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ABSTRACT
Similar subtrajectory search is a finer-grained operator that can

better capture the similarities between one query trajectory and a

portion of a data trajectory than the traditional similar trajectory

search, which requires that the two checking trajectories are similar

in their entirety. Many real applications (e.g., trajectory clustering

and trajectory join) utilize similar subtrajectory search as a basic

operator. It is considered that the time complexity is 𝑂 (𝑚𝑛2) for
exact algorithms to solve the similar subtrajectory search problem

under most trajectory distance functions in the existing studies,

where𝑚 is the length of the query trajectory and 𝑛 is the length

of the data trajectory. In this paper, to the best of our knowledge,

we are the first to propose an exact algorithm to solve the similar

subtrajectory search problem in 𝑂 (𝑚𝑛) time for most of widely

used trajectory distance functions (e.g., WED, DTW, ERP, EDR and

Frechet distance). Through extensive experiments on three real

datasets, we demonstrate the efficiency and effectiveness of our

proposed algorithms.
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1 INTRODUCTION
The increasing popularity of mobile devices flourishes the gener-

ation of trajectory data, which is widely used in many fields (e.g.,

traffic flow prediction [9, 10], route planning [23]). With the fo-

cus of researchers on trajectory data, more and more methods are

proposed for analyzing and processing trajectory data.

A significant problem in analyzing trajectory data is to query the

most similar trajectory to a given trajectory among the vast amount

of trajectories in the database [4, 5, 15, 19, 29, 30]. In real scenarios,
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Figure 1: Subtrajectory Search
it is hard to guarantee that the lengths of two trajectories are same

or close to each other. Thus, similar subtrajectory search attracts

much attention recently as a more practical method [1, 3, 14, 21, 26],

which uses a part of a long data trajectory as the basic unit to test

its similarity to the short query trajectory. For example, as shown

in Figure 1, there are two trajectories: data trajectory 𝜏𝑑 and query

trajectory 𝜏𝑞 . They are not similar when the whole trajectories are

considered, while 𝜏𝑞 is similar to a portion of 𝜏𝑑 .

Searching similar subtrajectories is usually a basic operator in

real applications (e.g., subtrajectory join [21] and subtrajectory

clustering [1, 3]) and will be frequently invoked, thus its efficiency

is very important. One application scenario of subtrajectory query

is to analyze the performance of players by their trajectory data in

a sport (e.g., soccer or basketball) [26].

Subtrajectory search is a highly related but different problem

from trajectory search [7, 8, 13, 20, 27]. Compared with trajectory

search, subtrajectory search has to not only consider the data tra-

jectory itself but also determine whether there are subtrajectories

of the data trajectory with a smaller distance from the query tra-

jectory. The state-of-the-art study on similar subtrajectory search

utilize reinforcement learning methods to accelerate the detecting

speed and achieve the time complexity of 𝑂 (𝑚𝑛) [27], where𝑚 is

the length of the query trajectory and 𝑛 is the length of the data tra-

jectory. However, the reinforcement learning based algorithms are

approximation algorithms, which have no theoretical guarantee on

the accuracy of the returned results. In this paper, we find that the
similar subtrajectory search problem can be solved exactly with the
time complexity of𝑂 (𝑚𝑛) for most trajectory distance functions (e.g.,
DTW, WED, ERP, EDR and FD. Details will be discussed in Section

5), which had not been discovered to the best of our knowledge.
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(a) 𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (b) 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (c) 𝐶𝑜𝑠𝑡𝑖𝑛𝑠

Figure 2: Demonstration of the conversion cost
Challenges. For a data trajectory, the number of its subtrajectories

is quadratic to its length. Let 𝑛 be the length of a data trajectory,

there will be
𝑛 (𝑛+1)

2
its subtrajectories. Assuming that the length

of the query trajectory is𝑚 and the length of the data trajectory

is 𝑛, the time complexity of directly searching for the most sim-

ilar subtrajectory is 𝑂 (𝑚𝑛3) (through traversal searching
𝑛 (𝑛+1)

2

subtrajectories of the data trajectory, and the time complexity of

directly computing the similarity of two trajectories of length 𝑥 and

𝑦 by dynamic programming is𝑂 (𝑥𝑦)). Although a recent work [27]

optimizes the time complexity of a single subtrajectory query prob-

lem from 𝑂 (𝑚𝑛3) to 𝑂 (𝑚𝑛2) through dynamic programming tech-

niques, it is still unaffordable for most applications that need to

find the optimal subtrajectory in a few seconds. In existing stud-

ies, only for dynamic time wrapping distance (DTW) and Frechet
distance (FD), the similar subtrajectory search problem can be ex-

actly solved in 𝑂 (𝑛𝑚) time complexity with particular algorithms

[8, 20]. However, it cannot be extended to other trajectory distance

functions.

In this paper, we propose the conversion-matching algorithm

(CMA) to find the optimal subtrajectory by computing theminimum

cost of converting the query trajectory into the data trajectory.With

carefully tailored methods and transformation of the trajectory

distance functions, we can incrementally fast track the optimal

start position of the optimal subtrajectory in the data trajectory

in 𝑂 (1) time. Given a query trajectory and a data trajectory, we

search for the optimal subtrajectory with the time complexity of

𝑂 (𝑛𝑚). Meanwhile, the algorithm is applicable for the vast majority

of distance functions. We use weighted edit distance (WED) [13]

and dynamic time warping (DTW) [30] as examples to analyze the

design of the algorithm. We also discuss how to apply our methods

to other most popular trajectory distance functions. Experiments

show that the performance of our algorithm is better than other

existing methods.

To summarize, we make the following contributions:

• We propose CMA with the time complexity of 𝑂 (𝑛𝑚) to find

the most similar subtrajectory for a query trajectory under most

order-insensitive trajectory distance functions in Section 4.

• We describe the design idea of the algorithm in detail and simplify

the calculation of conversion cost, using WED and DTW as

examples in Section 5.

• We conduct experiments on three different real data sets to verify

the superiority of our framework with the state-of-the-art similar

subtrajectory query methods in Section 6.

2 PROBLEM DEFINITION
2.1 Basic Concepts
There are two types of trajectories for the Similar Subtrajectory

Search (SSS) problem: query and data trajectories. We expect to

search for themost similar subtrajectory for a given query trajectory

under a specific distance function among a large volume of data

trajectories. We first provide the definitions of trajectories and

subtrajectories as follows:

Definition 1. (Trajectory) A trajectory 𝜏 with the length of 𝑛

consists of a series of points denoted as ⟨𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛⟩.

We denote the query trajectory as 𝜏𝑞 with the length of𝑚 and the

data trajectory as 𝜏𝑑 with the length of 𝑛. The points of trajectories

can be specific physical locations, nodes on a road network or edges

on a road network. In particular, we denote a trajectory without

any point as 𝜏∅ .

Definition 2. (Subtrajectory) Given a trajectory 𝜏 with the length

of 𝑛, its subtrajectory is a portion of consecutive points, 𝜏 [𝑖 : 𝑗] =
⟨𝑝𝑖 , 𝑝𝑖+1, . . . , 𝑝 𝑗 ⟩ (1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛).

In particular, we denote the 𝑖𝑡ℎ point in 𝜏 as 𝜏 [𝑖 : 𝑖], abbreviated
as 𝜏 [𝑖]. If 𝑖 > 𝑗 , we have 𝜏 [𝑖 : 𝑗] = 𝜏∅ .

Usually, we have a set of data trajectories. In this paper, we focus

on finding the optimal subtrajectory from a data trajectory among

many data trajectories to match the query trajectory. We have also

implemented two pruning methods, Grid-Based Prune (GBP) and

Key Points Filter (KPF), to help filter the irrelevant trajectories

quickly. Please refer to our technical report for more details [11].

2.2 Distance Function
The distance function between trajectories represents the cost of

converting the points of the query trajectory into the data tra-

jectory plus the cost of inserting prefix subtrajectory and suffix

subtrajectory.

Definition 3 (Matching Sequence). For a query trajectory 𝜏𝑞 and

a data trajectory 𝜏𝑑 , we define its matching sequence as A𝜏𝑞 :𝜏𝑑 =

[𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑚]. If 𝜏𝑞 [𝑖]’s matching point is 𝜏𝑑 [ 𝑗], we let 𝑎𝑖 = 𝑗

to indicate the index of 𝜏𝑑 [ 𝑗] in the data trajectory. For any 𝑖 ≤ 𝑗 ,
we must have 𝑎𝑖 ≤ 𝑎 𝑗 .

According to the definition, if a trajectory 𝜏𝑑 [𝑠 : 𝑡] is a subtrajec-
tory of another 𝜏𝑑 [𝑖 : 𝑗], we have A𝜏𝑞 :𝜏𝑑 [𝑠 :𝑡 ] ⊆ A𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] . For ex-
ample, the matching sequence for Figure 4(a) is [1, 1, 2, 4, 5, 6, 7, 8, 9],
and the matching sequence for Figure 4(b) is [1, 1, 2, 2, 3, 3, 5, 6, 9].
Note that, given a data trajectory 𝜏𝑑 and a query trajectory 𝜏𝑞 ,

there may be many matching sequences. One matching sequence

is valid as long as its matching index value is not decreasing (i.e.,

𝑎𝑖 ≤ 𝑎 𝑗 ,∀𝑖 ≤ 𝑗 ).

Definition 4 (Point Matching-Conversion Cost). For a data trajec-

tory 𝜏𝑑 and a query trajectory 𝜏𝑞 , when 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗] (i.e.,
𝑎𝑖 = 𝑗 ), depending on the different matches of 𝜏𝑞 [𝑖 − 1] as shown
in Figure 2, we define the cost of converting 𝜏𝑞 [𝑖] into 𝜏𝑑 [ 𝑗] in the

following three cases:

(a)𝐶𝑜𝑠𝑡𝑑𝑒𝑙 . When 𝑎𝑖−1 = 𝑗 , we need to remove 𝜏𝑞 [𝑖], and denote

the conversion cost as 𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] ) = 𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) .
(b)𝐶𝑜𝑠𝑡𝑠𝑢𝑏 . When𝑎𝑖−1 = 𝑗−1, we replace 𝜏𝑞 [𝑖] with 𝜏𝑑 [ 𝑗], and de-

note the conversion cost as𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] ) = 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) .
(c)𝐶𝑜𝑠𝑡𝑖𝑛𝑠 . When 𝑎𝑖−1 = 𝑘 (1 ≤ 𝑘 < 𝑗 − 1), we substitute 𝜏𝑞 [𝑖]

with 𝜏𝑑 [ 𝑗] and insert 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1]. We denote the conversion

cost as 𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] ) = 𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) .
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Figure 3: Demonstration of Matching Process
We can calculate the cost of converting the query trajectory

into a data trajectory for each matching sequence, which includes

the cost of converting each point in the query trajectory into a

matching point in the data trajectory and the cost of inserting prefix
trajectory and suffix trajectory of the data trajectory as shown in

Figure 3. We denote the cost of inserting a subtrajectory 𝜏𝑑 [𝑥 : 𝑦] as
𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑥 : 𝑦 ] ) . Given a matching sequence A𝜏𝑞 :𝜏𝑑 , its matching-
conversion cost is

∑︁
𝑎𝑖 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] ) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [1 : 𝑎1 −
1] ) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑎𝑚 + 1 : 𝑛] ) . We give an example to demonstrate the

calculation of the matching-conversion cost in Example 2.

Definition 5 (General Distance Function). We denote the set of all

possible matching sequences between the query trajectory 𝜏𝑞 and

the data trajectory 𝜏𝑑 as A. Then, we define the general distance
Θ(𝜏𝑞, 𝜏𝑑 ) between the query trajectory and the data trajectory as

follows:

Θ(𝜏𝑞 , 𝜏𝑑 ) = min

A𝜏𝑞 :𝜏𝑑
∈A

∑︂
𝑎𝑖 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] )

+ 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [1 : 𝑎1 − 1] ) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑎𝑚 + 1 : 𝑛] ) (1)

There are many trajectory distance functions, such as DTW [30],

ERP [4], EDR [5], and WED [13]. In this paper, we use WED and

DTW as examples to illustrate our definition. We discuss the gen-

erality of the general distance Θ(𝜏𝑞, 𝜏𝑑 ) in the Appendix A of our

technical report [11].

WED. WED is a general distance function that allows the user-

defined cost functions and contains several important cost func-

tions (e.g., EDR and ERP). WED defines the distance 𝑤𝑒𝑑 (𝜏𝑞, 𝜏𝑑 )
between 𝜏𝑞 and 𝜏𝑑 as the minimum cost of converting 𝜏𝑞 to 𝜏𝑑
by a finite number of insertion, deletion and substitution. Given

two points 𝜏𝑞 [𝑖] and 𝜏𝑑 [ 𝑗], we denote the cost of insertion, dele-
tion and substitution by 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗]),𝑑𝑒𝑙 (𝜏𝑞 [𝑖]) and 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).
Besides, the cost of deleting the subtrajectory 𝜏𝑞 [𝑖 : 𝑗] and insert-

ing the subtrajectory 𝜏𝑑 [𝑖 : 𝑗] are denoted as 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 : 𝑗]) and
𝑖𝑛𝑠 (𝜏𝑑 [𝑖 : 𝑗]). We have 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 : 𝑗]) = ∑︁

𝑖≤𝑘≤ 𝑗 𝑑𝑒𝑙 (𝜏𝑞 [𝑘]) and
𝑖𝑛𝑠 (𝜏𝑑 [𝑖 : 𝑗]) =

∑︁
𝑖≤𝑘≤ 𝑗 𝑖𝑛𝑠 (𝜏𝑞 [𝑘]).

Example 1. Given two trajectories 𝜏𝑞 and 𝜏𝑑 as shown in Figure 4,
we use WED to calculate the distance between them. The blue points
indicate the deleted points in the conversion of 𝜏𝑞 into 𝜏𝑑 , while the
green points indicate the inserted points. We set the cost of 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗]),
𝑑𝑒𝑙 (𝜏𝑞 [𝑖]) to 1. In addition, we set the cost of 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) to 1 if
𝜏𝑞 [𝑖] ≠ 𝜏𝑑 [ 𝑗]; otherwise, it is set to 0. Figure 4(a) shows an optimal
matching sequence that converts 𝜏𝑞 into 𝜏𝑑 by deleting 𝜏𝑞 [2], inserting
𝜏𝑑 [3] and substituting 𝜏𝑞 [5] with 𝜏𝑑 [5] and 𝜏𝑞 [8] with 𝜏𝑑 [8]. Since
there are no redundant prefix and suffix subtrajectories, we have
𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [1 : 𝑎1 − 1]) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑎𝑚 + 1 : 𝑛]) = 0. Therefore,
the distance between 𝜏𝑞 and 𝜏𝑑 is 4(= 𝑑𝑒𝑙 (𝜏𝑞 [2]) + 𝑖𝑛𝑠 (𝜏𝑑 [3]) +
𝑠𝑢𝑏 (𝜏𝑞 [5], 𝜏𝑑 [5]) + 𝑠𝑢𝑏 (𝜏𝑞 [8], 𝜏𝑑 [8])).

Moreover, we can compute the distance between 𝜏𝑞 and 𝜏𝑑 by a

dynamic programming algorithm [12].We have𝑤𝑒𝑑 (𝜏𝑞 [𝑖 : 𝑗], 𝜏∅) =
𝑑𝑒𝑙 (𝜏𝑞 [𝑖 : 𝑗]) =

∑︁𝑗

𝑘=𝑖
𝑑𝑒𝑙 (𝜏𝑞 [𝑘]) and𝑤𝑒𝑑 (𝜏∅ , 𝜏𝑑 [𝑖 : 𝑗]) = 𝑖𝑛𝑠 (𝜏𝑑 [𝑖 :

(a) Best Matching Sequence of WED (b) Best Matching Sequence of DTW

Figure 4: Examples of Matching for Difference Distance Function
𝑗]) = ∑︁𝑗

𝑘=𝑖
𝑖𝑛𝑠 (𝜏𝑑 [𝑘]). The𝑤𝑒𝑑 (𝜏𝑞, 𝜏𝑑 ) is defined recursively:

𝑤𝑒𝑑 (𝜏𝑞 [1 : 𝑖 ], 𝜏𝑑 [1 : 𝑗 ] )

= min

{︄
𝑤𝑒𝑑 (𝜏𝑞 [1 : 𝑖 − 1], 𝜏𝑑 [1 : 𝑗 − 1] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )
𝑤𝑒𝑑 (𝜏𝑞 [1 : 𝑖 ], 𝜏𝑑 [1 : 𝑗 − 1] ) + 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗 ] )
𝑤𝑒𝑑 (𝜏𝑞 [1 : 𝑖 − 1], 𝜏𝑑 [1 : 𝑗 ] ) + 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ] )

(2)

DTW.Another well-known distance function is DTW. UnlikeWED,

there is no deletion and insertion in DTW, instead, multiple points

are allowed to be substituted for the same point in another trajec-

tory. However, we try to interpret DTW from a different perspective

to make it applicable to the algorithm proposed in this paper. We in-

terpret the original substitution relation as a matching. We consider

that only one point 𝜏𝑞 [𝑖] is substituted for a point 𝜏𝑑 [ 𝑗] in another

trajectory, while other points that substitute 𝜏𝑑 [ 𝑗] are deleted. We

can define the insertion in the sameway. The cost of deleting a point

or inserting a point in the query trajectory is different, depending on

which point it matches with, that is, 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ] ) = 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )
and 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗 ] ) = 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) if 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗].

Here, we give an example about the optimal matching when

using DTW as distance function.

Example 2. The optimal matching when converting the 𝜏𝑞 into
𝜏𝑑 is shown in Figure 4(b). We set the distance between two points to
1 in case the two points are not equal; otherwise, it is set to 0. When
the matching sequence is [1, 1, 2, 4, 5, 6, 7, 8, 9], the conversion cost
corresponding to each point is [0, 0, 1, 1, 1, 0, 0, 1, 0]. When 𝜏𝑞 [4] is
converted into 𝜏𝑑 [4], 𝜏𝑑 [3] needs to be inserted. Therefore, although
𝜏𝑞 [4] = 𝜏𝑑 [4], the required cost is still 1. Therefore, the conversion
cost of the matching sequence corresponding to Figure 4(a) is 4. When
the matching sequence is [1, 1, 2, 2, 3, 3, 5, 6, 9], the conversion cost
corresponding to each point is [0, 0, 0, 0, 0, 1, 0, 0, 1]. When converting
𝜏𝑞 [9] into 𝜏𝑑 [9], the cost of inserting 𝜏𝑑 [7] is 1. Thus, the conversion
cost of this matching sequence corresponding to Figure 4(b) is 2.

Finally, we also give the dynamic process for the calculation of

𝑑𝑡𝑤 (𝜏𝑞, 𝜏𝑑 ) as follows:

𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖 ], 𝜏𝑑 [1 : 𝑗 ] ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑︁𝑗

𝑘=1
𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [𝑘 ] ), 𝑖 = 1∑︁𝑖

𝑘=1
𝑠𝑢𝑏 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [1] ), 𝑗 = 1

min{𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖 − 1], 𝜏𝑑 [1 : 𝑗 ] ),
𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖 ], 𝜏𝑑 [1 : 𝑗 − 1] ),
𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖 − 1], 𝜏𝑑 [1 : 𝑗 − 1] ) }
+𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ), 𝑒𝑙𝑠𝑒

(3)

The algorithm proposed in this paper requires that the distance

function to satisfy a specific property: the distance of points be-

tween different trajectories is independent of the position of the

point in the trajectory. We will explain this in Section 5.3.

2.3 Problem Definition
Definition 6 (Similar Subtrajectory Search Problem, SSS). Given

a query trajectory 𝜏𝑞 and a data trajectory 𝜏𝑑 , we expect a closest

subtrajectory 𝜏𝑑 [𝑖∗ : 𝑗∗] under a specific distance function Θ (e.g.,

WED or DTW) from the data trajectory for the query trajectory 𝜏𝑞 :(︁
𝑖∗, 𝑗∗

)︁
= argmin

1≤𝑖≤ 𝑗≤𝑛
Θ(𝜏𝑞, 𝜏𝑑 [𝑖 : 𝑗 ] )

A more general query is to find the 𝑡𝑜𝑝-𝐾 similar subtrajectories

from massive data trajectories for the query trajectory. Instead,
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Table 1: Symbols and Descriptions.
Symbol Description

𝜏𝑑 a data trajectory

𝜏𝑞 a query trajectory

𝜏 [𝑖 : 𝑗 ] a subtrajectory of 𝜏 from 𝑖𝑡ℎ point to 𝑗𝑡ℎ point

𝜏 [𝑖 ] the 𝑖𝑡ℎ point in trajectory 𝜏

A𝜏𝑞 :𝜏𝑑
a matching sequence between 𝜏𝑞 and 𝜏𝑑

𝑎𝑖 the matches of 𝜏𝑞 [𝑖 ] and 𝜏𝑑 [𝑎𝑖 ]
Θ the distance function

we can follow such a search process in previous work [26] that

maintains the most similar 𝐾 trajectories and updates it when

a more similar subtrajectory appears. Then, we mainly consider

querying the most similar subtrajectory from the data trajectory.

Details of top-K SSS can be found in Appendix E of our report [11].

Suppose the length of a data trajectory is 𝑛, which means that

a data trajectory has
𝑛 (𝑛+1)

2
subtrajectories. Assuming that the

length of a query trajectory is𝑚 and the complexity of computing

the distance between the data trajectory and the query trajectory

is 𝑂 (𝑚𝑛) [12]. Therefore, given a query trajectory 𝜏𝑞 and a data

trajectory 𝜏𝑑 , the time complexity of searching a subtrajectory

of 𝜏𝑑 with the smallest distance from 𝜏𝑞 in 𝜏𝑑 is 𝑂 (𝑚𝑛3 ) . Table 1
summarizes the commonly used notations in this paper.

3 REVIEW OF EXISTING SOLUTIONS
We briefly review the existing exact algorithms for the SSS problem.

ExactS. The vast majority of distance functions [2, 4, 5, 13, 22, 24,

29–31] are defined via recursive processes. Using dynamic program-

ming, we can compute the trajectory distance of a query trajectory

and a subtrajectory of the data trajectory in 𝑂 (𝑚𝑛), where𝑚 and

𝑛 are the lengths of the query trajectory and the data trajectory,

respectively. For a query trajectory 𝜏𝑞 and a data trajectory 𝜏𝑑 ,

let 𝑀𝑥,𝑦 denote the trajectory distance between 𝜏𝑞 [1 : 𝑥] and
𝜏𝑑 [𝑖 : 𝑖 + 𝑦] for a given iteration 𝑖 . ExactS [27] can compute 𝑀𝑥,𝑦

from𝑀𝑥,𝑦−1 using a dynamic programming technique. Thus, line

4 in Algorithm 1 can be solved in 𝑂 (𝑚𝑛). There are 𝑛 iterations,

thus the overall time complexity of ExactS is 𝑂 (𝑚𝑛2). ExactS can
be applied to most of the distance functions.

Spring. Spring algorithm [20] is based on the existing dynamic

programming computational procedure of DTW and changes the

initialization procedure of𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖], 𝜏𝑑 [1 : 𝑗]) in the Equation 3
when 𝑖 = 1. Spring considers 𝜏𝑑 [1 : 𝑗 − 1] to be redundant when

𝑖 = 1; therefore, they modify the equation for 𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖], 𝜏𝑑 [1 :
𝑗]) when 𝑖 = 1 to be as follows:

𝑑𝑡𝑤 (𝜏𝑞 [1 : 𝑖], 𝜏𝑑 [1 : 𝑗]) = 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [ 𝑗]) (4)

In addition, the authors demonstrate that a modification of the

Equation 3 enables it to compute the optimal subtrajectory. How-

ever, this trick can only be applied to the DTW function and cannot

be extended to other distance functions (e.g., ERP, EDR, and WED).

Greedy Backtracking (GB). GB [8] investigates finding the opti-

mal subtrajectory in a data trajectory when using FD as the distance

function. It constructs a matrix𝑋 , where𝑋𝑖, 𝑗 denotes the Euclidean

distance between 𝜏𝑞 [𝑖] and 𝜏𝑑 [ 𝑗]. Assuming that 𝑋1,1 denotes the

upper left corner of the matrix, GB finds a path from the top to

the right or down until it reaches the bottom. The path’s cost is

the maximum value in the matrix through which the path passes,

and GB finds the optimal subtrajectory by finding the path with

Algorithm 1: 𝐸𝑥𝑎𝑐𝑡𝑆 (𝜏𝑞, 𝜏𝑑 ) [27]
Input: a query trajectory 𝜏𝑞 , a data trajectory 𝜏𝑑
Output: a subtrajectory 𝜏𝑑 [𝑖∗, 𝑗∗ ]

1 𝑖∗ ← 0, 𝑗∗ ← 0

2 𝑠𝑐𝑜𝑟𝑒 ←∞
3 forall 1 ≤ 𝑖 ≤ 𝑛 do
4 𝑀 ← 𝐷𝑃 (𝜏𝑞, 𝜏𝑑 [𝑖 : 𝑛] )
5 𝑦∗ ← argmin

1≤𝑦≤𝑛−𝑖+1
𝑀𝑚,𝑦

6 if 𝑀𝑖,𝑦∗ < 𝑠𝑐𝑜𝑟𝑒 then
7 𝑠𝑐𝑜𝑟𝑒 ← 𝑀𝑖,𝑦∗

8 𝑖∗ ← 𝑖

9 𝑗∗ ← 𝑦∗ + 𝑖 − 1

10 return 𝜏𝑑 [𝑖∗, 𝑗∗ ]

the lowest cost. Since FD only considers substitution operations be-

tween the trajectory point and trajectory point, it can construct the

matrix 𝑆 . However, the cost of converting 𝜏𝑞 [𝑖] into 𝜏𝑑 [ 𝑗] in other

distance functions that consider insertion and deletion operations

(e.g., ERP, EDR, and WED) is uncertain; thus, the matrix 𝑆 cannot

be constructed and GB is not suitable.

4 CONVERSION-MATCHING ALGORITHM
This section presents an efficient and exact subtrajectory search

algorithm, namely Conversion-Matching Algorithm (CMA). Firstly,

we transform the problem of finding the optimal subtrajectory into

a problem of finding the optimal matching sequence. Meanwhile,

we introduce the cost of optimal partial matching 𝐶𝑖, 𝑗 to find the

optimal matching sequence. Here, 𝐶𝑖, 𝑗 denotes the minimal cost

of converting 𝜏𝑞 [1 : 𝑖] into a subtrajectory of 𝜏𝑑 [1 : 𝑗] when 𝜏𝑞 [𝑖]
matches 𝜏𝑑 [ 𝑗] (i.e., 𝑎𝑖 = 𝑗 ). Note that, converting 𝜏𝑞 [1 : 𝑖] into
𝜏𝑑 [1 : 𝑗] does not means that 𝜏𝑞 [1] must match 𝜏𝑑 [1]. Finally, we
propose the Conversion-Matching Algorithm (CMA) to calculate

𝐶𝑖, 𝑗 and find the optimal subtrajectory.

4.1 Optimal Matching Sequence
Although previous work [26] has optimized the time complexity

of this problem to 𝑂 (𝑚𝑛2 ) , it still makes the computational cost

increase dramatically when the length of the data trajectory is large.

This paper reduces this time complexity to 𝑂 (𝑚𝑛) by a different

dynamic programming algorithm based on a new concept.

Different from existing algorithms, the algorithm is not based

on the existing dynamic programming method for calculating the

distance. Instead, the basic idea of the algorithm is to calculate

the minimum cost of converting the points in the query trajectory

to the data trajectory by three operations: insertion, deletion and

substitution. Each point in the query trajectory is converted to

its matching point in the data trajectory at a specific cost in the

conversion process. We can prove that the optimal subtrajectory

do not contain redundant prefix trajectories and suffix trajectories

by following theorem.

Theorem 4.1. Assume that 𝜏𝑑 [𝑖 : 𝑗] is the optimal subtrajectory
in 𝜏𝑑 , i.e., Θ(𝜏𝑞, 𝜏𝑑 [𝑖 : 𝑗]) = min

1≤𝑠≤𝑡≤𝑛
Θ(𝜏𝑞, 𝜏𝑑 [𝑠 : 𝑡]). Then, we have

Θ(𝜏𝑞, 𝜏𝑑 [𝑖 : 𝑗 ] ) =
∑︂

𝑎𝑘 ∈A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )
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where A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

is the optimal match sequence of 𝜏𝑞 and 𝜏𝑑 [𝑖 : 𝑗].

Proof. We will prove that 𝑎1 = 𝑖 and 𝑎𝑚 = 𝑗 in A𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ]
when 𝜏𝑑 [𝑖 : 𝑗] is the optimal subtrajectory.

Suppose 𝑎1 = 𝑠 and 𝑎𝑚 = 𝑡 (𝑠 ≥ 𝑖, 𝑡 ≤ 𝑗 ), then A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] is also

a matching sequence of 𝜏𝑑 [𝑠 : 𝑡]. Therefore, we have

Θ(𝜏𝑞 , 𝜏𝑑 [𝑠 : 𝑡 ] ) ≤
∑︂

𝑎𝑘 ∈A𝑜𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]
\{𝑎

1
,𝑎𝑚 }

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

+𝐶𝑜𝑠𝑡 (𝜏𝑞 [1], 𝜏𝑑 [𝑠 ] ) +𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑚], 𝜏𝑑 [𝑡 ] )

=
∑︂

𝑎𝑘 ∈A𝑜𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

≤ Θ(𝜏𝑞 , 𝜏𝑑 [𝑖 : 𝑗 ] )

If 𝑠 > 𝑖 or 𝑡 < 𝑗 , then 𝜏𝑑 [𝑖 : 𝑗] is not the optimal subtrajectory,

which contradicts what is known. Therefore, we have 𝑎1 = 𝑖 and
𝑎𝑚 = 𝑗 . Further, we can obtain

Θ(𝜏𝑞 , 𝜏𝑑 [𝑖 : 𝑗 ] ) = min

A𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ] ∈A

∑︂
𝑎𝑘 ∈A𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

+𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑖 : 𝑎1 − 1] ) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑎𝑚 + 1 : 𝑗 ] )

=
∑︂

𝑎𝑘 ∈A𝑜𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

+𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑖 : 𝑎1 − 1] ) + 𝐼𝑛𝑠𝑒𝑟𝑡 (𝜏𝑑 [𝑎𝑚 + 1 : 𝑗 ] )

=
∑︂

𝑎𝑘 ∈A𝑜𝜏𝑞 :𝜏𝑑 [𝑖 :𝑗 ]

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

□
Theorem 4.1 proves that we do not need to consider redun-

dant prefix subtrajectory and suffix subtrajectory in the optimal

subtrajectory problem but only need to consider minimizing the

conversion cost of all matching points. Then, we prove that the

optimal matching sequence of optimal subtrajectory is also optimal

among all matching sequences between query and data trajectories.

Theorem 4.2. Assume that A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] is the optimal matching

sequence for the optimal subtrajectory 𝜏𝑑 [𝑖 : 𝑗], then it is also the
optimal among all matching sequences, i.e.A𝑜

𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] = argmin

A𝜏𝑞 :𝜏𝑑
∈A∑︁

𝑎𝑖 ∈A𝜏𝑞 :𝜏𝑑
𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖], 𝜏𝑑 [𝑎𝑖 ]).

Proof. We assume that the matching sequence A𝑝
𝜏𝑞 :𝜏𝑑

is bet-

ter than A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] . If A

𝑝
𝜏𝑞 :𝜏𝑑

is the matching sequence of sub-

trajectories 𝜏𝑑 [𝑖 : 𝑗] and query trajectories, then it contradicts the

condition that A𝑜
𝜏𝑞 :𝜏𝑑 [𝑖:𝑗 ] is the optimal matching sequence for

𝜏𝑑 [𝑖 : 𝑗]; conversely, ifA
𝑝
𝜏𝑞 :𝜏𝑑

is a matching sequence of the subtra-

jectory 𝜏𝑑 [𝑎1 : 𝑎𝑚], then 𝜏𝑑 [𝑖 : 𝑗] is not an optimal subtrajectory,

which contradicts what is known. □

By using the theorems 4.1 and 4.2, we can conclude

min

1≤𝑖≤ 𝑗≤𝑛
Θ(𝜏𝑞 , 𝜏𝑑 [𝑖 : 𝑗 ] ) = min

A𝜏𝑞 :𝜏𝑑
∈A

∑︂
𝑎𝑖 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] ) (5)

According to the Equation 5, we reduce the problem of finding

the optimal subtrajectory to finding the optimal matching sequence.

We split all match sequences A of the query trajectory 𝜏𝑞 with the

data trajectory 𝜏𝑑 according to the matches at different points. We

use A[𝑎𝑖 = 𝑗] to denote the set of all matching sequences in A that

satisfy the condition that 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗].

Definition 7 (Optimal Partial Matching-Conversion Cost). We

denote by𝐶𝑖, 𝑗 the minimum value of the cost of converting 𝜏𝑞 [1 : 𝑖]
into a subtrajectory of 𝜏𝑑 [1 : 𝑗] when 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗], that is,

𝐶𝑖,𝑗 = min

A𝜏𝑞 :𝜏𝑑
∈A[𝑎𝑖=𝑗 ]

𝑘=𝑖∑︂
𝑘=1,𝑎𝑘 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] )

Once we have calculated 𝐶𝑖, 𝑗 , the distance between the query

trajectory and the optimal subtrajectory is the minimum conversion

cost when 𝜏𝑞 [𝑚] matches a point in the data trajectory because

min

1≤𝑖≤ 𝑗≤𝑛
Θ(𝜏𝑞 , 𝜏𝑑 [𝑖 : 𝑗 ] ) = min

A𝜏𝑞 :𝜏𝑑
∈A

∑︂
𝑎𝑖 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑎𝑖 ] )

= min

1≤ 𝑗≤𝑛
min

A𝜏𝑞 :𝜏𝑑
∈A[𝑎𝑚=𝑗 ]

𝑘=𝑚∑︂
𝑘=1,𝑎𝑘 ∈A𝜏𝑞 :𝜏𝑑

𝐶𝑜𝑠𝑡 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [𝑎𝑘 ] ) (6)

= min

1≤ 𝑗≤𝑛
𝐶𝑚,𝑗

Therefore, we will mainly discuss how to compute 𝐶𝑖, 𝑗 in the

subsequent section; meanwhile, we will use DTW and WED as

examples to illustrate our algorithm in detail in Section 5.

4.2 Universal Calculation of 𝐶𝑖, 𝑗

We discuss how to calculate𝐶𝑖, 𝑗 and find the subtrajectory with the

shortest distance to the query trajectory from the data trajectory

for a given query trajectory 𝜏𝑞 and a data trajectory 𝜏𝑑 .

Calculate 𝐶𝑖, 𝑗 . To calculate 𝐶𝑖, 𝑗 , we have three cases:

1) 𝑖 = 1. When 𝑖 = 1, we substitute 𝜏𝑞 [1] with 𝜏𝑑 [ 𝑗], which is

𝐶𝑖, 𝑗 = 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).
2) 𝑗 = 1. There are two possible ways of converting 𝜏𝑞 [𝑖] when 𝑗 =
1: deleting𝜏𝑞 [𝑖], whichmeans that𝜏𝑞 [𝑖−1]matches𝜏𝑑 [1] so that we
have 𝐶𝑖,𝑗 = 𝐶𝑖−1, 𝑗 +𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) ; the other way is to substi-

tute 𝜏𝑞 [𝑖] with 𝜏𝑑 [1], which means that 𝜏𝑞 [1 : 𝑖 − 1] will be deleted,
resulting in 𝐶𝑖,𝑗 = 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) +

∑︁𝑖−1
𝑘=1

𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [ 𝑗 ] ). There-
fore, we have 𝐶𝑖,𝑗 = min{𝐶𝑖−1, 𝑗 +𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ),𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) +∑︁𝑖−1
𝑘=1

𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [ 𝑗 ] ) }.
3) 1 < 𝑖 ≤ 𝑚, 1 < 𝑗 ≤ 𝑛. Considering that the point 𝜏𝑞 [𝑖] matches

𝜏𝑑 [ 𝑗], there are three different conversion possibilities for 𝜏𝑞 [𝑖] and
𝐶𝑖, 𝑗 = min{𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 , 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 , 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 }:
(a) 𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 : deleting 𝜏𝑞 [𝑖]. When 𝜏𝑞 [𝑖] is deleted, by the defini-

tion of matching, 𝜏𝑞 [𝑖 − 1] and 𝜏𝑑 [ 𝑗] are matched; thus, we

have 𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 = 𝐶𝑖−1, 𝑗 +𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).
(b) 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 : substituting 𝜏𝑞 [𝑖] with 𝜏𝑑 [ 𝑗]. In this case, 𝜏𝑞 [𝑖 −

1] matches 𝜏𝑑 [ 𝑗 − 1]; thus, we have 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 = 𝐶𝑖−1, 𝑗−1 +
𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).

(c) 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 : substituting 𝜏𝑞 [𝑖] and inserting 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1].
In this situation, 𝜏𝑞 [𝑖 − 1] may match 𝜏𝑑 [𝑘] (1 ≤ 𝑘 < 𝑗 −
1). We insert 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] and have 𝐶𝑖, 𝑗 = 𝐶𝑖−1,𝑘 +
𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]). Considering all possible values of 𝑘 ,

𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 = min
1≤𝑘< 𝑗−1𝐶𝑖−1,𝑘 +𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).

In case 3.(b), our substitution of 𝜏𝑞 [𝑖] for 𝜏𝑑 [ 𝑗] can be seen as

inserting an empty trajectory alongwith the substitution. Therefore,

we will discuss 3.(b) and 3.(c) together in the subsequent sections.

To record the start position the optimal subtrajectory, we use

𝑠𝑖, 𝑗 to denote the index of 𝜏𝑞 [1]’s matched point in 𝜏𝑑 , when 𝜏𝑞 [𝑖]
matches 𝜏𝑑 [ 𝑗], i.e., the start position of the subtrajectory. Based on

the computation process of 𝐶𝑖, 𝑗 , we are able to determine which

point 𝜏𝑞 [𝑖−1] matches when 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗]. Suppose 𝜏𝑞 [𝑖−1]
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Algorithm 2: 𝐶𝑀𝐴(𝜏𝑞, 𝜏𝑑 )
Input: a query trajectory 𝜏𝑞 , a data trajectory 𝜏𝑑
Output: a subtrajectory 𝜏𝑑 [𝑖∗, 𝑗∗ ]

1 forall 1 ≤ 𝑖 ≤ 𝑚 do
2 forall 1 ≤ 𝑗 ≤ 𝑛 do
3 if 𝑖 = 1 then
4 𝐶𝑖,𝑗 ← 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )
5 𝑠𝑖,𝑗 ← 𝑗

6 else if 𝑗 = 1 then
7 𝐶𝑖,𝑗 ← min{𝐶𝑖−1, 𝑗 +𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ),

𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) +
∑︁𝑖−1
𝑘=1

𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [ 𝑗 ] ) }
8 𝑠𝑖,𝑗 ← 1

9 else
10 𝐶𝑖,𝑗 ← min{𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖,𝑗 , 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖,𝑗 , 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖,𝑗 }
11 update 𝑠𝑖,𝑗 according to the matches of 𝜏𝑞 [𝑖 − 1]

12 𝑗∗ ← argmin

1≤ 𝑗≤𝑛
𝐶𝑚,𝑗

13 𝑖∗ ← 𝑠𝑚,𝑗∗

14 return 𝜏𝑑 [𝑖∗, 𝑗∗ ]

matches 𝜏𝑑 [𝑘] (1 ≤ 𝑘 ≤ 𝑗 ), then we have 𝑠𝑖, 𝑗 = 𝑠𝑖−1,𝑘 . Finally, we
propose CMA to solve the SSS problem as shown in Algorithm 2.

Complexity. Since 𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) and 𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗])
involve only the substitution and deletion of one trajectory point,

their time complexity is 𝑂 (1); therefore, when 𝑖 = 1, the time com-

plexity of𝐶𝑖, 𝑗 is𝑂 (1). We can calculate

∑︁𝑖−1
𝑘=1

𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑘], 𝜏𝑑 [ 𝑗])
when 𝑗 = 1 in advance for any 𝑖 by preprocessing, and thus we can

compute𝐶𝑖, 𝑗 within the time complexity of𝑂 (1). In other cases, we

need to calculate min{𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 , 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 , 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 }. Therefore,
the time complexity of CMA is𝑂 (𝑚𝑛) . We will discuss how to com-

pute 𝐶𝑖, 𝑗 in 𝑂 (1) time complexity for a specific distance function

(e.g., DTW and WED) in Section 5.

Discussion. Spring and GB can also achieve 𝑂 (𝑚𝑛) time com-

plexity for SSS problem under DTW and FD distance function,

respectively. CMA is different from them. CMA and Spring are all

DP methods. The main difference between CMA and Spring is that

their recursive formulas are different: Spring’s recursive formula

is well-designed for DTW function, and just can support DTW;

CMA’s recursive formula is a more general one, which can support

abstract insertion, substitution and deletion operations thus can be

applied under most commonly used trajectory distance functions

(e.g., DTW, WED and FD). Secondly, Spring will output all the sub-

trajectories with distances less than a given threshold to the query

trajectory, thus some additional computations are involved in the

process of Spring, which do not exist in CMA. Greedy Backtrack-

ing is in general a breadth-first search method with memorizing

techniques.

5 FAST CALCULATING 𝐶𝑖, 𝑗 ON SPECIFIC Θ
In this section, we discuss how to calculate the conversion cost and

𝐶𝑖, 𝑗 for each point of the query trajectory with WED and DTW.

Meanwhile, we will explain how 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 can be computed in

𝑂 (1) time for the two distance functions WED and DTW.

5.1 Minimum Cost 𝐶𝑖, 𝑗 of WED
By introducing the concept ofmatching, we can convert the distance

between trajectories into the cost required to convert points in 𝜏𝑞

into points in 𝜏𝑑 . Let’s discuss the cost of converting each point

𝜏𝑞 [𝑖] to its matched point 𝜏𝑑 [ 𝑗] in 𝜏𝑑 .
Conversion Cost. There are three cases:
(a) 𝜏𝑞 [𝑖−1]matches𝜏𝑑 [ 𝑗].We delete𝜏𝑞 [𝑖−1] so that𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖],

𝜏𝑑 [ 𝑗]) = 𝑑𝑒𝑙 (𝜏𝑞 [𝑖]).
(b) 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [ 𝑗 − 1]. We substitute 𝜏𝑞 [𝑖] with 𝜏𝑑 [ 𝑗], i.e.,

𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) = 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).
(c) 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [𝑘], where 1 ≤ 𝑘 < 𝑗 − 1. The cost of con-

verting 𝜏𝑞 [𝑖] to 𝜏𝑑 [ 𝑗] is the summation of 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) and the
cost of inserting the trajectory 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1]. Therefore, we have
𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) = 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 : 𝑗 − 1]) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).

Example 3. Consider the example in Figure 4, where 𝜏𝑞 is con-
verted into 𝜏𝑑 . Since 𝜏𝑞 [1] has no predecessor node, 𝜏𝑞 [1] is only sub-
stituted for 𝜏𝑑 [1] with the cost of 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [1]). 𝜏𝑞 [2] matches
𝜏𝑑 [1], but since 𝜏𝑞 [1] matches 𝜏𝑑 [1], 𝜏𝑞 [2] has to be deleted, with
the cost of 𝑑𝑒𝑙 (𝜏𝑞 [2]). 𝜏𝑞 [4] matches 𝜏𝑑 [4] and 𝜏𝑞 [3] matches 𝜏𝑑 [2],
thus 𝜏𝑞 [4] is converted to 𝜏𝑑 [4] with the cost of 𝑠𝑢𝑏 (𝜏𝑞 [4], 𝜏𝑑 [4]) +
𝑖𝑛𝑠 (𝜏𝑑 [3]).

Calculate 𝐶𝑖, 𝑗 . After obtaining the conversion cost of the points

using WED as a distance function, we can calculate 𝐶𝑖, 𝑗 . We will

discuss the relational equation for 𝐶𝑖, 𝑗 in three cases:

1) 𝑖 = 1. 𝐶𝑖,𝑗 = 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [ 𝑗 ] ) .
2) 𝑗 = 1. 𝐶𝑖,𝑗 = min{𝐶𝑖−1, 𝑗 + 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ] ), 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] ) + 𝑑𝑒𝑙 (𝜏𝑞 [1 :

𝑖 − 1] ) }.
3) 1 < 𝑖 ≤ 𝑚, 1 < 𝑗 ≤ 𝑛. Considering that the point 𝜏𝑞 [𝑖] matches

𝜏𝑑 [ 𝑗], 𝜏𝑞 [𝑖] may need to be deleted or substituted. Thus, the update

of 𝐶𝑖, 𝑗 depends mainly on whether 𝜏𝑞 [𝑖] is deleted or replaced:

(a) 𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 . When 𝜏𝑞 [𝑖] is deleted, by the definition of matching,

𝜏𝑞 [𝑖 − 1] and 𝜏𝑑 [ 𝑗] are matched and we have 𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 =

𝐶𝑖−1, 𝑗 + 𝑑𝑒𝑙 (𝜏𝑞 [𝑖]).
(b) 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 and 𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 . 𝜏𝑞 [𝑖 − 1] may match 𝜏𝑑 [𝑘] (1 ≤

𝑘 < 𝑗 − 1) while substituting 𝜏𝑞 [𝑖]. In this case, we insert

𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] and have 𝐶𝑖, 𝑗 = 𝐶𝑖−1,𝑘 + 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 :

𝑗 − 1]) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]). Considering all possible values of 𝑘 ,
𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖,𝑗 = min

1≤𝑘< 𝑗−1𝐶𝑖−1,𝑘 + 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ).
Another situation is that 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [ 𝑗 − 1] and
we have 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖, 𝑗 = 𝐶𝑖−1, 𝑗−1 + 𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]

)︁
. Combin-

ing these two situation, we have 𝐶𝑖,𝑗 = min{𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖,𝑗 , 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖,𝑗 } =
min

1≤𝑘< 𝑗 𝐶𝑖−1,𝑘 + 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ). Then, the cal-
culation of 𝐶𝑖, 𝑗 can be simplified by follows:

𝐶𝑖,𝑗 = min

1≤𝑘< 𝑗
𝐶𝑖−1,𝑘 + 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] )

+ 𝑠𝑢𝑏
(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
= min{ min

1≤𝑘< 𝑗−1
𝐶𝑖−1,𝑘 + 𝑖𝑛𝑠 (𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] )

+ 𝑠𝑢𝑏
(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
,𝐶𝑖−1, 𝑗−1 + 𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
}

= min{𝐶𝑖,𝑗−1 + 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗 − 1] ) − 𝑠𝑢𝑏
(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 − 1]

)︁
+ 𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
,𝐶𝑖−1, 𝑗−1 + 𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
}

By the above analysis, we can obtain the expression for the

calculation of 𝐶𝑖, 𝑗 while using WED as distance function

𝐶𝑖,𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ), 𝑖 = 1

min{𝐶𝑖−1, 𝑗 + 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ] ), 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] )
+𝑑𝑒𝑙 (𝜏𝑞 [1 : 𝑖 − 1] ) }, 𝑗 = 1, 𝑖 ≠ 1

min{𝐶𝑖−1, 𝑗 + 𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ] ),
𝐶𝑖,𝑗−1 + 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗 − 1] ) −
𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 − 1]

)︁
+ 𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
,

𝐶𝑖−1, 𝑗−1 + 𝑠𝑢𝑏
(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

Finally, we illustrate algorithm with an example as follows:
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(a) 𝐶𝑖,𝑗 (b) 𝑆𝑖,𝑗

Figure 5: Demonstration of Calculating𝐶𝑖,𝑗 and 𝑆𝑖,𝑗 when using WED as distance function

Example 4. Given two trajectories as shown in Figure 5, we need to
find the subtrajectory from 𝜏𝑑 that is closest to 𝜏𝑞 . The insertion, dele-
tion, and substitution costs are the same as the settings in Example 4(a).
At the beginning, we will initialize𝐶1, 𝑗 (i.e.,𝐶1, 𝑗 = 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [ 𝑗])).
Then initialize𝐶𝑖,1 based on whether 𝜏𝑞 [𝑖] matches 𝜏𝑑 [1]. Figure 5(a)
shows that 𝜏𝑑 [1] = 𝑏, thus only 𝜏𝑞 [3] is substituted with it. For
𝜏𝑞 [4], when it matches 𝜏𝑑 [8], we need to determine which point is
optimal for 𝜏𝑞 [3] to match with. From Figure 5(a), we can see that
the cost of 𝜏𝑞 [3] when matching with 𝜏𝑑 [6] is 0, being the min-
imum, which means we need to insert 𝜏𝑑 [7]. Therefore, consider-
ing 𝜏𝑞 [4] = 𝜏𝑑 [8], we can compute the result of 𝐶4,8 from 𝐶3,6, i.e.,
𝐶4,8 = 𝐶3,6 + 𝑖𝑛𝑠 (𝜏𝑑 [7] ) + 𝑠𝑢𝑏 (𝜏𝑞 [4], 𝜏𝑑 [8] ) = 0+ 1+ 0 = 1. In the actual
implementation of the algorithm 2, we will compute 𝐶4,8 by 𝐶4,7,
i.e. 𝐶4,8 = 𝐶4,7 + 𝑖𝑛𝑠 (𝜏𝑑 [7] ) − 𝑠𝑢𝑏 (𝜏𝑞 [4], 𝜏𝑑 [7] ) + 𝑠𝑢𝑏 (𝜏𝑞 [4], 𝜏𝑑 [8] ) =
1 + 1 − 1 + 0 = 1.

On the other hand, the algorithm updates 𝑆𝑖, 𝑗 as it executes. For
example, when 𝜏𝑞 [4] matches 𝜏𝑑 [8], 𝜏𝑞 [3] is matched with 𝜏𝑑 [6] and
we have 𝑆4,8 = 𝑆3,6 as shown in Figure 5(b).

5.2 Minimum Cost 𝐶𝑖, 𝑗 of DTW
Unlike WED, the cost to delete a point or insert a point in DTW is

different. We analyze the cost of converting each point 𝜏𝑞 [𝑖] in the

query trajectory to its matched point 𝜏𝑑 [ 𝑗] in the data trajectory.

Conversion Cost. There are three cases:
(a) 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [ 𝑗]. The cost of deleting 𝜏𝑞 [𝑖] is equal to

the cost of substituting 𝜏𝑞 [𝑖] with 𝜏𝑑 [ 𝑗], thus𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) =
𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) .
(b) 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [ 𝑗 − 1]. We substitute 𝜏𝑞 [𝑖] with 𝜏𝑑 [ 𝑗], i.e.,

𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) = 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]).
(c) 𝜏𝑞 [𝑖 − 1] matches 𝜏𝑑 [𝑘], where 1 ≤ 𝑘 < 𝑗 − 1. The cost

of converting 𝜏𝑞 [𝑖] to 𝜏𝑑 [ 𝑗] is the summation of 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗])
and the cost of inserting the trajectory 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1]. The
cost for inserting subtrajectories 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] depends on
the points matched by 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] at 𝜏𝑞 . Suppose 𝜏𝑞 [𝑖 −
1] matches 𝜏𝑑 [𝑘] and 𝜏𝑞 [𝑖] will be matched into 𝜏𝑑 [ 𝑗]. Thus, the
cost to insert 𝜏𝑑 [𝑘 + 1 : 𝑗 − 1] is min

𝑘≤𝑡≤ 𝑗−1
∑︁𝑡
𝑝=𝑘+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 − 1], 𝜏𝑑 [𝑝 ] ) +∑︁𝑗−1

𝑝=𝑡+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑝 ] ). Thus, we have 𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) = min

𝑘≤𝑡≤ 𝑗−1∑︁𝑡
𝑝=𝑘+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 − 1], 𝜏𝑑 [𝑝 ] ) +

∑︁𝑗−1
𝑝=𝑡+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑝 ] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ).

Example 5. Let’s take Figure 4(b) as an example, the cost of con-
verting 𝜏𝑞 [1] to 𝜏𝑑 [1] when 𝑖 = 1 and 𝑗 = 1 is 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [1] ) =
𝑠𝑢𝑏 (𝑏,𝑏 ) . When 𝑖 = 2 and 𝑗 = 1, 𝜏𝑞 [2] can only be converted to

𝜏𝑑 [1], thus the cost of the conversion is 𝑠𝑢𝑏 (𝜏𝑞 [2], 𝜏𝑑 [1] ) = 𝑠𝑢𝑏 (𝑏,𝑏 ) .
By the time 𝜏𝑞 [4] matches 𝜏𝑞 [2], we need to delete 𝜏𝑞 [4] requir-
ing a cost of 𝑑𝑒𝑙 (𝜏𝑞 [4] ) = 𝑠𝑢𝑏 (𝜏𝑞 [4], 𝜏𝑞 [2] ) because 𝜏𝑞 [3] matches
𝜏𝑞 [2]. For i=9 and j=9, since 𝜏𝑞 [8] matches 𝜏𝑑 [7], the cost of con-
verting 𝜏𝑞 [9] to 𝜏𝑑 [9] consists of not only the cost of the substitu-
tion 𝑠𝑢𝑏 (𝜏𝑞 [9], 𝜏𝑑 [9]), but also the cost of inserting 𝜏𝑑 [8], that is,
min

7≤𝑡≤8
∑︁𝑡
𝑝=8 𝑠𝑢𝑏 (𝜏𝑞 [8], 𝜏𝑑 [𝑝]) +

∑︁
8

𝑝=𝑡+1 𝑠𝑢𝑏 (𝜏𝑞 [9], 𝜏𝑑 [𝑝]). It is equal
tomin{𝑠𝑢𝑏 (𝜏𝑞 [8], 𝜏𝑑 [8]), 𝑠𝑢𝑏 (𝜏𝑞 [9], 𝜏𝑑 [8])}. It can be understood in
another way that when 𝜏𝑞 [8] matches 𝜏𝑑 [7] and 𝜏𝑞 [9] matches 𝜏𝑑 [9],
inserting 𝜏𝑑 [8] is equivalent to replacing 𝜏𝑑 [8] with 𝜏𝑞 [8] or 𝜏𝑞 [9].

Calculate 𝐶𝑖, 𝑗 . After analyzing the conversion cost, similarly, we

discuss the computation of 𝐶𝑖, 𝑗 in three cases:

(a) 𝑖 = 1. When 𝑖 = 1, 𝜏𝑞 [1] can only be substituted with 𝜏𝑑 [ 𝑗] as
the same as WED and we have 𝐶𝑖,𝑗 = 𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏 [ 𝑗 ] ) .
(b) 𝑗 = 1. Considering that the cost of deleting 𝜏𝑞 [𝑖] and substi-

tuting 𝜏𝑞 [𝑖] is the same when 𝑗 = 1, we have

𝐶𝑖,𝑗 = min{𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) +
𝑖−1∑︂
𝑘=1

𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [ 𝑗 ] ),

𝐶𝑖−1, 𝑗 +𝐶𝑜𝑠𝑡𝑑𝑒𝑙 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) }

= min{
𝑖∑︂

𝑘=1

𝑠𝑢𝑏 (𝜏𝑞 [𝑘 ], 𝜏𝑑 [ 𝑗 ] ),𝐶𝑖−1, 𝑗 + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] ) }

= 𝐶𝑖−1, 𝑗 + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] )

(c) 1 < 𝑖 ≤ 𝑚, 1 < 𝑗 ≤ 𝑛. If we delete 𝜏𝑞 [𝑖], we have 𝑑𝑒𝑙𝐶𝑜𝑠𝑡𝑖, 𝑗 =
𝐶𝑖−1, 𝑗 +𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑞 [ 𝑗]). Another conversion is substitution. 𝜏𝑞 [𝑖−
1] may be matched with any 𝜏𝑑 [𝑘] (1 ≤ 𝑘 < 𝑗 ), and 𝐶𝑖, 𝑗 denotes

the smallest of all possible values. Thus, we have

𝐶𝑖,𝑗 = min{𝑖𝑛𝑠𝐶𝑜𝑠𝑡𝑖,𝑗 , 𝑠𝑢𝑏𝐶𝑜𝑠𝑡𝑖,𝑗 }
= min{ min

1≤𝑘< 𝑗−1
𝐶𝑖−1,𝑘 +𝐶𝑜𝑠𝑡𝑖𝑛𝑠 (𝑘 ) (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ),

𝐶𝑖−1, 𝑗−1 +𝐶𝑜𝑠𝑡𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ) }

= min

1≤𝑘< 𝑗
𝐶𝑖−1,𝑘 + min

𝑘≤𝑡< 𝑗−1

𝑡∑︂
𝑝=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [𝑖 − 1], 𝜏𝑑 [𝑝 ] )

+
𝑗−1∑︂

𝑝=𝑡+1
𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑝 ] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )

= min

1≤𝑘< 𝑗
min

𝑘≤𝑡< 𝑗−1
𝐶𝑖−1,𝑘 +

𝑡∑︂
𝑝=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [𝑖 − 1], 𝜏𝑑 [𝑝 ] )

+
𝑗−1∑︂

𝑝=𝑡+1
𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑝 ] ) + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )
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The time complexity of computing 𝐶𝑖, 𝑗 (1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛)

directly from the above expression is very high, and therefore we

are required to simplify the computation of 𝐶𝑖, 𝑗 by Theorem 5.1.

Theorem 5.1. When 𝑖 ≥ 2, 𝑗 ≥ 2, we have 𝐶𝑖,𝑗 = min

1≤𝑘< 𝑗
𝐶𝑖−1,𝑘 +∑︁𝑗

𝑡=𝑘+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑡 ] ) .

Proof. We use mathematical induction to prove this theorem.

To simplify the proof, we denote

∑︁𝑗

𝑡=𝑘+1 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [𝑡]) as 𝑠𝑢𝑏 (𝑖, 𝑘+
1 : 𝑗). For ∀𝑗 ≥ 2 when 𝑖 = 2, we have

𝐶2, 𝑗 = min

1≤𝑘< 𝑗
min

𝑘≤𝑡< 𝑗
𝐶
1,𝑘 + 𝑠𝑢𝑏 (1, 𝑘 + 1 : 𝑡 ) + 𝑠𝑢𝑏 (2, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
min

1≤𝑘≤𝑡
𝑠𝑢𝑏 (1, 𝑘 : 𝑡 ) + 𝑠𝑢𝑏 (2, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
𝑠𝑢𝑏 (𝜏𝑞 [1], 𝜏𝑑 [𝑡 ] ) + 𝑠𝑢𝑏 (2, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
𝐶1,𝑡 +

𝑗∑︂
𝑘=𝑡+1

𝑠𝑢𝑏 (𝜏𝑞 [2], 𝜏𝑑 [𝑘 ] )

= min

1≤𝑘< 𝑗
𝐶
1,𝑘 +

𝑗∑︂
𝑡=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [2], 𝜏𝑑 [𝑡 ] )

Suppose 𝑖 = ℎ − 1, and we have 𝐶ℎ−1, 𝑗 = min

1≤𝑘< 𝑗
𝐶ℎ−2,𝑘 +

∑︁𝑗

𝑡=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [ℎ − 1], 𝜏𝑑 [𝑡 ] ) = min

1≤𝑘< 𝑗
𝐶ℎ−2,𝑘 + 𝑠𝑢𝑏 (ℎ − 1, 𝑘 + 1 : 𝑗 ) . Next, we

have to prove that the theorem also holds when 𝑖 = ℎ.

𝐶ℎ,𝑗 = min

1≤𝑘< 𝑗
min

𝑘≤𝑡< 𝑗
𝐶ℎ−1,𝑘 + 𝑠𝑢𝑏 (ℎ − 1, 𝑘 + 1 : 𝑡 ) + 𝑠𝑢𝑏 (ℎ, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
min

1≤𝑘≤𝑡
𝐶ℎ−1,𝑘 + 𝑠𝑢𝑏 (ℎ − 1, 𝑘 + 1 : 𝑡 ) + 𝑠𝑢𝑏 (ℎ, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
min

1≤𝑘≤𝑡
min

1≤𝑙<𝑘
𝐶ℎ−2,𝑙 + 𝑠𝑢𝑏 (ℎ − 1, 𝑙 + 1 : 𝑘 )

+𝑠𝑢𝑏 (ℎ − 1, 𝑘 + 1 : 𝑡 ) + 𝑠𝑢𝑏 (ℎ, 𝑡 + 1 : 𝑗 )
= min

1≤𝑡< 𝑗
min

1≤𝑙<𝑡
𝐶ℎ−2,𝑙 + 𝑠𝑢𝑏 (ℎ − 1, 𝑙 + 1 : 𝑡 ) + 𝑠𝑢𝑏 (ℎ, 𝑡 + 1 : 𝑗 )

= min

1≤𝑡< 𝑗
𝐶ℎ−1,𝑡 + 𝑠𝑢𝑏 (ℎ, 𝑡 + 1 : 𝑗 )

= min

1≤𝑘< 𝑗
𝐶ℎ−1,𝑘 +

𝑗∑︂
𝑡=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [ℎ], 𝜏𝑑 [𝑡 ] )

The above analysis shows that the theorem holds when 𝑖 = 2 and

the theorem holds when 𝑖 = ℎ − 1 can infer that the theorem holds

when 𝑖 = ℎ. Therefore, the theorem holds. □

After obtaining the expression for 𝐶𝑖, 𝑗 from the theorem 5.1, we

can further simplify it.

𝐶𝑖,𝑗 = min

1≤𝑘< 𝑗
𝐶𝑖−1,𝑘 +

𝑗∑︂
𝑡=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑡 ] )

= min{ min

1≤𝑘< 𝑗−1
𝐶𝑖−1,𝑘 +

𝑗−1∑︂
𝑡=𝑘+1

𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [𝑡 ] ),

𝐶𝑖−1, 𝑗−1 } + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )
= min{𝐶𝑖,𝑗−1,𝐶𝑖−1, 𝑗−1 } + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] )

Finally, integrating all the previous analysis results, we can get

the computational expression of 𝐶𝑖, 𝑗 . With the Equation 8, we can

quickly adapt the Algorithm 2 to get the optimal subtrajectory

using DTW as the distance function.

𝐶𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ] ), 𝑖 = 1

𝐶𝑖−1, 𝑗 + 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] ), 𝑗 = 1, 𝑖 ≠ 1

min{𝐶𝑖−1, 𝑗 ,𝐶𝑖,𝑗−1,𝐶𝑖−1, 𝑗−1 }
+𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

5.3 Other Similarity Functions
In addition to DTW and WED, our method is also valid for other

order-insensitive distance functions. EDR and ERP are specific cases

of WED functions. Therefore, we only need to define 𝑠𝑢𝑏, 𝑖𝑛𝑠 , and

𝑑𝑒𝑙 in Equation 7. We denote the euclidean distance between two

points 𝜏𝑞 [𝑖] and 𝜏𝑑 [ 𝑗] as 𝑑 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]). We can convert WED to

ERP and EDR by defining 𝑠𝑢𝑏, 𝑖𝑛𝑠 and 𝑑𝑒𝑙 : (i) ERP. We can con-

vert WED into ERP by making 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) = 𝑑 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]),
𝑑𝑒𝑙 (𝜏𝑞 [𝑖]) = 𝑑 (𝜏𝑞 [𝑖], 𝑞𝑐 ), 𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗]) = 𝑑 (𝜏𝑑 [ 𝑗], 𝑞𝑐 ), where 𝑞𝑐 is

a fixed point on the map (e.g., the center of the region). (ii) EDR.

𝑖𝑛𝑠 (𝜏𝑑 [ 𝑗]) and 𝑑𝑒𝑙 (𝜏𝑞 [𝑖]) in EDR are both 1, while 𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗])
takes a value of 0 if and only if 𝑑 (𝜏𝑑 [ 𝑗], 𝑞𝑐 ) < 𝜖 holds; otherwise,
𝑠𝑢𝑏 (𝜏𝑞 [𝑖], 𝜏𝑑 [ 𝑗]) = 1.

FD is similar to DTW. In the same way, we can obtain the ex-

pressions for 𝐶𝑖, 𝑗 when FD is the distance function.

𝐶𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
, 𝑖 = 1

max

{︁
𝐶𝑖−1, 𝑗 , 𝑠𝑢𝑏 (𝜏𝑞 [𝑖 ], 𝜏𝑑 [1] )

}︁
, 𝑗 = 1, 𝑖 ≠ 1

max{min{𝐶𝑖−1, 𝑗 ,𝐶𝑖,𝑗−1,𝐶𝑖−1, 𝑗−1 },
𝑠𝑢𝑏

(︁
𝜏𝑞 [𝑖 ], 𝜏𝑑 [ 𝑗 ]

)︁
}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

When the order-insensitive distance functions are used, the calcu-

lation of the conversation cost does not depend on the position of

the current point in the trajectory.

Unfortunately, our method cannot be applied to the subtrajec-

tory search problem when an order-sensitive trajectory distance

function (such as LCSS) is used. This is because we do not consider

the position from which the subtrajectory starts when comput-

ing 𝐶𝑖, 𝑗 . When 𝜏𝑞 [𝑖] matches 𝜏𝑑 [ 𝑗], the cost of converting 𝜏𝑞 [𝑖] to
𝜏𝑑 [ 𝑗] is only related to the matching relationship between 𝜏𝑞 [𝑖 − 1]
and 𝜏𝑑 [𝑘] (1 ≤ 𝑘 ≤ 𝑗 ). However, when LCSS is used as the dis-

tance function, the cost of converting 𝜏𝑞 [𝑖] to 𝜏𝑑 [ 𝑗] is also related

to the matching relation of 𝜏𝑞 [1], i.e., the starting position of the

subtrajectory. The starting position of the subtrajectories has a

great influence on judging the distance between the points in two

trajectories when LCSS is used as the distance function. Therefore,

our algorithm is not suitable for a class of distance functions that

considers the position of points in the trajectory, such as LCSS.

6 EXPERIMENTAL STUDY
6.1 Experimental Settings
Data Sets.We conduct experiments on three real data sets: (i) Porto

[18] is a dataset describing a whole year (i.e., from July 1st, 2013 to

June 30th, 2014) of the trajectories for all the 442 taxis running in the

city of Porto (i.e., size: 23.44𝑘𝑚×24.7𝑘𝑚, longitude: −8.75◦∼−8.47◦,
latitude: 41.02◦∼41.25◦). There are 1,710,670 trajectories with 15-

seconds point intervals, whose average length is 67. (ii) Xi’an Taxi

Trip Dataset. DiDi Chuxing GAIA Open Dataset [17] provides a

dataset of taxi trips in Xi’an area (i.e., size: 33.43𝑘𝑚 × 23.5𝑘𝑚, lon-

gitude: 108.78◦∼109.05◦, latitude: 34.14◦∼34.38◦). We use the taxi

trip records on October 1st. There are 149,742 trajectories with

3-seconds point intervals, whose average length is 401. (iii) T-

Drive Data [32, 33]. T-Drive Data provides taxi trips in Beijing

area (i.e., size: 49.80𝑘𝑚 × 42.11𝑘𝑚, longitude: 116.15◦∼116.60◦, lati-
tude: 39.75◦∼40.10◦). There are 10,357 trajectories with 300-seconds
point intervals, whose average length is 1705.

In this experiment, we generate 𝑄 query trajectories from all

trajectories and take the average of the results. We select 𝑄 tra-

jectories in uniform random as query trajectory, while the other

trajectories are used as data trajectories. We set𝑄 to 100 by default.

Searching Algorithms. We mainly compare our CMA algorithm

with the following existing methods:

1) ExactS. When it computes the distance between the query tra-

jectory and some subtrajectories of the data trajectory, it records
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Table 2: Effectiveness of Algorithms.

Dataset Algorithm

DTW EDR ERP FD

AR MR RR AR MR RR AR MR RR AR MR RR

Porto

POS 3.0335 351.01 13.09% 1.4327 321.91 15.35% 1.4982 58.99 1.83% 2.9362 210.86 5.02%

PSS 1.9760 128.91 6.80% 1.3527 237.01 9.11% 2.5320 139.10 5.71% 1.3780 154.50 2.60%

RLS 1.7391 97.56 5.13% 1.3435 190.54 7.32% 2.2324 114.62 4.70% 1.3848 134.26 2.25%

RLS-Skip 2.0330 142.68 7.01% 1.3545 234.13 9.28% 2.4470 134.79 5.48% 1.6435 173.68 3.08%

CMA 1 1 0% 1 1 0% 1 1 0% 1 1 0%
ExactS 1 1 0% 1 1 0% 1 1 0% 1 1 0%

Spring 1 1 0% - - - - - - - - -

GB - - - - - - - - - 1 1 0%

Xi’an

POS 35.5635 10505.00 18.12% 1.5162 286.84 1.14% 1.4532 34.51 0.15% 20.5025 3771.50 5.31%

PSS 4.3745 676.99 2.99% 1.4608 378.33 1.34% 1.7038 41.49 0.17% 1.3838 25.90 0.03%

RLS 3.6131 511.53 2.26% 1.4340 304.03 1.08% 1.5648 34.32 0.14% 1.3898 22.68 0.02%

RLS-Skip 7.3181 1567.09 4.25% 1.4596 352.07 1.26% 1.6914 41.94 0.17% 3.5313 434.34 0.60%

CMA 1 1 0% 1 1 0% 1 1 0% 1 1 0%
ExactS 1 1 0% 1 1 0% 1 1 0% 1 1 0%

Spring 1 1 0% - - - - - - - - -

GB - - - - - - - - - 1 1 0%

these intermediate results. Then, ExactS can utilize a dynamic pro-

gramming technique to optimize the time complexity of searching

the optimal subtrajectory from a data trajectory to 𝑂 (𝑚𝑛2).
2) PSS and POS. PSS traverses each point of a data trajectory to find

the appropriate splitting position. The current optimal subtrajectory

is updated by comparing the distance between the subtrajectory

before the splitting point and the subtrajectory after the splitting

point and the query trajectory. Then, the next suitable splitting

point is found starting from the current splitting point. PSS can find

an approximate solution with the time complexity of 𝑂 (𝑚𝑛). As a
variant of PSS, POS does not consider the subtrajectory after the

splitting point. Thus, the efficiency of POS is substantially improved

compared with PSS, but the result quality of PSS is better than that

of POS.

3) RLS and RLS-Skip. RLS is an algorithm based on reinforcement

learning to determine whether to split the current point, and RLS

takes a different action based on the state of the current point. RLS-

Skip adds a new action to RLS by skipping the next point to traverse

the entire trajectory faster. As a result, RLS-Skip can get a solution

in less time, while RLS can find a better solution.

4) Spring and Greedy Backtracking (GB). Both algorithms are of

time complexity 𝑂 (𝑚𝑛). However, Spring and GB can only be

applied to specific distance functions, DTW and FD, respectively.

Considering that there are a large number of data trajectories

in the database, to improve the efficiency of searching the optimal

subtrajectories, we use the pruning methods in the subsequent

experiments to filter out the data trajectories that are different from

the query trajectories. This paper proposes two modules to filter

data trajectories that are not similar to the query trajectory: Filter

with Key Points (FKP) and Grid-Based Pruning (GBP). They are

compared with the SOTA pruning method, OSF [13]. The details of

the pruning methods and their experimental results can be found

in the Appendixes B and C of our technical report [11].

Metrics. We will compare our CMA algorithm with the existing

algorithms regarding efficiency and effectiveness. For a given query

trajectory, we evaluate the efficiency of an algorithm in terms of the

time to find the most similar subtrajectory from all data trajectories.

We use four evaluation metrics identical to those used in previous

work to evaluate the solutions found by different algorithms in this

experiment: (1) Distance. It refers to the raw distance between a

query trajectory and the optimal subtrajectory of the data trajectory

found by the search algorithm. (2) Approximate Ratio (AR). Given a

distance function, AR represents the ratio of the distance between

the query trajectory and the subtrajectory found by an approximate

algorithm to the distance between the query trajectory and the

optimal solution. (3) Mean Rank (MR). It denotes the rank of the

distance between the optimal subtrajectory found by the algorithm

and the query trajectory among all subtrajectories of the original

data trajectory. In particular, MR= 1 indicates that the algorithm

finds the optimal solution. (4) Relative Rank (RR). It is the percentage

of all subtrajectories of the data trajectory that is better than the

result returned by the algorithm.

Evaluation Platform. The methods are implemented in C++14.

The experiments are conducted on a Linux server with 48-cores of

Intel(R) Xeon(R) 2.20GHz CPUs and 128.00 GB RAM.

6.2 Experimental Results
Effectiveness compared with other algorithms We used differ-

ent algorithms for each distance function in different datasets to

find the subtrajectories of the data trajectories with the smallest

distance from the query trajectory. The experimental results are

shown in Table 2. The approximation algorithms have substantial

uncertainty in terms of effectiveness. Although the subtrajectory

found by these approximation algorithms when using ERP as the

distance function is close to the optimal subtrajectory, the subtra-

jectory found by approximate algorithms when using DTW as the

distance function is far from the optimal subtrajectory. POS and

PSS tend to select the trajectories with the same length as the query

trajectory due to the higher cost of deleting a point when ERP is

used as the distance function. In contrast, the length of the optimal

subtrajectory tends to vary when DTW is used as the distance func-

tion. In addition, the subtrajectories found by the RLS and RLS-Skip

algorithms learned based on reinforcement learning are also far

from the optimal subtrajectories. CMA can find the exact optimal

solution in all cases.
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(a) DTW (Porto) (b) DTW (Xi’an) (c) DTW (Beijing) (d) DTW (Porto) (e) DTW (Xi’an) (f) DTW (Beijing)

(g) EDR (Porto) (h) EDR (Xi’an) (i) EDR (Beijing) (j) EDR (Porto) (k) EDR (Xi’an) (l) EDR (Beijing)

(m) ERP (Porto) (n) ERP (Xi’an) (o) ERP (Beijing) (p) ERP (Porto) (q) ERP (Xi’an) (r) ERP (Beijing)

(s) FD (Porto) (t) FD (Xi’an) (u) FD (Beijing) (v) FD (Porto) (w) FD (Xi’an) (x) FD (Beijing)

Figure 6: Effectiveness and efficiency with varying query lengths

Efficiency compared with other algorithms With the pruning

algorithm, we can find the optimal subtrajectory from many data

trajectories faster. Compared with ExactS, the efficiency of CMA

has improved nearly 200 times on Xi’an datasets and nearly 50

times on the Porto dataset according to the Table 3. The longer

the length of the trajectory, the more the improvement of CMA

over ExactS. CMA can find the optimal subtrajectory relatively

quickly regardless of the distance function. POS and RLS-Skip are

the fastest, but they are approximate algorithms. The experimental

results in Table 3 indicate that CMA exhibits superior efficiency

compared to other precise algorithms. Compared to CMA, Spring

requires many additional computations. In addition to finding the

optimal subtrajectory, Spring can identify all subtrajectories whose

distances to the query trajectory are less than a given threshold

(without overlaps between these subtrajectories). To achieve this,

Spring continuously checks the DP matrix for subtrajectories that

satisfy the criteria and outputs them, resulting in some additional

computations. CMA, on the other hand, performs only one check

after completing the calculation of the DP matrix. Spring is specif-

ically designed for large-scale streaming data. The search space

of GB is 𝑂 (𝑚𝑛). However, during the algorithm’s execution, back-

tracking is required repeatedly, which can result in some nodes

being searched multiple times. In contrast, each cell in the DP ma-

trix of CMA is computed only once, making its efficiency slightly

higher than that of GB.

Effectiveness of the length of query trajectory. For the Bei-
jing dataset, we select the length ranges𝑚 as [200, 300], [300, 400],
[400, 500], and [500, 600]. For the Xi’an dataset, we choose the

length ranges [80, 100], [100, 120], [120, 140], [140, 160], and [160, 180].
For the Porto dataset, we use the length ranges [4, 8], [8, 12], [12, 16],
and [16, 20] for the query trajectories. Figure 6 shows that the ex-

ecution time of the algorithm increases with the length of the

trajectory regardless of the dataset and distance function because

the search algorithm takes less time to find the optimal subtrajec-

tory for each query trajectory when the trajectory length is small.

However, in the dataset of Porto, the execution time increases and

then decreases with the length of the query trajectory, which may

be attributed to the fact that there are fewer trajectories similar

to the query trajectory in the dataset when the size of the query

trajectory becomes longer. Thus, most trajectories are screened out

in the filtering phase, resulting in a decrease in the final search

time. RLS takes more time than other algorithms in almost all cases.

All algorithms except CMA have poor performance when DTW is

used as the distance function, regardless of the length of the query

trajectory. It is because that DTW allows different points in query
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(a) DTW (Beijing) (b) EDR (Beijing) (c) ERP (Beijing) (d) FD (Beijing)

(e) DTW (Beijing) (f) EDR (Beijing) (g) ERP (Beijing) (h) FD (Beijing)

Figure 7: Effectiveness and efficiency with varying data lengths

Table 3: Efficiency of Algorithms.

Dataset Algorithm

Time Cost (s)

DTW EDR ERP FD

Porto

POS 16.32 17.75 16.91 18.42

PSS 18.06 16.90 17.14 18.05

RLS 17.84 19.87 19.39 19.62

RLS-Skip 16.62 15.28 17.92 18.90

CMA 18.78 14.64 19.26 18.78

ExactS 7794.59 6731.42 7225.32 8334.16

Spring 20.04 - - -

GB - - - 29.01

Xi’an

POS 6.69 9.69 13.12 5.48

PSS 8.03 12.47 16.21 7.12

RLS 7.93 14.66 18.33 7.74

RLS-Skip 5.79 9.30 13.45 4.91

CMA 5.65 9.79 14.08 4.31

ExactS 1625.58 2789.93 3429.52 1312.26

Spring 7.37 - - -

GB - - - 10.76

Beijing

POS 17.53 35.15 45.54 18.30

PSS 26.95 58.79 79.31 28.81

RLS 33.17 72.37 97.63 35.46

RLS-Skip 13.35 36.94 48.57 13.94

CMA 10.81 41.53 55.18 11.29

ExactS overtime overtime overtime overtime

Spring 16.46 - - -

GB - - - 75.86

trajectory matches the same point in data trajectory. Furthermore,

the effectiveness of the approximation algorithm is improved as

the length of the query trajectory increases when EDR is used as

the distance function. As the query trajectory length increases, the

number of eligible data trajectories decreases, thus the approxi-

mation algorithm has a higher probability of finding the optimal

solution. Both algorithms, RLS and RLS-Skip, also find much worse

subtrajectories than CMA, where RLS has a worse execution time

than CMA in almost all cases.

Effectiveness of the length of data trajectoriesWe varied the

length of data trajectories on the Beijing city dataset. In the experi-

ment, we selected 1000 trajectories, each with lengths in the inter-

vals [3000,4000], [4000,5000], [5000,6000], and [6000,7000], from all

trajectories in Beijing city. The experimental results are presented

in Figure 7. The figure shows that the time to find the optimal

solution increases linearly with the length of the data trajectory

for all algorithms. Additionally, the distance of the subtrajectories

found by the CMA, Spring, and GB algorithms decreases as the

length of the data trajectory increases, indicating that longer data

trajectories are more likely to contain subtrajectories that are more

similar to the query trajectory. We also observed that longer trajec-

tory lengths make it easier for approximation algorithms to find

better solutions. There are more subtrajectories similar to the query

trajectory with the increase of the length of data trajectories, which

enables the approximation algorithms to find better solutions.

Performance of Spring and GB In this paper, we also explore

the performance of Spring and GB; the experimental results of

Spring are shown in Figure 6(b) ∼ 6(d), while the results of GB are

shown in Figure 6(t) ∼ 6(v). The experimental results show that

the AR of Spring and GB is 1 in all cases, which means that both

algorithms can find the optimal solution. However, the execution

time of Spring is similar to that of CMA, while GB is less efficient.

Summary of Results. We verify that CMA can accurately find

the nearest subtrajectory from the data trajectory to the query

trajectory. Meanwhile, the execution time of CMA is about the

same as the two approximation methods (i.e., PSS and POS), and is

much smaller than ExactS. Therefore, the proposed algorithm can

quickly and accurately find the subtrajectories of the closest data

trajectory for each query trajectory.

7 RELATEDWORK
Trajectory Distance Function. Many studies have proposed met-

rics to measure the distance between two trajectories [2, 4, 5, 13, 22,

24, 29–31]. We divided them into two categories: order-insensitive

and order-sensitive. The order-insensitive distance functions are

independent of the position of the point in the trajectory; the order-

sensitive distance functions are just the opposite. For example, the

order-insensitive functions, DTW [30] and Fréchet distance (FD) [2],

define the distance between trajectories as the cost of turning one

trajectory into another through substitution operations. DTW al-

lows different points in one trajectory to be mapped to the same

point in another trajectory, enabling DTW to deal well with the

3121



Table 4: Summary of subtrajectory similarity search algorithms.

Algorithms Accuracy

order-insensitive order-sensitive

DTW ERP EDR FD NetERP NetEDR SURS LCSS LCRS

CMA (Ours) exact 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) - -

ExactS [27] exact 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 ) 𝑂 (𝑚𝑛2 )
Spring [20] exact 𝑂 (𝑚𝑛) - - - - - - - -

Greedy Backtracking (GB) [8] exact - - - 𝑂 (𝑚𝑛) - - - - -

POS [27] approx. 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛)
PSS [27] approx. 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛)
RLS [27] approx. 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛)

RLS-Skip [27] approx. 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛) 𝑂 (𝑚𝑛)

case where two trajectories are sampled at different frequencies.

Edit distance with real penalty (ERP) [4] introduces the insert and

delete operations. The cost of inserting a point and deleting a point

equals replacing it with a pre-defined default point. However, when

the position of the default point is not set reasonably, the cost of

deleting and inserting a point can be much greater than replacing

it. Then, edit distance on real sequences (EDR) [5] fixes this issue

by introducing an upper bound. Specifically, when the distance be-

tween a point in the trajectory and its replacement is greater than

this upper bound, the replacement cost equals the deletion cost.

WED is a generic distance function that allows users to customize

the cost of deletion, insertion, and replacement. The order-sensitive

distance functions (e.g., longest common subsequence (LCSS) [22],

longest overlapping road segments (LORS) [24], and longest com-

mon road segments (LCRS) [31]) calculate the distance of a point in

a trajectory from another trajectory considering the point positions

in the trajectories.

Subtrajectory Search. The previous work [13] divides the sub-

trajectory search into two stages: filtering and verification. In the

filtering phase, most of the trajectories whose distance from the

query trajectory exceeds a given threshold are filtered out to re-

duce the number of validations [7, 27]; in the validation phase,

the execution time of the validation phase is simplified with the

help of indexes. Unfortunately, this work invokes the trajectory dis-

tance function calculation method for all candidate subtrajectories

within a trajectory during the validation phase, which makes the

validation phase take much time. Another work [27] focuses on

how to find the subtrajectory with the minimum distance from the

query trajectory in the data trajectory given a query trajectory of

length𝑚 and a data trajectory of length 𝑛. ExactS [27] is proposed

to find the optimal subtrajectory in time complexity of 𝑂 (𝑚𝑛2 ) .
Meanwhile, this work also proposes approximate algorithms (e.g.,

POS and PSS [27]) with 𝑂 (𝑚𝑛) time complexity. In addition to

these traditional methods, this work proposes two reinforcement

learning-based approximate methods (RLS, RLS-Skip [27]) to find

the optimal subtrajectory. Furthermore, RLS and RLS-Skip can adap-

tively select appropriate split points to improve the efficiency of the

search. With DTW as the distance function, Spring [20] can find the

optimal subtrajectory exactly in 𝑂 (𝑚𝑛) time complexity. Besides,

GB [8] can find the exact optimal similar subtrajectory with𝑂 (𝑚𝑛)
time complexity on FD. However, Spring and GB do not apply to

other distance functions. In contrast, our CMA can be applied to

most order-insensitive distance functions. Table 4 summarizes the

existing subtrajectory search methods. Experiments on NetERP,

NetEDR and SURS can be found in Appendix D of our report [11].

Applications of Subtrajectory search. Some previous studies [25,

28] implement the travel time estimation of a segment of the tra-

jectory by a similar subtrajectory search. One specific process is to

search the most similar subtrajectory from the database and then

use its time as an estimate of the current trajectory’s communi-

cation time. The advantage of subtrajectory search is that it can

solve the sparsity of trajectories in the database and thus find more

similar trajectories. Another common application is to analyze the

movement and behavioral performance of players on the sports

ground through subtrajectory search [26]. In addition, subtrajectory

search can be used to count the frequency of a given road section

in the database for better road planning [6, 12, 16].

8 CONCLUSION
This paper focuses on a similar subtrajectory search problem, i.e.,

finding the subtrajectory of the data trajectory with the minimum

distance for the query trajectory. We convert the problem of finding

the optimal subtrajectory to finding the optimal matching sequence.

For a given query trajectory of length𝑚 and a data trajectory of

length 𝑛, we propose the CMA algorithm to find the subtrajectory

with the minimum distance to the query trajectory from the data

trajectory in the time complexity of 𝑂 (𝑚𝑛). Finally, we conduct
sufficient experiments on the datasets of Xi’an, Beijing and Porto,

and the experimental results show that our CMA algorithm can find

efficiently the exact optimal subtrajectory for each query trajectory.
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