℓ1] and 𝑗2 ∈ [1..ℓ2]. A fair outcome needs to have
exactly 𝑎[𝑖, 𝑗] candidates with attribute 𝐴[𝑖, 𝑗], for 𝑖 ∈ {1, 2} and
𝑗 ∈ [1..ℓ𝑖]. The problem is to find the minimum number of ballot
substitutions needed to guarantee a fair outcome.

Theorem 4.3. MFMulti2is weakly NP-hard.

Proof. To prove the hardness, we reduce the weakly NP-Hard
Partition problem to our problem. The reduction is based on the
fact that any solution with 𝑎 ballot additions and 𝑟 ballot removals
implies a solution with max{𝑎, 𝑟 } ballot substitutions. For a given
Partition problem instance we build an instance of the 2 attribute
case in which the total number of ballot additions and subtractions
is at least the sum of the 𝑛 input integers in the Partition instance.
The 2 attribute case instance has a solution with an equal number
of ballot additions and removals each of which equals half of the
sum of the 𝑛 input integers iff a partition of the 𝑛 integers exists.
We refer to our Technical Report for details. □

4.4 Approximation Algorithm forMFMulti2
We show a 2 approximation algorithm for computing the margin
in the 2 attribute case. For this we first show how to compute the
minimum number of vote additions and removals that guarantee a
fair outcome in the 2 attribute case.

4.4.1 Computing the Minimum Number of Ballot Additions and
Removals. We compute the minimum number ballot additions and
removals that yield a fair outcome by enumerating all possible
thresholds and for each threshold 𝑡 calling the subroutine FindBal-
lotA+R that is shown in Algorithm 3. Subroutine FindBallotA+R
computes the minimum number of ballot additions and removals
that yield a fair outcome with threshold 𝑡 by casting the problem
as a min-cost 𝑏 matching problem.

The𝑏-matching problem is defined on a bipartite graph𝐺 (𝑋,𝑌, 𝐸),
where the nodes in 𝑋 correspond to the possible values of the
first attribute, the nodes in 𝑌 correspond to the possible values of
the second attribute, and the edges correspond to the candidates.
Specifically, for 𝑖 ∈ [1..ℓ1], node 𝑥𝑖 ∈ 𝑋 corresponds to attribute
value 𝐴[1, 𝑖], for 𝑗 ∈ [1..ℓ2], node 𝑦 𝑗 ∈ 𝑌 corresponds to attribute
value 𝐴[2, 𝑗], and a candidate 𝑐 with attributes 𝐴[1, 𝑖], 𝐴[2, 𝑗] cor-
responds to an edge 𝑒𝑐 = (𝑥𝑖 , 𝑦 𝑗). Note that we may have parallel
edges in case there are more than one candidate with the same
attributes. Next, we define the weight of each edge. The weight
of edge 𝑒𝑐 , denoted𝑤 (𝑒𝑐) depends on the number of votes of the

323

https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing
https://drive.google.com/file/d/1S-xz5SPMmRBLexPfAj5cxQVkkdaY_hgE/view?usp=sharing

Algorithm 3 FindBallotA+R
Inputs: 𝐿𝐶 , 𝐿𝑉 , 𝐴, 𝑡
Outputs: The minimum number of ballot additions and removals
required to yield a fair outcome with threshold 𝑡 , and the set of
elected candidates in the resulting fair outcome
1: 𝑋 = {𝑥𝑖 : 𝑥𝑖 ∈ 𝐴1}
2: 𝑌 = {𝑦 𝑗 : 𝑦 𝑗 ∈ 𝐴2}
3: 𝐸 = {𝑒𝑐 = (𝑥𝑖 , 𝑦 𝑗) : 𝑐 ∈ 𝐿𝐶 with attributes 𝐴[1, 𝑖] 𝐴[2, 𝑗] . }
4: for 𝑖 = 1 to 𝑛 do
5: 𝑐 = 𝐿𝐶 (𝑖)
6: if 𝐿𝑉 (𝑖) < 𝑡 then
7: 𝑤 (𝑒𝑐) = 𝑡 − 𝐿𝑉 (𝑖)
8: else
9: 𝑤 (𝑒𝑐) = (𝑡 − 1) − 𝐿𝑉 (𝑖)
10: end if
11: end for
12: Construct the graph G = (𝑋,𝑌, 𝐸,𝑤)
13: Set the constraints on the number of adjacent edges of nodes

𝑥𝑖 and 𝑦 𝑗 to 𝑎[1, 𝑖] and 𝑎[2, 𝑗] respectively
14: Find𝑀∗ a min cost 𝑏-matching in 𝐺 subject to the constraints

on the number of adjacent edges
15: 𝑅 =

∑
𝑒∈𝐸 max{−𝑤 (𝑒), 0}

16: 𝐴𝑝𝑙𝑢𝑠𝑅 = 𝑤 (𝑀∗) + 𝑅.
17: 𝐶∗

𝑡 = the set of candidates corresponding to the edges in𝑀∗

18: Return (𝐴𝑝𝑙𝑢𝑠𝑅,𝐶∗
𝑡)

candidate 𝑐 . Suppose that 𝑐 = 𝐿𝐶 (𝑖) and thus this candidate has
𝐿𝑉 (𝑖) votes. If 𝐿𝑉 (𝑖) < 𝑡 then𝑤 (𝑒𝑐) = 𝑡 − 𝐿𝑣 (𝑖). Otherwise, that is
𝐿𝑉 (𝑖) ≥ 𝑡 , then𝑤 (𝑒𝑐) = (𝑡 − 1) − 𝐿𝑉 (𝑖) < 0.

Define a 𝑏-matching in the graph 𝐺 as a collection of edges
such that exactly 𝑎[1, 𝑖] of them are adjacent to node 𝑥𝑖 ∈ 𝑋 , for
𝑖 ∈ [1..ℓ1], and exactly 𝑎[2, 𝑗] of them are adjacent to node 𝑦 𝑗 ∈ 𝑌 ,
for 𝑗 ∈ [1..ℓ2]. Note that total number of edges in the 𝑏-matching
is
∑ℓ1

𝑗=1 𝑎[1, 𝑗] =
∑ℓ2

𝑗=1 𝑎[2, 𝑗] = 𝑘 . Consider a 𝑏-matching 𝑀 ⊆ 𝐸

in the graph 𝐺 . Clearly, this matching corresponds to a subset
of 𝑘 candidates that satisfy the fairness conditions. Let 𝑤 (𝑀) =∑
𝑒∈𝑀 𝑤 (𝑒) denote the weight of the matching𝑀 . Let𝑀∗ ⊆ 𝐸 be a

minimum cost matching.
Using the running example, for the attributes Gender andMarital

Status 𝑋 = {𝑀, 𝐹 } and 𝑌 = {𝑚𝑎, 𝑠𝑖, 𝑑𝑖}. The candidates correspond
to edges: C1 to 𝑒𝑐1 = (𝑀, 𝑠𝑖), C2 to 𝑒𝑐2 = (𝑀, 𝑠𝑖), C3 to 𝑒𝑐3 =

(𝑀,𝑚𝑎), and so on. Notice that edges 𝑒𝑐1 and 𝑒𝑐2 are parallel as
both connecting node𝑀 to 𝑠𝑖 . Consider a threshold 𝑡 = 2, weight
of edge 𝑒𝐶1 is, 𝑤 (𝑒𝐶1) = 𝑡 − 1 − 𝐿𝑉 (1) = 2 − 1 − 4 = −3 because
in this case 𝐿𝑉 (1) ≥ 𝑡 . On the other hand, weight of edge 𝑒𝐶5 is
𝑤 (𝑒𝐶5) = 𝑡 − 𝐿𝑉 (5) = 2 − 1 = 1 since 𝐿𝑉 (5) < 𝑡 . The weights of
the 6 edges corresponding to candidates C1, C2, C3, C4, C5, and
C6 are {−3,−2,−1,−1, 1, 2}. To satisfy the fairness constraint that
requires 2 male and 2 female to be in the top-4, the 𝑏-matching
has 2 edges adjacent to each of the nodes 𝑀 and 𝐹 . Similarly, To
satisfy the fairness constraint that requires 2 married, 1 single, and
1 divorced to be in the top-4, the 𝑏-matching has 2 edges adjacent
to node𝑚𝑎 and 1 edge adjacent to each of the nodes 𝑠𝑖 and 𝑑𝑖 . The
total number of edges in 𝑏-matching is = 2 + 2 = 2 + 1 + 1 = 4 =

𝑘 . A minimum cost 𝑏-matching is 𝑀∗ = {𝑒𝐶1, 𝑒𝐶3, 𝑒𝐶5, 𝑒𝐶6} and

𝑤 (𝑀∗) = −3 − 1 + 1 + 2 = −1. Here, 𝑅 = 3 + 2 + 1 + 1 = 7, and
𝐴𝑝𝑙𝑢𝑠𝑅 = −1 + 7 = 6.

Theorem 4.4. The number of ballot additions and removals needed
to guarantee the election of the candidates corresponding to the edges
of𝑀∗ with threshold 𝑡 is minimum among all fair outcomes obtained
with threshold 𝑡 .

Proof. Let 𝑅 =
∑
𝑒∈𝐸 max{−𝑤 (𝑒), 0}. By our definition of the

𝑏-matching there is one to one correspondence between the set of 𝑏-
matchings and the set of fair outcomes. Consider a matching𝑀 . We
claim that𝑤 (𝑀) +𝑅 is the number of ballot additions and removals
needed to guarantee the election of the candidates corresponding
to the edges of 𝑀 with threshold 𝑡 . To see this we consider the
contribution of each edge to the sum 𝑤 (𝑀) + 𝑅. For each edge
𝑒𝑐 ∈ 𝑀 that corresponds to a candidate with less than 𝑡 votes,
the weight𝑤 (𝑒𝑐) is exactly the number of vote additions required
to bring candidate 𝑐 to the threshold 𝑡 . Since this weight is non-
negative the respective term of 𝑒𝑐 in 𝑅 is 0. For each edge 𝑒𝑐 ∈ 𝑀

that corresponds to a candidate with at least 𝑡 votes, its weight
is negative and thus its contributions to𝑤 (𝑀) and 𝑅 cancel each
other. Each edge 𝑒𝑐 ∈ 𝐸 \𝑀 that corresponds to a candidate with at
least 𝑡 votes contributes just to 𝑅 and this contribution is exactly the
number of vote removals required to bring candidate 𝑐 below the
threshold 𝑡 . Each edge 𝑒𝑐 ∈ 𝐸 \𝑀 that corresponds to a candidate
with less than 𝑡 votes does not contribute anything to the sum.

Summing over all edges yields our claim. Since 𝑅 is independent
of any specific matching, the matching 𝑀∗ minimizes 𝑤 (𝑀) + 𝑅

over all feasible matching𝑀 ⊆ 𝐸. The theorem follows. □

To compute the minimum number of ballot additions and re-
movals that guarantee a fair outcome we need to iterate the min
cost matching over all possible threshold values. We show that it
is enough to consider no more than 3𝑛 − 2 threshold values. It is
easy to see that we just need to consider threshold values in the
interval [𝐿𝑉 (1), 𝐿𝑉 (𝑛)]. For 𝑖 ∈ [1..𝑛 − 1] consider the open sub-
interval (𝐿𝑉 (𝑖), 𝐿𝑉 (𝑖 + 1)). Note that the set of candidates below
this threshold and the set of candidates above this threshold are
identical for all thresholds in this sub-interval. We claim that it is
enough to just consider the two extreme threshold values in this
sub-interval, namely, 𝐿𝑉 (𝑖) + 1 and 𝐿𝑉 (𝑖 + 1) − 1. Consider any
threshold 𝑡 ∈ [𝐿𝑉 (𝑖) + 2..𝐿𝑉 (𝑖 + 1) − 2] and the subset of candidates
that yield a fair outcome with the minimum number of ballot ad-
ditions and removals with threshold 𝑡 . If this subset of candidate
has more candidates that are below the threshold, then the number
of of ballot additions and removals required to elect this subset of
candidates with threshold 𝐿𝑉 (𝑖) + 1 is lower. Otherwise, that is, at
least half the candidates in this subset are above the threshold, then
the number of of ballot additions and removals required to elect
this subset of candidates with threshold 𝐿𝑉 (𝑖 + 1) − 1 is not higher.
It follows that the only threshold values that need to be checked
are the 3𝑛 − 2 threshold values 𝐿𝑉 (𝑖), 𝐿𝑉 (𝑖) + 1, 𝐿𝑉 (𝑖 + 1) − 1, for
𝑖 ∈ [1..𝑛 − 1], and 𝐿𝑉 (𝑛).

4.4.2 Approximating the Number of Single Ballot Substitutions. Sup-
pose that we are given 𝑎 ballot additions and 𝑟 ballot removals that
guarantee a fair outcome. We show how to transform them to at
most 𝑎 + 𝑟 ballot substitutions that guarantee the same outcome.
We distinguish two cases.

324

Case 1: 𝑎 ≤ 𝑟 . In this case we create 𝑎 ballot substitutions by
matching a ballot addition with a ballot removal. We are left with
𝑟 − 𝑎 ballot removals that we convert to ballot substitutions by
adding 𝑟 − 𝑎 ballots all of them with votes to any of the already
elected candidates.
Case 2: 𝑎 > 𝑟 . In this case we create 𝑟 ballot substitutions by
matching a ballot removal with a ballot addition. We are left with
𝑎−𝑟 ballot additions. We match these addition with ballot removals
that subtract votes from some (or all) the unelected candidates.
Suppose that even after reducing the number of votes of all the
unelected candidates to 0 we still have some unmatched ballot
additions. In this case we subtract votes from some (or all) the
elected candidates reducing their number of votes to the threshold 𝑡 .
Suppose that this is still not enough to match all the ballot additions.
In this case we lower the threshold 𝑡 . Note that as long as the
threshold is not lowered to 0 the outcome remains the same (since
all the unelected candidates have now 0 votes). As we lower the
threshold the number of ballot that needs to be added is reduced
and we can also reduce further the number of votes of the elected
candidates. We claim that if the number of ballots is at least 𝑘 then
this process has to stop when all the ballot additions are matched
at some threshold 𝑡 ′ > 0. Suppose that this is not the case then
at threshold 1 we still have unmatched ballot additions. However,
since in this case all the elected candidates have one vote and the
there are still unmatched additions then

it must be the case that less than 𝑘 candidates received even one
vote. Since we need to elect 𝑘 candidates it is reasonable to assume
at least 𝑘 candidates received at least one vote.

Let𝑂𝐴+𝑅 be the optimal number of ballot additions and removals
that yield a fair outcome. It follows that we can find a set of at most
𝑂𝐴+𝑅 ballot substitutions that yield a fair outcome as shown in
algorithm Alg2AttApx (Algorithm 4). The approximation ratio is
proved in the following theorem.

Theorem 4.5. The size of the set of ballot substitutions output
by Alg2AttApx is at most twice the minimum number of ballot
substitutions that yield a fair outcome.

Proof. A ballot substitution can be viewed as a single ballot
addition and a single ballot removal. Thus, any solution with 𝑥 ≥ 0
ballot substitutions can be converted to a solution with 2𝑥 ballot
additions and removals. Let 𝑂𝑃𝑇𝐶 be the minimum number of
ballot substitutions that yield a fair outcome. It follows that there
are 2𝑂𝑃𝑇𝐶 ballot additions and removals that yield a fair outcome.
Hence, 𝑂𝑃𝑇𝐴+𝑅 ≤ 2𝑂𝑃𝑇𝐶 , and the solution with at most 𝑂𝑃𝑇𝐴+𝑅
ballot substitutions output by Alg2AttApx is a 2 approximation.

□

Running Time. The running time of Alg2AttApx is determined
by the time complexity of subroutine FindBallotA+R and specifi-
cally by the computation of a minimum cost 𝑏-matching in 𝐺 . The
𝑏-matching problem can be solved via a min cost flow algorithm on
a graph with ℓ = ℓ1 + ℓ2 nodes and 𝑛 edges. It follows that the min
cost flow problem can be solved in O(𝑛ℓ log𝑚) time [1]. The sub-
routine FindBallotA+R is called O(𝑛) times from Alg2AttApx.
Thus, the running time of Alg2AttApx is O(𝑛2ℓ log𝑚).

Algorithm 4 Alg2AttApx
Inputs: 𝐿𝐶 ,𝐿𝑉 ,𝐴
Output: A set of at most 𝑂𝑃𝑇𝐴+𝑅 ballot substitutions that yield a
fair outcome
1: 𝑂𝑃𝑇𝐴+𝑅 = 𝑘 ·𝑚
2: 𝑈 = {𝐿𝑉 (𝑖), 𝐿𝑉 (𝑖) +1, 𝐿𝑉 (𝑖 +1) −1 : 𝑖 ∈ [1 . . . 𝑛−1]}∪{𝐿𝑉 (𝑛)}
3: for 𝑡 ∈ 𝑈 do
4: (𝐴𝑝𝑙𝑢𝑠𝑅,𝐶∗

𝑡) = FindBallotA+R(𝐿𝐶 , 𝐿𝑉 , 𝐴, 𝑡)
5: if 𝑂𝑃𝑇𝐴+𝑅 > 𝐴𝑝𝑙𝑢𝑠𝑅 then
6: 𝑂𝑃𝑇𝐴+𝑅 = 𝐴𝑝𝑙𝑢𝑠𝑅

7: 𝐶∗ = 𝐶∗
𝑡

8: end if
9: end for
10: Transform the 𝑂𝑃𝑇𝐴+𝑅 ballot additions and removals needed

to guarantee the election of the candidates in 𝐶∗ to at most
𝑂𝑃𝑇𝐴+𝑅 ballot substitutions that guarantee the same outcome

5 EXPERIMENTAL EVALUATIONS
We evaluate both the quality and scalability of the proposed algo-
rithms. The quality studies focus on finding the margin values and
comparing them to the implemented (optimal) baselines for the
problems MFBinaryS, MFMultiS, MFMulti2, and MFMulti3+.
The scalability measures the running time of the implemented al-
gorithms by varying appropriate parameters.

5.1 Experiment Design
All the algorithms are implemented in Python 3.8 on a machine
with Windows 11, core i7 with 16gb memory. All numbers are
presented as an average of 10 runs. Code and data could be found
in the github.

5.1.1 Datasets Description. Algorithms are evaluated using multi-
ple real world and a synthetic datasets. The real world datasets are
described in Table 5. MovieLens3Star (similarly MovieLens5Star)
datasets are created from the Movielens dataset by converting all
user ratings of 3 or more (similarly 5) ratings as a vote, and selecting
the movies accordingly.

Table 5: Real world datasets

Dataset # candidates(n) # voters(m) protected attributes (ℓ)
New South Wales
(NSW) Senate Elections 105 4, 695, 326 2 attributes on the political parties and

the election history
Bronx Justice of the
Supreme Court Election
in New York City

6 343, 071 single binary - democrat and republican

MovieLens5Star 2, 926 382, 323 3 attributes on movie genre, production
company and original language.

MovieLens3StarMore 17, 619 1, 613, 420 3 attributes on movie genre, production
company and original language.

Synthetic dataset.We generate large scale synthetic data for𝑚
voters and 𝑛 candidates using normal distribution as voting out-
comes tend to follow such distributions [36]. The process runs as
follows: a loop is repeated𝑚 times to generate an id in the range
[0..𝑛 − 1] (top candidate choice of a voter), by sampling an integer
using the normal distribution with certain mean (𝑚𝑒𝑎𝑛) and stan-
dard deviation (𝑠𝑑), and then taking this integer modulo 𝑛 to ensure

325

https://github.com/MouinulIslamNJIT/BallotChange.git

that the id is in range. The𝑚𝑒𝑎𝑛 and 𝑠𝑑 are integers chosen uni-
formly in the range [0..𝑛− 1]. Additionally, the protected attributes
of the candidates are sampled uniformly within their range.

5.1.2 Implemented Algorithms. We implement the following base-
line algorithms. The first two baselines are heuristics, whereas, the
last one gives exact solution of the problem. These algorithms are
compared with our proposed solutions: Alg1AttBOpt,
Alg1AttMOpt, Alg2AttApx, AlgCartOpt.
(1) LEXIMIN [22] + Alg1AttMOpt . This existing work is not
designed to solve the margin finding problem, but it produces a
probability distribution of a set of possible top-𝑘 candidates, where
each set satisfies fairness constraints. We draw one such top-𝑘 set
from the output distribution based on the associated probability
and consider that to be the set of selected candidates in top-𝑘 . Given
this top-𝑘 , we run the Alg1AttMOpt to compute the margin.
(2) Fair-Topk-Set [42] + Alg1AttMOpt . This related work also
does not solve the margin finding problem. The best use of this al-
gorithm is to study it in the context of multiple protected attributes,
where this algorithm first converts multiple protected attributes to
a single multi-valued protected attribute by computing joint distri-
bution over the attributes assuming their independence. Given the
resultant proportion, we run the Alg1AttMOpt to compute the
margin. Fair-Topk-Set is a heuristic, may not produce the smallest
margin, or even a feasible solution, as we demonstrate empirically.
(3) Integer Linear Programming.We implement an exact algo-
rithm for MFBinaryS, MFMultiS, MFMulti2, and MFMulti3+
problems using ILP. We refer to these variants as ILPBinaryS, ILP-
MultiS, ILPMultiTwo, ILPMultiThree, respectively.

5.2 Quality Experiments Results
5.2.1 Results forMFBinaryS. Figure 1a shows the results from the
election for 2021 Bronx Justice of the Supreme Court. There are 6
candidates(5 Democrats and 1 Republican), in which the candidate
from Republican receives the least votes. We set the Republican
must be included in the top-k (otherwise, the margin would be
zero). We can observe that the margin decreases with increasing 𝑘 .

In Figure 1b, we evaluate the effect of “vote gap” between the
candidates to decide the margin. Here the 𝑥 axis shows a particular
candidate who is at is at the top𝑦-th percentile (calculated as𝑦%×𝑛)
after the initial vote outcome, and needs to be promoted in the final
top-𝑘 (𝑘 = 5) to ensure fairness. The y-axis shows the margin value.
Note that a large value of top 𝑦-th percentile produces higher vote
gap between the current top-𝑘 and the candidate at the top 𝑦-th
percentile that needs to be promoted to top-𝑘 .

5.2.2 Results for MFMultiS. We present the results of MFMultiS
in Figure 2. We consider political parties (36 different parties) of
the candidates in 2019 NSW Senate Election, and the movie genres
of the Movielens datasets (18 different genres) as the protected
attribute. These results demonstrate similar pattern as that of MF-
BinarySresults.

5.2.3 Results for MFMulti2. Figure 3 shows the results for MF-
Multi2. For the NSW Senate Election dataset, the two protected
attributes are: political party of the candidates and whether the can-
didate has been elected before or not. For the Movielens datasets,
we use two protected attributes: genres (18 unique values), and

(a) 2021 Bronx Justice Election (b) 2019 NSW Senate Election

Figure 1: Results forMFBinaryS

(a) 2019 NSW Senate Election (b) MovieLens5Star

(c) MovieLens3StarMore

Figure 2: Results forMFMultiS

(a) 2019 NSW Senate Election (b) MovieLens5Star

(c) MovieLens3StarMore

Figure 3: Results forMFMulti2

326

language (English or not). The results show that Alg2AttApx has
significantly lower margin compared to Fair-Topk-Set and LEX-
IMIN, and the margins produced by Alg2AttApx are bounded by
2 times the margins produced by ILPMultiTwo and AlgCartOpt
that produce identical results. In fact, in many cases, Fair-Topk-Set
produces infeasible results.

5.2.4 Results forMFMulti3+. This is run on theMovieLens datasets
only. In addition of the two protected attributes genre and language,
we consider the production company (American or not) as the third
protected attribute. The results are presented in Figure 4, which is
consistent with our previous observations.

(a) Movielens5Star (b) Movielens3StarMore

Figure 4: Results forMFMulti3+

5.3 Scalability Results
For these experiments, we use the synthetically generated normally
distributed data to validate the effect of the parameters 𝑛,𝑚, 𝑘 on
the running time of the proposed algorithms, considering 1, 2, or 3
and more protected attributes.

5.3.1 Results for MFBinaryS, MFMultiS. Figure 5 shows that
our proposed algorithms Alg1AttBOpt and Alg1AttMOpt are
scalable up to millions of candidates and voters. In Figure 5a, the
running time increases log-linearly w.r.t number of candidates 𝑛,
whereas the running time does not change significantly while vary-
ing number of voters𝑚 and the size of the result set𝑘 (Figures 5b, 5c).
These results are consistent with our theoretical analysis. Fair-
Topk-Set is the best choice scalability-wise (but fails to optimize
margin or even gives infeasible results), whereas, LEXIMIN does
not scale because of its exponential nature.

Figures 7a and 7b show running times varying standard deviation
𝑠𝑑 and𝑚𝑒𝑎𝑛. We observe non-significant change in running time
due to varying𝑚𝑒𝑎𝑛 and 𝑠𝑑 .

5.3.2 Results forMFMulti2. The running time of Alg2AttApx
w.r.t𝑛,𝑚,𝑘 are shown in Figure 6. The running time of Alg2AttApx
is sub-quadratic w.r.t number of candidates 𝑛 as shown in Figure 6a,
while it increases linearly w.r.t number of voters𝑚 (shown in Fig-
ure 6b) and does not change significantly with the size of the result
set 𝑘 (Figure 6c). As before, Fair-Topk-Set is the fastest, while
LEXIMIN does not scale.

5.3.3 Results for MFMulti3+. We present AlgCartOpt as the
solution of MFMulti3+. It produces 𝑐 = Πℓ

𝑖=1ℓ𝑖 as the number of
attribute value configurations.

In Figures 8a and 8b, we see that the running time of AlgCar-
tOpt increases exponentially with 𝑛 and 𝑐 , as expected, whereas
Fair-Topk-Set, LEXIMIN run faster.

5.4 Summary of results
Our first and foremost observation is, consistent with our the-
oretical analysis Alg1AttBOpt, Alg1AttMOpt, AlgCartOpt
produce exact solutions of the underlying problems, i.e., they sat-
isfy the fairness constraints, while minimizing the margin values,
whereas, Alg2AttApx demonstrates better approximation factors
compared to the theoretical bound 2. Our second observation is
that the implemented state-of-the-art solutions LEXIMIN [22] and
Fair-Topk-Set [42], despite adapting them non-trivially to our
problem, fail to optimize margin values and do not turn out to be
effective.As expected, Fair-Topk-Set [42] is highly scalable but
produces sub-optimal margin values or even infeasible results for
MFMulti2, and MFMulti3+, as it just becomes a heuristic for those
problems. Consistent with our theoretical analysis, Alg1AttBOpt,
Alg1AttMOpt, and Alg2AttApx are highly scalable, and run well
on outcome consisting of a very large number of candidates, ballots,
or large 𝑘 . We observe that the value of margin depends on both 𝑘
and the vote gaps between candidates: as 𝑘 increases, the margin
generally decreases, while the margin increases with larger vote
gaps. The ILP based baseline solutions as well as LEXIMIN [22]
give memory error when run on very large dataset. Overall, our
designed solutions turn out to be the unanimous choice.

6 RELATEDWORK
We primarily discuss three types of existing work that are related
to our proposed problem.
Preference Elicitation and Aggregation. Preference of the in-
dividual users could be elicited as pairwise comparison [18], in
form of a binary vector [39] known as Approval Voting [10], in
an ordinal scale [2, 31], or considering Arrowian social choice,
where users provide partial or complete preference order over the
items [8, 12, 30, 41]. Similarly, The properties of social welfare
functions for aggregating preferences have been studied by mathe-
maticians since the 18th century [11, 15, 16]. Different preference
aggregation methods are proposed, including majority voting, plu-
rality voting [33, 35, 37], their weighted versions, as well as aggre-
gation methods that consider positional preference [8, 12, 41], such
as Kemeny rule [19, 29], Condorcet rule [17], or Borda Count [20].
Our adopted preference elicitation model allows users to provide
their top-choice and aggregate these choices using plurality voting,
which is natural for our problem setting.
Fairness in Preference Aggregation and Top-𝑘 . In [23, 38], au-
thors study the fairness of preference aggregation in the context of
Arrow’s Impossibility Theorem. In a very recent work of ours [44],
we study how to ensure proportionate fairness[5, 6] in aggregating
preferences that are provided as ranked orders. Earlier, existing
works study proportionate representation considering group fair-
ness in the top-𝑘 ranked order [26, 32]. Authors in [24] study how to
strike a balance between individual and group fairness in selecting
top-𝑘 order. In [3], the authors study how to tune the weights of the
attributes to promote fairness in the top-𝑘 ranked results. We are
also aware of prior works that select top-𝑘 set [22, 42] to maximize

327

(a) Vary 𝑛, 𝑘 = 50,𝑚 = 10000𝑘 (b) Vary𝑚, 𝑘 = 50, 𝑛 = 100𝑘 (c) Vary 𝑘 , 𝑛 = 100𝑘,𝑚 = 10000𝑘

Figure 5: Running Time for Alg1AttBOpt & Alg1AttMOpt

(a) Vary 𝑛,𝑚 = 1000𝑘, 𝑘 = 50 (b) Vary𝑚, 𝑛 = 10𝑘, 𝑘 = 50 (c) Vary 𝑘 , 𝑛 = 10𝑘 ,𝑚 = 100𝑘

Figure 6: Running Time for Alg2AttApx

(a) Vary 𝑠𝑑 , 𝑚 = 1000𝑘,𝑛 =

100𝑘,𝑚𝑒𝑎𝑛 = 50𝑘
(b) Vary 𝑚𝑒𝑎𝑛, 𝑚 = 1000𝑘,𝑛 =

100𝑘, 𝑠𝑑 = 30𝑘

Figure 7: Varying distribution Alg1AttBOpt & Alg1AttMOpt

(a) Vary 𝑛, 𝑐 = 8,𝑚 = 1000 (b) Vary 𝑐, 𝑛 = 5,𝑚 = 1000

Figure 8: Running Time for MFMulti3+

fairness or diversity. In a recent paper [14], the authors maximize a
monotone submodular function given only upper bound of fairness
constraints. Unlike our work, it does not study ballot substitution as
well as does not consider exact fairness constraints. Kearns, Michael,
et al. prove that achieving subgroup level fairness is np-hard [28].
They propose an approximate solution (FairFictPlay) for achiev-
ing subgroup level fairness based on two-player zero-sum game

between a Learner (finds best classifier) and an Auditor (finds best
subgroup distribution).
Preference Substitution. Preference substitution could done by
adding a new vote, deleting an existing vote, or substituting the orig-
inal preference with another choice. In the absence of adversaries,
the last one is most realistic that we adopt in this work. Preference
substitution has received significant interests in electoral systems,
in particular, to understand the mechanism of Single Transferable
Vote (STV) [21, 43]. In [45], the authors study margin, to introduce
a different election result for different voting systems, including
approval voting, all positional scoring rules (which include Borda,
plurality, and veto). In [9, 13, 40] margin is calculated in STV setting.
In [4], Orlin and Bartholdi prove margin finding is NP-hard even
for a single candidate selection for STV.

While we adopt popular preference aggregation models and group
fairness definitions, we are the first to formally study the margin
finding problem under single ballot substitutions considering complex
fairness constraints and present principled solutions.

7 CONCLUSION
We initiate the study of the margin finding problem of a top-𝑘 prefer-
ence aggregation model under single ballot substitutions, considering
one and multiple protected group attributes to promote fairness,
present a suite of algorithms with provable guarantees, and conduct
rigorous experimental analysis to demonstrate the effectiveness of
our proposed solutions.

ACKNOWLEDGMENTS
Thework ofMd.Mouinul Islam, DongWei, and Senjuti Basu Roy are
supported by the NSF CAREER Award #1942913, IIS #2007935, IIS
#1814595, PPoSS:Planning #2118458, and byONRGrants: #N000141812838,
#N000142112966.

328

REFERENCES
[1] Ravindra K. Ahuja, Andrew V. Goldberg, James B. Orlin, and Robert Endre Tarjan.

1992. Finding minimum-cost flows by double scaling. Math. Program. 53 (1992),
243–266.

[2] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong
Yu. 2009. Group recommendation: Semantics and efficiency. Proceedings of the
VLDB Endowment 2, 1 (2009), 754–765.

[3] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. 2019. De-
signing fair ranking schemes. In Proceedings of the 2019 International Conference
on Management of Data. 1259–1276.

[4] John J Bartholdi and James B Orlin. 1991. Single transferable vote resists strategic
voting. Social Choice and Welfare 8, 4 (1991), 341–354.

[5] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel. 1996.
Proportionate progress: A notion of fairness in resource allocation. Algorithmica
15, 6 (1996), 600–625.

[6] Sanjoy K Baruah, Johannes E Gehrk, C Greg Plaxton, Ion Stoica, Hussein Abdel-
Wahab, and Kevin Jeffay. 1997. Fair on-line scheduling of a dynamic set of tasks
on a single resource. Inform. Process. Lett. 64, 1 (1997), 43–51.

[7] Senjuti Basu Roy and Kaushik Chakrabarti. 2011. Location-aware type ahead
search on spatial databases: semantics and efficiency. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data. 361–372.

[8] Julian H Blau. 1957. The existence of social welfare functions. Econometrica:
Journal of the Econometric Society (1957), 302–313.

[9] Michelle Blom, Peter J Stuckey, and Vanessa J Teague. 2017. Towards computing
victory margins in STV elections. arXiv preprint arXiv:1703.03511 (2017).

[10] Steven J Brams and Peter C Fishburn. 1978. Approval voting. American Political
Science Review 72, 3 (1978), 831–847.

[11] Donald E Campbell and Jerry S Kelly. 2000. Information and preference aggrega-
tion. Social Choice and Welfare 17, 1 (2000), 3–24.

[12] Donald E Campbell and Jerry S Kelly. 2002. Impossibility theorems in the
Arrovian framework. Handbook of social choice and welfare 1 (2002), 35–94.

[13] David Cary. 2011. Estimating the Margin of Victory for Instant-Runoff Voting. In
2011 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 11).

[14] L Elisa Celis, Lingxiao Huang, and Nisheeth K Vishnoi. 2017. Multiwinner voting
with fairness constraints. arXiv preprint arXiv:1710.10057 (2017).

[15] Christopher P Chambers and Takashi Hayashi. 2006. Preference aggregation
under uncertainty: Savage vs. Pareto. Games and Economic Behavior 54, 2 (2006),
430–440.

[16] Yong-Gon Cho and Keun-Tae Cho. 2008. A loss function approach to group
preference aggregation in the AHP. Computers & Operations Research 35, 3 (2008),
884–892.

[17] Marquis de Condorcet. 1785. Essay on the Application of Analysis to the Proba-
bility of Majority Decisions. Paris: Imprimerie Royale (1785).

[18] Luca de Alfaro and B. Thomas Adler. 2013. Content-Driven Reputation for Collab-
orative Systems. In Trustworthy Global Computing - 8th International Symposium,
TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 8358), Martín Abadi and Alberto Lluch-
Lafuente (Eds.). Springer, 3–13. https://doi.org/10.1007/978-3-319-05119-2_1

[19] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. 2001. Rank
aggregation methods for the web. In Proceedings of the 10th international confer-
ence on World Wide Web. 613–622.

[20] Peter Emerson. 2013. The original Borda count and partial voting. Social Choice
and Welfare 40, 2 (2013), 353–358.

[21] David M Farrell, Malcolm Mackerras, and Ian McAllister. 1996. Designing elec-
toral institutions: STV systems and their consequences. Political studies 44, 1
(1996), 24–43.

[22] Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia.
2021. Fair algorithms for selecting citizens’ assemblies. Nature 596, 7873 (2021),
548–552.

[23] Marc Fleurbaey, Kotaro Suzumura, and Koichi Tadenuma. 2005. The informa-
tional basis of the theory of fair allocation. Social Choice and Welfare 24, 2 (2005),
311–341.

[24] David García-Soriano and Francesco Bonchi. 2021. Maxmin-fair ranking: indi-
vidual fairness under group-fairness constraints. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 436–446.

[25] Michael R Garey andDavid S Johnson. 1979. Computers and intractability. Vol. 174.
freeman San Francisco.

[26] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-
aware ranking in search & recommendation systems with application to linkedin
talent search. In Proceedings of the 25th acm sigkdd international conference on
knowledge discovery & data mining. 2221–2231.

[27] Corinna Hertweck, Christoph Heitz, and Michele Loi. 2021. On the moral justifi-
cation of statistical parity. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. 747–757.

[28] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. 2019. An
Empirical Study of Rich Subgroup Fairness for Machine Learning. In Pro-
ceedings of the Conference on Fairness, Accountability, and Transparency. ACM.
https://doi.org/10.1145/3287560.3287592

[29] John G Kemeny. 1959. Mathematics without numbers. Daedalus 88, 4 (1959),
577–591.

[30] Craig W Kirkwood and Rakesh K Sarin. 1985. Ranking with partial information:
A method and an application. Operations Research 33, 1 (1985), 38–48.

[31] Yehuda Koren and Joe Sill. 2011. Ordrec: an ordinal model for predicting per-
sonalized item rating distributions. In Proceedings of the fifth ACM conference on
Recommender systems. 117–124.

[32] Caitlin Kuhlman and Elke Rundensteiner. 2020. Rank aggregation algorithms
for fair consensus. Proceedings of the VLDB Endowment 13, 12 (2020).

[33] Jean-François Laslier. 2012. And the loser is. . . plurality voting. In Electoral
systems. Springer, 327–351.

[34] Reshef Meir. 2015. Plurality voting under uncertainty. In Twenty-Ninth AAAI
Conference on Artificial Intelligence.

[35] Reshef Meir, Maria Polukarov, Jeffrey Rosenschein, and Nicholas Jennings. 2010.
Convergence to equilibria in plurality voting. In Proceedings of the AAAI confer-
ence on artificial intelligence, Vol. 24. 823–828.

[36] Samuel Merrill III. 1984. A comparison of efficiency of multicandidate electoral
systems. American Journal of Political Science (1984), 23–48.

[37] Lionel S Penrose. 1946. The elementary statistics of majority voting. Journal of
the Royal Statistical Society 109, 1 (1946), 53–57.

[38] Francesca Rossi, Kristen Brent Venable, and Toby Walsh. 2005. Aggregating
preferences cannot be fair. Intelligenza Artificiale 2, 1 (2005), 30–38.

[39] Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, Gautam
Das, and Cong Yu. 2014. Exploiting group recommendation functions for flexible
preferences. In 2014 IEEE 30th international conference on data engineering. IEEE,
412–423.

[40] Anand D Sarwate, Stephen Checkoway, and Hovav Shacham. 2013. Risk-limiting
audits and the margin of victory in nonplurality elections. Statistics, Politics, and
Policy 4, 1 (2013), 29–64.

[41] Amartya Sen. 1986. Social choice theory. Handbook of mathematical economics 3
(1986), 1073–1181.

[42] Julia Stoyanovich, Ke Yang, and HV Jagadish. 2018. Online set selection with
fairness and diversity constraints. In Proceedings of the EDBT Conference.

[43] Nicolaus Tideman. 1995. The single transferable vote. Journal of Economic
Perspectives 9, 1 (1995), 27–38.

[44] Dong Wei, Md Mouinul Islam, Schieber Baruch, and Senjuti Basu Roy. 2022.
Rank Aggregation with Proportionate Fairness. In Proceedings of the 2022 ACM
SIGMOD International Conference on Management of Data.

[45] Lirong Xia. 2012. Computing the margin of victory for various voting rules. In
Proceedings of the 13th ACM conference on electronic commerce. 982–999.

[46] Xiaohang Zhang, Guoliang Li, and Jianhua Feng. 2016. Crowdsourced top-k
algorithms: An experimental evaluation. Proceedings of the VLDB Endowment 9,
8 (2016), 612–623.

329

https://doi.org/10.1007/978-3-319-05119-2_1
https://doi.org/10.1145/3287560.3287592

	Abstract
	1 Introduction
	2 Data Model & Problem Definitions
	2.1 A Toy Running Example
	2.2 Problem Definitions

	3 Single Protected Attribute
	3.1 Binary Protected Attribute
	3.2 Subroutine FindBallotSubB
	3.3 Multi-valued Protected Attribute

	4 Multiple Protected Attributes
	4.1 Exact Solution AlgCartOpt
	4.2 MFMulti3+- 3 Attributes Case
	4.3 MFMulti2- 2 Attributes Case
	4.4 Approximation Algorithm for MFMulti2

	5 Experimental Evaluations
	5.1 Experiment Design
	5.2 Quality Experiments Results
	5.3 Scalability Results
	5.4 Summary of results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

