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ABSTRACT
Structural clustering is one of the most widely used graph cluster-
ing frameworks. In this paper, we focus on structural clustering of
probabilistic graphs, which comes with significant computational
challenges and has, so far, resisted efficient solutions that are able
to scale to large graphs, e.g. the state-of-art can only handle graphs
with a few million edges. We address the main bottleneck step of
probabilistic structural clustering, computing the structural simi-
larity of vertices based on their Jaccard similarity over the set of
possible worlds of a given probabilistic graph. The state-of-art used
Dynamic Programming, a quadratic run-time algorithm, that does
not scale to pairs of vertices of high degree. In this paper we present
a novel approach based on Lyapunov Central Limit Theorem. By
using a carefully chosen set of random variables we are able to cast
the computation of structural similarity to computing a one-tailed
area under the Normal Distribution. Our approach has linear run-
time as opposed to quadratic, and as such, it scales to much larger
inputs. Extensive experiments show that our approach can handle
massive graphs at web-scale which the state-of-art cannot.
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1 INTRODUCTION
Probabilistic graphs are graphs in which each edge has a probability
of existence. The uncertainty associated with this data structure
allows for the modelling of many natural phenomena which have
probabilistic interactions. The literature is rich with analyses of
foundational data mining operations cast into the realm of the prob-
abilistic graphs [1, 2, 15, 16, 20, 22–24, 27, 34, 47, 48]. For instance,
in social networks the influence users have over one another rep-
resents a probability of information passing between users of the
network [30, 39]. With online dating networks, probabilistic graphs
can model the likelihood that a user will visit another user’s profile
and whether they will send a message to said user [32, 41]. In the
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study of protein-protein interactions, experimental procedures de-
termine the connections formed with a measurement uncertainty
which is interpreted as the edge probability [25, 36].

For large graphs, a popular data mining operation is clustering,
which groups similar vertices in the same cluster and separates dis-
similar vertices into different clusters. A widely used approach for
clustering deterministic graphs is the Structural Clustering Algo-
rithm for Networks (SCAN) [42]. What distinguishes this algorithm
from other clustering approaches is that it allows the clusters to
overlap and furthermore introduces vertex classification. Namely,
the algorithm defines three types of vertices: core, hubs, and out-
liers; and uses a metric to determine the type of each vertex in the
network. Clusters are formed by grouping core vertices together
based on maximal connectivity. After the clusters are formed, ver-
tices that do not belong to any cluster are either hubs or outliers
based on whether the vertex has edges connecting to multiple or
just one cluster respectively. With these labels for vertices, great
use has been made of the SCAN method on problems such as:
community detection on population networks, fraud detection in
financial networks, and on protein-protein interactions in biologi-
cal networks [8, 33]. The SCAN method has a strong foundation
in the literature, with many works expanding upon the original
framework by modifying the similarity metric, and implementing
parallel processes [7, 9, 10, 28, 35, 37, 38].

One of the notable extensions to the SCAN method is the trans-
lation of the problem to the probabilistic setting. The applications
of this problem in probabilistic networks are multiple, for instance,
such networks can model transit traffic, with cores representing the
most reliably transit stops; such networks can also model protein-
protein interactionswhere cores correspond to proteins that reliably
interact with many proteins in the network. The probabilistic ver-
sion of SCAN, called USCAN [35], introduces the probability of
structural similarity for pairs of vertices which finds the probability
of their structural similarity being above a threshold 𝜀 over all pos-
sible worlds. From there, the process continues in similar fashion
to SCAN, with vertices added to the structural neighbourhood of
a vertex if the probability of their structural similarity is above a
threshold 𝜂. However, to iterate over all possible worlds would take
an exponential amount of time. To combat this, the authors of US-
CAN devise a Dynamic Programming (DP) method for computing
structural similarity. The DP solution runs in quadratic time, how-
ever, this is still not practical for computing structural similarity for
pairs of vertices with many neighbours. This is indeed the case for
most real world networks, where the maximum degree of vertices
is well in the millions. The result is that the DP solution is unable to
handle pairs of high degree vertices or large networks with many
medium to high degree vertices.
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In this paper, we propose an efficient statistical approximation
method for calculating the probability of structural clustering being
above a given threshold. Our calculation is built on Lyapunov’s
version of the Central Limit Theorem (CLT) [43] which works for
non-identically distributed but independent random variables. The
crux of our method is to express the Jaccard similarity of a pair of
vertices in a probabilistic graph as the sum of a special set of random
variables which we prove to give the structural similarity of the
pair. This needs to be done carefully in order to properly satisfy the
highly technical conditions stipulated in the Lyapunov CLT. Once
we achieve the expression of structural similarity in terms of a sum
of random variables that satisfies Lyapunov CLT, the problem then
becomes that of computing a one-tailed area under the Normal
Distribution, which is easily done. Our approach runs in linear time
with respect to the number of neighbours between a pair of vertices
connected by an edge. Since, the CLT is an approximation to the
true distribution of the sum of random variables, our approach also
yields an approximate solution. However, it is well known that CLT
produces a very tight approximation in practice for large numbers.
This is also what we observe for our problem. For pairs of vertices
with a number of neighbours in the few hundreds, which is where
DP starts being impractical, our CLT approach produces approxi-
mations that are indistinguishable from numbers produced by DP.
We give theoretical bounds on the quality of the approximation
using the Berry-Essen Theorem [16, 43].

To reiterate, the complexity of our method reduces to linear
time from the quadratic time achieved by DP, with our method
running up to three orders of magnitude faster for datasets that
DP can handle. Furthermore, our method achieves significantly
greater scalability, clustering graphs with up to half a billion edges
in less than an hour. Meanwhile USCAN was not able to complete
on datasets with more than 30 million edges.

We give in the following a summary of our contributions.

• We derive an efficient approximate method to calculate the
probability of structural similarity with the Lyapunov Cen-
tral Limit Theorem, which gives practically identical results
to the exact computation from the Dynamic Programming
solution. We give a proof of correctness and bound the
quality of the approximation solution.

• We derive the time complexity of our method and validate
its time improvement over USCAN through experimenta-
tion on real world datasets. We show that our method yields
up to three orders of magnitude improvement in time over
the exact calculation.

• The reduction in time complexity allows our method to
scale up to much larger datasets than the state-of-art US-
CAN algorithm. Our algorithm finishes in less than an hour
on graphs with over half a billion edges.

2 BACKGROUND
Definition 1 (Probabilistic Graph). Let G = (V, E, 𝑝) be an

un-directed probabilistic graph s.t. E ⊆ V ×V and 𝑝 : E → (0, 1].

Definition 2 (Possible Worlds). Unlike deterministic graphs,
probabilistic graphs represent possible worlds, which all have different
probabilities of occurring. A graph 𝐺 = (V, 𝐸), where 𝐸 ⊆ E, is a

possible world of G, and the probability of occurring from G is:

𝑃 [𝐺 |G] =
∏︂
𝑒∈𝐸

𝑝 (𝑒)
∏︂

𝑒∈E\𝐸
(1 − 𝑝 (𝑒)) (1)

and we say 𝐺 ⊑ G, meaning 𝐺 is a possible world of G. Hence, for
a probabilistic graph, G = (V, E, 𝑝), there are 2 | E | possible worlds
of G, where each edge 𝑒 ∈ E has probability 𝑝 (𝑒) of existing in a
possible world 𝐺 .

2.1 Definitions
Ourmethod uses the same framework as pSCAN and USCAN [7, 35]
which in turn are based on SCAN [42]. Specifically, we present the
following definitions.

Definition 3 (Structural Neighbourhood [42]). Given a
deterministic graph 𝐺 = (V, 𝐸), the structural neighbourhood, 𝑁𝑢 ,
of a vertex 𝑢 ∈ V , is a closed neighbourhood, meaning 𝑁𝑢 = {𝑣 ∈
V | (𝑢, 𝑣) ∈ 𝐸} ∪ {𝑢}. That is, the structural neighbourhood of 𝑢,
contains 𝑢 by definition.
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Figure 1: Probabilistic graph example G = (V, E, 𝑝). 𝐺 =

(V, E) is the maximal possible world of G, where all 𝑒 ∈ E
are present.

Figure 1 is an example of a probabilistic graph, G = (V, E, 𝑝),
with nine vertices and ten edges. For this graph, G, there are
2 | E | = 210 = 1024 distinct possible worlds. Let 𝐺 = (V, E) be
the possible world graph where all edges 𝑒 ∈ E are present. We
call this possible world the maximal possible world of G. Moreover,
we denote the structural neighbourhoods of the maximal possible
world as 𝑁𝑢 , ∀𝑢 ∈ V .

Example 1. Consider vertices 1 and 3 in the deterministic graph
𝐺 = (V, E) from Figure 1. The structural neighbourhoods of vertices
1 and 3 are 𝑁1 = {0, 1, 2, 3} and 𝑁3 = {1, 2, 3, 4} respectively.

Definition 4 (Structural Similarity [35]). Given a determin-
istic graph𝐺 = (𝑉 , 𝐸), the structural similarity between vertices𝑢 and
𝑣 , 𝜎 (𝑢, 𝑣), is defined as the number of common structural neighbours
between 𝑢 and 𝑣 , divided by the number of structural neighbours in
either 𝑢 or 𝑣 , that is

𝜎 (𝑢, 𝑣) = |𝑁𝑢 ∩ 𝑁𝑣 |
|𝑁𝑢 ∪ 𝑁𝑣 |

(2)

where Equation 2 is the Jaccard similarity, which is an effective mea-
sure for structural clustering in networks [7, 35, 37].

Example 2. Consider the edge (1, 3) in the deterministic graph
𝐺 from Figure 1. The structural neighbourhoods for this edge are
given in Example 1. The sizes of the intersection and union are then
|𝑁1 ∩ 𝑁3 | = |{1, 2, 3}| = 3 and |𝑁1 ∪ 𝑁3 | = |{0, 1, 2, 3, 4}| = 5, hence
𝜎 (1, 3) = 3

5 .
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Definition 5 (𝜀−Structural Similarity [42]). Given a deter-
ministic graph 𝐺 = (𝑉 , 𝐸), an edge (𝑢, 𝑣) ∈ 𝐸, and threshold 𝜀, 𝑢 is
𝜀−structural similar to 𝑣 if 𝜎 (𝑢, 𝑣) ≥ 𝜀.

Example 3. The 𝜀−structural similarity of the edge (1, 3) is𝜎 (1, 3) =
3
5 in 𝐺 from Figure 1. Hence, if 𝜀 = 1

2 , then vertex 1 is 𝜀−structural
similar to 3 and vice versa.

Thus far, all the definitions have to do with deterministic graphs,
and largely come from SCAN [42]. Next we introduce key ideas
that hail from USCAN [35] which are designed to elevate the SCAN
model to probabilistic networks.

Definition 6 (Probability of Structural Similarity [35]).
Given a similarity threshold 𝜀 ∈ (0, 1], the probability that 𝜎 (𝑒) ≥ 𝜀

is the sum of the probabilities over all possible worlds 𝐺 ⊑ G, such
that the structural similarity of 𝑒 = (𝑢, 𝑣) is no less than 𝜀 in 𝐺 . That
is,

𝑃 [𝑒, 𝜀] =
∑︂
𝐺⊑G

𝑃 [𝐺 |G] · Θ(𝜎 (𝑒) ≥ 𝜀) (3)

where Θ(𝜎 (𝑒) ≥ 𝜀) is an indicator function that equals 1 when
𝜎 (𝑒) ≥ 𝜀, and 0 otherwise.

Example 4. Consider the edge (1, 3) in the probabilistic graph
G from Figure 1. There are a total of 1024 possible worlds of G,
each of which occurs with probability derived from Equation 1 based
on the included edges. Suppose that 𝜀 = 1

2 , then only the possible
worlds where 𝜎 (1, 3) ≥ 1

2 contribute to the sum. Using Equation 3,
𝑃

[︁
(1, 3), 12

]︁
= 0.7784.

We can now define the notion of reliable neighbourhoods and
reliable core vertices using Definition 6.

Definition 7 (Reliable Structural Similarity [35]). Given
an edge 𝑒 and threshold 𝜂, 𝑢 is reliable structural similar to 𝑣 if
𝑃 [𝑒, 𝜀] ≥ 𝜂.

Example 5. Consider G in Figure 1, the probability of structural
similarity for edge (1, 3) is 𝑃

[︁
(1, 3), 12

]︁
= 0.7784. Then if 𝜂 = 2

3 ,
vertices 1 and 3 are reliable structurally similar to each other since
𝑃

[︁
(1, 3), 12

]︁
≥ 2

3 .

Definition 8 ((𝜀, 𝜂)−Reliable Neighbourhood [35]). Given a
similarity threshold 𝜀 ∈ (0, 1], and a probability threshold 𝜂 ∈ (0, 1],
the (𝜀, 𝜂)−reliable neighbourhood of 𝑢 is the subset of vertices in 𝑁𝑢

such that 𝑃 [(𝑢, 𝑣), 𝜀] ≥ 𝜂, meaning the set is given by 𝑁𝑢 (𝜀, 𝜂) =
{𝑣 ∈ 𝑁𝑢 | 𝑃 [(𝑢, 𝑣), 𝜀] ≥ 𝜂}.

Example 6. When 𝜂 = 2
3 and 𝜀 =

1
2 , then the (𝜀, 𝜂)−reliable neigh-

bourhoods in Figure 1 are: 𝑁0
(︂
1
2 ,

2
3

)︂
= {0}, 𝑁1

(︂
1
2 ,

2
3

)︂
= {1, 2, 3},

𝑁2
(︂
1
2 ,

2
3

)︂
= {1, 2}, 𝑁3

(︂
1
2 ,

2
3

)︂
= {1, 3}, 𝑁4

(︂
1
2 ,

2
3

)︂
= {4},

𝑁5
(︂
1
2 ,

2
3

)︂
= {5, 7}, 𝑁6

(︂
1
2 ,

2
3

)︂
= {6, 7}, 𝑁7

(︂
1
2 ,

2
3

)︂
= {5, 6, 7},

𝑁8
(︂
1
2 ,

2
3

)︂
= {8}.

Notice that for all (𝜀, 𝜂)−reliable neighbourhoods every vertex 𝑢
is contained in its own (𝜀, 𝜂)−reliable neighbourhood 𝑁𝑢 (𝜀, 𝜂). Re-
call each vertex has a minimum structural neighbourhood size
of one by the definition, and every vertex is in every possible
world. Consider that each node is connected to itself via self loop,

then 𝑃 [(𝑢,𝑢), 𝜀] = 1, ∀𝜀. Therefore, all vertices are in their own
(𝜀, 𝜂)−reliable neighbourhood, by definition.

Definition 9 ((𝜀, 𝜂, 𝜇)−Reliable Core Vertex [35]). Given a
similarity threshold 𝜀 ∈ (0, 1], a probability threshold 𝜂 ∈ (0, 1], and
an integer threshold 𝜇 ≥ 2, a vertex𝑢 is a (𝜀, 𝜂, 𝜇)−reliable core vertex
if |𝑁𝑢 (𝜀, 𝜂) | ≥ 𝜇.

Example 7. When 𝜇 = 3, and with the
(︂
1
2 ,

2
3

)︂
−reliable neighbour-

hoods from the previous example, only vertices 1 and 7 are reliable core
vertices; because they are the only nodes with reliable neighbourhoods
that contain three or more elements.

Definition 10 (Reliable Structure-reachable [35]). Given
parameters 𝜀 ∈ (0, 1], 𝜂 ∈ (0, 1], and 𝜇 ≥ 2, vertex 𝑣 is reliable
structure-reachable from vertex 𝑢 if there is a sequence of vertices
𝑣1, . . . , 𝑣𝑙 ∈ 𝑉 with 𝑙 ≥ 2, such that:

• 𝑣1 = 𝑢 and 𝑣𝑙 = 𝑣 ;
• 𝑣1, 𝑣2, . . . , 𝑣𝑙−1 are reliable core vertices;
• 𝑣𝑖+1 ∈ 𝑁𝑣𝑖 (𝜀, 𝜂) for each 𝑖 ∈ [1, 𝑙 − 1]

For 𝑣 to be reliable structure-reachable from 𝑢 means there is a
path of reliable core vertices from 𝑢 that reaches 𝑣 . Notice from the
definition, 𝑣 does not need to be a reliable core vertex. The only
requirement of 𝑣 is that it belongs to the reliable neighbourhood set
of the last reliable core vertex in the path of reliable core vertices
starting from 𝑢.

Example 8. Consider the probabilistic graph in Figure 1. Let the

parameters (𝜀, 𝜂, 𝜇) =
(︂
1
2 ,

2
3 , 3

)︂
. Since the only core vertices are 1 and

7, which are disconnected from each other, we have that all reliable
structure-reachable paths are merely a single edge from the two core
vertices to each of their (𝜀, 𝜂)−reliable neighbours. Thus, vertices 2
and 3 are reliable structure-reachable from 1; and vertices 5 and 6 are
reliable structure-reachable from 7.

From the definitions above, USCAN [35] formulated the problem
of structural clustering on probabilistic graphs as follows.

Definition 11 (The Probabilistic Graph Clustering Prob-
lem [35]). Given a probabilistic graph G = (V, E, 𝑝) and parameters
𝜀 ∈ (0, 1], 𝜂 ∈ (0, 1], and 𝜇 ≥ 2, the problem of probabilistic graph
clustering is to compute the setC of reliable clusters in G. Each reliable
cluster, 𝐶 ∈ C, must contain at minimum two vertices and satisfy:

• Maximality: for each reliable core vertex 𝑢 ∈ 𝐶 , all vertices
that are reliable structure-reachable from 𝑢 must be in 𝐶 .

• Connectivity: for any two vertices 𝑣1, 𝑣2 ∈ 𝐶 , ∃ 𝑢 ∈ 𝐶 s.t.
both 𝑣1, 𝑣2 are reliable structure-reachable from 𝑢.

Example 9. Consider the probabilistic graph, G, in Figure 1 with

(𝜀, 𝜂, 𝜇) =
(︂
1
2 ,

2
3 , 3

)︂
. By maximality, and connectivity, the nodes 1,2,3

and 5,6,7 form two distinct clusters.

Notice with these definitions it is possible for a non-core vertex
to belong to multiple clusters at once. Suppose the example graph
in Figure 1 had an additional non-core vertex 9, and this vertex
was connected to the graph in such a way that 9 is in both the
(𝜀, 𝜂)−reliable neighbourhoods of 1 and 7. Then vertex 9 would be
reliable structure-reachable from both 1 and 7, and therefore would
be apart of both the clusters formed in Example 9. Hence the cluster
sets produced are not partitions since overlaps are permitted.
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Definition 12 (Hubs and Outliers [35]). Given the set C of
reliable clusters in a probabilistic graph G, a vertex 𝑢 that is not in
any reliable cluster in C is a hub vertex if it connects two or more
reliable clusters, and it is an outlier vertex otherwise.

It is possible that for a given probabilistic graph, G, no hubs
or outliers are found after identifying the set of clusters C with
specified values for the parameters 𝜂, 𝜀, and 𝜇.

Example 10. From Example 9 we have two clusters 𝐶1 = {1, 2, 3}
and𝐶2 = {5, 6, 7}. Vertex 4 is not in any cluster, but is attached by an
edge to clusters 𝐶1 and 𝐶2 via vertices 3 and 5 respectively; therefore,
vertex 4 is a hub. Additionally, vertices 0, and 8 are also not in any
cluster. Unlike 4, vertices 0 and 8 only connect to one cluster each via
edges to 1 and 7 respectively. Therefore, vertices 0 and 8 are outliers.

DP algorithm. To overcome the 𝑂 (2 | E | ) complexity for comput-
ing the probability of structural similarity, the authors of USCAN
derive a clever approach of computing the probability in Equation 3.
After all of the optimization observations are applied, the DP algo-
rithm runs in𝑂 ( |𝑁𝑢 ∪𝑁𝑣 |2) time in the worst case [35]. Please see
Appendix in the full version for a detailed explanation of the DP
method.

2.2 Framework
The framework for producing clusters, hubs, and outliers is inher-
ited from pSCAN [7] and subsequently USCAN [35]. The distinction
between our method and the state-of-art resides in the function
ComputePr(𝑢, 𝑣, 𝜀). In USCAN, ComputePr(𝑢, 𝑣, 𝜀) is the DP calcu-
lation to determine the probability of structural similarity. For our
method, if an edge has a neighbourhood union size that meets a
preset threshold parameter, then Lyapunov CLT is used to find the
value of 𝑃 [(𝑢, 𝑣), 𝜀]; the time complexity of using Lyapunov CLT is
linear in the neighbourhood union size.

Algorithm 1 Clustering Framework

1: procedure Framework(G = (V, E, 𝑝))
2: Initialize 𝐺𝑐 = (V, ∅)
3: ∀𝑢 ∈ V , initialize 𝑢 as a non-core vertex
4: for each 𝑢 ∈ V do
5: if IsReliableCore(𝑢) then Label 𝑢 as a core vertex
6: for each 𝑣 ∈ 𝑁𝑢 (𝜀, 𝜂) do
7: if IsReliableCore(𝑣) then Add (𝑢, 𝑣) to 𝐺𝑐

8: C𝑐 ← the set of connected components in 𝐺𝑐

9: C← {𝐶𝑐 ∪𝑢∈𝐶𝑐
𝑁𝑢 (𝜀, 𝜂) | 𝐶𝑐 ∈ C𝑐 }

10: return C
11: procedure IsReliableCore(𝑢)
12: 𝑁𝑢 (𝜀, 𝜂) ← ∅
13: for each 𝑣 ∈ 𝑁𝑢 \ {𝑢} do
14: ComputePr(𝑢, 𝑣, 𝜀)
15: if 𝑃 [(𝑢, 𝑣), 𝜀] ≥ 𝜂 then Add 𝑣 to 𝑁𝑢 (𝜀, 𝜂)
16: if |𝑁𝑢 (𝜀, 𝜂) | ≥ 𝜇 then return True
17: else return False

Algorithm 1 starts by initializing an edgeless graph 𝐺𝑐 with all
the vertices in G, line 2. Each vertex becomes marked as a non-core
vertex in line 3. Then the algorithm checks whether each vertex is a
reliable core vertex, lines 4-5. For each reliable core vertex 𝑢 found,

any reliable neighbours of that vertex that are also reliable core
vertices 𝑣 , have their corresponding edge (𝑢, 𝑣) added to𝐺𝑐 , lines
6-7. The graph 𝐺𝑐 now exclusively contains edges that connect
reliable core vertices together. Thus, the connected components of
𝐺𝑐 begin to form the clusters in C, line 8. However, by the definition
of reliable structure-reachable, the last vertex in the path need not
be a reliable core. Hence, each vertex,𝑢, in each cluster must include
their (𝜀, 𝜂)−reliable neighbourhood into their cluster as well, line 9.

For Algorithm 1, the proof of correctness is given in [7]. Lines 2-8
take𝑂 (𝑚) time, if ComputePr(𝑢, 𝑣, 𝜀) is constant. However, the DP
method ComputePr(𝑢, 𝑣, 𝜀) takes𝑂 ( |𝑁𝑢 ∪𝑁𝑣 |2). From the analysis
in Qiu et. al. [35], the entire clustering process takes𝑂 (𝑑2𝑚𝑎𝑥×𝛼×𝑚),
where 𝛼 is the arboricity of the graphwhich comes from the original
proof in [7], and𝑚 is the number of edges in G [11].

2.3 Challenges
The method proposed in this paper aims to reduce the time com-
plexity of the bottleneck process for clustering probabilistic graphs.
In the USCAN algorithm, the process that takes the most time is the
DP algorithm that calculates 𝑃 [(𝑢, 𝑣), 𝜀]. The DP algorithm takes
𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |2) time for a single edge (𝑢, 𝑣) ∈ E. In our proposed
algorithm, our Lyapunov CLT approach computes 𝑃 [(𝑢, 𝑣), 𝜀] in
𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |) time.

3 PROPOSED ALGORITHM
We now describe our proposed algorithm, NUSCAN, for computing
𝑃 [(𝑢, 𝑣), 𝜀]. In Section 3.1, we show the core technique of NUSCAN,
which makes use of Lyapunov Central Limit Theorem for comput-
ing 𝑃 [(𝑢, 𝑣), 𝜀]. Then, we decribe the main steps of NUSCAN in
Section 3.2. Finally, in Section 3.3, we derive bounds on the quality
of the solution for NUSCAN.

3.1 Structural Similarity using Lyapunov CLT
Theorem 1. [Lyapunov CLT] Let 𝜉1, 𝜉2, . . . , 𝜉𝑛 be a sequence of

independent, but non-identically distributed random variables, each
with finite expected value 𝜇𝑘 and variance 𝜎2

𝑘
. Let

𝑠2𝑛 =

𝑛∑︂
𝑘=1

𝜎2
𝑘

(4)

Lyapunov CLT states if

lim
𝑛→∞

1
𝑠2+𝛿𝑛

𝑛∑︂
𝑘=1

E[|𝜉𝑘 − 𝜇𝑘 |2+𝛿 ] = 0 (5)

for some 𝛿 > 0, then 1
𝑠𝑛

∑︁𝑛
𝑘=1 (𝜉𝑘 − 𝜇𝑘 ) converges in distribution

to a standard normal random variable [12, 16, 43].

The limit condition in Equation 5 is difficult to show analyti-
cally. In Cuzzocrea et. al. [12], they prove a sufficient condition for
Equation 5 in Lyapunov CLT to holds.

Theorem 2. [12] Given a sequence of independent random vari-
ables {𝜉𝑘 , 𝑘 = 1, . . . , 𝑛} such that 𝐸 [(𝜉𝑘 − 𝜇𝑘 )2] = 𝜎2

𝑘
> 0 ∀𝑘 holds

and the centered 3-rd moments 𝐸 [|𝜉𝑘 − 𝜇𝑘 |3] = 𝜂𝑘 < ∞ ∀𝑘 , then the
Lyapunov CLT limit condition in Equation 5 holds.

Remark. Showing that Lyapunov CLT can be applied to calculate
the probability of structural similarity is technical and requires care.
Suppose that 𝐽𝑢,𝑣 is the random variable that represents the value of
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𝜎 (𝑢, 𝑣) over all possible worlds. Then the calculation of 𝑃 [(𝑢, 𝑣), 𝜀]
becomes equivalent to the expression 𝑃 [𝐽𝑢,𝑣 ≥ 𝜀] × 𝑝 (𝑢, 𝑣). We
show that the random variable 𝐽𝑢,𝑣 can be expressed as the sum of
independent, non-identically distributed random variables. In what
follows, we put forth a series of definitions and lemmas needed
to derive an expression for the probability of structural similarity,
𝑃 [(𝑢, 𝑣), 𝜀], allowing the use of Lyapunov CLT.

To start, we define for each edge in the probabilistic graph a
Bernoulli Random Variable that indicates whether a given edge is
present in any possible world according to its edge probability.

Definition 13 (Edge Random Variable). Given a probabilistic
graph G = (V, E, 𝑝), let 𝑋𝑢,𝑣 be a Bernoulli Random Variable that
determines whether an edge (𝑢, 𝑣) ∈ E is present in an arbitrary
possible world 𝐺 , meaning

𝑃 [𝑋𝑢,𝑣 = 1] = 𝑝 (𝑢, 𝑣) and 𝑃 [𝑋𝑢,𝑣 = 0] = 1 − 𝑝 (𝑢, 𝑣) (6)

where 𝑝 (𝑢, 𝑣) is the probability that edge (𝑢, 𝑣) is in any possible
world 𝐺 ⊑ G. We call 𝑋𝑢,𝑣 an Edge Random Variable (ERV).

The sequence of all ERV is by definition a sequence of indepen-
dent and non-identically distributed random variables since each
ERV may have a different value of 𝑝 (𝑢, 𝑣).

Example 11. Consider the probabilistic graph in Figure 1, and
specifically the edge (1, 3). The probability that (1, 3) is in any arbi-
trary possible world𝐺 is 𝑝 (1, 3) = 0.8. Then 𝑋1,3 has the value 1 with
probability 0.8 and is 0 otherwise.

Next, we construct a special sequence of vertices from the com-
bined neighbourhood sets between an edge (𝑢, 𝑣). We will use this
sequence in order to derive the distribution of 𝐽𝑢,𝑣 .

Definition 14 (Neighbourhood Edge Seqence). Given a
probabilistic graph G = (V, E, 𝑝), ∀(𝑢, 𝑣) ∈ E let 𝑁 ∗𝑢𝑣 = (𝑁𝑢 ∩
𝑁𝑣) \ {𝑢, 𝑣} be the set of common neighbours excluding the vertices
{𝑢, 𝑣} and let ˜︃𝑁𝑢𝑣 = (𝑁𝑢 ∪ 𝑁𝑣) \ {𝑢, 𝑣} be the set of all neighbours
between 𝑢 and 𝑣 while excluding {𝑢, 𝑣}. Let 𝑌𝑢𝑣 be an ordered se-
quence of the elements in ˜︃𝑁𝑢𝑣 such that 𝑦2𝑖 = 𝑦2𝑖+1 ∀𝑖 ∈ [0, 𝑞 − 1],
where 𝑞 = 𝑞𝑢,𝑣 = |𝑁 ∗𝑢𝑣 | and ∀𝑖 ∈ [0, 2𝑞 − 1], 𝑦𝑖 ∈ 𝑁 ∗𝑢𝑣 ; and
∀𝑗 ∈ [2𝑞, 𝑟 − 1], 𝑦 𝑗 ∈ ˜︃𝑁𝑢𝑣 \ 𝑁 ∗𝑢𝑣 where 𝑟 = |˜︃𝑁𝑢𝑣 | + |𝑁 ∗𝑢𝑣 |. Therefore,

𝑌𝑢𝑣 : 𝑦0, 𝑦1, . . . , 𝑦2𝑞−1, 𝑦2𝑞, . . . , 𝑦𝑟−1 (7)

Without loss of generality, the elements in 𝑁𝑢 \ 𝑁𝑣 appear in the
sequence before the elements that are in 𝑁𝑣 \ 𝑁𝑢 .

For each edge (𝑢, 𝑣) in a probabilistic graph, there is an associ-
ated Neighbourhood Edge Sequence𝑌𝑢𝑣 with three distinct sections.
The first section contains the elements that are in the maximal
neighbourhoods of both 𝑢, 𝑣 (excluding 𝑢, and 𝑣 themselves). The
elements in the first section are duplicated to signify membership
to both maximal neighbourhoods. The second section of the se-
quence contains elements exclusively belonging to the maximal
neighbourhood of𝑢. The third section of𝑌𝑢𝑣 holds elements only in
the maximal neighbourhood of 𝑣 . In the second and third sections,
the elements only appear once as opposed to the first section where
elements are repeated. The reason is to symbolized ownership of
the vertex to only one maximal neighbourhood set; contrast to the
first section where the represented vertex belonged to both maxi-
mal neighbourhood sets. It is possible that any of the three sections
of 𝑌𝑢𝑣 do not contribute any elements. The three sections of 𝑌𝑢𝑣

discussed above derive from three sets 𝑁 ∗𝑢𝑣 , 𝑁𝑢 \𝑁𝑣 , and 𝑁𝑣 \𝑁𝑢 re-
spective to the outlined order above, which for some (𝑢, 𝑣) ∈ E may
be empty. Therefore, for some (𝑢, 𝑣) if𝑁 ∗𝑢𝑣 = 𝑁𝑢 \𝑁𝑣 = 𝑁𝑣 \𝑁𝑢 = ∅,
then 𝑌𝑢𝑣 is an empty sequence.

Example 12. Consider the probabilistic graph in Figure 1, and the
edge (1, 3). In 𝐺 , the edge (1, 3) has maximal structural neighbour-
hoods 𝑁1 \ {1, 3} = {0, 2} and 𝑁3 \ {1, 3} = {2, 4}. Then˜︃𝑁13 = {0, 2, 4} and 𝑁 ∗13 = {2}, and thus 𝑌13 is 2, 2, 0, 4.

From 𝑌𝑢𝑣 , we define a homomorphic sequence of Edge Random
Variables for the edges represented in the original sequence.

Definition 15 (Correspondence Seqence). Given
G = (V, E, 𝑝), ∀(𝑢, 𝑣) ∈ E with Neighbourhood Edge Sequence 𝑌𝑢𝑣 ,
let 𝜒𝑢𝑣 be a sequence of ERV in one-to-one correspondence to 𝑌𝑢𝑣
under the following definition,

𝜒𝑢𝑣 : 𝑋𝑦0,𝑢 , 𝑋𝑦1,𝑣, . . . , 𝑋𝑦2𝑞−2,𝑢 , 𝑋𝑦2𝑞−1,𝑣, 𝑋𝑦2𝑞 ,𝑧 , . . . , 𝑋𝑦𝑟−1,𝑧 (8)

where 𝑋𝑦𝑖 ,𝑧 is the ERV for the edge (𝑦𝑖 , 𝑧), and 𝑧 is either 𝑢 or 𝑣 as
defined by 𝑌𝑢𝑣 .

Example 13. Suppose we have the sequence 𝑌13 : 2, 2, 0, 4. Then
the Correspondence Sequence is 𝜒13 : 𝑋2,1, 𝑋2,3, 𝑋0,1, 𝑋4,3.

Unlike 𝑌𝑢𝑣 where elements were integers and not necessarily
unique, each element of 𝜒𝑢𝑣 is a unique random variable that rep-
resents the same corresponding edge in 𝑌𝑢𝑣 . Now for each edge
(𝑢, 𝑣), we have a sequence of ERV that represents edges in both
maximal neighbourhoods of 𝑢 and 𝑣 . We exploit the ordering of
this sequence to derive two random variables that constitute the
numerator and denominator of 𝐽𝑢,𝑣 .

Lemma 1. Given a probabilistic graph G = (V, E, 𝑝), (𝑢, 𝑣) ∈ E,
and sequence 𝜒𝑢𝑣 , the random variable that represents |𝑁𝑢 ∩𝑁𝑣 | over
all possible worlds is defined as,

M𝑢,𝑣 = 2 +
𝑞−1∑︂
𝑖=0

𝑋𝑦2𝑖 ,𝑢𝑋𝑦2𝑖+1,𝑣 (9)

Proof. The 2 is for the presence of 𝑢, 𝑣 , and the sum contributes
elements possibly in the intersection when both ERV equal 1. □

Example 14. In Example 13, the Correspondence Sequence for edge
(1, 3) was 𝜒13 : 𝑋2,1, 𝑋2,3, 𝑋0,1, 𝑋4,3; thenM1,3 = 2 + 𝑋2,1𝑋2,3.

Lemma 2. Given a probabilistic graph G = (V, E, 𝑝), (𝑢, 𝑣) ∈ E,
and sequence 𝜒𝑢𝑣 , the random variable that represents |𝑁𝑢 ∪𝑁𝑣 | over
all possible worlds is defined as,

N𝑢,𝑣 = 2 +
𝑞−1∑︂
𝑖=0

max (𝑋𝑦2𝑖 ,𝑢 , 𝑋𝑦2𝑖+1,𝑣) +
𝑟−1∑︂
𝑗=2𝑞

𝑧∈{𝑢,𝑣}

𝑋𝑦 𝑗 ,𝑧 (10)

Proof. The 2 is once again for the presence of 𝑢, and 𝑣 . The
first sum counts intersecting elements if at least one of the ERV is
equal to 1. The second sum counts elements outside the intersection
when their ERV are equal to 1. □

Example 15. In Example 13, the Correspondence Sequence was
𝜒13 : 𝑋2,1, 𝑋2,3, 𝑋0,1, 𝑋4,3; soN1,3 = 2+max (𝑋2,1, 𝑋2,3) +𝑋0,1 +𝑋4,3.

For edge (𝑢, 𝑣), the random variablesM𝑢,𝑣 and N𝑢,𝑣 represent
respectively, the size of the intersection and union of structural
neighbourhoods over all possible worlds. The two random vari-
ablesM𝑢,𝑣 and N𝑢,𝑣 assume that the edge 𝑢, and 𝑣 exist. Hence
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any further derived random variables inherit this assumption of
existence. Using the random variablesM𝑢,𝑣 and N𝑢,𝑣 , we derive
the probabilistic Jaccard similarity 𝐽𝑢,𝑣 .

Corollary 1. Given a probabilistic graph G = (V, E, 𝑝), (𝑢, 𝑣) ∈
E, sequence 𝜒𝑢𝑣 , and random variablesM𝑢,𝑣 and N𝑢,𝑣 , the Jaccard
similarity over all possible worlds is,

𝐽𝑢,𝑣 =
M𝑢,𝑣

N𝑢,𝑣
(11)

Proof. Lemmas 1 and 2 proved that M𝑢,𝑣 and N𝑢,𝑣 are the
random variable representation of the intersection and union of
the structural neighbourhoods of 𝑢, and 𝑣 over all possible worlds.
Therefore it follows the ratio ofM𝑢,𝑣 toN𝑢,𝑣 is exactly the random
variable representation of 𝜎 (𝑢, 𝑣) over all possible worlds. □

Example 16. From Examples 14 and 15,M1,3 = 2 + 𝑋2,1𝑋2,3 and
N1,3 = 2 + max (𝑋2,1, 𝑋2,3) + 𝑋0,1 + 𝑋4,3. Therefore, for edge (1, 3),
the probabilistic Jaccard similarity is,

𝐽1,3 =
M1,3
N1,3

=
2 + 𝑋2,1𝑋2,3

2 +max (𝑋2,1, 𝑋2,3) + 𝑋0,1 + 𝑋4,3

We now have a random variable representation of the structural
similarity measure 𝜎 (𝑢, 𝑣) over all possible worlds, called the prob-
abilistic Jaccard similarity 𝐽𝑢,𝑣 . Next we determine the probability
that 𝐽𝑢,𝑣 ≥ 𝜀, where 𝜀 ∈ (0, 1].

𝑃 [𝐽𝑢,𝑣 ≥ 𝜀] = 𝑃

[︃M𝑢,𝑣

N𝑢,𝑣
≥ 𝜀

]︃
= 𝑃 [M𝑢,𝑣 − 𝜀N𝑢,𝑣 ≥ 0] (12)

In order to approximate 𝑃 [𝐽𝑢,𝑣 ≥ 𝜀], we wish to employ the Lya-
punov CLT. Before we proceed, the random variables must be in-
dependent. SinceM𝑢,𝑣 , N𝑢,𝑣 contain some overlapping random
variables in their definitions, they are not independent. So we sub-
stitute in the formulas forM𝑢,𝑣 and N𝑢,𝑣 to decouple the ERV in
the sum over the first 2𝑞 − 1 terms. Then Equation 12 becomes,

= 𝑃

[︂
2(1 − 𝜀) +

𝑞−1∑︂
𝑖=0

{︂
𝑋𝑦2𝑖 ,𝑢𝑋𝑦2𝑖+1,𝑣 − 𝜀max (𝑋𝑦2𝑖 ,𝑢 , 𝑋𝑦2𝑖+1,𝑣)

}︂
− 𝜀

𝑟−1∑︂
𝑗=2𝑞

𝑧∈{𝑢,𝑣}

𝑋𝑦 𝑗 ,𝑧 ≥ 0
]︂ (13)

The term inside the first summand depends on two ERV 𝑋𝑦2𝑖 ,𝑢 , and
𝑋𝑦2𝑖+1,𝑣 , which combined have four possible outcomes. We derive
a new random variable that encapsulates all possible states of the
expression inside the first sum of Equation 13.

Proposition 1. Given a probabilistic graph G = (V, E, 𝑝),
(𝑢, 𝑣) ∈ E, sequence 𝜒𝑢𝑣 , for 𝑖 ∈ [0, 𝑞−1], let𝑍 (𝑢, 𝑣,𝑦2𝑖 ) be a random
variable such that𝑍 (𝑢, 𝑣,𝑦2𝑖 ) = 𝑋𝑦2𝑖 ,𝑢𝑋𝑦2𝑖+1,𝑣−𝜀max (𝑋𝑦2𝑖 ,𝑢 , 𝑋𝑦2𝑖+1,𝑣)
then the possible states of 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) are

𝑃 [𝑍 (𝑢, 𝑣,𝑦2𝑖 ) = −𝜀] = 𝑝2 (1 − 𝑝1) + 𝑝1 (1 − 𝑝2) = 𝛼 (14)
𝑃 [𝑍 (𝑢, 𝑣,𝑦2𝑖 ) = 0] = (1 − 𝑝1) (1 − 𝑝2) = 𝛽 (15)

𝑃 [𝑍 (𝑢, 𝑣,𝑦2𝑖 ) = 1 − 𝜀] = 𝑝1𝑝2 = 𝛾 (16)

where 𝑝1 = 𝑝 (𝑦2𝑖 , 𝑢) and 𝑝2 = 𝑝 (𝑦2𝑖 , 𝑣). We call 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) the
Intersect Random Variable.

Notice, 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) are independent random variables since each
one is dependent on distinct pairs of edge random variables. We
also rewrite the second sum of Equation 13 into a new random.

Proposition 2. Given G = (V, E, 𝑝), (𝑢, 𝑣) ∈ E, and 𝜒𝑢𝑣 , for
𝑖 ∈ [2𝑞, 𝑟 −1], let𝑊 (𝑧,𝑦𝑖 ) be a random variable such that𝑊 (𝑧,𝑦𝑖 ) =
(−𝜀)𝑋𝑦𝑖 ,𝑧 , then the possible states of𝑊 (𝑧,𝑦𝑖 ) are

𝑃 [𝑊 (𝑧,𝑦𝑖 ) = −𝜀] = 𝑝0 (17)
𝑃 [𝑊 (𝑧,𝑦𝑖 ) = 0] = 1 − 𝑝0 (18)

where 𝑝0 = 𝑝 (𝑦𝑖 , 𝑧).
For simplicity of notation, we let 𝑝1 = 𝑝 (𝑦2𝑖 , 𝑢), 𝑝2 = 𝑝 (𝑦2𝑖 , 𝑣),

and 𝑝0 = 𝑝 (𝑦1, 𝑧). Hence, each 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and𝑊 (𝑧,𝑦𝑖 ) has its own
values for 𝑝1, 𝑝2 and 𝑝0 based on the different ERV it represents.

The sets of random variables 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and𝑊 (𝑧,𝑦𝑖 ) are inde-
pendent but non-identically distributed, as required for the Lya-
punov CLT. Let 𝑍 be the sum of 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) Intersect Random Vari-
ables; and let𝑊 be the sum of𝑊 (𝑧,𝑦𝑖 ) random variables.

𝑍 =

𝑞−1∑︂
𝑖=0

𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and 𝑊 =

𝑟−1∑︂
𝑖=2𝑞

𝑧∈{𝑢,𝑣}

𝑊 (𝑧,𝑦𝑖 ) (19)

With 𝑍 and𝑊 , the probability expression 𝑃 [𝐽𝑢,𝑣 ≥ 𝜀] becomes,

𝑃 [𝑍 +𝑊 ≥ 2(𝜀 − 1)] = 𝑃 [𝑉 ≥ 2(𝜀 − 1)] (20)

where𝑉 = 𝑍 +𝑊 . Therefore we now have a probability expression
of independent but non-identically distributed random variables,
which satisfies the first condition required for Lyapunov CLT.

Theorem 3. For the Lyapunov CLT, let
𝑍 (𝑢, 𝑣,𝑦0), 𝑍 (𝑢, 𝑣,𝑦2), . . . , 𝑍 (𝑢, 𝑣,𝑦2𝑞−2),𝑊 (𝑧,𝑦2𝑞), . . . ,𝑊 (𝑧,𝑦𝑟−1)
be a sequence of independent but non-identically distributed random
variables, each with finite expected value 𝜇𝑍 (𝑢,𝑣,𝑦2𝑖 ) , 𝜇𝑊 (𝑧,𝑦𝑖 ) and
variance 𝜎2

𝑍 (𝑢,𝑣,𝑦2𝑖 ) , 𝜎
2
𝑊 (𝑧,𝑦𝑖 ) . Let the mean and variance be,

𝜇𝑉 =

𝑞−1∑︂
𝑖=0

𝜇𝑍 (𝑢,𝑣,𝑦2𝑖 ) +
𝑟−1∑︂
𝑖=2𝑞

𝜇𝑊 (𝑧,𝑦𝑖 ) =
𝑛∑︂

𝑘=1
𝜇𝑉𝑘 (21)

𝑠2𝑛 =

𝑞−1∑︂
𝑖=0

𝜎2
𝑍 (𝑢,𝑣,𝑦2𝑖 ) +

𝑟−1∑︂
𝑖=2𝑞

𝜎2
𝑊 (𝑧,𝑦𝑖 ) =

𝑛∑︂
𝑘=1

𝜎2𝑉𝑘 (22)

where 𝑛 = 𝑟 − 𝑞 and 𝑉𝑘 is either 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) or𝑊 (𝑧,𝑦𝑖 ). Then 𝑉

converges to a standard normal random variable.

Proof. By definition,𝑉 is the sum of independent random vari-
ables 𝑍 and𝑊 . To prove the limit in Equation 5 converges, we use
the sufficient condition from Theorem 2. The mean and variance of
each 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and𝑊 (𝑧,𝑦𝑖 ) are derived from the definitions,

𝐸 [𝑍 (𝑢, 𝑣,𝑦2𝑖 )] = 𝛾 (1 − 𝜀) − 𝜀𝛼 = 𝜇𝑍 (23)
𝐸 [𝑊 (𝑧,𝑦𝑖 )] = −𝑝0𝜀 = 𝜇𝑊 (24)

𝐸 [(𝑍 (𝑢, 𝑣,𝑦2𝑖 ) − 𝜇𝑍 )2] = 𝜀2𝛼 + (1 − 𝜀)2𝛾 − 𝜇2𝑍 = 𝜎2𝑍 (25)

𝐸 [(𝑊 (𝑧,𝑦𝑖 ) − 𝜇𝑊 )2] = 𝑝0𝜀
2 (1 − 𝑝0) = 𝜎2𝑊 (26)

where 𝛼, 𝛽,𝛾 , and 𝑝0 are defined in Equations 14, 15, 16 and Propo-
sition 2 respectively. Let 𝑝0, 𝑝1, 𝑝2, 𝜀 ∈ (0, 1). Using Equation 23,
Equation 25 simplifies to

𝜎2𝑍 = 𝜀2𝛼 + (1 − 𝜀)2𝛾 − (𝛾 (1 − 𝜀) − 𝜀𝛼)2

= (1 − 𝜀)2𝛾 (1 − 𝛾) + 𝜀2𝛼 (1 − 𝛼) + 2𝛾𝛼𝜀 (1 − 𝜀) > 0 (27)

since 𝛼 = 𝛼 (𝑝1, 𝑝2), 𝛾 (𝑝1, 𝑝2) are probabilities, and hence 𝛼,𝛾 ∈
(0, 1). Note that Equation 26 is strictly greater than zero for the
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given range of 𝑝0 and 𝜀. Thus the first criterion in Theorem 2 is
satisfied. The centred 3rd moments of 𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and𝑊 (𝑧,𝑦𝑖 ) are
calculated and simplify to,

𝐸 [|𝑍 (𝑢, 𝑣,𝑦2𝑖 ) − 𝜇𝑍 |3] = |𝜇𝑍 |3𝛽 + |𝜀 + 𝜇𝑍 |3𝛼 + |1 − 𝜀 − 𝜇𝑍 |3𝛾 < ∞
(28)

𝐸 [|𝑊 (𝑧,𝑦𝑖 ) − 𝜇𝑊 |3] = |𝜀 + 𝜇𝑊 |3𝑝0 + |𝜇𝑊 |3 (1 − 𝑝0) < ∞ (29)

Both Equations 28 and 29 are functions of variables with positive
degree in the range (0, 1). Thus, no points in the allowed domains
cause either function to approach infinity. Therefore,𝑉 satisfies the
requirements of Theorem 2, so the Lyapunov condition holds. □

The probability expression in Equation 20 can now be manipu-
lated such that the Normal Distribution applies.

𝑃 [𝑉 ≥ 2(𝜀 − 1)] = 𝑃𝑟 [𝑉 − 𝜇𝑉 ≥ 2(𝜀 − 1) − 𝜇𝑉 ]

= 𝑃

[︄
1
𝑠𝑛

𝑛∑︂
𝑘=1

𝑉𝑖 − 𝜇𝑉𝑘 ≥
1
𝑠𝑛

(︄
2(𝜀 − 1) −

𝑛∑︂
𝑘=1

𝜇𝑉𝑘

)︄]︄
(30)

Therefore, the probability of structural similarity is approximated
by the one-tailed area under the Normal Distribution. That is,

𝑃 [(𝑢, 𝑣), 𝜀] ≈ 𝑃 [𝑉 ≥ 2(𝜀 − 1)] × 𝑝 (𝑢, 𝑣) (31)

In the following Section, we take the theory developed from this
Section and design an algorithm which implements the calculation
of the probability of structural similarity as defined in Equation 31.

3.2 NUSCAN
We call our algorithm NUSCAN where “N” is to emphasize the
use of the Normal Distribution as per Lyapunov CLT. More specif-
ically, if |˜︃𝑁𝑢𝑣 | ≥ 𝑡 , then we use Normal Distribution to compute
𝑃 [(𝑢, 𝑣), 𝜀], for some large 𝑡 ∈ N. In practice setting 𝑡 = 100 works
well for all graphs (see the full version of the paper located on our
GitHub repository for more details). Based on Equations 30 and 31,
we propose the following algorithm to compute 𝑃 [(𝑢, 𝑣), 𝜀] with
Lyapunov CLT.
Algorithm 2 Calculation of 𝑃 [(𝑢, 𝑣), 𝜀]
1: procedure ComputePr(𝑢, 𝑣, 𝜀)
2: if 𝑝 (𝑢, 𝑣) < 𝜂 then return 0
3: else if |˜︃𝑁𝑢𝑣 | < 𝑡 then
4: Use USCAN DP protocol
5: else
6: Arrange all𝑤 ∈ ˜︃𝑁𝑢𝑣 as sequence 𝑌𝑢𝑣 (Equation 7)
7: Split 𝑌𝑢𝑣 into𝑊 and 𝑍 (Equation 19)
8: 𝜇𝑉 ← 0, 𝑠2𝑛 ← 0 (Equations 21 and 22)
9: for 𝑦𝑖 in𝑊 do
10: 𝜇𝑉 ← 𝜇𝑉 + 𝜇𝑊 (𝑧,𝑦𝑖 )
11: 𝑠2𝑛 ← 𝑠2𝑛 + 𝜎2𝑊 (𝑧,𝑦𝑖 )
12: for 𝑦2𝑖 in 𝑍 do
13: 𝜇𝑉 ← 𝜇𝑉 + 𝜇𝑍 (𝑢,𝑣,𝑦2𝑖 )
14: 𝑠2𝑛 ← 𝑠2𝑛 + 𝜎2𝑍 (𝑢,𝑣,𝑦2𝑖 )
15: Let 𝐹𝑛 ← 𝑁𝑜𝑟𝑚(𝜇𝑉 , 𝑠𝑛)
16: return 𝑃

[︂
𝐹𝑛 ≥ 2(𝜀−1)−𝜇𝑉

𝑠𝑛

]︂
× 𝑝 (𝑢, 𝑣) (Equation 31)

In Algorithm 2, line 2 is a pruning condition inherited from US-
CAN. Line 3 checks whether there are enough neighbours in ˜︃𝑁𝑢𝑣

for the application of the NUSCAN approximation, which is done
in constant time. The next part on lines 6-7 prepares the neigh-
bours into two sets 𝑍 and𝑊 which contain the random variables
𝑍 (𝑢, 𝑣,𝑦2𝑖 ) and𝑊 (𝑧,𝑦𝑖 ) respectively, taking only 𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |).
Lines 9-14 calculate and sum the means and variances of each ran-
dom variable in the sequence as described in Section 3.1, which
finishes both loops in 𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |). In line 15, a Normal Distribu-
tion is constructed with mean 𝜇𝑉 and standard deviation 𝑠𝑛 , done
in constant time. Finally on line 16, the Normal Distribution is used
to return the probability that approximates 𝑃𝑟 [(𝑢, 𝑣), 𝜀], also in con-
stant time. Then for an edge (𝑢, 𝑣), all neighbours in the union are
iterated over. Therefore in the worst case, the run time of Algorithm
2 is 𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |).

Run Time Complexity. We know that the computation of 𝑃 [𝑒, 𝜀] is
the bottleneck process of the clustering framework. The worst case
run times of the DP method and the Lyapunov CLT are 𝑂 ( |𝑁𝑢 ∪
𝑁𝑣 |2) and𝑂 ( |𝑁𝑢∪𝑁𝑣 |) respectively on an arbitrary edge (𝑢, 𝑣) ∈ E
in a probabilistic graph G = (V, E, 𝑝). Let 𝑑𝑚𝑎𝑥 = max𝑢∈V 𝑑 (𝑢),
where 𝑑 (𝑢) is the number of edges connected to 𝑢. Since |𝑁𝑢 ∪ 𝑁𝑣 |
is bounded above by 2×𝑑𝑚𝑎𝑥 , then ∀ 𝑒 ∈ E, ∃ 𝑒 𝑠.𝑡 . the DP method
takes 𝑂 (𝑑2𝑚𝑎𝑥 ) and the Lyapunov CLT takes 𝑂 (𝑑𝑚𝑎𝑥 ) to compute
𝑃 [𝑒, 𝜀]. In NUSCAN the edges are partitioned such that we have
two edge sets: 𝐸𝐷𝑃 = {𝑒 = (𝑢, 𝑣) | 𝑒 ∈ 𝐸 𝑠.𝑡 . = |𝑁𝑢 ∪ 𝑁𝑣 | < 𝑡}
and 𝐸𝐿𝐶𝐿𝑇 = {𝑒 = (𝑢, 𝑣) | 𝑒 ∈ 𝐸 𝑠.𝑡 . = |𝑁𝑢 ∪ 𝑁𝑣 | ≥ 𝑡} where all
the edges in 𝐸𝐷𝑃 have 𝑃 [𝑒, 𝜀] computed using the DP method, and
the edges in 𝐸𝐿𝐶𝐿𝑇 use the Lyapunov CLT to compute 𝑃 [𝑒, 𝜀]. Let
𝑚𝐷 = |𝐸𝐷𝑃 | and let𝑚𝐿 = |𝐸𝐿𝐶𝐿𝑇 |, and the maximum |𝑁𝑢 ∪ 𝑁𝑣 | in
𝐸𝐷𝑃 and 𝐸𝐿𝐶𝐿𝑇 are bounded above by 𝑡 and 2 × 𝑑𝑚𝑎𝑥 respectively.
Thus the total runtime of the NUSCAN clustering framework is
𝑂

(︁
𝛼

[︁
𝑚𝐷𝑡

2 +𝑚𝐿𝑑𝑚𝑎𝑥

]︁ )︁
, where 𝛼 is the arboricity of the graph.

Memory Complexity. Algorithm 2 needs to maintain the neigh-
bourhood intersection and union sets for the current edge, which
consumes 𝑂 ( |𝑁𝑢 ∪ 𝑁𝑣 |) = 𝑂 (𝑑𝑚𝑎𝑥 ) space for the edges in 𝐸𝐿𝐶𝐿𝑇
and𝑂 (𝑡2) for the edges in 𝐸𝐷𝑃 in the worst case. The framework al-
gorithmmay release this memory for each edge calculation, making
the entire memory usage 𝑂 (max(𝑑𝑚𝑎𝑥 , 𝑡

2) +𝑚) in the worst case.
For most practical graphs the memory required is much smaller
than the worst case, since for most edges (𝑢, 𝑣), |𝑁𝑢 ∪ 𝑁𝑣 | is much
smaller than 𝑑𝑚𝑎𝑥 .

3.3 Approximation Bound
In this Section we bound the error of the Normal Distribution in
Equation 30 by using the Berry-Essen Theorem [16, 43].

Theorem 4. [Berry-Essen Theorem] Given a sequence
Γ1, . . . , Γ𝑛 of non-identically distributed and independent random
variables with 𝐸 [Γ𝑖 ] = 0 and 𝐸 [Γ2

𝑖
] = 𝜆2

𝑖
and 𝐸 [|Γ3

𝑖
|] = 𝜌𝑖 < ∞, ∃

𝐶0 = 0.56 s.t. the following is satisfied:

sup
𝑥∈R
|𝐹𝑛 (𝑥) − Φ(𝑥) | ≤ 𝐶0

(︄
𝑛∑︂
𝑖=1

𝜆2𝑖

)︄− 3
2 𝑛∑︂
𝑖=1

𝜌𝑖 (32)

where 𝐹𝑛 (𝑥) is the Cumulative Distribution Function (CDF) for

𝑆𝑛 =
Γ1 + · · · + Γ𝑛√︂
𝜆21 + · · · + 𝜆

2
𝑛

(33)

𝐶0 was determined to be 0.56 from previous works [12, 16].
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Theorem 5. [12] If a set of random variables {𝑋𝑘 }𝑛𝑘=1 with means
𝜇𝑘 and variances 𝜎2

𝑘
and centred 3rd moments 𝐸 [|𝑋𝑘 − 𝜇𝑘 |3] s.t.

𝜎2
𝑘
> 0, ∀𝑘 and 𝐸 [|𝑋𝑘 − 𝜇𝑘 |3] < ∞, ∀𝑘 then the CDF of Equation 33

converges uniformly to a standard normal CDF, when Γ𝑘 = 𝑋𝑘 − 𝜇𝑘 .

We give the following corollary that depicts how to obtain an
upper bound on the maximal error of the approximation of 𝑉 to a
Normal Distribution.

Corollary 2. For edge (𝑢, 𝑣) ∈ E in G with random variables
𝑉1, . . . ,𝑉𝑛 , the error on the approximation of the right hand side of
Equation 30 to the Normal Distribution is given by:

sup
𝑥∈R
|𝐹𝑛 (𝑥) − Φ(𝑥) | ≤

0.56√︂∑︁𝑞−1
𝑖=0 𝜎2

𝑍 (𝑢,𝑣,𝑦2𝑖 ) +
∑︁𝑟−1
𝑖=2𝑞 𝜎

2
𝑊 (𝑧,𝑦𝑖 )

(34)

where 𝐹𝑛 (𝑥) is the CDF from Equation 33 when Γ𝑘 = 𝑉𝑘 − 𝜇𝑉𝑘 .

Proof. We showed in the proof of Theorem 3 that 𝜎2
𝑘
> 0 and

that the 3rd moments were less than infinity. The proof then follows
directly from the application of Theorem 4 and 5. □

4 EXPERIMENTS
In this Section we demonstrate the efficiency, scalability, accu-
racy, and effectiveness of our proposed algorithm NUSCAN, com-
pared to the state-of-art algorithm USCAN [35]. All algorithms
are implemented in C++ and compiled with g++ using the -O3
optimization flag. The experiments are executed on a commod-
ity machine with Intel Xeon E5620, 2.395GHz CPU, and 64Gb
RAM, running Ubuntu 18.04. The implementation is available at
https://github.com/JoetheManHowie/nuscan.

4.1 Datasets and Experimental Framework
Table 1: Datasets with real or obfuscation probabilities. 𝜌
is the density; 𝐶 is the cluster coefficient; k and m are the
metric scales kilo(103), and milli(10−3).

datasets |V| |E | 𝑑𝑚𝑎𝑥 𝑑𝑎𝑣𝑒 𝜌 C
core 3k 7k 141 5 1.9m .390

CARoad 1,964k 3,036k 213 3 .002m .078
douban 87k 157k 222 4 .042m .015
Flickr 22k 135k 401 12 .557m .593
DBLP 660k 1,738k 554 5 .008m .608
biomine 1,008k 6,743k 139,624 13 .013m .016

Table 2: Datasets are retrieved from Laboratory of Web Algo-
rithmics (https://law.di.unimi.it/datasets.php. M is Mega(106).

datasets |V| |E | 𝑑𝑚𝑎𝑥 𝑑𝑎𝑣𝑒 𝜌 C
enron .07M .25M 2k 7 .106m .14

cnr-2000 .33M 3M 18k 17 .052m .016
uk-2014-tpd 1.8M 15M 64k 17 .010m .076
eu-2005 .86M 16M 69k 37 .043m .029

dewiki-2013 1.5M 33M 118k 44 .029m .010
eswiki-2013 .97M 21M 145k 44 .045m .005
uk-2002 18M 262M 195k 28 .002m .067

indochina-2004 7.4M 151M 256k 41 .001m .318
arabic-2005 23M 554M 576k 49 .002m .102

For experimentation we used a combination of real world prob-
abilistic graphs, and deterministic graphs that have probabilities

induced from a distribution. As real world graphs, we have douban,
CARoad, core, Flickr, DBLP, and biomine [15, 26, 29]. CARoad and
douban are datasets from Ma et. al. [29] with the probabilities gen-
erated using obfuscation [4] that we received directly from the
authors. The core dataset comes from Krogan et. al. [26], which
represents the uncertainty in protein interaction measurements.
The remaining three datasets are from Bonchi et. al. [5]. For the
deterministic graphs, all nine were retrieved from Laboratory of
Web Algorithmics, and distributions were induced on the edges to
create new probabilistic graphs.

Preprocessing. The datasets we use in our experimentation have
their statistics given in Tables 1 and 2, and are ordered by the maxi-
mum degree. For the algorithms to run properly, all self-loops and
isolated nodes are removed from the original datasets. Addition-
ally, directed graphs are converted to undirected graphs by adding
symmetrical edges whenever they are missing. The statistics in
Tables 1 and 2 reflect the datasets after these modifications. The
15 datasets listed above all underwent the same preprocessing pro-
cedure. We note that all the real world datasets did not contain
probabilities equal to 0 or 1 nor did they contain self loops. For
the deterministic graphs, we induced the probabilities using the
power law distribution with 𝛽 = 2. For three of the deterministic
graphs, enron, cnr-2000, and uk-2014-tpd, we additionally gener-
ated probabilities using the normal distribution with 𝜇 = 0.5 and
𝜎 = 0.1, as well as using the uniform distribution. The programs
for executing this procedure are outlined on our GitHub repository
which references the specific scripts used. Each dataset runs on 55
different parameter points in the phase space (𝜂, 𝜀, 𝜇) in order to
analyse how the variation in parameter values effect the efficiency,
scalability, accuracy, and effectiveness of the algorithms.

Goals. Through the following series of experiments we aim to
demonstrate that NUSCAN: a) gives a highly accurate approxi-
mation to USCAN, yielding virtually indistinguishable clusters; b)
improves the speed of the state-of-art algorithm USCAN by several
orders of magnitude; c) scales to datasets with over half a billion
edges, while USCAN is unable to finish on datasets with more than
30 million edges. In sum, our goal is to show NUSCAN produces
cluster sets near identical to USCAN in a fraction of the time. For
experimentation, we use the real world datasets to compare be-
tween USCAN in terms of cluster set results; whereas the nine
larger datasets demonstrate the scalability of NUSCAN.

4.2 Comparison to USCAN
To analyze the differences in clustering results between USCAN
and NUSCAN, we observe both the global clustering output and
the local calculations of 𝑃 [𝑒, 𝜀].

Cluster Comparison. After running USCAN and NUSCAN on
the real world graphs, the sets of clusters, hubs, outliers, and core
vertices were found and saved. To identify the agreement between
the two cluster sets, we measured the average Jaccard similarity
between pairs of clusters that shared more than half of their ele-
ments. The clusters that did not have matches were less than about
1%, and were very small in size.

For the sets of hubs, outliers, and core vertices we also compute
the Jaccard similarity. On all six of the real world graphs, we found
that on the overwhelming majority of parameter points, the results
from NUSCAN were identical to USCAN. Specifically, for douban
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and CARoad it was only the results for the three points (0.2, 0.1, 2),
(0.5, 0.1, 2), and (0.5, 0.1, 5) that did not match completely. Yet even
for those points, the results still showed more than 99% match for
cluster and core sets, and more than 90% for the other sets (hubs
and outliers).

In the other four real world graphs, core, Flickr, DBLP, and biomine,
the majority of points produced perfect cluster matches to USCAN;
with the remaining points matching the clusters, cores, hubs, and
outliers with at least 90% accuracy. Table 3 displays the matching
fractions for the point (0.5, 0.2, 2) on all six graphs. So to summa-
rize, we found that for all the 55 parameter points the results from
NUSCAN and USCAN were in near perfect agreement, with the
cluster set having more than 99% match in every case, and the sets
of hubs, cores, and outliers matching in range between 90% to 100%
with a strong tendency to be at the upper end of that range.

Calculation of 𝑃 [𝑒, 𝜀]. For a local comparison of the two cluster-
ing algorithms, we analyze the key difference between them, which
is the computation of 𝑃 [𝑒, 𝜀]. In USCAN, all 𝑃 [𝑒, 𝜀] values are com-
puted with DP; whereas in NUSCAN, 𝑃 [𝑒, 𝜀] values are computed
with Lyapunov CLT when the number of total distinct neighbours
for 𝑒 is larger than 100. To measure the error between the two
methods we calculated the root mean squared error (𝑅𝑀𝑆𝐸).

Table 3: Jaccard similarity of the cluster sets, core sets, hub
sets, and outlier sets between USCAN and NUSCAN. 𝑆 is the
set of edges that pass through Lyapunov method in NUSCAN.
RMSE is measured for edges in |𝑆 |. (𝜂, 𝜀, 𝜇) = (0.5, 0.2, 2).
datasets |𝑆 | RMSE clusters cores hubs outliers
douban 2 .080 1.0 1.0 1.0 1.0
CARoad 6 .002 1.0 1.0 1.0 1.0
core 8 .161 1.0 .986 .997 .999
Flickr 37 .143 1.0 .967 .999 .999
DBLP 4405 .086 1.0 .993 .999 .999
biomine 42064 .067 1.0 .996 1.0 .997

Table 3 displays some interesting and important results. Firstly,
we see that for the first four graphs it is only a handful of edges
that meet the requirement for applying Lyapunov CLT. However,
even for a small number of edges, the Lyapunov method closely
approximates DP. For DBLP and biomine, we see far more edges
undergo the Lyapunov method, namely they are in the thousands
and tens of thousands respectively. We observe that in all the real
world graphs NUSCAN obtains near prefect matches with the clus-
ters from USCAN. Moreover, the 𝑅𝑀𝑆𝐸 is moderately low, ranging
from 0.2% to 16% depending of the dataset. In the full version of
this paper we include further analysis of the parameter points.

Time Comparison. While USCAN was unable to complete tasks
on our nine large graphs for most of the parameter points, it man-
aged to finish within a reasonable time for the point (0.8, 0.5, 2)
on the enron and cnr-2000 graphs. However, it only completed the
power law distribution for the uk-2014-tpd graphwithin the 48-hour
time period. From Figure 2 we observe that NUSCAN outperforms
USCAN regardless of probability distribution as the input graphs
become large. Specifically for cnr-2000 with a normal distribution
of induced probabilities, NUSCAN is able to cluster the graph over
1000 times faster than USCAN. For NUSCAN is took only 16 sec-
onds, where USCAN took 87,030 seconds (which is over a day long).

Figure 2: Running times for the three different distributions
of edge probabilities. We set 𝜂 = 0.8, 𝜀 = 0.5, 𝜇 = 2, and
𝑡 = 100. The running times for the different distributions
are proportional to the number of edges that pass 𝜂 pruning.
For uk-2014-tpd, for the normal and uniform distributions,
USCAN did not finish inside the 48 hours period.

In the following section, we demonstrate the scalability of NUS-
CAN on the nine large graphs with induced edge probabilities from
the power law distribution.

4.3 Efficiency Evaluation
In this Section, we study the running time of our proposed algorithm
NUSCAN over the space of parameters 𝜂, 𝜀, 𝜇. We set threshold
𝑡 = 100 for each dataset. This means that we trigger the structural
similarity computation using Normal Distribution only if the size
of the union of neighbours for a pair of vertices is at least 100,
otherwise, DP is used. Parameters 𝜂, 𝜀, 𝜇 are varied over 55 different
points in the phase space to generate a holistic sampling, and draw
insights into how the parameters effect the running times.

Comparing the variation in 𝜂 across the different datasets in
Figure 3, the running time generally increases with the maximum
degree of the dataset. As 𝜂 increases, each dataset running time
curve drops drastically. Figure 3 reveals that some datasets plateau
off earlier than others because of the random edge probability
assignment coupled with the differences in structure. For instance,
with the dataset cnr-2000, the time drops from ten minutes when
𝜂 = 0.2, all the way to one second when 𝜂 = 0.8. A larger dataset
such as eswiki-2013 starts off with a time close to 30 minutes when
𝜂 = 0.2, and it goes down to 25 seconds when 𝜂 = 0.8. In general, all
the datasets level off as 𝜂 increases. Since the edge probabilities are
drawn from a power law distribution, 𝜂 pruning happens frequently
as the value of 𝜂 increases. Overall, NUSCAN completes on the
largest dataset, arabic-2005, in less than an hour for the majority
of threshold parameter points (𝜂, 𝜀, 𝜇) tested. In contrast, USCAN
was not able to complete in a reasonable time on any of the large
datasets we tested with over 30 million edges.

Phase space. Each of the input parameters 𝜂, 𝜀, 𝜇 have their own
range of allowed values. Both𝜂 and 𝜀 are in the range (0, 1], whereas
𝜇 ≥ 2. We can break the 55 explored points into three groups based
on the fixed values (0.2, 0.5, 2), (0.5, 0.2, 2) and (0.5, 0.5, 5). For each
of the 55 runs, two of the three parameters (𝜂, 𝜀, 𝜇) are held constant
and the third is varied over a range of points. The range of values
chosen for 𝜂 and 𝜀 are [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and 𝜇 has
range [2, 3, 4, 5, 6, 7]. For all of the nine datasets, our algorithm
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completes on all points well within 48 hours; with one exception
of arabic-2005 for the three points (0.1, 𝜀, 𝜇) where the algorithm
did not finish within the time limit.

Figure 3: Running time for varying 𝜂 across datasets. We set
(𝜂, 𝜀, 𝜇) = (𝜂, 0.5, 2), and 𝑡 = 100. As 𝜂 increases, fewer prob-
abilities are calculated (due to 𝜂 pruning) and this reduces
running time. Since the edge probabilities follow a power-
law distribution, this effect plateaus as 𝜂 approaches 1.

Figure 4: Running time for varying 𝜂 and 𝜀 with 𝜇 = 2 and
𝑡 = 100. Since 𝜂 and 𝜀 share the same range, we present both
running time curves on one plot. Blue shows the variation
of 𝜂, with 𝜀 = 0.5; green shows the variation of 𝜀, with 𝜂 = 0.2.
We see that running time is mainly influenced by 𝜂.

Vanishing cluster set. Over the explored 55 points of the phase
space, the number of clusters diminished as the parameters (𝜂, 𝜀, 𝜇)
reach the top of their ranges. The vanishing of clusters is consistent
with USCAN, and thus not unique to NUSCAN. Specifically, when
𝜇 surpasses five, the number of clusters, independent of dataset,
becomes zero. Since 𝜇 is the parameter responsible for determining
if nodes form a cluster, the absence of clusters is bound to occur at
some finite value of 𝜇 regardless of 𝜂 and 𝜀. However, clusters also
vanish when 𝜂 and 𝜀 become large because these parameters influ-
ence reliable structural similarity and the probability of structural
similarity respectively. Consequently, when all these parameters
are high, the odds of enough edges passing all the threshold require-
ments approaches zero. Therefore the lower half of these parameter
ranges are more desirable for generating larger cluster sets.

After analyzing the running time results from each of the 55
points in the phase space, we found that only the parameter 𝜂 sen-
sibly effects the time (for more details see full version of the paper).
Reflecting on the clustering algorithm, because 𝜇 is a threshold
on the size of the reliable neighbourhood set to determine which
vertices are reliable core vertices, then each vertex will be checked
regardless of the value of 𝜇. Similarly, 𝜀 does not effect the run
time, since Algorithm 2 runs in the same time regardless of 𝜀. How-
ever, 𝜂 will effect the run time because of a pruning condition that
was developed in the USCAN algorithm. Since two nodes are re-
liable structural similar only if 𝑃 [𝑒, 𝜀] ≥ 𝜂, then if the probability
𝑝 (𝑒) < 𝜂 that implies 𝑃 [𝑒, 𝜀] < 𝜂, by definition of 𝑃 [𝑒, 𝜀]. Hence for
NUSCAN, out of the three parameters (𝜂, 𝜀, 𝜇), only 𝜂 significantly
effects the runtime.

Figure 4 displays the effect 𝜂 has on the run time. The 𝜂 varying
curve drops super exponentially in time over the range of chosen
points, while the 𝜀 curve is a flat line. Moreover, the 𝜀 line intersects
the 𝜂 curve at 0.2, which is the value 𝜂 is set to in Figure 4. In each
of the nine plots in Figure 4, the 𝜀 line intersects the 𝜂 curve right
at the 𝜂 = 0.2 position. Since the value of 𝜂 is the parameter that
dictates the running time of the process, then it is expected that the
𝜀 curve is a straight line constant in time that intersects at 𝜂 = 0.2
on the 𝜂 curve.

Figure 5: Running time for the three different distributions
of edge probabilities. We vary 𝜂 on a limited range, while
setting 𝜀 = 0.5, 𝜇 = 2, and 𝑡 = 100. The running times for
the different distributions are proportional to the number of
edges that pass 𝜂 pruning.

Figure 5 shows the running times for the three different probabil-
ity distributions on enron, cnr-2000, and uk-2014-tpd. As 𝜂 increases
over its range, the running times fall off at different rates for dif-
ferent distributions. For the power law distribution, the time drops
fast and plateaus quickly in 𝜂; for the normal distribution, the time
drops off slower and falls at the end of the 𝜂 range; while for the
uniform distribution, the time declines at a steady pace the whole
way. The reason for this variation is the 𝜂 pruning that takes place.
Since the power law distribution has the fewest edges with high 𝑝 ,
it will perform the fastest. This is followed by the normal distribu-
tion, which has the majority of its edges around the mean, leading
to a rapid increase in speed only at the high end of the 𝜂 range.
Finally, for the uniform distribution, the computation speed only
marginally improves as 𝜂 increases, due to the equal likelihood of
edge probabilities in this distribution.
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4.4 Effectiveness Testing
The only ground truth datasets known are small and already used by
the authors of USCAN [35]. Aswe alreadymentioned, our clustering
results are indistinguishable from those of USCAN, so there is no
point repeating the same analysis as [35] for the ground truth
datasets. Additionally, since our results are near identical to USCAN,
we do not reproduce the comparison to other clustering algorithms
done in the USCAN paper. However, what we would like to do
here is to show the effectiveness of structural clustering in terms
of quality for large datasets on which USCAN cannot scale, but our
algorithm NUSCAN can. We start with testing a clustering metric
called Average Expected Density (AED) defined as:

𝐴𝐸𝐷 =
1
|C|

∑︂
𝐶𝑖 ∈C

∑︂
𝑒∈𝐶𝑖

2𝑝𝑒
|V𝑖 | × (|V𝑖 | − 1)

(35)

which measures the strength of connection in each cluster averaged
over all clusters, whereV𝑖 is the set of vertices in 𝐶𝑖 .

In Biswas et. al. [3], they outline three metrics to measure quality
of clusters when no ground truth presents itself for comparison.
The authors define three metrics Average Isolability (𝑄𝐴𝑉 𝐼 ), Aver-
age Unifiability (𝑄𝐴𝑉𝑈 ), and Average Isolability and Unifiability
(𝑄𝐴𝑁𝑈 𝐼 ). Isolability determines the strength of connection within
each cluster—similarly to AED—whereas Unifiability measures the
strength of connection between two distinct clusters. Then 𝑄𝐴𝑁𝑈 𝐼

is a ratio of the average Isolability and Unifiability. For a single
cluster, Isolability (𝐼 ) is defined as:

𝐼 (𝐶𝑖 ) =

∑︁
𝑢∈𝐶𝑖

𝑣
𝑝 (𝑢, 𝑣)∑︁

𝑢∈𝐶𝑖
𝑣
𝑝 (𝑢, 𝑣) + ∑︁

𝑢∈𝐶𝑖 ,𝑣∉𝐶𝑖

𝑝 (𝑢, 𝑣) (36)

and for a pair of clusters, Unifiability (𝑈 ) is defined as:

𝑈 (𝐶𝑖 ,𝐶 𝑗 ) =

∑︁
𝑢∈𝐶𝑖 ,𝑣∈𝐶 𝑗

𝑝 (𝑢, 𝑣)∑︁
𝑢∈𝐶𝑖 ,𝑣∉𝐶𝑖

𝑝 (𝑢, 𝑣) + ∑︁
𝑢∉𝐶 𝑗 ,𝑣∈𝐶 𝐽

𝑝 (𝑢, 𝑣) − ∑︁
𝑢∈𝐶𝑖 ,𝑣∈𝐶 𝑗

𝑝 (𝑢, 𝑣)

(37)
where 𝐶𝑖 , and 𝐶 𝑗 are different clusters in C. Then the averages
of these measures 𝑄𝐴𝑉 𝐼 and 𝑄𝐴𝑉𝑈 are defined as the arithmetic
mean over all cluster sets. Then𝑄𝐴𝑁𝑈 𝐼 is given from the two above
equations as:

𝑄𝐴𝑁𝑈 𝐼 =
𝑄𝐴𝑉 𝐼

1 +𝑄𝐴𝑉 𝐼 ×𝑄𝐴𝑉𝑈
(38)

Since 𝑄𝐴𝑁𝑈 𝐼 is a function of both 𝑄𝐴𝑉 𝐼 and 𝑄𝐴𝑉𝑈 , we display
𝑄𝐴𝑁𝑈 𝐼 as the objective measure.

The goal is to demonstrate that NUSCAN returns a cluster set
that is as good as the USCAN cluster set under these two metrics
𝐴𝐸𝐷 and 𝑄𝐴𝑁𝑈 𝐼 . For the six smallest datasets, using the power
law distribution, we are able to measure the quality of the cluster
sets that NUSCAN produces. In dewiki-2013 and eswiki-2013, for
the 𝜀 variation curve, after 𝜀 = 0.6 the number of clusters found
becomes zero. Hence for these two datasets, the two metrics are
indeterminate for the points (0.5, 0.7, 2) and (0.5, 0.8, 2).

Once again we see that 𝜂 is the parameter responsible for the
shape of these curves. For both metrics, 𝜀 forms a flat line that
intersects the 𝜂 curve at 0.5, which is the value 𝜂 is held constant
at for the 𝜀 line.

Figure 6: AED for NUSCAN when varying 𝜂 and 𝜀 (𝜇 = 2, 𝑡 =
100). Since 𝜂 and 𝜀 share the same range of values, we show
both AED curves on one plot. Blue shows the variation of 𝜂,
with 𝜀 = 0.2 and 𝜇 = 2; green shows the variation of 𝜀, with
𝜂 = 0.5 and 𝜇 = 2. Again, varying 𝜀 does not influence AED
much, whereas varying 𝜂 has a more pronounced effect. As 𝜂
increases over its ranges, AED linearly increases towards 1.
Absence of some points in the 𝜀 line is due to lack of clusters
at the high end of the parameter range.

The 𝐴𝐸𝐷 plots in Figure 6 demonstrate that as 𝜂 increases from
0.4 to 0.8, the 𝐴𝐸𝐷 value increases from about 0.4 to 0.8-0.9 de-
pending on the specific dataset. For instance, enron and eu-2005
only make it to just over 0.8 at 𝜂 = 0.8; meanwhile the four other
datasets exceed 0.9 at 𝜂 = 0.8. All of the 𝜂 curves possess a positive
linear slope. Since 𝜂 is the threshold parameter that is responsible
for whether two nodes are reliable structural similar, as 𝜂 becomes
large, exponentially less edges pass the threshold cut. Moreover, the
edges that are reliably structurally similar at high 𝜂 have very large
edge probabilities, which leads to a high value for 𝐴𝐸𝐷 . As for the
𝑄𝐴𝑁𝑈 𝐼 metric plots in Figure 7, all the datasets quickly approach 1
in the 𝜂 varied curve. Next we compare the three smallest datasets
that were able to complete calculation of these metrics under the
USCAN algorithm.

Figure 7:𝑄𝐴𝑁𝑈 𝐼 for NUSCAN when varying 𝜂 and 𝜀 (𝜇 = 2, 𝑡 =
100) similar to Fig. 6.

Figure 8 shows both the 𝐴𝐸𝐷 and 𝑄𝐴𝑁𝑈 𝐼 plots for the three
datasets enron, cnr-2000, uk-2014-tpd, as these were the only datasets
that finished the metric calculations inside our 48 hour time con-
straint on USCAN. Plots of these three datasets for𝐴𝐸𝐷 , and𝑄𝐴𝑁𝑈 𝐼

show precisely the same curves as NUSCAN. The perfect alignment
of these metric plots indicate that NUSCAN produces a near identi-
cal clustering to USCAN. Moreover, we have shown that NUSCAN
does as good as USCAN on these quality metrics, meaning that
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with the approximation algorithm we do not sacrifice quality for
the observed time improvement. Therefore, NUSCAN yields quality
cluster sets that are comparable to its predecessor USCAN. In the
full version we also perform this analysis on the real world graphs.

Figure 8: AED (first row) and𝑄𝐴𝑁𝑈 𝐼 (second row) for USCAN
when varying 𝜂 and 𝜀 (𝜇 = 2) similarly to Figs. 6 and 7. Observe
that AED charts are indistinguishable from the AED charts in
Fig. 6 (first row of Fig. 6). Likewise, observe that𝑄𝐴𝑁𝑈 𝐼 charts
are also indistinguishable from the 𝑄𝐴𝑁𝑈 𝐼 charts in Fig. 7
(first row of Fig. 7). So, our approximation method, NUSCAN,
produces results virtually same as USCAN in practice.

5 RELATEDWORK
Since the original publication of the SCAN paper, many improve-
ments and additions have been built on top of SCAN. Some authors
[10, 40, 46] insert parallel processing paradigms to improve practi-
cal performance of calculating the structural similarity. The paper
by Che et. al. [9] develops a min-max pruning method to improve
the performance on detecting core vertices. For Seo et. al. [38] they
demonstrate how detecting and merging local clusters scales the
performance of the clustering framework. In Chang et. al. [7] they
prove that the SCAN algorithm is worst case optimal and introduce
new scaleable techniques that practically improve the structural
clustering procedure. The structural similarity formula is an inte-
gral component of the SCAN framework and many authors have
explored variations of this ratio to improve performance. Recently,
papers have been adopting the Jaccard similarity as the equation
for structural similarity [7, 35, 37].

In Qiu et. al. [35] the authors derive new definitions that con-
struct a probabilistic structural clustering algorithm, called USCAN.
The key idea of USCAN is the notion of probability of structural
similarity, which calculates the probability that a pair of vertices
connected by an edge have a structural similarity (Jaccard similar-
ity) above 𝜀. Hence rather than having 𝜀−neighbourhoods, where
nodes in the set have structural similarities larger than 𝜀; there
are (𝜀, 𝜂)−reliable neighbourhoods, where vertices in the set have
a probability greater than 𝜂 that the edge pair has a structural
similarity greater than 𝜀 over all possible worlds. Then using the re-
liable neighbourhoods, reliable core vertices are determined and the
algorithm from there follows the remainder of the SCAN protocol.

The novelty of USCAN is the definition of the probability of
structural similarity, which the authors show can be calculated in
polynomial time by dynamically iterating over classes of neigh-
bourhoods for each edge. However, the Dynamic Program that

calculates the probability is the bottleneck of the entire program,
taking quadratic time with respect to the union of neighbourhoods
between the edge. As a result of the time complexity, USCAN can
not scale to large graph datasets with over 30 million edges.

Liang et. al. [28] claim to improve the time complexity of USCAN
with a new formulation of the calculation for the probability of
structural similarity. Their algorithm called ProbSCAN, displayed
an equation for the bottleneck process that calculates the probability
of structural similarity in linear time with respect to the union of
neighbourhoods, rather than the quadratic time in USCAN. The
paper does not give a proof, and unfortunately, we are able to
show using a counterexample that ProbSCAN produces incorrect
results (see Appendix in the full version of the paper).1 Hence, we
regard USCAN as the current state-of-art algorithm for structural
clustering of probabilistic graphs.

There are also other clustering frameworks that apply to proba-
bilistic graphs. Some methods extend the framework of K-Means
clustering to probabilistic graphs by maximizing the average con-
nection probability in each of the 𝑘 clusters [6, 19]. With Halim et.
al. [18] the approach for clustering probabilistic graphs analyzes
the surrounding neighbourhood of vertices for an edge and calcu-
lates a weighted average to decide whether the edge in question
passes a static threshold cut. The authors of [13] utilize a variation
of Jaccard similarity that uses random walks to identify similarity,
then feeds the probabilities into an encoder and deep learning net-
work with a Gaussian embedding to discover the resulting clusters.
Other methods for clustering non-graph data include a density-
based algorithm (DBSCAN) which identifies dense regions in the
data [17, 44, 45]. There are also algorithms that use sampling to find
clusters in probabilistic graphs [21, 31]. Our approach is distinct
from these works in terms of problem definition and techniques
used. We focus on structural clustering which classifies the vertices
into three types of nodes, namely, cores, hubs, and outliers, and uses
a metric to determine the type of each vertex in the network. From
the techniques point of view, we are the first to utilize the Lyapunov
CLT for clustering probabilistic graphs. Other works have used it
to solve problems unrelated to clustering [12, 14–16]. Previous
works used the technique in the context of computing probabilistic
graph decompositions such as k-core and k-truss. For [15, 16] it was
straightforward to show that the conditions necessary to apply the
Lyapunov CLT held; it is much more mathematically demanding in
this work to show that the conditions for Lyapunov CLT hold due
to the nature of the random variable 𝑉 we need to consider for our
problem and requires new technical insights.

6 CONCLUSIONS
Clustering probabilistic networks is a complex and time consuming
endeavor with low to moderate scalability. The proposed algorithm
NUSCAN offers an approximation solution to the probabilistic clus-
tering problem. By applying a novel Lyapunov CLT approximation
to the calculation for the probability of structural similarity, the
entire clustering process takes𝑂

(︁
𝛼

[︁
𝑚𝐷𝑡

2 +𝑚𝐿𝑑𝑚𝑎𝑥

]︁ )︁
time in the

worst case. When compared to USCAN, our approximation algo-
rithm produces near identical clusters with up to three orders of
magnitude time improvement on some datasets.

1We informed the authors of the error through personal communication.
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