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ABSTRACT
Information Extraction (IE) from semi-structured web-pages is a
long studied problem. Training a model for this extraction task
requires a large number of human-labeled samples. Prior works
have proposed transferable models to improve the label-efficiency
of this training process. Extraction performance of transferable
models however, depends on the size of their fine-tuning corpus.
This holds true for large language models (LLM) such as GPT-3
as well. Generalist models like LLMs need to be fine-tuned on in-
domain, human-labeled samples for competitive performance on
this extraction task. Constructing a large-scale fine-tuning corpus
with human-labeled samples, however, requires significant effort.
In this paper, we develop a Label-Efficient Self-Training Algorithm
(LEAST) to improve the label-efficiency of this fine-tuning process.
Our contributions are two-fold. First, we develop a generative model
that facilitates the construction of a large-scale fine-tuning corpus
with minimal human-effort. Second, to ensure that the extraction
performance does not suffer due to noisy training samples in our
fine-tuning corpus, we develop an uncertainty-aware training strat-
egy. Experiments on two publicly available datasets show that
LEAST generalizes to multiple verticals and backbone models. Us-
ing LEAST, we can train models with less than ten human-labeled
pages from each website, outperforming strong baselines while
reducing the number of human-labeled training samples needed
for comparable performance by up to 11𝑥 .

PVLDB Reference Format:
Ritesh Sarkhel, Binxuan Huang, Colin Lockard, and Prashant Shiralkar.
Self-Training for Label-Efficient Information Extraction
from Semi-Structured Web-Pages. PVLDB, 16(11): 3098 - 3110, 2023.
doi:10.14778/3611479.3611511

1 INTRODUCTION
Semi-structured web-pages are great sources of high-quality in-
formation. Extracting structured information from them is a well-
studied problem with a broad range of applications, including rec-
ommendation systems [49], product search [5], knowledge-base
construction [8, 15], question answering [12], query-focused sum-
marization [40] and more. We focus on an information extraction
(IE) task from semi-structured detail-pages in this paper. A detail-
page is a web-page that represents a single entity, which is typically
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Figure 1: A web-extraction model extracts a set of attributes
from a semi-structured web-page. In this example, we extract
the attributes {title, director, genre, mpaa-rating} from a
detail-page belonging to the movie vertical. For each attribute,
we identify a set of text-spans appearing on that page.

the topic entity of that page. Take the detail-page in Fig. 1 for exam-
ple. We want to extract text-spans corresponding to each attribute
in a predefined attribute-set from this page. The semi-structured
format and diverse layout of these pages however, make this task
challenging to scale for a large-scale corpus.

Example: Consider the following example. Alice wants to con-
struct an authoritative knowledge-base for answering questions
about products sold on various e-commerce websites. She has a
list of some of the most popular e-commerce websites. New web-
sites get added to this list periodically. Each website on this list
comprises of detail-pages with diverse layouts covering multiple do-
mains (e.g. books, electronics). Layout of each page varies between
websites and/or domains. To construct a knowledge-base from this
diverse set of websites, we need to extract a set of attributes from
the detail-pages of each website. The information extraction (IE)
task that needs to be undertaken for this purpose needs to be both
scalable and robust. Traditional IE methods such as wrapper in-
duction [20, 26] is hard to scale for this task. To understand why,
let’s take a look at how it works. Wrapper induction methods iden-
tify text-spans corresponding to an attribute by deriving a set of
XPath-based rules or wrappers from human-labeled samples. Un-
fortunately, these wrappers do not generalize for web-pages that
have different layouts than the human-labeled samples used to infer
them [30]. This leads to degraded extraction performance and trig-
gers the need of additional human-labeling for increased coverage.
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Figure 2: At each iteration, LEAST trains a teacher model on a few human-labeled samples in the corpus. Once training
terminates, the teacher model along with a semi-supervised generative model pseudo-annotates some unlabeled samples
from the same corpus. The student model is initialized with the weights of the teacher model. LEAST trains the student model
on an augmented corpus containing both human-labeled and pseudo-labeled samples using an uncertainty-aware training
strategy. Once training terminates, the student model initializes the weights of the teacher model for the next iteration. This
process is repeated until both models converge.

Asmore websites with diverse layouts are added to the list, this over-
head compounds quickly for customers like Alice. We propose an
end-to-end training algorithm that addresses this challenge by mini-
mizing the number of human-labeled pages needed to train a gener-
alizable web-extraction model without sacrificing its performance.

Motivation. Prior works have explored different avenues to
improve the label-efficiency of web-extraction models. Some re-
searchers [19, 30] have leveraged distance supervision to label
web-pages using an external knowledge-base. A comprehensive
knowledge-base however may not always be available, especially
for emerging domains. An extractionmodel trained on distant labels
may not generalize for attributes at the long-tail of the distribution
as well. Recent works have tried to address this by developing trans-
ferable models [21, 29, 54], where they pretrain a model on thou-
sands of human-labeled pages from some seed websites first, and
then fine-tune [37] it on human-labeled pages from the target web-
sites. Factors like multilingual content, low page-level consistency,
and lack of inter-annotator agreement make labeling web-pages
with diverse layouts a resource-intensive process. Pretraining on
unlabeled pages using self-supervision [13, 27, 36] improves the
label-efficiency of the pretraining process to some extent. Extraction
performance of a model trained using self-supervision, however,
still relies on the number of human-labeled pages in the fine-tuning
corpus. The same is true for large language models (e.g. GPT-3 [7]).

Although they generalize well for a wide range of natural language
related tasks in few-shot settings [7], for visually rich complex
documents [41–44] such as semi-structured detail-pages, they need
to be fine-tuned on in-domain human-labeled samples [1, 16] for
competitive extraction performance. Improving the label-efficiency
of a robust, transferable web-extraction model, therefore requires
addressing two key questions.

(i) how to minimize the number of human-labeled pages (from
both seed and target websites) during training?

(ii) how to achieve (i) without affecting the model’s extraction
performance?

Challenges. Recent works [24, 28] have shown the efficacy of
self-trained models for classification tasks in limited labeled data
scenarios. The traditional self-training algorithm [45] comprises
of two models – a teacher model and a student model. At each
iteration, the teacher model is trained on some human-labeled sam-
ples (𝐻 ) in the training corpus first. Once trained, it annotates some
unlabeled samples (𝑈 ) from the same corpus and initializes the
weights of the student model. The student model is then trained
on a corpus containing both human-labeled and pseudo-labeled
samples (𝐻 ∪𝑈 ) inferred by the teacher model. Once trained, the
student model initializes the weights of the teacher model for the
next iteration. These steps are repeated until both models converge.
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Unfortunately, one of the major drawbacks of this algorithm, es-
pecially when the number of human-labeled samples is limited, is
ensuring the quality of the final model. This is because pseudo-
labeled samples inferred by the teacher model that has been trained
on a small human-labeled corpus can be quite noisy. Training the
student model on such noisy samples results in gradual drift [39] in
the model’s quality due to error propagation during the gradient up-
date step (discussed in Section 2). We develop an uncertainty-aware
training strategy to address this challenge in this paper.

Contributions. Our main contributions are two-fold. First, we
ensure that the quality of pseudo-labeled samples in our training
corpus is high by developing a semi-supervised generative model. It
acts as a supplementary supervision source (Section 4.1) along with
teachermodel to infer high-quality pseudo-labels. Second, we ensure
that our model does not degrade in quality due to noisy, pseudo-
labeled samples in our corpus by developing an uncertainty-aware
training strategy. We estimate the label-uncertainty of each sam-
ple in our corpus and use it to re-weight gradient updates at each
training iteration (Section 4.2). We assign higher (or lower) weights
to amplify (or dampen) training signals from less (or more) noisy
samples. Contrary to prior works [24, 34], we do not solely rely on
prior knowledge about the content of a training sample to infer its
weight. This makes our method robust towards out-of-distribution
samples in our training corpus. Once training terminates, the fi-
nal model undertakes a multi-class classification task to categorize
each DOM-node in the test corpus as one of the attributes to be
extracted (or None). We combine all of the components described
above within a single framework, called LEAST. Figure 2 presents
an overview of its end-to-end workflow.

Summary of results. LEAST is an end-to-end training algorithm
that is compatible with multiple contemporary web-extraction mod-
els. We exhibit this capability by training multiple public models us-
ing LEAST. We evaluate their performance on two publicly available
datasets – the Structured Web Data Extraction (SWDE) dataset [22],
and the Web-based Structural Reading Comprehension (WebSRC)
dataset [10]. Our results show that LEAST generalizes to multiple
datasets and backbone models. Using LEAST, we can train models
with less than ten human-labeled pages from each seed website
and outperform state-of-the-art baselines by up to 22 F1 points –
reducing the number of human-labeled samples needed to train the
same model for comparable extraction performance using a naive
transfer learning baseline [29, 54] by up to 11𝑥 .

2 BACKGROUND
Before presenting our workflow, we introduce some of the concepts
and formalizations used to describe it first.

A. Websites: A website is a collection of web-pages that share
similar HTML templates. Each website used in our experiments
is either a seed or a target website. Typically, a seed website is a
popular/well-known website in a particular domain, whereas a
target website can be a new/emerging website. Due to this qual-
itative difference, the cost of human-labeling also differs from
one website to another. There is an abundance of preexisting re-
sources that can be leveraged to acquire human-labeled pages
from some of the most popular websites in a particular do-
main. Unfortunately, this is not the case for emerging websites.

Therefore, additional resources are needed to set up a human-in-
the-loop workflow for labelling such websites from the scratch.

B. Detail-Pages: Each website comprises of multiple detail-pages.
A detail-page is a web-page that represents a single entity,
which is typically the topic entity of that page. The topics cov-
ered by detail-pages in each website have one-to-one mapping
to a real-world object referred as the target vertical. For exam-
ple, the detail page shown in Fig. 1 belongs to a website from
the movie vertical.

C. IE from Detail-Pages: Our objective is to extract a set of
attributes 𝐴′ from detail-pages appearing in a target website.
The set of attributes to be extracted is specific to each vertical.
Following prior works [22, 29], we formulate this task as a
multi-class classification problem. Extracting 𝐴′ from a detail-
page, therefore boils down to inferring a softmax label for each
DOM-node on the page, between the attributes defined in 𝐴′

and None. We assume that each DOM-node in a target website
corresponds to at most one attribute.

D. Self-Training Web-Extraction Models: The traditional self-
training algorithm [45] consists of a teacher model 𝑓 (.;\𝑡𝑒𝑎)
and a student model 𝑓 (.;\𝑠𝑡𝑢 ). At each iteration 𝑡 , the teacher
model is trained on a randomly sampled human-labeled cor-
pus𝐻 . The number of samples in𝐻 is typically kept constant for
each iteration [3]. Once training terminates, the teacher model
annotates a randomly sampled unlabeled corpus (𝑈 ) and initial-
izes the weights of the student model, (i.e. \ (𝑡−1)𝑠𝑡𝑢 = \

(𝑡 )
𝑡𝑒𝑎). The

student model is then trained on the augmented corpus 𝐻 ∪𝑈

containing both human-labeled and pseudo-labeled samples in-
ferred by the teacher model. Both models update their weights
using backpropagation (see Eq. 1) in each iteration. Once train-
ing terminates, the student model initializes the weights of the
teacher model to start the next iteration. We train both models
in this alternating fashion until convergence.

\ (𝑡 ) = \ (𝑡−1) − 𝛼 · ▽ 1
𝑁

Σ𝑁𝑚=1 L(𝑦𝑚, 𝑓 (𝑥𝑚, \ (𝑡−1) )) (1)

In Eq. 1, L(, ) is a cross-entropy-based loss function, 𝑦𝑚 de-
notes the groundtruth (human-labeled or pseudo-labeled) for
the training sample 𝑥𝑚 . 𝛼 denotes the learning-rate and ▽(.)
denotes the gradient operator. \ (𝑡 ) represents model weights of
the teacher (or the student) model at iteration 𝑡 . Each training
sample is represented as a nested tuple {𝑥𝑚, 𝑦𝑚, 𝑝𝑚,𝑤𝑚},∀𝑚 ∈
[1, 𝑁 ], where 𝑥𝑚 represents a DOM-node, 𝑦𝑚 represents its
groundtruth label, 𝑝𝑚 denotes the detail-page, and𝑤𝑚 denotes
the website on which it appears.

E. Transferable Web-Extraction: Training a model using di-
rect supervision on a large-scale corpus with diverse page lay-
outs can require thousands of human-labeled pages from a
target website for robust extraction performance. Annotating
web-pages with diverse layouts is a resource-intensive task.
Recent works [27, 54] have leveraged transfer learning [37]
to improve the label-efficiency of this training process. They
mitigate labeling cost by pretraining the model on training
samples from some seed websites first, and then fine-tuning
it on a few human-labeled samples from each target website,
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thus transferring the knowledge gleaned from seed websites to
target websites with the help of a few human-labeled samples.

3 PROBLEM DEFINITION
Given 𝑛 semi-structured websites𝑊 , our objective is to train a
web-extraction model E that extracts a set of attributes 𝐴′ from
a set of target websites𝑊𝑡𝑎𝑟𝑔𝑒𝑡 ⊂ 𝑊 using minimal number of
human-labeled samples from𝑊 to train E without sacrificing its
downstream performance.

We propose LEAST – a self-training algorithm that optimizes
these two seemingly contradictory objectives simultaneously by
minimizing a cross-entropy based loss function on a pseudo-labeled
corpus. We describe our self-training algorithm next.

4 METHODOLOGY
One of the shortcomings of the self-training algorithm is ensuring
model quality when the number of human-labeled samples is small.
Pseudo-labeled samples inferred by a teacher model that has been
trained on a small human-labeled corpus is often quite noisy [39].
A student model trained on these samples degrades in quality due
to error propagation during the gradient update steps (Eq. 1). We
address this shortcoming by following a two-prong approach. First,
we develop a semi-supervised generative model that acts as a supple-
mentary supervision source and infers high-quality pseudo-labeled
samples with minimal human supervision. Second, we develop an
uncertainty-aware training strategy that re-weights each sample
based on its label-uncertainty and amplifies (or dampens) training
signals obtained from it. We describe both of them below.

4.1 Supplementary Supervision Source
Following prior works [6], we assume that each website 𝑤𝑖 pub-
lishes detail-pages by applying a site-specific HTML template to
a noisy dynamic view [25] H𝑤𝑖

of a vertical-specific abstract rela-
tion H. In other words, H is a materialized relation with abstract
data types [35] as columns. In this construct, information extrac-
tion from a detail-page boils down to inverting this generative
process to infer the website-specific relation H𝑤𝑖

. Assuming partial
overlap between websites within a vertical, these website-specific
relations can then be used as a distance supervision source to label
detail-pages from websites in the same vertical.

4.1.1 Formalization. We assume that a websitew𝑖 publishes detail-
pages from a vertical-specific abstract relation H as follows.

w𝑖 = 𝑅𝑖 (𝑒𝑖 (𝜋𝑖 (𝜎𝑖 (H)))) (2)
In Eq. 2, 𝜎𝑖 represents the selection operator – it returns a

subset of tuples in H, 𝜋𝑖 represents the projection operator – it
returns a subset of columns in H, 𝑒𝑖 represents website-specific
page-level noise – it returns a relation with extraneous and/or erro-
neous attribute-values, 𝑅𝑖 represents a website-specific rendering
function – it encodes each tuple of the website-specific relation
H𝑤𝑖

= 𝑒𝑖 (𝜋𝑖 (𝜎𝑖 (H))) as a detail-page in website w𝑖 .

4.1.2 Inverse rendering rules. The objective of our generativemodel
𝛾 is to infer a website-specific relation H𝑤𝑖

from a few human-
labeled pages of a website𝑤𝑖 ,∀𝑖 . We formulate this task as inferring
a set of website-specific inverse rendering rules. Formally, an inverse

rendering rule is a one-to-one mapping between an attribute and
a set of DOM-nodes in𝑤𝑖 . We follow a two-pronged approach to
infer these rules. They are as follows.
A. Page-level consistency.We encode page-level consistencies to

capture inverse rendering rules in the form of weakly super-
vised functions [43, 52]. Each function takes as input an at-
tribute from the vertical-specific attribute-set 𝐴′, an unlabeled
detail-page𝑝 , and a list of human-labeledDOM-nodes (𝑛𝑜𝑑𝑒_𝑙𝑖𝑠𝑡 )
that are annotated as true instances of that attribute. It outputs
a list of DOM-nodes from an unlabeled page 𝑝 corresponding to
that attribute. These functions can range from open-source li-
braries [33], regular expressions encoding textual/XPath-based
patterns to custom functions that combine multiple modalities.
The number and type of functions employed depend on the
website and the target vertical. We provide an example below.

# Fuzzy string matching
def fuzzy_string_matcher(node_list,a,p){

labeled_node_list = []
for node in p.dom_tree():

if node.hasText():
for n in node_list:

if fuzzy_match(n.text(),node.text()):
labeled_node_list.append(node)

return labeled_node_list
}

In this example, we use fuzzy string matching to assign each
DOM-node of an unlabeled page with labels from the vertical-
specific attribute-set.

B. Overlapping attributes. Web-Extraction and Integration of Redun-
dant data or WEIR [6] is a publicly available library that infers
website-specific relations (H𝑤𝑖

) by aligning partially overlap-
ping detail-pages across different websites in the vertical. By
identifying overlapping text elements in various websites, it
aligns detail-pages representing similar topics and infers a set
of rules for those entities. We bootstrap these rules using a few
human-labeled pages from each website 𝑤𝑖 to infer inverse
rendering rules for each attribute in 𝐴′.

4.1.3 Inferring pseudo-labels. We employ the inverse rendering
rules learned this way to infer website-specific relationsH𝑤𝑖

,∀𝑖 . We
use these relations as a distance supervision source to annotate un-
labeled pages in our corpus. If a DOM-node with text 𝑡 is an instance
of an attribute 𝑎 ∈ 𝐴′ in a website-specific relationH𝑤𝑖

, we label all
DOM-nodes in an unlabeled page with text T as an instance of the
attribute 𝑎. In case of different labels are assigned to T in different
website-specific relations, we assign a label by majority voting.

4.2 Uncertainty-Aware Training
Training a model on noisy pseudo-labeled samples can result in
gradual drifts [39] in the model’s quality. Errors due to label-noise
can propagate through the model during gradient updates (see
Eq. 1). To mitigate this, we adopt an uncertainty-aware training
strategy. It has two main components. They are as follows.

4.2.1 Adaptive re-weighting. Leveraging the idea of weight pertur-
bation [38], we assign each training sample 𝑥𝑚 a weight 𝑐𝑚 ∈ (0, 1].
We amplify (or dampen) the training signal for a sample 𝑥𝑚 by
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Figure 3: The generative model renders a semi-structured website from a noisy dynamic view of a relation 𝐻 using
website-specific HTML templates. We infer inverse rendering rules to obtain website-specific relations 𝐻𝑙 and 𝐻𝑅 that act
as a distant supervision source in our training workflow.

multiplying it with a weight proportional to its estimated label un-
certainty. We assign smaller weights to samples that are noisy and
larger weights to samples that are less noisy. Training samples ap-
pearing on the same detail-page are assigned the same weight. Both
the teacher and the student model are trained on this re-weighted
corpus, updating their weights after each iteration 𝑡 as follows.

\ (𝑡 ) = \ (𝑡−1) − 𝛼 · ▽ 1
𝑁

Σ𝑁𝑚=1 (𝑐𝑚 · L𝑛𝑎 (𝑦𝑚, 𝑓 (𝑥𝑚, \ (𝑡−1) ))) (3)

In Eq. 3,L𝑛𝑎 (.) denotes a noise-aware loss function (defined next).
The weight 𝑐𝑚 ∈ (0, 1] assigned to a sample depends on a number
of factors. If 𝑥𝑚 appears on a human-labeled web-page, we assign
it a weight of 1. If it appears on an unlabeled page but the website
has some human-labeled pages in our corpus, we assign it a weight
equal to the validation accuracy of the student model on that web-
site. Finally, if 𝑥𝑚 appears on an website that has no human-labeled
pages in our corpus, we assign it a weight 𝑐𝑚 = 𝑐 𝑗 ·𝐽𝑆 (𝑝𝑚, 𝑝 𝑗 ), where
𝑗 = argmax𝑖 𝐽𝑆 (𝑝𝑚, 𝑝𝑖 ) and 𝑐 𝑗 denotes the weight assigned to the
human-labeled page 𝑝 𝑗 that has the highest Jaccard-Similarity with
the web-page on which 𝑥𝑚 appears. We represent each web-page
as a bag-of-words to compute the Jaccard-Similarity score.

4.2.2 Noise-aware loss. We incorporate the sample weights com-
puted above as an uncertainty measure to compute a noise-aware

loss for each training sample. For a sample 𝑥𝑚 with a softmax la-
bel �̂� (𝑡 )𝑚 at training iteration 𝑡 and groundtruth 𝑦𝑚 , we compute
this loss term as follows.

L𝑛𝑎 (�̂� (𝑡 )𝑚 , 𝑦𝑚) = L(�̂� (𝑡 )𝑚 , 𝑦𝑚) ·𝑒𝑥𝑝 (1 − 𝑐𝑚 · 𝑘 (𝑡 ) )+𝑒𝑥𝑝 (𝑐𝑚) ·𝑈 (0, 1)
(4)

In Eq. 4, L(.) is a cross-entropy-based loss function, 𝑐𝑚 repre-
sents the sample-weight for 𝑥𝑚 , and 𝑘 (𝑡 ) ≥ 1 represents a penalty
term that accounts for distribution shift during training. The second
term is a regularization factor to prevent the model from overfit-
ting and 𝑈 (0, 1) is a random number within [0, 1]. Setting 𝑘 (𝑡 ) to
a larger number increases the penalty imposed on the model and
encourages it to learn more from out-of-distribution samples. We
update 𝑘 (𝑡 ) after each iteration to regulate this as follows.

𝑘 (𝑡 ) = 𝑘 (𝑡−1) − K1 · 𝑒𝑥𝑝 (−K2 · 𝑡) (5)
In Eq. 5, K1,K2 ≥ 0 are constants. At each training iteration 𝑡 ,

we update the weights of the teacher and the student model (Eq. 3)
with gradients computed using this loss function. We present a
sensitivity analysis of the hyperparameter 𝑘 (𝑡 ) on a LEAST-trained
model’s extraction performance in Appendix B.

4.3 End-to-End Workflow
4.3.1 Training workflow. We provide an overview of our training
workflow in Algorithm 1. We start by training the teacher model
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Algorithm 1 The LEAST Algorithm

1: Input: Human-labeled samples 𝐻 = (𝑋 𝑙 , 𝑌 𝑙 , 𝑃𝑙 ,𝑊 𝑙 ); Un-
labeled samples 𝑈 = (𝑋𝑢 , 𝑃𝑢 ,𝑊𝑢 ); Maximum number of
pseudo-labeled samples 𝐿; Number of training iterations 𝑇 .

2: Output: Final model 𝑓 (:, \ (𝑇 )
𝑠𝑡𝑢 )

3: Initialize teacher training corpus 𝐶 (0)
𝑡𝑒𝑎 = 𝐻

4: Initialize student training corpus 𝐶 (0)
𝑠𝑡𝑢 = 𝐻

5: for 𝑖 = 1 to 𝑇 do
6: Train the teacher model 𝑓 (:, \ (𝑡 )𝑡𝑒𝑎) on 𝐶

(0)
𝑡𝑒𝑎

7: Sample 𝐿 unlabeled samples from𝑈 without replacement
8: for each (𝑥𝑢 , 𝑝𝑢 ,𝑤𝑢 ) ∈ 𝑈 do
9: Infer a pseudo-label �̂� (𝑡 ) for 𝑥𝑢

10: Update 𝐶 (𝑡 )
𝑠𝑡𝑢 = 𝐶

(𝑡−1)
𝑠𝑡𝑢 ∪ (𝑥𝑢 , �̂� (𝑡 ) , 𝑝𝑢 ,𝑤𝑢 )

11: end for
12: for each (𝑥, �̂� (𝑡 ) , 𝑝,𝑤) ∈ 𝐶

(𝑡 )
𝑠𝑡𝑢 do

13: Compute a sample weight for 𝑥
14: end for
15: Initialize the student model using weights of 𝑓 (:, \ (𝑡 )𝑡𝑒𝑎)
16: Train the student model on 𝐶 (𝑡 )

𝑠𝑡𝑢 using noise-aware loss
17: Update the teacher model 𝑓 (:, \ (𝑡+1)𝑡𝑒𝑎 ) = 𝑓 (:, \ (𝑡 )𝑠𝑡𝑢 )
18: end for

on a few randomly sampled human-labeled samples. Once training
terminates, we initialize the student model with weights of the
teacher model. We construct the student training corpus by aug-
menting a few human-labeled samples (𝐻 ) with a large number of
pseudo-labeled samples (𝑈 ). We construct the pseudo-labeled cor-
pus by assigning each unlabeled DOM-node in our training corpus
a softmax label. At each training iteration 𝑡 , we combine two super-
vision sources for this purpose: (a) the teacher model 𝑓 (.;\ (𝑡−1)𝑡𝑒𝑎 ),
and (b) the generative model 𝛾 . We assign an unlabeled DOM-node
a pseudo-label inferred by the generative model with a probability
of 𝛽 (𝑡 ) , or the teacher model with a probability of (1 − 𝛽 (𝑡 ) ). We
prioritize the pseudo-labels inferred by the generative model during
the early iterations and the teacher model during the later iterations
of our self-training algorithm. This reduces the likelihood of label
noise propagating through the student model during the gradient

Table 1: Values of different hyperparameters in LEAST

Symbol Description Value

𝑇 Maximum no. of self-training iterations 5
𝛽 (0) Pseudo-labeled corpus construction 0.6
B1 Update 𝛽 (𝑡 ) 0.1
B2 Update 𝛽 (𝑡 ) 1
𝑘 (0) Penalty term in noise-aware loss 1
K1 Update 𝑘 (𝑡 ) 0.1
K2 Update 𝑘 (𝑡 ) 1
𝐿 Maximum no. of the unlabeled samples 100,000

update step. We update the hyperparameter 0 < 𝛽 (𝑡 ) < 1 after each
training iteration as follows.

𝛽 (𝑡 ) = 𝛽 (𝑡−1) − B1 × 𝑒𝑥𝑝 (−B2 · 𝑡) (6)
In Eq. 6, B1,B2 ≥ 0 are constants. We present a sensitivity

analysis of the hyperparameter 𝛽 (𝑡 ) on a LEAST-trained model’s
extraction performance in Appendix B. We present the value of all
LEAST hyperparameters used in our experiment in Table 1. We ob-
tain these values empirically through grid search. Once the student
model is trained, we initialize the teacher model with weights of the
student model for the next iteration. We repeat this process until
both models converge. We train both models on a re-weighted cor-
pus using the noise-aware loss function defined in Eq. 4. Combining
two supervision sources to infer the pseudo-labeled samples en-
sures that we have a large-scale high-quality corpus. Re-weighting
each training sample by estimating its label uncertainty ensures that
error propagation from noisy, pseudo-labeled samples is mitigated
during model training. We measure the individual contribution of
various components in our training workflow by performing an
ablation study in Section 5.4.

4.3.2 Inference workflow. Once training terminates, the finalmodel
boils down the IE task to a multi-class classification problem. It
assigns each DOM-node with non-empty text in our test corpus a
softmax label from the vertical-specific attribute-set 𝐴′ or None.

5 EXPERIMENTS
We seek to answer three key questions in our experiments. Q1.
how does a LEAST-trained model perform in zero-shot and few-
shot extraction scenarios? Q2. how do LEAST-trained models per-
form against state-of-the-art baseline methods? Q3. what are the
individual contribution of some of the key components of our work-
flow on extraction performance? We answer the first question by
training two state-of-the-art web-extraction models using LEAST.
We evaluate our performance on two publicly available datasets in
Section 5.4.1. We answer the second question by comparing our per-
formance against a number of strong baselines in Section 5.4.5, and
the third question by performing an ablation study in Section 5.4.6.

5.1 Experiment Design
5.1.1 Dataset. We evaluate all competing models on two publicly
available benchmark datasets – The StructuredWebData Extraction
(SWDE) [22] and Web Structured Reading Comprehension (Web-
SRC) [10] dataset. The SWDE dataset contains 8 verticals – auto,
university, camera, movie, job, book, restaurant, and nbaplayer. Each
vertical consists of 10 websites and thousands of detail-pages. Some
of these verticals (e.g. nbaplayer, auto) have more page-overlap
across websites than other verticals (e.g. movie, university). Simi-
larly, some verticals (e.g. job) have more detail-pages with variable
text elements than boilerplate text compared to other verticals (e.g.
auto). The WebSRC dataset, on the other hand, contains 10 verticals
– auto, book, camera, game, jobs, movie, phone, restaurant, sports and
university. Each vertical contains a varying number of websites1.
Each website is comprised of 400 detail-pages. Our objective is to
extract a vertical-specific attribute-set from each vertical. For the

1ranging from 2 to 14

3103



SWDE dataset, we use the officially released version to identify
the attribute-set for each vertical. For the WebSRC dataset, we use
the ’what is’ question answer pairs to construct vertical-specific
attribute-sets. We refer interested readers to the original papers for
more details on each dataset.

5.1.2 Dataset partition. Following prior works [27, 54], we train
a transferable model by pretraining it on a pretraining corpus first,
and then fine-tune [37] it on a fine-tuning corpus. We construct
our pretraining corpus by randomly sampling 90% of detail-pages
from 2 seed websites in each vertical. Only 9 pages from each
website are human-labeled while the rest is unlabeled. Our vali-
dation set contains the rest of the pages from the seed websites.
The pretraining corpus also contains unlabeled pages from the rest
of the websites in each vertical (except the target websites). Our
fine-tuning corpus, on the other hand, contains detail-pages from
the target websites. Only 𝑘 pages randomly sampled from each
target website is human-labeled in the fine-tuning corpus while
the rest is unlabeled. We report end-to-end performance for both
zero-shot (𝑘 = 0), and few-shot extraction scenarios (𝑘 = 5, 100).
The pretraining and fine-tuning corpus contain detail-pages from
the same vertical. We evaluate our model on 3 randomly sampled
websites from each vertical. These 3 websites act as target websites
in our setup. Our test corpus contains detail-pages only from the
target websites barring the human-labeled pages used to fine-tune
the model. We follow this partition for both datasets. We repeat
our experiments with 5 different permutations of seed and target
websites and report the average score for each vertical.

5.1.3 Evaluation metrics. Following prior works [22, 29, 54], we
evaluate the extraction performance of all competing models using
the page-level F1-score. Briefly, the page-level F1-score represents the
harmonic mean of the precision and recall of the model on a detail-
page. We evaluate the correctness of a predicted attribute value by
comparing it against the human-annotated groundtruth. We use the
evaluation script released by Zhou et al. [54] to compute the aver-
age page-level F1-scores for both datasets. We compute the average
F1-score over all verticals to compare our performance against each
baseline method. Besides extraction performance, we also compute
the label-efficiency of a LEAST-trained model. We measure the label-
efficiency of a model by comparing the number of human-labeled
samples needed to train the same backbone model using transfer
learning [54] to obtain a comparable extraction performance.

5.2 Backbone Models
We use two state-of-the-art models as backbone in our experiment.

5.2.1 The SimpDOM Model. It is a LSTM based model [54] that
employs some heuristics to simplify the HTML-structure of a detail-
page by pruning off redundant DOM-nodes containing obvious
non-matches and boilerplate text as a preprocessing step. It subse-
quently encodes each DOM-node in this simplified page using a set
of carefully designed features, and classifies them as an attribute to
be extracted (or None). Following the original work, we pretrain this
model on a supervised extraction task on our pretraining corpus,
and fine-tune it on a supervised extraction task on human-labeled
pages in our fine-tuning corpus. We use LEAST-training in both
pretraining and fine-tuning phases of our training workflow. We

Table 2: extraction performance of LEAST-trained models on
2 seed websites in the pretraining corpus

Dataset Model Zero-shot (%) 5-shot (%) 100-shot (%)

SWDE SimpDOM 48.63 95.34 95.98
MarkupLM 57.58 97.24 97.72

WebSRC SimpDOM 45.70 90.10 91.95
MarkupLM 52.25 92.60 94.75

provide an overview of the architecture and hyperparameter set-
tings of this model in Appendix A.

5.2.2 The MarkupLMModel. It is a Transformer-based model [27]
that encodes each token appearing on a detail-page using a combi-
nation of text-based & XPath-based embeddings and classifies each
DOM-node using a fully-connected layer. Following the original
work, we pretrain this model on our pretraining corpus using a
number of unsupervised objectives, and then fine-tune it using a
supervised extraction task on the human-labeled pages in our fine-
tuning corpus. We use LEAST-training only during the fine-tuning
stage. We provide an overview of the architecture and hyperparam-
eter settings of this model in Appendix A.

Implementation details. We use the open-source LXML li-
brary to preprocess each detail-page in our pretraining and fine-
tuning corpus. We apply the tree-simplification strategy proposed
by Zhou et al. [54] to prune-off redundant nodes and edges from
the HTML structure of a web-page in both datasets. This includes
boilerplate nodes whose values are constant across the website (e.g.
footers, navigational content). We also trim node-texts with more
than 15 words. We use the official implementation of each model
in our experiments. We train both models on a NVIDIA V100 GPU
and follow the authors’ recommendations for optimal performance.

5.3 Baselines
We compare our extraction performance against a number of strong
baselines. They are as follows.

5.3.1 Web-Extraction using Overlapping Data . WEIR [6] is an unsu-
pervised algorithm that aligns detail-pages from partially overlap-
ping websites to infer a list of wrappers for overlapping entities. We
bootstrap these mappings using human-labeled pages in the pre-
training and fine-tuning corpus to infer wrappers for each attribute.

5.3.2 Visual Rendering-based Model . Render-FULL [22] is a super-
vised model that utilizes a number of visual features to encode pair-
wise relationship between text-spans appearing on a detail-page and
classifies them as one of the attributes to be extracted. We pretrain
this model on a supervised IE task defined on the pretraining corpus,
and then fine-tune it on the fine-tuning corpus in a similar way.

5.3.3 Simplified DOM-Tree . SimpDOM [54] is a state-of-the-art web-
extraction model that utilizes a LSTM-based neural network to clas-
sify DOM-nodes on a detail-page. It utilizes a number of heuristics
to prune redundant nodes from each detail-page and computes
a feature vector for each DOM-node on this simplified page. To
obtain a transferable model, we pretrain it on a supervised IE task
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defined on the pretraining corpus and then fine-tune it on the the
fine-tuning corpus in a similar way.

5.3.4 Relational Graph Convolutional Network . Following Lin et
al. [29], we implement a relational graph convolution network that
encodes both local and pairwise relationships of each DOM-node
using convolutional features. To obtain a transferable model, we
pretrain the network on a supervised IE task on the pretraining
corpus first, and then fine-tune it on the fine-tuning corpus.

5.3.5 Structure-Aware PretrainedModel . MarkupLM [27] is a Transformer-
based model that encodes each token appearing on a detail-page
using a combination of text-based and XPath-based embeddings.
To obtain a transferable model, we pretrain it using a number of
unsupervised objectives on the pretraining corpus fist, and then
fine-tune it using a IE task defined on the fine-tuning corpus.

5.3.6 Sequentially Pretrained Model . H-PLM [10] serializes each
detail-page by combining HTML tags and text-spans to compute
a distributed representation of each token. It uses a pretrained
ELECTRA model [11] as its backbone to compute these distributed
representations. To obtain a transferable model, we pretrain it on a
supervised IE task defined on the pretraining corpus first, and then
fine-tune it on the fine-tuning corpus in a similar way.

5.3.7 Attribute Extraction via Question Answering . AVEQA [50] for-
mulates the extraction task as a question answering problem. It
uses a BERT-based [14] encoder to compute a distributed repre-
sentation for each text-span and identify attributes as delimited
text-spans that represent answers to vertical-specific questions. To
obtain a transferable model, we pretrain this model on a supervised
IE task defined on the pretraining corpus, and fine-tune it on the
fine-tuning corpus in a similar way.

5.3.8 Uncertainty-Aware Text Classification. UST follows the un-
certainty aware classification scheme proposed by Mukherjee et
al. [34] for our IE task. Following the original work, we serialize
each web-page as a sequence of tokens and assign each token a
weight using the Monte-Carlo dropout-based learning strategy. We
incorporate this weight as a label uncertainty measure and train
a BERT-based model on this re-weighted corpus. We pretrain this
model on a supervised IE task defined on the pretraining corpus
and fine-tune it on the fine-tuning corpus in a similar way.

5.3.9 Large Language Model. GPT-Neo-1.3B [2] is an open-source,
pretrained Transformer model [48] that replicates the GPT-3 archi-
tecture [7]. It has approximately 1.3B trainable weights. We serialize
each web-page as a sequence of tokens, segment it into chunks to
adhere to the maximum input sequence length of 512, and feed
each chunk to the model to extract the target attributes. For 𝑘-shot
extraction scenarios, we also feed 𝑘 human-labeled attribute-values
from different webpages as exemplars to the model.

5.4 Results and Discussion
5.4.1 Extraction performance. We report the extraction perfor-
mance of two LEAST-trained models on both experimental datasets
in Table 2.We obtain better extraction performance on both datasets
with the larger MarkupLM model. On the SWDE dataset, we obtain
an average F1 score of 48.63% using the SimpDOM model and 57.58%

Table 3: extraction performance of LEAST-trained MarkupLM
model on the SWDE dataset with 2 seed websites in the pre-
training corpus

Vertical Zero-shot (%) 5-shot (%) 100-shot (%)

nbaplayer 84.08 99.80 99.85
auto 53.22 98.0 99.04
movie 30.01 94.15 94.50
university 61.90 99.50 99.50
camera 49.35 92.11 93.22
job 48.0 97.86 98.0
restaurant 55.65 98.52 99.27
book 78.50 98.05 98.38
Average 57.58 97.24 97.72

Table 4: extraction performance of a LEAST-trained SimpDOM
model on the SWDE dataset with 2 seed websites in the pre-
training corpus

Vertical Zero-shot (%) 5-shot (%) 100-shot (%)

nbaplayer 82.41 99.71 99.83
auto 50.29 97.20 98.83
movie 24.65 92.12 92.02
university 30.50 99.98 99.98
camera 41.25 89.58 91.05
job 38.71 92.01 93.0
restaurant 48.40 97.22 97.90
book 72.85 94.90 95.27
Average 48.63 95.34 95.98

using the MarkupLM model with no human-labeled pages from the
target websites in the training corpus. On the WebSRC dataset, we
obtain an average F1 score of 45.70% using the SimpDOM model and
52.25% using the MarkupLM model. For both datasets, extraction
performance improves with the number of human-labeled samples
from each target website in the fine-tuning corpus. This is because
the quality of the pseudo-labeled samples improve as the model gets
exposed to more human-labeled samples from the target websites.
Improvement in extraction performance plateaus after a point as the
transferability of the model saturates after encountering a sufficient
number of human-labeled samples from the target websites.

5.4.2 Vertical-specific performance. To obtain better understand-
ing of a model’s performance that has been trained with LEAST,
we report extraction performance of both models on each vertical
of the SWDE dataset. The vertical-specific breakdown reveals that
we obtain better performance on verticals where the amount of
page-overlap across websites is high, e.g. nbaplayer. We observe a
F1-score of 84.08% in the zero-shot extraction scenario on this ver-
tical. For verticals with high number of variable text elements than
boilerplate text (e.g. job), on the other hand, extraction performance
improves faster with the number of human-labeled pages from
each target website. For example, in the job vertical, we observe an
improvement of average F1 score by more than 49% by increasing
the number of human-labeled pages from each target website from
0 to 5 in our fine-tuning corpus.
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(a) MarkupLM-LEAST (b) SimpDOM-LEAST

Figure 4: Average F1 score of LEAST-trained models on the SWDE dataset with samples from 𝑛 = {2, 4, 6} seed websites in the
pretraining corpus

5.4.3 Diversity of training samples. We investigate the role played
by the diversity of samples in our training corpus on extraction per-
formance by varying the number of seed websites in the pretraining
corpus. Our results (see Fig. 4) show that increasing the number of
seed websites improves average F1 score for both models although
this improvement gets smaller as more human-labeled samples are
introduced from each target website for 𝑘-shot extraction scenarios.

5.4.4 Label-efficiency. Wemeasure the label-efficiency of a LEAST-
trained model by comparing the number of human-labeled pages
needed to train the same backbone model using naive transfer
learning [29, 54] to obtain comparable extraction performance. We
pretrain this baseline model on our pretraining corpus and then
fine-tune it on our fine-tuning corpus (see Section 5.1.2). If the ex-
traction performance of the baseline model trained this way is not
comparable with the LEAST-trained model, we increase the number
of human-labeled pages from each website in both the pretrain-
ing and fine-tuning corpus by 25. We keep increasing the number
of human-labeled pages in our training corpus until we have ob-
tained a comparable F1 score using the baseline model. Recall that
SimpDOM uses human-labeled samples during both pretraining and
fine-tuning phases, whereas MarkupLM uses human-labeled samples
only during the fine-tuning phase if our training workflow.

Table 5: Number of human-labeled pages needed for com-
parable zero-shot performance on the SWDE dataset with
detail-pages from 2 seed websites in the pretraining corpus

Dataset Backbone # Human-labeled pages Saved (%)

SWDE SimpDOM 18 91.50
MarkupLM 18 76.0

WebSRC SimpDOM 18 83.45
MarkupLM 18 72.90

Let, the number of human-labeled pages required to train a
model by following this approach for comparable extraction perfor-
mance is𝑁not_LEAST. The number of human-labeled pages needed to
LEAST-train the same backbonemodel is𝑁LEAST. We define the label-
efficiency of a LEAST-trained model as 𝑁not_LEAST−𝑁LEAST

𝑁not_LEAST
. We report

the label-efficiency of both SimpDOM-LEAST and MarkupLM-LEAST

for zero-shot extraction on the SWDE dataset and WebSRC dataset
in Table 5. We observe that the SimpDOM-LEAST model requires
11.76𝑥 less human-labeled pages than its counterpart, whereas the
MarkupLM-LEAST model requires 4.16𝑥 less human-labeled pages
to achieve comparable performance. For the WebSRC dataset, the
SimpDOM-LEAST model requires 6.04𝑥 less human-labeled pages
than its counterpart, whereas the MarkupLM-LEAST model requires
3.69𝑥 less human-labeled pages. We observe similar trends for 𝑘-
shot extraction scenarios as well. Percentage of human-labeled sam-
ples saved by the SimpDOM-LEAST model is comparatively larger
than the MarkupLM-LEAST model for both datasets. This is because
the SimpDOM-LEAST model is both pretrained and fine-tuned on
human-labeled samples, and therefore has stronger correlation with
the amount of human-labeled samples needed to train the model.
The MarkupLM-LEAST model, on the other hand, only leverages
human-labeled samples during the fine-tuning stage. LEAST reduces
the number of human-labeled samples by a significant amount with-
out trading off the extraction performance of both models.

5.4.5 Comparison against baselines. We compare the extraction
performance of LEAST-trained models on the SWDE dataset against
a number of baseline methods in Table 6. For fair comparison, we
follow the recommendations made by the respective authors for
optimal performance. We use the same dataset partition for all com-
peting models. Results show that LEAST-trained models outperform
both WEIR and AVEQA in zero-shot and 𝑘-shot extraction scenarios.
Extraction performance of WEIR suffers due to the limited num-
ber of human-labeled pages and marginal overlap across websites
in many target verticals. The SimpDOM-LEAST model outperforms
AVEQA by more than 9% on the zero-shot extraction scenario. Boost
in performance is higher for 𝑘-shot extraction scenarios as the qual-
ity of the pseudo-labeled samples improves with the model getting
exposed to more human-labeled samples from each target website.
We also outperform the Render-FULL baseline by more than 28%
on the zero-shot extraction scenario. From a qualitative standpoint,
our method is more resource-efficient than Render-FULL as it does
not require any of the computationally expensive processes (e.g.
web-page rendering, visual feature computation) in its workflow.
LEAST-trained models outperform the SimpDOM model. Leveraging
additional training signals from the pseudo-labeled samples offers
us a boost of more than 22% in extraction performance for the
zero-shot scenario. LEAST-trained models also outperform the RGCN
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Table 6: Comparison of average F1 score of LEAST-trained
models against baseline methods on the SWDE dataset

No. of seed websites = 2
Model Zero-shot (%) 5-shot (%) 100-shot (%)

WEIR 8.12 9.05 14.27
Render-FULL 20.50 21.67 30.86
SimpDOM 25.98 27.02 38.95
RGCN 10.25 11.98 21.07
MarkupLM 41.67 43.59 92.01
H-PLM 38.30 41.88 88.72
AVEQA 39.18 41.02 86.50
UST 36.82 40.90 81.85
GPT-Neo 39.50 65.20 92.75
SimpDOM-LEAST 48.63 95.34 95.98
MarkupLM-LEAST 57.58 97.24 97.72

baseline on both zero-shot and 𝑘-shot extraction scenarios. We
obtain state-of-the-art results with the MarkupLM-LEAST model for
the zero-shot extraction scenario, outperforming the H-PLM model
by more than 19%, and the MarkupLM model by more than 15% in
the zero-shot extraction scenario. We observe similar trend for the
𝑘-shot extraction scenarios as well. Comparing our models against
the uncertainty-aware classification scheme undertaken in UST re-
veals improved extraction performance in all verticals. This is due
to the quality of the pseudo-labels inferred by UST and its lack of
structure-awareness in computing a distributed representation of
each token. We outperformed GPT-Neo on both zero-shot and 5-
shot settings. On 100-shot setting, its performance improved as
it was trained on more human-labeled examples. We hypothesize
that there are two main reasons behind its poor performance on
low-resource scenarios. First, it is not able to differentiate between
structural tags and content tokens in the input sequence. Second,
it is not able to identify and exclude boilerplate-text in the input
sequence. Improved extraction performance of LEAST-trained mod-
els against multiple strong baselines in both zero-shot and 𝑘-shot
extraction scenarios establish the efficacy of our training workflow.

Table 7: Results of ablation study

Index Component ✗ ΔF1 score ↓ (%)

A1 Generative modeling for pseudo-labels 15.01
A2 Re-weighting 2.75
A3 Noise-aware loss 1.88
A4 Uncertainty-aware training 5.06

5.4.6 Ablation study. To understand the individual contribution
of some of the key components in our workflow on extraction per-
formance, we perform an ablation study in Table 7. We evaluate
the contribution of a component by removing it from our workflow
and compare the performance of the resulting model with a LEAST-
trained model on the SWDE dataset. We perform these experiments
using the MarkupLMmodel for the zero-shot extraction scenario. The
second column in this table describes the component being removed,
whereas the final column measures the drop in performance in the

resultingmodel. In scenario A1, we remove the semi-supervised gen-
erative model (Section 4.1) from our training workflow. This affects
the quality of the pseudo-labels in our training corpus. We observe
a drop in performance of more than 15 F1 points, thus establishing
the need of a supplementary supervision source when the number
of human-labeled training samples in the training corpus is small.
In scenario A2 and A3, we remove the re-weighting scheme and the
noise-aware loss function from our workflow. We observe drops in
extraction performance of 2.75 and 1.88 F1 points respectively. Fi-
nally, removing uncertainty-aware training from ourworkflow com-
pletely in scenario A4 results in a drop in extraction performance
of 5.06 F1 points. This establishes the efficacy of uncertainty-aware
training (Section 4.2) to ensure that our model does not degrade in
quality due to error propagation from noisy pseudo-labeled samples.

6 RELATEDWORK
A. Web Information Extraction. Information extraction from
web-pages is a well-studied problem [4, 46]. Traditional methods
such as wrapper induction [20] require a large number of human-
labeled pages from seed websites to learn custom rules or wrappers
for each attribute. Fagin et al. [17] proposed a formal construct to
represent extraction rules for identifying text spans in a document.
Although these methods yield high accuracy, they do not gener-
alize well on websites that have varying page layouts. Due to the
diverse nature of these pages, it is hard to scale these rule-based
approaches for a large corpus as well. Zhai et al. [53] proposed an ac-
tive learning-based approach to annotate additional pages from the
target websites incrementally to modify the existing set of wrappers
in a cost-effective way. Their approach however, require significant
human-effort in terms of building specialized annotation tools, label-
ing new pages from each target website andmore. Lockard et al. [30]
proposed a distance supervision based approach to address this limi-
tation. They used external knowledge-bases as a distant supervision
source to annotate text-spans in a detail-page from target websites
in a cost-effective way. Unfortunately, a comprehensive knowledge
base may not always be available, especially for emerging verticals.

B. Label-Efficient Information Extraction. To improve the
label-efficiency of web-extraction, Hao et al. [22] propose a set of
weak but generalizable features to encode vertical-specific knowl-
edge. Given an unseen target website, they apply these features
to identify page-level candidates for each attribute first, and then
remove spurious candidates by leveraging site-level information to
boost extraction performance. The site-level information is derived
in an unsupervised manner. Lockard et al. [31] encode contextual
features for each DOM-node by using a graph neural network. To
infer labels for a DOM-node appearing on an unseen target website,
they leverage a semi-supervised label propagation algorithm. Wang
et al. [50] formulates this extraction task as a question answering
problem. Assuming each attribute to be extracted as the question,
they develop a multi-task framework to identify text-spans cor-
responding to each attribute in a label-efficient way. The afore-
mentioned works leverage a number of carefully designed visual
features to encode a DOM-node. This has some serious implications
on the efficiency of the IEworkflow. Computing visual features from
a fully rendered web-page is a continuous and resource-intensive
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process as it requires additional memory to store auxiliary files
such as images, CSS, and JavaScripts that can easily get out-of-date.

C. Transferable Extraction Models. Lin et al. [29] develop
a relational neural network that encodes pairwise relationship be-
tween neighboring DOM-nodes without requiring any visual ren-
dering. They pretrain their model on a IE task defined on thousands
of human-labeled pages from the seed websites and fine-tune it
on the fine-tuning corpus. We compare our performance against
a relational graph convolutional network in Table 6. We outper-
form this baseline on all verticals. Zhou et al. [54] follow a similar
approach but improves the model’s generalization capability on
unseen target websites by introducing a tree-simplification strategy.
They encode each DOM-node using a number of handcrafted fea-
tures and classify them as one of the attributes to be extracted. We
outperform this baseline on both zero-shot and 𝑘-shot extraction
scenarios. Chen et al. [10] serializes a web-page as a sequence of
tokens. They define the context of each token using both text as
well as a sequence of HTML tags representing its XPath. They use
a pretrained ELECTRA model [11] to classify each token as one of
the attributes to be extracted. Wang et al. [50] improved the seri-
alization aspect by introducing HTML tags as special tokens. They
introduced cross-attention between text fields and HTML tokens
within a web-page. Unfortunately, the aforementioned methods
share a common flaw. Their transferability is correlated with the
number of human-labeled pages used during pretraining. Quality of
the model degrades when the number of human-labeled samples in
the pretraining corpus is small. Recent works have addressed this by
proposing unsupervised objectives to pretrain an extraction model.
Both Deng et al. [13] and Chen et al. [9] pretrain their model on unla-
beled detail-pages usingmasked languagemodel (MLM) as their pre-
training objective [14]. Li et al. [27] extend their work by proposing
three pretraining objectives that adapt to the characteristics of semi-
structured detail-pages. Leveraging these unsupervised objectives,
thesemodels can pretrain themselves on unlabeledweb-pages in the
pretraining corpus. Their end-to-end performance, however, still re-
mains correlated with the number of human-labeled pages from the
target websites used during the fine-tuning stage. We improve the
label-efficiency of this model by more than 4𝑥 in our training work-
flow. We make similar observations for autoregressive large lan-
guage models like GPT-3 [2]. Recent advances have brought these
models to the forefront due to their few-shot capability on various
extraction tasks [7]. The pretraining corpus of these models, how-
ever are heavily biased towards natural language text, which affects
their few-shot generalization capability on visually rich, complex
documents. Recentworks [1, 16] have established the necessity of in-
domain samples for robust extraction performance from such doc-
uments in few-shot scenarios. LEAST complements these models by
constructing a pseudo-labeled corpus that can be used to fine-tune a
large language model on in-domain samples from the target vertical.

D. Self-Training for Classification Tasks. Semi-supervised
models have been employed for many instance-level classification
tasks in recent years [34, 47]. A naive extension of these techniques
do not work for our task as they do not take the characteristics of
semi-structured detail-pages into account. Self-training [45] has
been a pioneer in terms of training a classification model on limited
human-labeled samples [18]. Self-training with noisy pseudo-labels

without degrading model quality is still an active area of research.
A majority of works [23] in this domain focuses on correcting the
noisy labels by learning label corruption matrices. More related to
our work, however, are instance re-weighting approaches [24, 34,
51] that re-weights samples based on how noisy they are. They rely
on large language models and prior knowledge about the content
of the pseudo-labeled samples to compute these weights. We do not
rely solely on the content of the training sample to compute sample
weights. We also account for its source-of-origin. This makes our
method more robust towards out-of-distribution training samples.

7 CONCLUSION
Traditional web-extraction methods e.g., wrapper induction are
hard to scale if we want to extract from thousands of different
websites from a vertical. If the layout of the target website is dif-
ferent from the seed websites used to learn these wrappers, addi-
tional human-labels is required to modify them. Prior works have
proposed transferable models to improve the label-efficiency of
web-extraction models. Extraction performance of these models,
however, rely on the size of the fine-tuning corpus. The same is
true for large language models like GPT-3 [2]. Although they gen-
eralize well for a wide range of natural language related tasks in
few-shot settings [7], for visually rich [43], complex documents
e.g., semi-structured detail-pages, they need to be fine-tuned on
human-labeled samples [1, 16] for robust extraction performance.
Constructing a large-scale fine-tuning corpus from each target web-
site requires significant human-effort. We develop LEAST, a label-
efficient self-training algorithm to address this gap. LEAST works in
tandem with many publicly available models, including large lan-
guage models, to construct a high-quality fine-tuning corpus with
a limited number of human-labeled samples. Using LEAST, we were
able to train a transferable model with less than ten human-labeled
pages from each seed website that outperformed state-of-the-art
models by up to 22 F1 points in zero-shot extraction scenarios, while
reducing the number of human-labeled samples needed to train
the same model using a naive transfer learning algorithm by more
than 11𝑥 . Analyzing the performance of different web-extraction
models, including large language models like GPT-3, trained using
LEAST with varying amounts of label-noise, and understanding the
impact on their extraction performance requires a systematic study.
It is one of our planned future works.

A APPENDIX A
A.1 The SimpDOMModel
SimpDOM is a LSTM-CNN-based model that represents each DOM-
node on a detail-page using a combination of textual and discrete
features. Given a detail-page, it first simplifies its HTML structure
to extract contextual features for each DOM-node. For each node,
it uses some heuristics to identify a subset of neighboring nodes as
friends and partners. The textual representations for each node are
then fed into a text encoder to generate a dense embedding. SimpDOM
employs a hierarchical LSTM-CNNmodel to encode character-level
and word-level features. It also incorporates some discrete features
computed from the markup information such as XPath, leaf node
type, relative position, and pairwise semantic similarity to aug-
ment the node representation. This dense representation is then
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(a) Sensitivity analysis of the hyperparameter 𝛽 (0) (b) Sensitivity analysis of the hyperparameter 𝑘 (0)

Figure 5: Sensitivity analysis of LEAST hyperparameters on the SWDE dataset for the zero-shot extraction scenario. Horizontal
axis of each plot represents the value of the hyperparameter, whereas the vertical axis represents the average page-level F1-score.

used to predict a softmax label for each DOM-node. We refer inter-
ested readers to the original work [54] for more background on this
model. We determine optimal hyperparameters for both pretraining
and fine-tuning phases by conducting a grid search. Following the
original work, we set the dimension for both word embedding and
character embedding to 100. We set the value of 𝑑𝑝𝑎𝑡ℎ , 𝑑𝑝𝑜𝑠 , and
𝑑𝑙𝑒𝑎𝑓 to 30, 30, and 20 respectively. We use 50 filters and a 3 × 3
convolutional kernel for the CNN network. For the LSTM network,
we set the hidden layer size to 100. We set both the maximum edge
number and maximum ancestor number of a DOM-node to 5 and
only keep the closest 10 friends of each node. We pretrain the model
for 20 epochs and fine-tune it for 15 epochs with a batch size of 32.
We use dropout with a probability of 0.3 to avoid overfitting. We
use the Adam optimizer with a learning rate of 1e-3.

A.2 The MarkupLM Model
MarkupLM is a Transformer-based [48] model that simultaneously
encodes textual and XPath-based features of each token on a detail-
page. Distinct from fixed-layout documents, web-documents use
markup languages, e.g. HTML to encode two-dimensional position
of each token in a web-page. MarkupLM takes advantage of the
tree-based markup structures to model the relationship among
different visual elements in the document. The model has four input
embedding layers. The text embedding layer represents the token
sequence information. The XPath embedding layer represents the
markup tag sequence information (from root node to current node).
The position embedding layer represents the relative sequence
order information. The optional segment embedding layer is used
by some downstream tasks. The MarkupLM model is pretrained
on three unsupervised task objectives. They are as follows. The
Masked Markup Language Modeling (MMLM) objective is designed
to enhance the language modeling ability of the model. Given the
text andmarkup input sequence of a detail-page, we randomly select
and replace some tokens with the special token [MASK] and let the
model recover those masked tokens using contextual clues. The
Node Relation Prediction (NRP) objective encodes the relationship
between a pair of DOM-nodes on a detail-page. We define a set
of directed pairwise relationships 𝑅 ∈ {self, parent, child, sibling,
ancestor, descendent, others}. Given a pair of nodes, we let the

model predict the relationship (as defined in 𝑅) between those
nodes. Finally, the Title-Page Matching (TPM) objective lets the
model predict if the title of a webpage matches with the rest of its
body. We set the size of the selected tags and subscripts in XPath
embedding to 216 and 1001 respectively, the max depth of XPath
expression to 50, and the dimension for the tag-unit and subscript
unit embedding to 32. We set both the masking probability in the
MMLM task and title replacement probability in the TPM task to
15%. We set the maximum number of node-pairs selected for the
NRP task to 1000 for each page. We initialize the MarkupLM model
with weights from a pretrained RoBERTa model and pretrain the
model until convergence with a batch size of 32 and learning-rate
of 5e-5. We use the AdamW optimizer [32] with a warmup ratio
of 0.06, 𝜖 = 1e-6, 𝛽1 = 0.9, 𝛽2 = 0.98, weight decay = 0.01, and a
linear decay learning-rate scheduler with 6% warmup steps for the
pretraining phase. We fine-tune the MarkupLM model for 15 epochs
with a batch size of 32, learning rate of 2e-5, and warmup ratio of
0.1. We set the maximum sequence length to 384.

B APPENDIX B
We present a sensitivity analysis of two critical hyperparameters
on a LEAST-trained model’s extraction performance in Fig. 5. Recall
that 𝛽 (𝑡 ) represents the probability of selecting the softmax label
inferred by the semi-supervised generative model during pseudo-
labeled corpus construction at iteration 𝑡 . 𝛽 (0) is the value that
initializes this hyperparameter (Eq. 6). Fig. 5.a shows that for lower
values of 𝛽 (0) , bothmodel suffer in the zero-shot extraction scenario.
This is because when initialized with a lower value, we end up
preferring the label inferred by the teacher model during pseudo-
labeled corpus construction, however as the value of 𝛽 (0) increases,
preference shifts towards the semi-supervised generative model
during the early iterations. Fig. 5.b presents a sensitivity analysis of
the hyperparameter𝑘 (0) ≥ 1. Recall that𝑘 (𝑡 ) represents the penalty
term that accounts for distribution shift during model training; 𝑘 (0)
is the value that initializes this hyperparameter (Eq. 5). Fig. 5.b
shows that setting the value of 𝑘 (0) to a higher value results in
worse extraction performance. This is because a higher penalty
dampens the training signal from pseudo-labeled training samples
which effects the quality of the final model.
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