
Frequency-revealing attacks against Frequency-hiding
Order-preserving Encryption

Xinle Cao

Zhejiang University

Hangzhou, China

xinle@zju.edu.cn

Jian Liu
∗

Zhejiang University

Hangzhou, China

liujian2411@zju.edu.cn

Yongsheng Shen

Hang Zhou City Brain Co., Ltd

Hangzhou, China

sys@cityos.com

Xiaohua Ye

Hang Zhou City Brain Co., Ltd

Hangzhou, China

Veraye926@163.com

Kui Ren

Zhejiang University

Hangzhou, China

kuiren@zju.edu.cn

ABSTRACT
Order-preserving encryption (OPE) allows efficient comparison

operations over encrypted data and thus is popular in encrypted

databases. However, most existing OPE schemes are vulnerable to

inference attacks as they leak plaintext frequency. To this end, some

frequency-hiding order-preserving encryption (FH-OPE) schemes

are proposed and claim to prevent the leakage of frequency. FH-

OPE schemes are considered an important step towards mitigating

inference attacks.

Unfortunately, there are still vulnerabilities in all existing FH-

OPE schemes. In this work, we revisit the security of all existing

FH-OPE schemes. We are the first to demonstrate that plaintext fre-

quency hidden by them is recoverable. We present three ciphertext-

only attacks named frequency-revealing attacks to recover plaintext

frequency. We evaluate our attacks in three real-world datasets.

They recover over 90% of plaintext frequency hidden by any exist-

ing FH-OPE scheme. With frequency revealed, we also show the

potentiality to apply inference attacks on existing FH-OPE schemes.

Our findings highlight the limitations of current FH-OPE schemes.

Our attacks demonstrate that achieving frequency-hiding requires

addressing the leakages of both non-uniform ciphertext distribu-

tion and insertion orders of ciphertexts, even though the leakage

of insertion orders is always ignored in OPE.

PVLDB Reference Format:
Xinle Cao, Jian Liu, Yongsheng Shen, Xiaohua Ye, and Kui Ren.

Frequency-revealing attacks against Frequency-hiding Order-preserving

Encryption. PVLDB, 16(11): 3124-3136, 2023.

doi:10.14778/3611479.3611513

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/XinleCao/Frequency-revealing-Attack.

∗
Jian Liu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611513

1 INTRODUCTION
Order-preserving encryption (OPE) [9, 10, 12, 21, 22, 30, 34] is

a widely used technique in encrypted databases for performing

range queries [5, 31, 35]. It preserves plaintext order in cipher-

texts to allow efficient comparison operations over encrypted data.

However, the security of OPE has been debated for a long time.

Boldyreva et al. [9] present the ideal-security of OPE: not to reveal

any other information besides plaintext order. But most existing

OPE schemes [9, 22, 30] additionally leak plaintext frequency be-

cause they are designed to be deterministic, i.e., the same plaintext is

always encrypted to the same ciphertext. The leakage of frequency

makes OPE vulnerable to plenty of frequency-based inference at-

tacks [6, 14, 18, 28].

To this end, some frequency-hiding order-preserving encryption

(FH-OPE) schemes [21, 25, 32] are proposed to protect plaintext

frequency. Kerschbaum presents the first FH-OPE scheme [21]. The

client in this scheme maintains the mapping between plaintexts and

ciphertexts so it can encrypt each plaintext to a unique ciphertext.

However, this scheme is hard to deploy as the mapping requires

𝑂 (𝑛) storage space in the client where 𝑛 is the number of plaintexts.

Roche et al. also present a FH-OPE scheme named POPE [32] and

reduce the storage cost in the client to𝑂 (1). But the client in POPE

has to interact with the server𝑂 (log𝑛) rounds for each range query,
which makes the scheme still unrealistic. The state-of-the-art FH-

OPE scheme [25] is recently proposed by Li et al. in VLDB ’21. It

achieves only 𝑂 (𝑁) storage space in the client and 1 interaction

per range query, where 𝑁 is the number of distinct plaintexts.

Motivation. These FH-OPE schemes have been recognized as a

crucial advancement in mitigating inference attacks, as they con-

ceal the frequency of plaintext values, making them impervious to

all frequency-based inference attacks. The best-known published

inference attack against FH-OPE schemes is the binomial attack,
which is based on only plaintext order. But it is an ineffective attack

since it recovers at most 30% of plaintexts in [18] and 15% of plain-

texts in [19]. As a result, FH-OPE schemes are still recommended

for use in encrypted databases by various studies [18, 19, 25].

Our contribution. However, we found there are still vulnerabili-

ties in all existing FH-OPE schemes. In this work, we revisit these

schemes and expose the overestimation of their security. Surpris-

ingly, our analysis reveals that plaintext frequency in all existing

FH-OPE schemes is recoverable, which is a new finding to the best

3124

https://doi.org/10.14778/3611479.3611513
https://github.com/XinleCao/Frequency-revealing-Attack
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611513
https://www.acm.org/publications/policies/artifact-review-and-badging-current

of our knowledge. We present three novel ciphertext-only attacks

named frequency-revealing attacks to recover plaintext frequency.

We summarize our contributions as follows:

(1) We revisit the security of Kerschbaum’s FH-OPE scheme and

present a frequency-revealing attack named density attack to
recover plaintexts with only ciphertexts (§ 4).

(2) We revisit the security of POPE and the state-of-the-art FH-OPE

scheme. We present two frequency-revealing attacks named

Fisher exact test attack and binomial test attack against them,

respectively. The two attacks are based on only ciphertexts

and their partial insertion orders. As far as we know, they are

the first attacks exploiting the leakage of ciphertexts insertion

orders [7] (§ 5).

(3) We validate our attacks on three real-world datasets. In our

experiments, our attacks recover more than 90% of plaintext

frequency hidden by any existing FH-OPE scheme. With fre-

quency revealed, we also evaluate the potential for inference

attacks on existing FH-OPE schemes (§ 6).

2 PRELIMINARIES
Notation. For positive integer 𝑛, [𝑛] is the set {1, ..., 𝑛}, and |𝐼 |
is the number of elements in set 𝐼 . 𝑟 ←$ 𝐼 means sampling an

element uniformly at random from 𝐼 . [𝑎, 𝑏] and (𝑎, 𝑏) denote integer
sets {𝑎, 𝑎 + 1, ..., 𝑏} and {𝑎 + 1, 𝑎 + 2, ..., 𝑏 − 1}, respectively. Ber(𝑝)
is the Bernoulli distribution, returning 1 with probability 𝑝 and

0 with probability 1 − 𝑝 . Bin(𝑛, 𝑝) is the Binomial distribution,

representing the number of successes in 𝑛 independent trials, each

with probability 𝑝 of success.

Order-preserving encryption (OPE). A (stateful) OPE scheme

OPE = (KeyGen, Encrypt,Decrypt) consists of three algorithms:

• st← KeyGen(1𝜆): Generates a secret state st according to the

security parameter 𝜆.

• st′, 𝑐 ← Encrypt(st, 𝑣): Computes the ciphertext 𝑐 for plaintext

𝑣 and updates the state from st to st′.
• 𝑣 ← Decrypt(st, 𝑐): Computes the plaintext 𝑣 for ciphertext 𝑐

based on state st.
It satisfies: for any plaintexts 𝑣1, 𝑣2, valid state st, and st′, 𝑐𝑖 =

Encrypt(st, 𝑣𝑖), if 𝑣1 > 𝑣2 then 𝑐1 > 𝑐2. A deterministic OPE scheme

additionally satisfies if 𝑣1 = 𝑣2 then 𝑐1 = 𝑐2.

Inference attacks.Most existing OPE schemes [9, 10, 30?] are de-
terministic and inherently leak both plaintext order and frequency.

The leakages incur dangerous frequency-based inference attacks.

We provide a brief overview of the two primary types of attacks.

They can recover most plaintexts (> 80%) protected by a determin-

istic OPE scheme.

• Sorting attack. It is presented in [29] for dense data (e.g., age,

gender), where each distinct plaintext in plaintext space M is

encrypted at least once. In this case, the number of distinct OPE

ciphertexts is equal to the number of distinct plaintexts. The

attacker recovers plaintexts by mapping sorted distinct cipher-

texts one-to-one to the sorted distinct plaintexts. So this attack

requires that the attacker knows the plaintext spaceM.

• Frequency-analyzing attacks. These attacks [6, 18, 29] are suit-
able for low-density data where only some plaintexts inM are

encrypted. They apply both frequency and order leakages to find

the mapping between ciphertexts and plaintexts such that the

distributions of ciphertexts and plaintexts are close. So these

attacks require that the attacker estimates plaintext distribution

in advance with public auxiliary information.

Randomized order. Kerschbaum defines randomized order [21] to
describe the plaintext order in FH-OPE.

Definition 1 (randomized order). Let 𝑛 be the number of not
necessarily distinct plaintexts in sequence 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛}. For a
randomized order Γ = {𝛾1, 𝛾2, ..., 𝛾𝑛} (∀𝑖 .1 ≤ 𝛾𝑖 ≤ 𝑛,∀𝑖, 𝑗 .𝑖 ≠ 𝑗 =⇒
𝛾𝑖 ≠ 𝛾 𝑗) of sequence 𝑉 , it holds that

∀𝑖, 𝑗 ∈ [𝑛], 𝑣𝑖 > 𝑣 𝑗 =⇒ 𝛾𝑖 > 𝛾 𝑗

and
∀𝑖, 𝑗 ∈ [𝑛], 𝛾𝑖 > 𝛾 𝑗 =⇒ 𝑣𝑖 ≥ 𝑣 𝑗

3 SECURITY PROPERTIES
3.1 Security model
Kerschbaum defines frequency-hiding OPE (FH-OPE) with a for-

mal security guarantee named indistinguishability under frequency-
analyzing ordered chosen-plaintext attack (IND-FAOCPA) [21]. An
OPE scheme achieving IND-FAOCPA secure is a FH-OPE scheme.

IND-FAOCPA security game.The security game𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆)

between a challenger and an adversary A for an OPE scheme Π
with security parameter 𝜆 proceeds as follows:

(1) The adversary A chooses two sequences 𝑉0 and 𝑉1 of 𝑛 not

necessarily distinct plaintexts, such that they have at least one

common randomized order Γ. He sends them to the challenger.

(2) The challenger flips an unbiased coin 𝑏 ∈ {0, 1}, executes the
key generation Π.KeyGen(1𝜆), and encrypts 𝑉𝑏 = {𝑣𝑏

1
, ..., 𝑣𝑏𝑛}

as 𝐶′ = {𝑐′
1
, ..., 𝑐′𝑛}, i.e., st𝑖 , 𝑐′𝑖 ← Π.Encrypt(st𝑖−1, 𝑣𝑏𝑖). He

sends the ciphertexts 𝐶′ to the adversary.

(3)The adversary A outputs a guess 𝑏∗ of 𝑏.

Definition 2. An OPE encryption scheme Π is IND-FAOCPA
secure against frequency-analyzing ordered chosen plaintext attack if
the adversary A’s advantage of outputting 𝑏 in 𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴

A,Π (𝜆) is
negligible in 𝜆, i.e.

𝑃𝑟 [𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆) = 𝑏] < 1

2

+ 1

𝑝𝑜𝑙𝑦 (𝜆)
Adversary power. It is clear that FH-OPE encrypts 𝑉 by inserting
the ciphertexts of 𝑉 one by one. The adversary in the game above

observes 𝐶′, which preserves 1) all the order-preserving cipher-

texts of 𝑉 including the entire ciphertext distribution; 2) the exact

insertion order of each ciphertext, i.e., the insertion order of 𝑐′
𝑖
is 𝑖 .

Therefore, suppose the adversary sorts ciphertexts in 𝐶′ according
to their orders and get ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛}, we can
formally describe the two leakage profiles as

L0 (𝑉) = {(𝑐1, id1), ..., (𝑐𝑛, id𝑛)}
where id𝑖 is the exact insertion order of 𝑐𝑖 and ∀𝑖, 𝑗 ∈ [𝑛], 𝑐𝑖 < 𝑐 𝑗
iff 𝑖 < 𝑗 . In reality, this adversary captures a passive (honest-but-
curious) attacker: persistent attacker. It does not deviate from the

protocol specified or access the client to issue queries but can get

any information available in the server, e.g., query execution and

results. So the persistent attacker can get all ciphertexts and the

exact insertion order of each ciphertext, i.e., L0 (𝑉).

3125

3.2 Threat model
In this paper, we consider an adversary which is weaker than the

adversary assumed in FH-OPE. It still has access to all ciphertexts

but is limited to obtaining only partial information about the in-

sertion orders. Given ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛} of 𝑉 , we
refer to the leakage profiles obtained by this adversary as L1 (𝑉)
and describe them as follows:

L1 (𝑉) = {(𝑐1, part(id1)), ..., (𝑐𝑛, part(id𝑛)}
where part(id𝑖) represents partial information about the inser-

tion order id𝑖 and ∀𝑖, 𝑗 ∈ [𝑛], part(id𝑖) ≥ part(id𝑗) if id𝑖 > id𝑗 .
For example, with L0 (𝑉) = {(𝑐1, 1), (𝑐2, 3), (𝑐3, 2)}, we may have

L1 (𝑉) = {(𝑐1, 1), (𝑐2, 2), (𝑐3, 1)} which implies 𝑐1 and 𝑐3 are cipher-

texts inserted prior to 𝑐2 but it is unknown which of 𝑐1 and 𝑐3 was

inserted earlier. This adversary captures a very weak attacker in

reality: snapshot attacker. It only tries to steal one or multiple snap-
shots of the encrypted database and cannot access any in-memory

information related to the execution in the server. According to

the number of snapshots, we divide the snapshot attacker as single-
snapshot attacker and multi-snapshot attacker. The single-snapshot
attacker [18, 28] observes one snapshot of the encrypted database.

It can get only ciphertexts and their orders. i.e., ordered ciphertexts

𝐶 = {𝑐1, ..., 𝑐𝑛}. The multi-snapshot attacker [4, 13] has access to

multiple snapshots of the encrypted database. Each snapshot is

interspersed with a batch of (insertion) operations. To guarantee a

very weak multi-snapshot attacker, in this paper, we assume the

multi-snapshot attacker gets no more than 11 snapshots while
there are millions of operations.

Definition 3 (multi-snapshot attacker). A multi-snapshot
attacker accesses the server at 𝜇 + 1 (𝜇 ≥ 1) ordered distinct moments
𝑇 = {𝑡0, 𝑡1, ..., 𝑡𝜇 } and observes the encrypted database. In the end, it
gets ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛} and an indicator sequence
{part(id1), ..., part(id𝑛)} where part(id𝑖) ∈ [𝜇] ∪ {0} indicates that
𝑐𝑖 is firstly observed in 𝑡part(id𝑖) by the attacker.

3.3 Frequency-revealing attacks
Our attacks are the first trying to recover plaintext frequency in

FH-OPE. We define frequency-revealing attacks by finding the order
range of ciphertexts whose underlying plaintexts are the same.

Roughly speaking, given ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛}, we
reveal the frequency of 𝑣 by finding the minimal and maximal

orders of its ciphertexts, i.e., we find [𝜙, 𝜋] such that the underlying
plaintext of ciphertexts {𝑐𝜙 , 𝑐𝜙+1, ..., 𝑐𝜋 } is 𝑣 and the underlying

plaintexts of all other ciphertexts in 𝐶 are not 𝑣 . For example, let

{7, 7, 7, 8} be encrypted to {𝑐1, 𝑐2, 𝑐3, 𝑐4}. We find the ciphertexts of

plaintext 7 are {𝑐1, 𝑐2, 𝑐3} and corresponding order range is [1, 3].
So for plaintext 7 we have [𝜙, 𝜋] = [1, 3]. Now we formally define

frequency-revealing attacks as below:

Definition 4 (Freqency-revealing attack). In a FH-OPE
scheme Π, let 𝐶 = {𝑐1, ..., 𝑐𝑛} be an ordered list of (randomized)
ciphertexts for 𝑁 ordered distinct plaintexts {𝑣1, ..., 𝑣𝑁 }. A frequency-
revealing attack Attack works by finding two sorted order vectors:

(𝝓, 𝝅) ← Attack(𝐶, aux)
where 𝝓 = (𝜙1, ..., 𝜙𝑁) and 𝝅 = (𝜋1, ..., 𝜋𝑁) (∀𝑖 ∈ [𝑁], 1 ≤ 𝜙𝑖 ≤
𝜋𝑖 ≤ 𝑛) and aux denotes some (possible) auxiliary information like

partial insertion orders of ciphertexts. It holds that

𝑗 ∈ [𝜙𝑖 , 𝜋𝑖] ⇐⇒ 𝑣𝑖 ← Π.Decrypt(st, 𝑐 𝑗) .

Example. Let plaintexts {7, 7, 7, 8, 8, 9} be encrypted to ordered

ciphertexts {𝑐1, ..., 𝑐6}. The ciphertexts of plaintexts 7, 8 and 9 are

{𝑐1, 𝑐2, 𝑐3}, {𝑐4, 𝑐5} and {𝑐6}, respectively. The corresponding order
ranges are [1, 3], [4, 5] and [6, 6], respectively. Therefore, the vector
𝝓 consisting of minimal orders in these order ranges is (1, 4, 6) while
the vector 𝝅 consisting of maximal orders in these order ranges is

(3, 5, 6). Throughout this paper, we only try to find 𝝅 since 𝝓 can

be calculated based on 𝝅 : 𝜙𝑖+1 = 𝜋𝑖 + 1 (𝑖 ∈ [𝑁 − 1]) and 𝜙1 = 1.

4 ATTACKING KERSCHBAUM’S FH-OPE
SCHEME

In this section, we analyze the security of Kerschbaum’s FH-OPE

scheme under the single-snapshot attacker and identify key prop-

erties of its ciphertext distribution. Based on the properties, we

present a novel frequency-revealing attack named density attack.
It recovers most plaintext frequency hidden by this scheme with

only ciphertexts.

4.1 Review
Encryption.Kerschbaum’s FH-OPE scheme utilizes a binary search

tree 𝑇 to store the mapping between plaintexts and OPE cipher-

texts. Each node in 𝑇 represents a plaintext and its corresponding

ciphertext, and the nodes are sorted according to plaintext order.

To encrypt a new plaintext 𝑣 , the client searches for its order in

𝑇 and then assigns it to the ciphertext that is the average of the

ciphertexts of the next smaller plaintext and the next greater plain-

text. For example, if plaintexts {0, 2} are encrypted to {0, 100}, then
a new plaintext 1 is encrypted to the ciphertext 50.

Frequency-hiding. To map repeated plaintexts to different cipher-

texts, the client randomly determines their order relations by calling

a function named RandomCoin(), which outputs 0 and 1 with the

same probability 1/2. We give an example of Kerschbaum’s FH-OPE

scheme inFigure 1. We show the growth of 𝑇 with four subfigures.

There are two calls for RandomCoin(): When encrypting plaintext

7 for the second time in subfigure 3, it outputs 1 so the second 7

is regarded as greater than the first 7; When encrypting 8 for the

second time in subfigure 4, it outputs 0 so the first 8 is greater.

Figure 1. Let C = [0, 128], plaintexts 𝑉 = {7, 8, 7, 8} are encrypted
to {64, 96, 80, 88} as RandomCoin() outputs 1 and 0 in subfigure 3

and 4, respectively.

3126

4.2 Observations
Kerschbaum’s FH-OPE scheme guarantees each plaintext is mapped

to a unique ciphertext, preventing repeated ciphertexts leaking

frequency. However, it does not consider the leakage from ciphertext
distributions. We give examples to introduce the leakage intuitively

and then formally describe it with some observations.

Examples. The ciphertext distribution in Kerschbaum’s FH-OPE

scheme often exhibits non-uniformity, thereby leaking plaintext

frequency. Suppose C = [0, 1024], consider the following example.

We divide this example into three phases for ease of presentation.

In each phase, we make RandomCoin() output the same number of

0 and 1 to guarantee fair randomness.

(1) The client first encrypts {7, 8, 7, 8} to {512, 768, 256, 896}. It in-
dicates RandomCoin() is called twice and outputs {0, 1}.

(2) Then the client encrypts new plaintexts {7, 7, 7, 8} and gets

new ciphertexts {640, 128, 704, 736}. RandomCoin() is called six
times and outputs {1, 0, 0, 1, 1, 0}.

(3) Finally, the client encrypts new plaintexts {8, 8, 8, 7} and gets

new ciphertexts {960, 832, 720, 576}. RandomCoin() is called
eight times and outputs {1, 1, 1, 0, 0, 0, 1, 0}.

We visualize all the ciphertexts in C inFigure 2, revealing the non-

uniform ciphertext distribution and an important phenomenon: In
general, larger ciphertexts of 7 are closer than smaller ciphertexts of
7, while smaller ciphertexts of 8 are closer than larger ciphertexts of 8.
Consequently, the single-snapshot attacker can guess the cipher-

texts belong to two distinct plaintexts although it does not know

the values of the two plaintexts. It estimates the maximal ciphertext

of the smaller plaintext and the minimal ciphertext of the larger

plaintext with the closest neighboring ciphertexts such as 704 and

720. Then it recovers the plaintext frequency without knowing

the plaintexts are 7 and 8. In some cases, the closet neighboring

ciphertexts are not exactly correct for the guess, e.g., in the third

phase, {8, 8, 7, 7} are encrypted to {960, 832, 720, 576} so the maxi-

mal ciphertext of 7 is 720 but the attacker incorrectly guesses 704.

However, it is still dangerous as the attacker finds most ciphertexts

having the same underlying plaintext and recover the frequency

under a small error.

10240

• • • • • ••• •• • •

Figure 2. The ciphertext distribution in the example. The cipher-

texts of 7 and 8 are represented by red and blue points, respectively.

We also provide an example where all plaintexts are distinct. Con-

sider C = [0, 128] and encrypting the plaintexts {1, 4, 2, 6, 7, 5, 9}
produces {64, 96, 80, 112, 120, 104, 124}. The single-snapshot attacker
knows 64 is the first encrypted ciphertext because it occupies the

mean value in C. It observes that all ciphertexts are no smaller than

the first encrypted ciphertext 64. However, if all ciphertexts had

the same underlying plaintext, half of the ciphertexts (excluding

64) would be expected to be smaller than 64 due to RandomCoin().
Hence, the attacker infers there are distinct plaintexts in the se-

quence, i.e., ciphertexts 64 and 124 have distinct underlying plain-

texts w.h.p. Similarly, It can further deduce that 80 and 124 have

distinct underlying plaintexts w.h.p. by examining the set of cipher-

texts larger than 64, e.g., if all ciphertexts in the set have the same

underlying plaintexts, then half of them (excluding 80) are expected

to be smaller than 80. Now we formally describe and explain the

unusual ciphertext distributions with our two observations.

Observation 1. For any two nodes P1 and P2 (P2 > P1) in 𝑇 ,
suppose their ciphertexts are neighboring, i.e., P2 .𝑐𝑖𝑝ℎ𝑒𝑟 is the next
greater ciphertext of P1 .𝑐𝑖𝑝ℎ𝑒𝑟 . Denote the depth of a node in 𝑇 as
depth(), then it holds that:

P2 .𝑐𝑖𝑝ℎ𝑒𝑟 − P1 .𝑐𝑖𝑝ℎ𝑒𝑟 =
|C|
2
𝜂
.

where 𝜂 =𝑚𝑎𝑥 (depth(P1), depth(P2)).

Observation 2. Denote the first encrypted node of plaintext 𝑣𝑖

as P. For any two nodes of 𝑣𝑖 whose ciphertexts are neighboring, the
maximal depth of them is likely to be greater if they are farther away
from the first node P.

The proofs and detailed explanations for the two observations

are available in the full version [11]. Observation 1 builds a connec-

tion between the ciphertext distribution with the structure of the

search tree 𝑇 . Specifically, it indicates that the distance between

neighboring ciphertexts is determined by the depths of their cor-

responding nodes. Observation 2 investigates the distribution of

node depths to gain insight into the ciphertext distribution.

Ciphertext distribution.We combine the observation above to

draw conclusions about the ciphertext distribution. Firstly, Ob-

servation 2 shows for any two nodes of 𝑣𝑖 whose ciphertexts are

neighboring, the maximal depth of them denoted by 𝜂 is likely to

be larger when they are farther away from the first encrypted node

of 𝑣𝑖 . Next, Observation 1 suggests the distance between cipher-

texts of the two nodes depends on 𝜂: a larger 𝜂 results in a smaller

distance. Therefore, when the two nodes are farther away from the

first encrypted node of 𝑣𝑖 , the distance between their ciphertexts is

likely to be smaller. Suppose we traverse from the smallest node

of 𝑣𝑖 to the second-greatest node of 𝑣𝑖 . For each node, we calculate

the distance between its ciphertexts and the next greater ciphertext.

Our analysis implies there are two overall stages in the traverse:

(1) Increase stage. As we traverse towards the first encrypted node

of 𝑣𝑖 , the value of 𝜂 overall decreases, the distance increases.

(2) Decrease stage. As we traverse away the first encrypted node of

𝑣𝑖 , the value of 𝜂 overall increases, the distance decreases.

Tree depth. Note the non-uniform distribution is independent of

the depth of search tree 𝑇 . It results from the gaps between the

depths of nodes corresponding to the same plaintext. Moreover, the

presence of these gaps is a consequence of multiple distinct plain-

texts being encrypted within this scheme. Thus, in our experiments,

the accuracy of our attack applying the non-uniform ciphertext

distribution in this scheme is always more than 96% even if the tree

depth varies between 32 and 57 with database size varying from

∼ 196K to ∼ 532239K.

Reducing randomness. The randomness introduced by Random-
Coin() also affects the depth of nodes of 𝑣𝑖 , although its impact is

limited. As a result, while the distance distribution can generally

be divided into two overall stages, there may be some local fluctua-

tions in each stage. To reduce the randomness impact, we provide

a more robust representation of the ciphertext distribution, which

we call the 𝛼-ciphertext density.

3127

Algorithm 1: Density attack

Input: Ordered ciphertexts 𝐶 = {𝑐1, ..., 𝑐𝑛}, 𝛼,𝛾
Output: An order vector 𝝅 ′ = (𝜋 ′

1
, ..., 𝜋 ′

𝑁 ′)

1 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

2 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = −1, 𝑜𝑟𝑑𝑒𝑟 = −1
3 𝑎 = 1

4 for 𝑗 = 𝛼 + 1→ 𝑛 − 𝛼 do traverse ciphertexts
5 𝑑 = 𝑐 𝑗+𝛼 − 𝑐 𝑗−𝛼
6 if 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 then
7 if 𝑑 > 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then
8 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑, 𝑜𝑟𝑑𝑒𝑟 = 𝑗

9 end
10 if 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝛾 · 𝑑 then Case 1
11 𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒

12 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑, 𝑜𝑟𝑑𝑒𝑟 = 𝑗

13 end
14 end

15 if 𝑠𝑡𝑎𝑔𝑒 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 then
16 if 𝑑 < 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then
17 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑, 𝑜𝑟𝑑𝑒𝑟 = 𝑗

18 end
19 if 𝛾 · 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝑑 then Case 2
20 𝑠𝑡𝑎𝑔𝑒 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

21 𝜋 ′𝑎 = 𝑜𝑟𝑑𝑒𝑟, 𝑎 += 1

22 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑑, 𝑜𝑟𝑑𝑒𝑟 = 𝑗

23 end
24 end
25 end

Definition 5 (𝛼-ciphertext density). For 𝑛 ordered ciphertexts
𝐶 = {𝑐1, ..., 𝑐𝑛} in Kerschbaum’s FH-OPE scheme, the 𝛼-ciphertext
density of 𝑐 𝑗 (𝛼 < 𝑗 ≤ 𝑛 − 𝛼) is denoted as 𝑑𝛼,𝑗 and is calculated as:

𝑑𝛼,𝑗 = 𝑐 𝑗+𝛼 − 𝑐 𝑗−𝛼 .

When we traverse ordered ciphertexts of the same plaintext and cal-

culate 𝛼-ciphertext density, the two overall stages described earlier

still apply, and the local fluctuations are more slight. This provides

the potential of recovering frequency by finding the decrease stage

of ciphertexts of 𝑣𝑖 and the increase stage of ciphertexts of 𝑣𝑖+1.

4.3 Density Attack
Based on the observations and analysis, we present a frequency-

revealing attack named density attack inAlgorithm 1. It takes

only ordered ciphertexts and attacking parameters (𝛼,𝛾) as inputs
and outputs a vector 𝝅 ′

, which is an estimation of 𝝅 . This attack
works by traversing the ordered ciphertexts and calculating their

𝛼-ciphertext density. When it traverses from the decrease stage of

ciphertexts of 𝑣𝑖 to the increase stage of ciphertexts of 𝑣𝑖+1, the
minimal density is considered as an estimation of 𝑑𝛼,𝜋𝑖 .

Converting stages. When the attack traverses ciphertexts, it uses

𝑠𝑡𝑎𝑔𝑒 to record the stage currently traversed. It stores the maximal

(minimal) density in the increase (decrease) stage and correspond-

ing order in 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑜𝑟𝑑𝑒𝑟 , respectively. There are two cases

for the attack to convert stages.

• Case 1. In the increase stage,𝑑𝑒𝑛𝑠𝑖𝑡𝑦 records the maximal density

in this stage. If current density is much smaller than the maximal

density (𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝛾 · 𝑑), which violates the expectation for the

increase stage, the attack knows the increase stage is over and

converts the stage into decrease.

• Case 2. Similarly, in the decrease stage, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 records the min-

imal density in this stage. If current density is much larger than

the minimal density (𝛾 · 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 < 𝑑), the attack knows the

decrease stage is over and converts the stage into increase.

The conversion in Case 2 indicates the traverse from the decrease

stage of ciphertexts of 𝑣𝑖 to the increase stage of ciphertexts of 𝑣𝑖+1.
Therefore, the attack outputs the value of 𝑜𝑟𝑑𝑒𝑟 in Case 2 as the

estimation of 𝜋𝑖 .

5 ATTACKING POPE AND THE FH-OPE
SCHEME IN VLDB ’21

In this section, we revisit the other two FH-OPE schemes: POPE

and the FH-OPE scheme in VLDB ’21. They guarantee uniform

ciphertext distribution by encrypting plaintexts with a semantically

secure encryption scheme S = (S.KeyGen, S.Encrypt, S.Decrypt).
In these schemes, the client uploads ciphertexts along with the

orders of their corresponding plaintexts, allowing the server to

compare ciphertexts based on their orders. The encryption process

in these schemes for a plaintext 𝑣 involves the following steps:

(1) The client uploads 𝑣 ’s semantically secure ciphertext 𝑐 and the

order of 𝑣 to the server.

(2) The server always organizes ciphertexts as a search tree 𝑇

according to the orders of their underlying plaintexts. It inserts

𝑐 into 𝑇 based on the order of 𝑣 .

The two schemes are secure under a single-snapshot attacker as

they leak only plaintext order to this attacker. However, under a

multi-snapshot attacker (cf.Definition 3), we show that the two

schemes are still vulnerable to frequency-revealing attacks.

Batch encryption. The multi-snapshot attacker observes ordered

ciphertexts 𝐶 = {𝑐1, ...𝑐𝑛} at 𝜇 + 1 distinct ordered moments. For

simplicity, we divide the ciphertexts into batches:

(1) Setup batch. This initial batch consists of all ciphertexts ob-

served in 𝑡0, denoted as ordered ciphertexts 𝐶0 = {𝑐0
1
, ...𝑐0𝑛0

}.
(2) Insertion batches. The 𝑖th batch consists of all ciphertexts firstly

observed in 𝑡𝑖 , denoted as ordered ciphertexts:

∀𝑖 ∈ [𝜇],𝐶𝑖 = (𝑐𝑖
1
, ..., 𝑐𝑖𝑛𝑖) .

These batches are inserted into the setup batch. The sum of the

sizes of all insertion batches is 𝑛 − 𝑛0.

5.1 Review
POPE. POPE randomizes orders of repeated plaintexts by adding

a random fractional component between 0 and 1 on each plain-

text. For example, to encrypt {7, 7, 7, 8}, the client samples ran-

dom components {0.70, 0.32, 0.45, 0.04} and adds them on plain-

texts in order. The final plaintexts that the client encrypts are

3128

{7.70, 7.32, 7.45, 8.04} and the randomized order is {3, 1, 2, 4}. In
this way, there is no plaintext with the same order in POPE.

In POPE, the server organizes semantically secure ciphertexts as

a search tree called POPE tree, which is similar to a standard B tree.

Ciphertexts can be compared according to their positions in the

POPE tree. For ease of presentation, we just describe the POPE tree

as a binary search tree 𝑇 . To encrypt a new plaintext 𝑣 , the client

first samples a random component 𝑟 ←$ {0, 1}𝑙/2𝑙 and encrypts

𝑣 + 𝑟 with semantically secure encryption. Then the client interacts

with the server to search the insertion position of 𝑣 + 𝑟 in 𝑇 and

tells the server where to insert the ciphertext.

The FH-OPE scheme in VLDB ’21. In this scheme, the server

also organizes semantically secure ciphertexts as a search tree. It

achieves 𝑂 (1) interaction by requiring the client to store plaintext

frequency locally. In detail, the client records plaintext frequency

with a local table 𝐿𝑇 = {(𝑣𝑖 , 𝑓 𝑟𝑒 (𝑣𝑖))} where 𝑓 𝑟𝑒 (𝑣𝑖) denotes the
frequency of 𝑣𝑖 . With this table, the client obtains the order of 𝑣

by calculating the number of plaintexts smaller than 𝑣 . To achieve

frequency-hiding, client assigns 𝑣 with a random order 𝑟𝑑 ←$ [𝑙, 𝑢]
where 𝑙 =

∑
𝑣𝑖<𝑣 𝑓 𝑟𝑒 (𝑣𝑖) and 𝑢 =

∑
𝑣𝑖≤𝑣 𝑓 𝑟𝑒 (𝑣𝑖). When 𝑟𝑑 > 0, the

ciphertext of 𝑣 will be inserted between 𝑐𝑟𝑑 and 𝑐𝑟𝑑+1. When 𝑟𝑑 = 0,

this ciphertext will be inserted as the smallest ciphertext.

There are also some other important techniques in the two

schemes. POPE presents the idea of partial order-preserving and the

FH-OPE scheme in VLDB ’21 applies a coding tree. We discussed

them in the full version [11] and here we focus on the frequency-

hiding property.

5.2 Observations
Under the multi-snapshot attacker, both POPE and the FH-OPE

scheme in VLDB ’21 leak partial insertion orders of ciphertexts,

which can subsequently result in the leakage of plaintext frequency.

For each of the two schemes, we provide simple examples to show

the frequency leakage and then describe the leakage with a formal

observation. While these examples provided are too small to fully

illustrate our frequency-revealing attacks, they are sufficient to

show the frequency leakage and basic intuition behind the attacks.

5.2.1 Leakage in POPE. Consider an example in POPE where the

multi-snapshot attacker observes three batches of ciphertexts.

(1) Setup batch. Suppose {7, 8, 7, 8} are encrypted with random com-

ponents {0.11, 0.80, 0.96, 0.92}. Let the resulting ordered cipher-
texts be {𝑐1, 𝑐2, 𝑐3, 𝑐4} corresponding to {7.11, 7.96, 8.80, 8.92}.

(2) Insertion batch 1. Plaintexts {7, 7, 7, 8} are encrypted and in-

serted with random components {0.22, 0.69, 0.78, 0.31}.
(3) Insertion batch 2. Plaintexts {8, 8, 8, 7} are encrypted and in-

serted with random components {0.19, 0.58, 0.42, 0.81}.
We visualize the insertion process inFigure 3. Notably, an unusual

insertion pattern emerges: the majority of ciphertexts (3/4) in in-

sertion batch 1 are inserted between 𝑐1 and 𝑐2, while only a small

portion of ciphertexts (1/4) in insertion batch 2 fall between the

two ciphertexts. From the attacker’s view, if all plaintexts in the
setup batch are the same, then it has two contradictory conclusions:

• Insertion batch 1 indicates a significant difference between

the random components of 𝑐1 and 𝑐2, resulting in most new

ciphertexts being inserted between them.

Figure 3. An example in POPE.

• Insertion batch 2 suggests a small difference between the ran-

dom components of 𝑐1 and 𝑐2, leading to most new ciphertexts

not being inserted between them.

The most plausible explanation for the contradictory results is there

are distinct plaintexts in the setup batch, i.e., S.Decrypt(𝑠𝑘, 𝑐1) ≠
S.Decrypt(𝑠𝑘, 𝑐4). Clearly, the results reveal some frequency leak-

age. To further extract the leakage, the attacker can selectively

observe subsets of the setup batch. For instance, by first assuming

{𝑐1, 𝑐2, 𝑐3} have the same plaintext and then trying to deduce contra-

dictory results, the attacker also can infer that S.Decrypt(𝑠𝑘, 𝑐1) ≠
S.Decrypt(𝑠𝑘, 𝑐3) holds w.h.p.

We also give an example where all plaintexts are distinct. Con-

sider an example with setup batch {1} and one insertion batch

{4, 2, 6, 7, 5, 9}. Denote the ciphertext of {1} as {𝑐1}. All ciphertexts
of the insertion batch are inserted larger than 𝑐1, which is also un-

usual: if all the seven ciphertexts had the same underlying plaintext,

this insertion pattern would happen with a small probability of

only 1/7. Thus, the attacker can deduce the minimal ciphertext and

maximal ciphertext of the seven ciphertexts have distinct under-

lying plaintexts w.h.p. Now we formally explain the leakage with

our observation about a simple case.

A simple case. POPE preserves semantically secure ciphertexts

and the orders of their underlying plaintexts. For two semantically

secure ciphertexts 𝑐1 and 𝑐2, we use 𝑐1 < 𝑐2 to denote the order

of 𝑐1’s underlying plaintext is smaller than that of 𝑐2’s underlying

plaintext. Then we focus on a simple insertion case in POPE. Given

three semantically secure ciphertexts 𝑐1 < 𝑐2 < 𝑐3, a new ciphertext

𝑐 is inserted and satisfies 𝑐1 < 𝑐 < 𝑐3, then what is the probability

of 𝑐 < 𝑐2? We define a variable 𝑋 to calculate the probability:

𝑋 =

{
1, 𝑐 < 𝑐2,

0, 𝑐 > 𝑐2 .

Observation 3. In POPE, suppose {𝑐1, 𝑐2, 𝑐3} have the same un-
derlying plaintext 𝑣 :

𝑐𝑖 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟𝑖), 𝑖 = 1, 2, 3

where 0 < 𝑟1 < 𝑟2 < 𝑟3 < 1, then 𝑋 follows a Bernoulli distribution:

𝑋 ∼ Ber(𝑟2 − 𝑟1
𝑟3 − 𝑟1

).

The proof is available in the full version [11]. This observation

can be extended to a more complex and general case in POPE:

3129

With 𝑛′ ciphertexts inserted between 𝑐1 and 𝑐3, denote the number

of ciphertexts smaller than 𝑐2 as 𝑌 , if 𝑐𝑖 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟𝑖)
(𝑖 = 1, 2, 3), then 𝑌 ∼ Bin(𝑛′, 𝑟2−𝑟1𝑟3−𝑟2) where Bin denotes the bino-

mial distribution. This is because each ciphertext inserted can be

regarded as one independent instance in the simple case, i.e., a trial

has probability
𝑟2−𝑟1
𝑟3−𝑟2 of success. Furthermore, as the multi-snapshot

attacker can havemultiple insertion batches, we assume 𝜇 batches of

ciphertexts are inserted between 𝑐1 and 𝑐3. In the 𝑗 th insertion batch,

denote the number of inserted ciphertexts as 𝑛 (𝑗) and the number

of ciphertexts smaller than 𝑐2 as 𝑌𝑗 . If 𝑐𝑖 = S.Encrypt(𝑠𝑘, 𝑣 + 𝑟𝑖)
(𝑖 = 1, 2, 3), then it holds

∀𝑗 ∈ [𝜇], 𝑌𝑗 ∼ Bin(𝑛 (𝑗) , 𝑟2 − 𝑟1
𝑟3 − 𝑟1

).

Fisher exact test. The extension above provides a method for

the multi-snapshot attacker to verify if {𝑐1, 𝑐2, 𝑐3} have the same

underlying plaintext: It records the value of 𝑌𝑗 and 𝑛 (𝑗) in each

insertion batch and verifies if the binomial distributions that 𝑌𝑗 s

follow have the same success probability
𝑟2−𝑟1
𝑟3−𝑟1 . Here we apply a

statistical test Fisher exact test [16] to complete the verification.

Suppose there are two samples under binomial distributions:

𝑠1 ∼ Bin(𝑁1, 𝑝1), 𝑠2 ∼ Bin(𝑁2, 𝑝2).
Fisher exact test takes (𝑠1, 𝑁1) and (𝑠2, 𝑁2) as inputs and returns the
probability of 𝑝1 = 𝑝2. Denote the test as Fisher(), the verification
can be done as following:

(1) We use 𝑝𝑟𝑜 to estimate the probability of the binomial dis-

tributions 𝑌𝑖s follow have the same success probability. It is

calculated as follows:

𝑝𝑟𝑜 = min{ Fisher
∀ 𝑗1, 𝑗2∈[𝜇]

(𝑌𝑗1 , 𝑛 (𝑗1) , 𝑌𝑗2 , 𝑛 (𝑗2))}.

(2) Given a threshold 1/𝛾 , if 𝑝𝑟𝑜 > 1/𝛾 , we say {𝑐1, 𝑐2, 𝑐3} pass the
verification, i.e., they are thought to have the same underlying

plaintext, otherwise, we say they fail to the verification and

have distinct underlying plaintexts.

5.2.2 Leakage in the scheme in VLDB ’21. We first use examples to

introduce the frequency leakage in the FH-OPE scheme in VLDB

’21. Consider the following example:

(1) Setup batch. Suppose {7, 8, 7, 8} are encrypted. Let the result-
ing ordered ciphertexts be {𝑐1, 𝑐2, 𝑐3, 𝑐4} corresponding to the

ordered plaintexts {7, 7, 8, 8}.
(2) Insertion batch 1. Plaintexts {7, 7, 7, 8} are encrypted and in-

serted. We simply introduce the insertion process with the first

inserted plaintext. The ciphertext of the first plaintext 7 is in-

serted with a random order 𝑟𝑑 ←$ [0, 2]. If 𝑟𝑑 = 0, it is inserted

smaller than 𝑐1. If 𝑟𝑑 = 1, it is inserted between 𝑐1 and 𝑐2. If

𝑟𝑑 = 2, it is inserted between 𝑐2 and 𝑐3.

Suppose the insertion pattern of the ciphertexts in insertion batch

1 aligns with that illustrated inFigure 4. The attacker can observe

these ciphertexts are inserted in a non-uniformly manner, with all

of them inserted smaller than 𝑐3. However, if all ciphertexts have

the same underlying plaintext, the insertion of ciphertexts should

be nearly uniform due to uniformly sampled random orders. The

uniformity implies there is at least one ciphertext inserted larger

than 𝑐3 w.h.p. Therefore, the attacker encounters contradictory

results and deduces the existence of distinct plaintexts in the setup

batch, i.e., S.Dec(c1) ≠ S.Dec(c4). Also, the inserted ciphertext

smaller than 𝑐1 has distinct underlying plaintexts with 𝑐4.

Figure 4. An example in the FH-OPE scheme in VLDB ’21.

We also give an example where all plaintexts are distinct. Con-

sider the example with the setup batch {1} and the insertion batch

{4, 2, 6, 7, 5, 9}. Denote the ciphertext of {1} as {𝑐1}. In this case,

all ciphertexts of the insertion batch are larger than 𝑐1, which is

non-uniform and unusual: if all the seven ciphertexts of the two

batches have the same underlying plaintext, this insertion pattern

happens with a small probability of only 1/7. Therefore, the at-

tacker can deduce the minimal ciphertext and maximal ciphertext

among the seven ciphertexts have distinct underlying plaintexts

w.h.p. This example can also be extended by considering with the

setup batch {1, 4, 2} and the insertion batch {6, 7, 5, 9}, where the
insertion pattern remains non-uniform and unusual, and thus leaks

frequency. Now we formally describe the leakage and explain it

with an observation about the same simple case defined in§ 5.2.1.

Observation 4. In the FH-OPE scheme in VLDB ’21, denote the
initial order (index) of 𝑐𝑖 as 𝑟𝑑𝑖 (𝑖 = 1, 2, 3), if {𝑐1, 𝑐2, 𝑐3} have the
same underlying plaintext 𝑣 :

𝑣 = S.Decrypt(𝑠𝑘, 𝑐𝑖), 𝑖 = 1, 2, 3,

then 𝑋 follows a Bernoulli distribution:

𝑋 ∼ Ber(𝑟𝑑2 − 𝑟𝑑1
𝑟𝑑3 − 𝑟𝑑1

) .

The proof is available in the full version [11].Observation 4

cannot be directly extended to more complex cases because the

insertion of 𝑐 changes both the orders of ciphertexts and the condi-

tional probability. For example, with 𝑐 inserted between 𝑐1 and 𝑐2,

the orders of 𝑐2 and 𝑐3 are updated to 𝑟𝑑2+1 and 𝑟𝑑3+1, respectively.
So for a newly inserted ciphertext 𝑐′, we have

Pr(𝑐′ < 𝑐2 |𝑐1 < 𝑐′ < 𝑐3) =
𝑟𝑑2 − 𝑟𝑑1 + 1
𝑟𝑑3 − 𝑟𝑑1 + 1

.

However, it’s still possible to apply binomial distributions to ver-

ify if ciphertexts in this scheme have the same underlying plaintext.

Suppose there are 𝑛′ ciphertexts to be inserted between 𝑐1 and 𝑐3.

For each inserted ciphertext 𝑐𝑡 (∀𝑡 ∈ [𝑛′]), it follows a Bernoulli
distribution Ber(𝑝′𝑡) and

𝑟𝑑2 − 𝑟𝑑1
𝑟𝑑3 − 𝑟𝑑1 + 𝑛′

< 𝑝′𝑡 <
𝑟𝑑2 − 𝑟𝑑1 + 𝑛′
𝑟𝑑3 − 𝑟𝑑1 + 𝑛′

.

The lower and upper bound indicates the extreme cases where all

inserted ciphertexts are larger (smaller) than 𝑐2. We set 𝑟𝑑3 − 𝑟𝑑2 =
𝑟𝑑2−𝑟𝑑1 and denote the number of inserted ciphertexts smaller than

𝑐2 as 𝑌 . With 𝑛′ ≪ 𝑟𝑑3 − 𝑟𝑑2, 𝑝′𝑡 s can be estimated with 1/2. So it is

3130

Algorithm 2: Fisher exact test attack

Input: Setup batch 𝐶0 = {𝑐0
1
, ..., 𝑐0𝑛0

},
Attacking parameters (𝛼,𝛾),
𝜇 insertion batches 𝐶 𝑗 = {𝑐 𝑗

1
, ..., 𝑐

𝑗
𝑛 𝑗
} (∀𝑗 ∈ [𝜇])

Output: An order vector 𝝅 ′ = (𝜋 ′
1
, ..., 𝜋 ′

𝑁 ′)

1 𝑎 = 1, 𝐼 = [1, 𝑛0]
2 for 𝑖 = 𝛼 + 1→ 𝑛0 − 𝛼 do sliding window

3 for 𝑗 = 1→ 𝜇 do get samples

4 𝑌𝑗 = 0, 𝑛 (𝑗) = 0

5 for 𝑘 = 1→ 𝑛 𝑗 do
6 if 𝑐0

𝑖−𝛼 < 𝑐
𝑗

𝑘
< 𝑐0

𝑖
then 𝑌𝑗 += 1;

7 if 𝑐0
𝑖−𝛼 < 𝑐

𝑗

𝑘
< 𝑐0

𝑖+𝛼 then 𝑛 (𝑗) += 1;

8 end
9 end

10 𝑝𝑟𝑜𝑖 = min{ Fisher
∀ 𝑗1, 𝑗2∈[𝜇]

(𝑌𝑗1 , 𝑛 (𝑗1) , 𝑌𝑗2 , 𝑛 (𝑗2))}

11 if 𝑝𝑟𝑜𝑖 < 1/𝛾 then
12 if 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼] ≠ ∅ then intersect
13 𝐼 = 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼]
14 else
15 𝑜𝑟𝑑𝑒𝑟 = argmin

∀𝜃 ∈𝐼
𝑝𝑟𝑜𝜃

16 𝜋 ′𝑎 = 𝑜𝑟𝑑𝑒𝑟, 𝑎 += 1

17 𝐼 = [𝑖 − 𝛼, 𝑖 + 𝛼]
18 end
19 end
20 end

practical to verify if {𝑐1, 𝑐2, 𝑐3} have the same underlying plaintext

by testing if 𝑌 follows the binomial distribution Bin(𝑛′, 1/2).
Binomial test. Binomial test [3] is a statistical test. It can be used

to calculate the probability that a sample follows a given binomial

distribution. In our verification, it takes the sample value of 𝑌 and

(𝑛′, 1/2) as inputs and returns a probability:

𝑝𝑟𝑜 = BinTest(𝑌, 𝑛′, 1/2)

where 𝑝𝑟𝑜 is the probability of 𝑌 ∼ Bin(𝑛′, 1/2). We also give a

threshold of 1/𝛾 for the verification. If 𝑝𝑟𝑜 > 1/𝛾 , we say {𝑐1, 𝑐2, 𝑐3}
pass the verification, i.e., they are thought to have the same un-

derlying plaintext, otherwise, we say they fail the verification and

have distinct underlying plaintexts.

5.3 Attacks.
In this section, we present frequency-revealing attacks named Fisher
exact test attack and binomial test attack against POPE and the FH-

OPE scheme in VLDB ’21, respectively.

Sliding window. A multi-snapshot attacker is assumed to have a

setup batch of ciphertexts 𝐶0 = {𝑐0
1
, ...𝑐0𝑛0

} and 𝜇 insertion batches

of ciphertexts. As discussed in§ 5.2, given any three ciphertexts in

𝐶0
, we can verify whether they have the same underlying plaintext

by observing the orders of ciphertexts in the insertion batches.

Algorithm 3: Binomial test attackwith one insertion batch

Input: Setup batch 𝐶0 = {𝑐0
1
, ..., 𝑐0𝑛0

}, (𝛼,𝛾),
Insertion ciphertexts 𝐶1 = {𝑐1

1
, ..., 𝑐1𝑛1

}
Output: An order vector 𝝅 ′ = (𝜋 ′

1
, ..., 𝜋 ′

𝑁 ′)

1 𝑎 = 1, 𝐼 = [1, 𝑛0]
2 for 𝑖 = 𝛼 + 1→ 𝑛0 − 𝛼 do sliding window

3 𝑌 = 0, 𝑛′ = 0

4 for 𝑘 = 1→ 𝑛1 do get sample
5 if 𝑐0

𝑖−𝛼 < 𝑐1
𝑘
< 𝑐0

𝑖
then 𝑌 += 1;

6 if 𝑐0
𝑖−𝛼 < 𝑐1

𝑘
< 𝑐0

𝑖+𝛼 then 𝑛′ += 1;

7 end

8 𝑝𝑟𝑜𝑖 = BinTest(𝑌, 𝑛′, 0.5)
9 if 𝑝𝑟𝑜𝑖 < 1/𝛾 then
10 if 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼] ≠ ∅ then intersect
11 𝐼 = 𝐼 ∩ [𝑖 − 𝛼, 𝑖 + 𝛼]
12 else
13 𝑜𝑟𝑑𝑒𝑟 = argmin

∀𝜃 ∈𝐼
𝑝𝑟𝑜𝜃

14 𝜋 ′𝑎 = 𝑜𝑟𝑑𝑒𝑟, 𝑎 += 1

15 𝐼 = [𝑖 − 𝛼, 𝑖 + 𝛼]
16 end
17 end
18 end

To recover the plaintext frequency in𝐶0
, we use a slidingwindow

approach. For each three-tuple {𝑐0
𝑖−𝛼 , 𝑐

0

𝑖
, 𝑐0
𝑖+𝛼 }, we verify whether

ciphertexts from 𝑐0
𝑖−𝛼 to 𝑐0

𝑖+𝛼 have the same underlying plaintext.

We record the order interval [𝑖 − 𝛼, 𝑖 + 𝛼] if the tuple fails to the

verification. If there are any overlapping intervals recorded, we in-

tersect them to obtain a shorter interval as the final interval denoted

by 𝐼 . Using the intersection interval 𝐼 , we estimate the maximal

order 𝜋 of distinct plaintext with the order whose corresponding

verification probability 𝑝𝑟𝑜 is the smallest in 𝐼 .

Fisher exact test attack. Algorithm 2describes the Fisher exact

test attack against POPE. It takes the setup batch 𝐶0
, attacking

parameters (𝛼 ,𝛾) and 𝜇 insertion batches of ciphertexts𝐶 𝑗
s as inputs.

It returns an order vector 𝝅 ′
with length𝑁 ′, which reveals plaintext

frequency in 𝐶0
. Based on the Fisher exact test which requires

two samples, it requires there are at least 2 insertion batches, i.e.,

𝜇 ≥ 2. The calculation in this algorithm consists of two parts: 1)

the calculation of 𝑌𝑗 s and 𝑛
(𝑗)𝑠 (line 3-9); 2) Fisher exact test (line

10). The former costs 𝑂 (𝑛0 ·
∑𝜇

𝑗=1
𝑛 𝑗) computation while the latter

requires no more than 𝑂 (𝑛0 · 𝜇2) times Fisher exact test.

Binomial test attack. Differing from Fisher exact test attack, the

binomial test attack can succeed with only one insertion batch

because the binomial test requires only one sample. We describe

the binomial test attack with one insertion batch inAlgorithm 3.

It takes the setup batch 𝐶0
, attacking parameter (𝛼,𝛾) and one

insertion batch of ciphertexts 𝐶1
. The multi-snapshot attacker can

repeat the algorithm with more insertion batches to recover more

plaintext frequency, e.g., it may regard 𝐶0 ∪𝐶1
as the new setup

batch and 𝐶2
as the new insertion batch to repeat the algorithm.

3131

6 EXPERIMENTS
6.1 Experimential Setup
Datasets. We use the following datasets:

• Births [1]. This is the US birth data during 2004-2014. We initially

encrypt birthdays in 2014 and then insert births in 2004-2013

yearly (∼ 45664K births for 366 different birthdays).

• PBN [1]. This is the US popular baby name data during 1971-

2020. We initially encrypt names during 2011-2020 and then

insert records according to decades (∼ 53239K births for 101

different birthdays)

• Apls [2]. This is the age and gender data of insurance applications
during 2016-2020 in California. We separately use the age and

gender attributes to encrypt records. We encrypt the records in

2020 and then insert other records according to years and the

other attribute (∼ 1125K for 2 genders and 7 age groups).

Datasets consisting of birthdays, names, age, and gender are widely

used in OPE [21, 25] and attacks against OPE [18, 20, 29].

Metrics. Our attacks represent the first successful attempts to re-

cover plaintext frequency in FH-OPE schemes. They produce an

order vector 𝝅 ′ = (𝜋 ′
1
, ..., 𝜋 ′

𝑁 ′) as an estimate of the true order

vector 𝝅 = (𝜋1, ...𝜋𝑁), which exactly describes the plaintext fre-

quency. To evaluate the effectiveness of our attacks, we introduce

new metrics that measure the similarity between 𝝅 ′
and 𝝅 .

• Estimation error 𝜖 . For any 𝑖 ∈ [𝑁], we call 𝜋𝑖 is recovered if

there exists a 𝑗 ∈ [𝑁 ′] such that |𝜋𝑖 − 𝜋 ′
𝑗
| ≤ 𝜖 . We set 𝜖 as a

non-negative integer and its unit is 10.

• Accuracy.Denote the number of order 𝜋𝑖 recovered by our attacks

as 𝑁𝑟 , we define the accuracy as 𝑁𝑟 /𝑁 .

• False positive rate (FP). It represents the proportion of ciphertexts

that have the same underlying plaintext but are thought to have

distinct underlying plaintexts by our attacks. It is calculated as

(𝑁 ′ − 𝑁𝑟)/𝑁 .

𝜖 serves as an indicator of the estimation error level in our attacks.

It is set small to promise a very small relative estimation error.

Clearly, a great frequency-revealing attack should keep both a high
accuracy and a low FP under a small 𝜖 . In the experiments, 𝜖 in

density attack is the estimation error for revealing frequency in

𝐶 . For Fisher exact test attack and binomial test attack, 𝜖 is the

estimation error for revealing frequency in 𝐶0
, which reflects the

estimation error for revealing frequency in 𝐶 [11].

Configuration. All experiments are conducted on a machine with

48 2.5GHz vCPU and 128GBmemory running Ubuntu Server 20.04.3.

We implement the three FH-OPE schemes and our attacks in Python

3.8.12. The Fisher exact test and binomial test functions are token
from Python scipy.stats library. We encrypt each dataset with the

three FH-OPE schemes. For Kerschbaum’s FH-OPE scheme, the

ciphertext space for OPE ciphertexts is set as 120 bits, which is

larger than that in [21]. The depth of the search tree in Apls, PBN
and Births are 44, 52 and 57, respectively. In some experiments,

we conduct this scheme on some subsets of these datasets, and the

minimal tree depth on the subsets is 32 (the corresponding subset

size is ∼ 196K).

6.2 Choosing Parameters for Attacks
Range and effect. There are two important attacking parameters

in our attacks (𝛼,𝛾). We have no predefined numerical ranges for 𝛼

and 𝛾 , except that they should be positive integers. This is because

there is no direct mathematical relationship between them and the

accuracy and FP of our attacks. Their effects on our attacks can be

briefly explained below:

• 𝛼 determines the number of ciphertexts in each test in our attacks.

It controls the impact of randomness in FH-OPE on our attacks.

When 𝛼 is small, a larger proportion of randomness affects the

test results, resulting in a higher FP. When 𝛼 is large, it leads to a

coarser granularity in selecting ciphertexts for the tests, causing

the loss of some frequency and resulting in lower accuracy.

• 𝛾 determines the threshold for the tests and the confidence for

the test results. A larger 𝛾 assigns a stricter threshold and higher

confidence, which can lead to lower accuracy and FP. Conversely,

a smaller𝛾 allows a more relaxed threshold and lower confidence,

which results in higher accuracy but also a higher FP.

We conclude that loose parameter values (i.e., small 𝛼 and 𝛾)

can achieve high accuracy but result in an unacceptable FP (e.g.,

> 100%). Conversely, choosing excessively strict values sacrifices

accuracy to achieve a low FP.

Setting values. We develop a simple and effective method to find

suitable parameter values that achieve both high accuracy (> 90%)

and low FP (< 10%). The method begins by initializing the parame-

ters (𝛼,𝛾) with small values like (1, 1). We then gradually increase

these values until the results outputted by our attacks stabilize.

This approach is effective because the results consist of two types:

1) "incorrect results" caused by ciphertexts failing the tests due

to randomness, and 2) "correct results" caused by ciphertexts fail-

ing the tests due to having distinct underlying plaintexts. When

we increase 𝛼 and 𝛾 , the impact of randomness is smaller and the

threshold for the tests is stricter, allowing the ciphertexts that pre-

viously failed the tests due to randomness to pass the tests much

more easily. However, the ciphertexts failing due to having distinct

underlying plaintexts are less sensitive to the increase in 𝛼 and 𝛾 .

These enable us to filter out a majority of the incorrect results while

preserving most of the correct results. The stability of outputted

results under the increasing parameter values indicates that the

remaining results are mostly correct, and thus the impact of further

increasing 𝛼 and 𝛾 becomes less significant.

Although the minimal initial values of (𝛼,𝛾) can be (1, 1), there
are some optimizations for the initial values and values increasing

presented in the full version [11] so we can efficiently find suitable

values. Besides, we also providemore experimental results in the full

version [11] to illustrate the effect and parameter selection process.

Here we show the results of the parameter selection process for

the density attack on the Births dataset inFigure 5. We fix one

parameter with a loose value (e.g., 10) and observe the change in

the number of indexes with the other parameter being stricter. The

figure shows that the number of indexes becomes stable when 𝛼

and 𝛾 are larger than 14. Therefore, we choose (𝛼,𝛾) = (15, 15) for
the density attack on Births. We use a similar approach to select

parameter values for all of our attacks on Births and other datasets.

3132

5 10 15 20

10
3

10
4

10
5

𝛼

I
n
d
e
x
n
u
m
b
e
r

(a) Fixed 𝛾 = 10

5 10 15 20

10
3

10
4

10
5

10
6

𝛾

I
n
d
e
x
n
u
m
b
e
r

(b) Fixed 𝛼 = 10

Estimated index number Real index number

Figure 5. Strict values of 𝛼 and 𝛾 make the estimated index number

(𝑁 ′) stable and close to the real index number (𝑁).

0.4 0.6 0.8 1

·107
10

0

10
1

10
2

10
3

10
4

10
5

Dataset size

T
i
m
e
(
s
)

Density Fisher exact test Binomial test

Figure 6. Attacking time of frequency-revealing attacks.

Table 1. Accuracy of frequency-revealing attacks on the Births
dataset under different 𝜇 (𝜖 = 100).Min andAve separately indicate
the minimum and average accuracy on the four subsets.

#Batch (𝜇)
Fisher Binomial Density

Min (%) Ave (%) Min (%) Ave (%) Min (%)

2 18.4 24.1 58.4 62.2 97.7

3 45.5 49.5 72.2 75.3 97.7

4 66.3 73.7 84.6 86.6 97.7

5 82.6 85.7 87.9 91.4 96.6

6 86.6 90.6 86.8 90.8 98.8

7 90.1 93.4 86.8 91.4 97.7

8 96.7 98.3 86.8 93.0 96.6

9 97.8 98.6 86.8 93.0 96.6

10 97.7 98.3 86.8 93.0 97.7

Overall (𝜇 = 10) 98.492.699.5

6.3 Revealing plaintext frequency
Time usage. To demonstrate the efficiency of our attacks, we con-

duct experiments to measure the time required to execute each

of the three attacks using a fixed number of records. We select a

subset of Births consisting of 10
6
records in each batch and attack

the setup batch with 2-10 insertion batches to observe the time us-

age under different dataset sizes. Our results, presented inFigure 6,

show that the time usage of the density attack and Fisher exact test

attack scales linearly with the dataset size. The density attack is

the most efficient, taking no more than 10s to attack 10
7
records.

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Absolute error 𝜖

F
P

Density Fisher exact test Binomial test

Figure 7. FP of frequency-revealing attacks on Births (𝜇 = 10).

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Absolute error 𝜖

A
c
c
u
r
a
c
y

(a) Accuracy on PBN

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Absolute error 𝜖

F
P

(b) FP on PBN

Density Fisher exact test Binomial test

Figure 8. Performance of frequency-revealing attacks on PBN.

On the other hand, the binomial test attack is the most expensive,

as it is designed for one insertion batch, and when applied with 𝜇

insertion batches, it has to be repeated 𝜇 times. However, its cost

is still acceptable. To attack a dataset with 10
7
records, it takes no

more than 5 × 104s, which is approximately 14 hours.

Parallelism. All of our attacks operate by traversing ordered ci-

phertexts in ascending order. As a result, they can be run in parallel

by driving the ciphertexts of the entire dataset into multiple subsets

based on their order. Once the attacks on the ciphertext subsets are

completed, we combine their outputs to obtain the frequency of

the entire dataset. This approach allows us to leverage the compu-

tational resources available in a parallel processing environment

and speed up the attack process. Combing results on subsets needs

some checking work. For example, it is unknown if the maximal

ciphertext in the first subset and the minimal ciphertext in the

second subset have the same underlying plaintext. Therefore, sup-

pose in the first subset our attacks think the largest 𝑖1 ciphertexts

have the same underlying plaintext and in the second subset the

smallest 𝑖2 ciphertexts have the same underlying plaintext. Then

we conduct our attacks on the 𝑖1 + 𝑖2 ciphertexts to reveal possible

frequency information between these ciphertexts. In this way, the

works conducted in parallelism are identical to those in one process.

Performance with varying 𝜇. We evaluate the performance of

our frequency-revealing attacks with different numbers of insertion

batches (𝜇) on the Births dataset. Our attacks apply 2-10 insertion

batches and the results are shown inTable 1. To show the stability of

our attacks, we partition the dataset into four nearly equal subsets

and attack each one separately. The results on subsets are presented

in rows 2-10. We also attack the overall dataset. We conduct the

3133

Table 2. The recovery rate of combined attack.

Data Distinct (𝑁) Density (%) Fisher (%) Binomial (%)
Gender 2 99.99 99.19 99.84

Age 7 99.98 98.40 99.85

January 31 99.99 99.82 99.80

attacks in parallel by encrypting the overall dataset, dividing the

ciphertexts into four equal subsets, attacking each ciphertext subset,

and combing attack results with some checking processes. The last

row shows the attack accuracy on the overall dataset.

We observe that the accuracy of both the Fisher exact test and bi-

nomial test attacks generally increases with more insertion batches.

When 𝜇 > 6, both attacks achieve more than 90% accuracy in most

cases. In contrast, the accuracy of the density attack is independent

of 𝜇, and it consistently achieves an accuracy of no less than 96.6%.

We also show FP on Births inFigure 7. With 𝜇 = 10 and 𝜖 = 100,

we observe that the FP is no more than 5%. Especially, the density

attack and Fisher exact test attack achieve a FP of 0%.

Performance with varying 𝜖. We evaluate our attacks under dif-

ferent values of 𝜖 on the PBN dataset. We attack this dataset with 4

insertion batches and plot the experimental results inFigure 8. As

𝜖 increases, the accuracy of our attacks increases, and the FP de-

creases. This indicates that our attacks are successful in identifying

the majority of indexes in 𝝅 with some estimation errors. When we

set 𝜖 = 430, all of our attacks achieve an accuracy of over 90% and

a FP of no more than 5%. Considering that the minimum frequency

is 17124 (i.e., |𝜋𝑖+1 − 𝜋𝑖 | ≥ 17124 for any 𝑖 ∈ [𝑁 − 1]), the value of
𝜖 = 430 corresponds to a very small relative error of only 2.5% for

estimating any 𝜋𝑖 . Notably, the density attack and Fisher exact test

attack achieve a FP of 0% when 𝜖 = 210 which indicates a relative

estimation error of only 1.2%.

6.4 Combing Inference Attacks
We have shown plaintext frequency in any existing FH-OPE scheme

is recoverable. Next, we explore what information our attacks can

provide to inference attacks. Recall in§ 2we introduce two types

of inference attacks: the sorting attack and frequency-analyzing at-

tacks. To conduct them, the sorting attack requires that the dataset

is dense and the plaintext space M is known while frequency-

analyzing attacks require an estimation of plaintext distribution

from auxiliary public information.

First, our attacks show that sorting attacks can still be used in

FH-OPE schemes. If plaintexts encrypted by FH-OPE schemes are

dense andM is public, we can apply our frequency-revealing attacks

to recover plaintext frequency and then use sorting attacks. We

conducted a combined attack on the Apls and Births datasets, recov-
ering the gender and age attributes of records for the former, and

the birthdays of records in January for the latter. The experimental

results, shown inTable 2, demonstrate that we are able to recover

almost 100% of plaintexts protected by all existing FH-OPE schemes.

Second, our attacks can be used to reveal real plaintext distribution

and provide a starting point for frequency-analyzing attacks. We

show the cumulative plaintext distribution that our attacks recov-

ered, which is almost identical to the real plaintext distribution,

inFigure 9. This finding suggests that frequency-analyzing attacks

can potentially be applied to the results obtained from our attacks.

0 20 40 60 80 100

0

0.5

1

The order of distinct plaintext

C
u
m
u
l
a
t
i
v
e
p
r
o
p
o
r
t
i
o
n

Real Density Fisher exact test Binomial test

Figure 9. Cumulative plaintext distributions recovered by our at-

tacks and real plaintext distribution on PBN. We give a vertical shift

to each line for comparing them.

7 DISCUSSION
7.1 Secure Scenarios.
Our attacks show that all existing FH-OPE schemes are unable to

prevent the frequency leakage. However, as FH-OPE is a clearly

valuable direction of OPE, we discuss the scenarios where existing

FH-OPE schemes may be secure, i.e., there is no leakage of plaintext

frequency. Recall our attacks apply insertion patterns (the distri-

bution of inserted ciphertexts) to recover frequency in POPE and

the FH-OPE scheme in VLDB ’21. We explore the requisitions for

insertion patterns that are free from our attacks.

• Stable. In POPE, the proportion of ciphertexts inserted between

any two ciphertexts has to be constant, e.g., if there are 10%

ciphertexts in insertion batch 1 inserted between two ciphertexts

𝑐1 and 𝑐2, then there are still 10% ciphertexts inserted between

them in any batch.

• Uniform. In the scheme in VLDB ’21, if the difference between

orders of two ciphertexts is 𝑑 and there are total 𝑛 ciphertexts,

then the next inserted ciphertext is inserted between the two

ciphertexts with the probability of |𝑑 |/(𝑛 + 1).
Both of the two insertion patterns above indicate that the plaintext

distribution must be identical in each insertion batch. Moreover,

the multi-snapshot attacker can arbitrarily determine the setup

and insertion batches since it can access the server at any point

during the scheme execution. So the plaintext distribution has to be

identical in each individual insertion. Therefore, to defend against

our attacks, each plaintext in the database has to be independently

sampled from the same distribution. This strict condition is only

feasible in very limited real-world scenarios. Notably, Kerschbaum’s

FH-OPE scheme still cannot protect frequency even under this strict

condition mentioned above because the ciphertext distribution in

this scheme is still non-uniform and leak plaintext frequency.

Limited insertion. Although the security model in FH-OPE leaks

the exact insertion order of each ciphertext, it is practical to con-

sider the scenario where the multi-snapshot attacker observes only

limited insertions in a large database. Unfortunately, we discovered

that all three FH-OPE schemes can still leak plaintext frequency

in such scenarios. A common and dangerous case is when new

distinct plaintexts are inserted into the database. For instance, if we

consider an encrypted database with ciphertexts of plaintexts 7 and

3134

9, each having a frequency of 10
7
, and we insert 10 ciphertexts of

value 8, they will all be inserted between the same two ciphertexts:

the maximum ciphertext of 7 and the minimum ciphertext of 9. This

insertion pattern is highly specific, as there are a total of 2× 107 + 1
positions available for each insertion, yet only one specific position

is chosen for all the newly inserted ciphertexts. As a result, the

attacker can infer the insertion of new distinct plaintexts based on

this distinctive insertion pattern.

7.2 Enhanced Security.
Fake queries. Fake queries [17, 27] is a technique in encrypted

databases to hide range and access query distributions. It potentially

can be used to indeed achieve frequency-hiding in OPE. Denote the

(dynamic) real query distribution as 𝐹0. Then the client may hope to

hide 𝐹0 bymaking the distribution observed by the attacker be 𝐹 . For

example, Grubbs et al. hide the real access distribution by making

the attacker always observe a uniform access query distribution. To

achieve that, the client calculates a query distribution 𝐹1 such that

𝐹 = 𝐹0+𝐹1. Then the client performs both real queries sampled from

𝐹0 and fake queries sampled from 𝐹1 at the same time to hide 𝐹0.

This idea can be used in FH-OPE: to hide the real insertion patterns,

the client can perform both real insertions and fake insertions,

making the total insertion patterns seem uniform and cannot be

used by our attacks.

Differential privacy.We introduce the notable work by Chowd-

hury et al. [33], which integrates FH-OPE with differential privacy
(DP). They relax the order-preserving property to improve the se-

curity. Roughly speaking, given two plaintexts 𝑣1 and 𝑣2 (𝑣1 < 𝑣2),
the probability that the ciphertext of 𝑣1 is smaller than the cipher-

text of 𝑣2 is less than 1. This probability is calculated using the

DP algorithms, and it increases as 𝑣2 − 𝑣1 becomes larger. In this

way, the adversary cannot distinguish the ciphertexts of 𝑣1 and 𝑣2
when 𝑣2−𝑣1 is small enough. For example, for two age values 𝑣1, 𝑣2,

under a suitable parameter value for DP, this work guarantees the

ciphertexts of 𝑣1 and 𝑣2 are indistinguishable when 𝑣2 − 𝑣1 ≤ 8.

We use a simple example to illustrate the intuition of the work

and its relation with our attacks. Consider a dataset consisting of

plaintexts {1, 2, 3}. There are three plaintext groups {𝑜1, 𝑜2, 𝑜3} for
dividing the plaintexts. For any 𝑖 and 𝑗 in {1, 2, 3}, we use 𝑝𝑖, 𝑗 to
denote the probability of plaintext 𝑖 falling into the group 𝑜 𝑗 . The

probabilities depend on the difference |𝑖 − 𝑗 |, e.g., plaintext 1 may

fall into {𝑜1, 𝑜2, 𝑜3} with probabilities {70%, 20%, 10%}. To encrypt

this dataset with FH-OPE, there are two steps:

(1) Division. For each plaintext 𝑣 , the client determines the group

that 𝑣 falls into. If 𝑣 falls into group 𝑜 𝑗 , the client treats 𝑣 as

plaintext 𝑗 in the encryption algorithm of FH-OPE even if 𝑣 ≠ 𝑗 .

(2) Encryption. The client uses FH-OPE to encrypt plaintexts in the

dataset and gets three ciphertext groups denoted as {𝑐𝑔1, 𝑐𝑔2, 𝑐𝑔3}
corresponding to the ciphertext set of {𝑜1, 𝑜2, 𝑜3}. Note FH-OPE
guarantees the ciphertexts in the same ciphertext group are

distinct to hide the frequency of each ciphertext group.

As shown above, the work adds a division step to mix plaintexts

but the encryption step is identical to the encryption process in FH-

OPE. Therefore, our frequency-revealing attacks still work against

the encryption step if one of the three FH-OPE schemes is applied.

This implies our attacks can reveal the three ciphertext groups

{𝑐𝑔1, 𝑐𝑔2, 𝑐𝑔3} but cannot ensure the exact underlying plaintext of
ciphertexts in each ciphertext group. In short, our attacks have no

impact on the security provided by DP but still break the security

provided by FH-OPE. So our attacks potentially reduce the security

level of this work to that of a combination of deterministic OPE and

DP. But the inclusion of DP indeed limits the accuracy of inference

attacks on individual ciphertexts and enhances the security of OPE.

8 RELATEDWORK
Maffei et al. [26] analyze the security of Kerschbaum’s FH-OPE

scheme. They present an attack that shows an adversary in the

schememaywin the IND-FAOCPA security gamewith non-negligible

probability. They are the first to claim Kerschbaum’s FH-OPE can-

not hide plaintext frequency. However, their attack cannot recover

plaintext frequency, which makes the security of the scheme still

unclear. At the same time, Bogatov et al. [8] point out that Ker-

schbaum’s FH-OPE scheme leaks insertion orders of ciphertexts

even under a single-snapshot attacker. They claim some attacks

based on insertion orders may exist in the future.

The best known published attack against FH-OPE schemes is the

binomial attack [18] proposed by Grubbs et al. It uses only plaintext
order to recover plaintexts and thus can be applied to any OPE

scheme. However, it requires auxiliary public information about

plaintexts but our attacks do not. Besides, it performs poorly in

real-world datasets [18, 19]. There are also some attacks [15, 20,

23, 24] based on the leakages of range queries. These attacks are

effective to any generic encrypted database including those using

OPE [5, 31, 35] and FH-OPE [21, 25, 32]. However, these attacks

require plenty of range queries and assume the persistent attacker

to get the leakages of queries.

Comparison. Firstly, our density attack is the first to recover

plaintext frequency in Kerschbaum’s FH-OPE scheme and does

not require any auxiliary information. Our work clarifies that Ker-

schbaum’s FH-OPE scheme provides little protection for plaintext

frequency even under a single-snapshot attacker. Secondly, all of

our attacks assume a snapshot attacker. We limit the number of

snapshots obtained by a multi-snapshot attacker to 11, making our

attackers much weaker than the persistent attacker.

9 CONCLUSION
In this paper, we provide a comprehensive analysis of the secu-

rity of all existing FH-OPE schemes. Our observations lead to the

conclusion that these schemes leak plaintext frequency, which moti-

vated us to present three frequency-revealing attacks against them.

Our work demonstrates that avoiding the leakages of non-uniform

ciphertext distribution and ciphertext insertion orders is essential

for achieving frequency-hiding.

ACKNOWLEDGMENTS
The authors thank Jingyu Li and the anonymous reviewers at VLDB

2023 for their helpful comments and suggestions. The work was

supported in part by National Natural Science Foundation of China

(Grant No. 62002319, U20A20222), Hangzhou Leading Innovation

and Entrepreneurship Team (TD2020003), and Zhejiang Key R&D

Plan (Grant No. 2021C01116).

3135

REFERENCES
[1][n.d.]. https://www.ssa.gov/. Accessed in July 2023.

[2][n.d.]. https://www.osi.ca.gov/CalHEERS.html. Accessed in July 2023.

[3] 2008. Binomial Test. Springer New York, New York, NY, 47–49. https://doi.org/

10.1007/978-0-387-32833-1_36

[4] Ghous Amjad, Seny Kamara, and Tarik Moataz. 2018. Breach-resistant structured

encryption. Cryptology ePrint Archive (2018).
[5] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,

Ravishankar Ramamurthy, and Ramarathnam Venkatesan. 2013. Orthogonal

Security with Cipherbase. In CIDR.
[6] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly

Shmatikov. 2018. The Tao of Inference in Privacy-Protected Databases. Proc.
VLDB Endow. 11, 11 (jul 2018), 1715–1728. https://doi.org/10.14778/3236187.

3236217

[7] Dmytro Bogatov, George Kollios, and Leonid Reyzin. 2019. A Comparative

Evaluation of Order-Revealing Encryption Schemes and Secure Range-Query

Protocols. Proc. VLDB Endow. 12, 8 (April 2019), 933–947. https://doi.org/10.

14778/3324301.3324309

[8] Dmytro Bogatov, George Kollios, and Leonid Reyzin. 2019. A Comparative

Evaluation of Order-Revealing Encryption Schemes and Secure Range-Query

Protocols. Proc. VLDB Endow. 12, 8 (apr 2019), 933–947. https://doi.org/10.14778/

3324301.3324309

[9] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.

Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009, Antoine Joux (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

224–241.

[10] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative

Solutions. 578–595. https://doi.org/10.1007/978-3-642-22792-9_33

[11] Xinle Cao, Jian Liu, Yongsheng Shen, Xiaohua Ye, and Kui Ren. 2023. Frequency-

revealing attacks against Frequency-hiding Order-preserving Encryption. Cryp-

tology ePrint Archive, Paper 2023/1122. https://eprint.iacr.org/2023/1122

https://eprint.iacr.org/2023/1122.

[12] Zhihao Chen, Qingqing Li, Xiaodong Qi, Zhao Zhang, Cheqing Jin, and Aoying

Zhou. 2022. BlockOPE: Efficient Order-Preserving Encryption for Permissioned

Blockchain. In 2022 IEEE 38th International Conference on Data Engineering (ICDE).
1245–1258. https://doi.org/10.1109/ICDE53745.2022.00098

[13] Yang Du, Daniel Genkin, and Paul Grubbs. 2022. Snapshot-Oblivious RAMs:

Sub-Logarithmic Efficiency Fornbsp;Short Transcripts. In Advances in Cryptology
– CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV (Santa Barbara,

CA, USA). Springer-Verlag, Berlin, Heidelberg, 152–181. https://doi.org/10.1007/

978-3-031-15985-5_6

[14] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is

Revealed by Order-Revealing Encryption?. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1155–1166.

https://doi.org/10.1145/2976749.2978379

[15] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, AdamRivkin,

Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two

Dimensions. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for

Computing Machinery, New York, NY, USA, 443–460. https://doi.org/10.1145/

3372297.3417275

[16] Ronald Aylmer Fisher. 1954. Statistical methods for research workers; 20th ed.
Oliver and Boyd, Edinburgh. https://cds.cern.ch/record/724001

[17] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency smoothing

for encrypted data stores. In 29th USENIX Security Symposium (USENIX Security
20). 2451–2468.

[18] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.

Leakage-Abuse Attacks against Order-Revealing Encryption. In 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA,

USA, 655–672. https://doi.org/10.1109/SP.2017.44

[19] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. 2018. Practical and Secure

Substring Search. In Proceedings of the 2018 International Conference on Manage-
ment of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Ma-

chinery, New York, NY, USA, 163–176. https://doi.org/10.1145/3183713.3183754

[20] Georgios Kellaris, George Kollios, Kobbi Nissim, and AdamO’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1329–1340.

https://doi.org/10.1145/2976749.2978386

[21] Florian Kerschbaum. 2015. Frequency-Hiding Order-Preserving Encryption. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Ma-

chinery, New York, NY, USA, 656–667. https://doi.org/10.1145/2810103.2813629

[22] Florian Kerschbaum and Axel Schroepfer. 2014. Optimal Average-Complexity

Ideal-Security Order-Preserving Encryption. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (Scottsdale, Ari-

zona, USA) (CCS ’14). Association for Computing Machinery, New York, NY,

USA, 275–286. https://doi.org/10.1145/2660267.2660277

[23] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the

Uniform Query Distribution. In 2020 IEEE Symposium on Security and Privacy
(SP). IEEE. https://doi.org/10.1109/sp40000.2020.00029

[24] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved

Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018
IEEE Symposium on Security and Privacy (SP). 297–314. https://doi.org/10.1109/

SP.2018.00002

[25] Dongjie Li, Siyi Lv, Yanyu Huang, Yijing Liu, Tong Li, Zheli Liu, and Liang

Guo. 2021. Frequency-Hiding Order-Preserving Encryption with Small Client

Storage. Proc. VLDB Endow. 14, 13 (sep 2021), 3295–3307. https://doi.org/10.

14778/3484224.3484228

[26] Matteo Maffei, M. Reinert, and Dominique Schröder. 2017. On the Security of

Frequency-Hiding Order-Preserving Encryption. In CANS.
[27] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kollios, and

Ran Canetti. 2015. Modular Order-Preserving Encryption, Revisited. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data
(Melbourne, Victoria, Australia) (SIGMOD ’15). Association for Computing Ma-

chinery, New York, NY, USA, 763–777. https://doi.org/10.1145/2723372.2749455

[28] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,

Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,

USA, 644–655. https://doi.org/10.1145/2810103.2813651

[29] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,

Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,

USA, 644–655. https://doi.org/10.1145/2810103.2813651

[30] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. 2013. An Ideal-Security

Protocol for Order-Preserving Encoding. 2013 IEEE Symposium on Security and
Privacy (2013), 463–477.

[31] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query

Processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-

chinery, New York, NY, USA, 85–100. https://doi.org/10.1145/2043556.2043566

[32] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.

2016. POPE: Partial Order Preserving Encoding. Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/2976749.2978345

[33] Amrita Roy Chowdhury, Bolin Ding, Somesh Jha, Weiran Liu, and Jingren Zhou.

2022. Strengthening Order Preserving Encryption with Differential Privacy. In

Proceedings of the 2022 ACM SIGSACConference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for ComputingMachinery,

New York, NY, USA, 2519–2533. https://doi.org/10.1145/3548606.3560610

[34] Isamu Teranishi, Moti Yung, and Tal Malkin. 2014. Order-Preserving Encryp-

tion Secure Beyond One-Wayness. In Advances in Cryptology – ASIACRYPT
2014, Palash Sarkar and Tetsu Iwata (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 42–61.

[35] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.

Processing Analytical Queries over Encrypted Data. Proc. VLDB Endow. 6, 5
(March 2013), 289–300. https://doi.org/10.14778/2535573.2488336

3136

https://www.ssa.gov/
https://www.osi.ca.gov/CalHEERS.html
https://doi.org/10.1007/978-0-387-32833-1_36
https://doi.org/10.1007/978-0-387-32833-1_36
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.1007/978-3-642-22792-9_33
https://eprint.iacr.org/2023/1122
https://eprint.iacr.org/2023/1122
https://doi.org/10.1109/ICDE53745.2022.00098
https://doi.org/10.1007/978-3-031-15985-5_6
https://doi.org/10.1007/978-3-031-15985-5_6
https://doi.org/10.1145/2976749.2978379
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275
https://cds.cern.ch/record/724001
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1145/3183713.3183754
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2810103.2813629
https://doi.org/10.1145/2660267.2660277
https://doi.org/10.1109/sp40000.2020.00029
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.14778/3484224.3484228
https://doi.org/10.14778/3484224.3484228
https://doi.org/10.1145/2723372.2749455
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2976749.2978345
https://doi.org/10.1145/3548606.3560610
https://doi.org/10.14778/2535573.2488336

	Abstract
	1 Introduction
	2 Preliminaries
	3 Security properties
	3.1 Security model
	3.2 Threat model
	3.3 Frequency-revealing attacks

	4 Attacking Kerschbaum's FH-OPE scheme
	4.1 Review
	4.2 Observations
	4.3 Density Attack

	5 Attacking POPE and the FH-OPE scheme in VLDB '21
	5.1 Review
	5.2 Observations
	5.3 Attacks.

	6 Experiments
	6.1 Experimential Setup
	6.2 Choosing Parameters for Attacks
	6.3 Revealing plaintext frequency
	6.4 Combing Inference Attacks

	7 Discussion
	7.1 Secure Scenarios.
	7.2 Enhanced Security.

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

