
R3: Record-Replay-Retroaction for Database-Backed Applications
Qian Li

Peter Kraft

Stanford University

{qianli,kraftp}@cs.stanford.edu

Michael Cafarella

Çağatay Demiralp

MIT CSAIL

;{michjc,cagatay}@csail.mit.edu

Goetz Graefe

Google

goetzg@google.com

Christos Kozyrakis

Stanford University

christos@cs.stanford.edu

Michael Stonebraker

MIT CSAIL

stonebraker@csail.mit.edu

Lalith Suresh

Feldera

lalith@feldera.com

Xiangyao Yu

UW-Madison

yxy@cs.wisc.edu

Matei Zaharia

UC Berkeley

matei@berkeley.edu

ABSTRACT
Developers would benefit greatly from time travel: being able to

faithfully replay past executions and retroactively execute modified

code on past events. Currently, replay and retroaction are impracti-

cal because they require expensively capturing fine-grained timing

information to reproduce concurrent accesses to shared state. In

this paper, we propose practical time travel for database-backed ap-
plications, an important class of distributed applications that access

shared state through transactions.

We present R3, a novel Record-Replay-Retroaction tool. R3 imple-

ments a lightweight interceptor to record concurrency information

for applications at transaction-level granularity, enabling replay

and retroaction with minimal overhead. We address key challenges

in both replay and retroaction. First, we design a novel algorithm

for faithfully reproducing application requests running with snap-

shot isolation, allowing R3 to support most production DBMSs.

Second, we develop a retroactive execution mechanism that pro-

vides high fidelity with the original trace while supporting nearly

arbitrary code modifications. We demonstrate how R3 simplifies de-

bugging for real, hard-to-reproduce concurrency bugs from popular

open-source web applications. We evaluate R3 using TPC-C and

microservice workloads and show that R3 always-on recording has

a small performance overhead (<25% for point queries but <0.1%

for complex transactions like in TPC-C) during normal application

execution and that R3 can retroactively execute bugfixed code over

recorded traces within 0.11 – 0.78× of the original execution time.

PVLDB Reference Format:
Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe,

Christos Kozyrakis, Michael Stonebraker, Lalith Suresh, Xiangyao Yu,

and Matei Zaharia. R3: Record-Replay-Retroaction for Database-Backed

Applications. PVLDB, 16(11): 3085 - 3097, 2023.

doi:10.14778/3611479.3611510

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DBOS-project/apiary/tree/r3-exp.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611510

1 INTRODUCTION
Building and maintaining production applications would be much

easier for developers if they could travel back in time. In this context,

time travel has two major benefits. The first is replay, faithfully
re-executing recorded past events in a controlled environment, for

example to investigate a rare issue that only occurred in production.

The second is retroaction, executing new or modified code on past

events, for example to test the correctness of a bug fix.

Unfortunately, while there is a rich body of work on replay and

retroaction, existing systems are impractical to deploy in production

applications. Some record-and-replay systems, such as RR [27], only

support single-threaded execution. Others, like Arnold [8], support

multi-threaded applications but require expensive and heavyweight

instrumentation to track the timings of concurrent accesses to

shared state. Moreover, these systems do not support retroaction.

Existing retroaction systems have restrictive semantics and do not

support concurrent historical executions. For example, Retro-𝜆 [19]

supports retroaction for a single-threaded microservice built with

the command query responsibility segregation (CQRS) pattern.

In this paper, we present R3, a novel Record-Replay-Retroaction
tool. Our key insight is that time travel is uniquely practical for

database-backed applications that access shared state through trans-

actions. This is a large and important class of applications, including

most microservices, web backends, and serverless applications. Un-

like existing systems that record fine-grained timing information

for memory or disk accesses to capture data races, R3 leverages the
transaction-oriented state access pattern. It records concurrent state

accesses at a coarse transaction-level granularity, enabling faithful

replay and retroaction with minimal overhead. We have previously

discussed how transactions make debugging easy in a vision pa-

per [15]. In this paper, we design and implement a practical tool for

supporting time travel with strong guarantees for database-backed

distributed applications. To achieve this, we address significant

technical challenges in both replay and retroaction.

The main challenge in replay is supporting widely used produc-

tion database systems and settings, specifically the commonly used

transaction isolation levels. If applications used serializable isola-

tion, we could simply replay transactions sequentially in serial order.

However, many applications and popular databases use snapshot

isolation to enhance performance. This complicates replay because

there may not exist a serial order [17]. Thus, we propose a mecha-

nism to faithfully replay past events under snapshot isolation with

low recording overhead. R3 records coarse-grained per-transaction

snapshot information during normal execution and reconstructs

3085

https://www.acm.org/publications/policies/artifact-review-and-badging-current

equivalent snapshots during replay. Our evaluation shows that

R3 adds small performance and storage overhead during normal

execution, making “always-on” recording practical.

The main challenge in retroaction is to maintain fidelity with

the original trace of concurrent executions while allowing nearly

arbitrary code modifications. For example, developers may want

to test a bug fix for a race condition that only occurs when two

concurrent requests are interleaved in a specific manner. However,

this is challenging because code modifications may alter execution

paths unpredictably, and there is no ground truth for events that

did not originally occur. Thus, we define and provide high-fidelity

retroaction which ensures that transactions maintain their original

order and the concurrency of their schedules. We show this allows

developers to fairly compare the behavior of a retroactive execution

with that of the original execution. We further improve the per-

formance of retroaction by developing an algorithm to selectively

re-execute relevant requests based on their data dependencies.

Since R3 only requires the DBMS to provide at least snapshot

isolation, it supports most production DBMSs we consider without

requiring any modifications to them. We implement R3 using Post-

gres as the application DBMS backend. We demonstrate that R3’s
powerful features can effectively and efficiently help debug real,

hard-to-reproduce concurrency bugs from popular open-source

web applications such as Moodle and WordPress. Our evaluation

shows that R3 always-on recording adds a small runtime perfor-

mance overhead (up to 25% for point queries but <0.1% for more

complex transactions like in TPC-C). Moreover, storage overhead

is only 42 – 100 bytes per request, so if an application serves on

average 1K requests/sec, R3 can store more than three months of

traces in a single 1TB disk drive and let developers replay and

retroactively execute requests from any time in that trace.

In summary, our key contributions are:

(1) We show that replay and retroaction are uniquely practical for

database-backed distributed applications because they access

shared state at a coarse transaction-level granularity.

(2) We develop novel replay and retroaction mechanisms and

prove strong correctness guarantees under snapshot isolation.

We additionally introduce novel optimizations such as parallel

and selective execution to further improve efficiency.

(3) We demonstrate that R3 helps debug real, hard-to-reproduce
concurrency bugs in open-source web applications. We eval-

uate R3 using TPC-C and microservice workloads and show

that its recording adds small runtime and storage overhead to

normal execution, and it can faithfully replay past requests

within 0.33 – 1.6× and retroactively execute them within 0.11

– 0.78× of the original request execution time.

2 R3 OVERVIEW
R3 integrates with application production and testing environments

and DBMSs to provide efficient replay and retroaction without re-

quiring modifications to application business logic or to the DBMS.

We sketch R3’s architecture in Figure 1. It has three components:

• The interceptor traces application request execution and data-

base transactions during normal execution in production and

exports the information asynchronously to the data recorder.

Req/Txn
Recording

Application Request
Handlers

Production Environment

R3 InterceptorRequests
Transactions Replay/

Retroaction

Request
Handlers

Testing DB

R3 Runtime

Testing Environment

Production Database

Users Developers

R3 Data
Recorder

Figure 1: R3 integrates with application production and test-
ing environments. R3’s lightweight interceptor traces request
and transaction information and sends it to the data recorder
to enable replay and retroaction in the R3 runtime.

• The data recorder stores recorded request and transaction

information in an analytical database for replay and retroaction.

• The runtime controls and coordinates application request han-

dler and transaction execution in the testing environment. This

is the core component that performs the R3 replay and retroac-

tion algorithms. Developers interact with the runtime to replay

or retroactively execute bugfixed code over recorded traces.

In the remainder of this section, we outline the requirements R3

makes of applications and the DBMS to provide efficient replay and

retroaction. We design R3 to work with a wide range of applications
and most production DBMSs, for example by supporting snapshot

isolation. We additionally discuss R3’s limitations.

2.1 Requirements for Applications
Our design of R3 targets database-backed distributed applications,

such as an e-commerce microservice application or an online forum.

We assume applications consist of many request handlers, and each

handler may execute multiple transactions. For example, an online

forum might have a “create post” handler and a “read post” handler.

This is a common pattern for microservices and web service back-

ends. Each request invokes its corresponding handler, which may

in turn invoke other handlers (e.g., through RPCs). We assume each

request is assigned a unique request ID (reqId) that is propagated
through all handlers it invokes; this is a common practice.

To provide faithful replay and retroaction efficiently, R3 requires
applications to follow three principles:

• Store all application shared state in databases.

• Access or update shared state only through transactions.

• Be deterministic: a request’s output and state changes must be

determined only by its input and the database state it observes.

Request handlers can maintain local state for individual requests,

but any state shared across requests must be stored in databases. R3

does not rely on a specific data model; therefore, applications can

choose to use relational DBMSs or non-relational but transactional

stores like the high-performance key-value store FoundationDB

which provides strictly serializable isolation.

These requirements are practical as they align with two impor-

tant trends in distributed applications. First, developers increasingly

embrace microservice architectures and deploy applications on

serverless platforms (e.g., AWS Lambda [5]). Such applications nat-

urally follow R3 principles as they handle requests with workflows

of stateless and deterministic functions and manage state using

cloud databases. Second, many non-relational data stores are in-

creasingly supporting transactions [43]. For example, the document

3086

store MongoDB now supports snapshot isolation [20]. Therefore, it

will only be easier for developers to follow R3 principles.
For simplicity, we assume each request handler invocation is

single-threaded (an application runs concurrent handlers in parallel

threads), and each application uses a single database. R3 can work

for applications using multiple databases if their transaction logs

are aligned (e.g., using a cross-database transaction manager [9]).

2.2 Requirements for DBMS
R3 is designed to work with most production DBMSs without mod-

ifying them. We make two fundamental requirements that are met

by most production DBMSs:

• Support creating and restoring from backups.

• Support at least snapshot isolation (SI), as defined by Adya [1]

for a transaction 𝑇 : 𝑇 always reads data from a snapshot of

committed data valid as of the time 𝑇 started, and updates of

other transactions active after 𝑇 started are not visible to 𝑇 ;

𝑇 can commit only if, at commit time, no other concurrent

transactions have already written data that 𝑇 intends to write.

For the correctness of replay, if the DBMS supports serializable iso-

lation, it needs to provide the serial order of committed transactions.

If the DBMS supports only SI, we require the following instead:

• The DBMS provides the logical transaction start order. For sim-

plicity, we assume transaction IDs reflect this order.

• Overlapping transactions can only block due to write conflicts.

Additionally, for SI, we have a requirement for performance:

• The DBMS provides an efficient representation of the snapshot

information for each transaction, which refers to the set of

committed transactions that are visible to it.

In Section 5.1, we discuss ways to obtain this snapshot information

if the DBMS does not provide it.

2.3 Non-Goals
R3 can faithfully replay successful executions and many types of

program failures, including the most difficult concurrency bugs.

However, there are certain issues that R3 cannot reproduce because
it would require either detailed knowledge of the runtime environ-

ment or fine-grained timing information.

• Aborted transactions. R3 replay skips aborted transactions. We

discuss possible extensions to support them in Section 3.6.

• External service calls. We assume external service calls are idem-

potent. Otherwise, they cannot be deterministically reproduced

without the collaboration of external services.

• Performance issues. R3 can replay slow queries but does not

guarantee the same performance as the original execution.

• Environmental issues. R3 does not capture runtime settings or

reproduce crashes due to environmental issues such as out-of-

memory errors or network failures.

3 FAITHFUL REPLAY
R3 faithful replay allows developers to re-execute any past applica-

tion requests, guaranteeing that the replayed request returns the

same output as the original and applies the same state changes to

the database. To make this possible when the database uses snap-

shot isolation, we develop a novel algorithm for deciding how to

re-execute transactions that originally executed concurrently. In

this section, we describe our coarse-grained tracing, introduce our

replay algorithm, prove its guarantees, and discuss optimizations.

3.1 Always-On Recording
R3 records the following per-transaction and per-request informa-

tion during normal application execution:

• For each request, R3 records its unique request ID, its input, and
the IDs of all its transactions.

• For each transaction, R3 records its unique transaction ID and

snapshot information.

• For each transaction, R3 records whether it committed or

aborted. If it aborted, R3 records the error message.

R3 obtains transaction IDs and snapshot information from the

DBMS, and intercepts the application handlers to record request

IDs and user inputs. R3 organizes this information into tables and

exports it asynchronously to the data recorder. In particular, R3

creates a recorded input table per application:

RecordedInput (reqId, serializedInput)

reqId, the primary key, is the unique request ID. R3 serializes each
original request’s input into binary format.

R3 also creates a transaction log table per application:

TransactionLog (txnId, reqId, snapshot, status)

txnId, the primary key, is the unique transaction ID. reqId is a

foreign key referencing the RecordedInput table.

Section 5.1 discusses how we capture this information and im-

plement an efficient buffer to export it to an analytical database.

3.2 End-to-End Replay Workflow
To replay past requests, a developer specifies a range of request IDs.

R3 replays the specified requests following these steps:

(1) R3 restores the database to the state it was in immediately be-

fore the first replayed request originally executed. We discuss

our implementation of this in Section 5.2.

(2) Before replaying a request, R3 retrieves its original user input
from the data recorder and allocates a thread to execute its

application code and transactions. R3 also adds a breakpoint

before each transaction in the request handler’s code.

(3) The request threads execute their handlers’ code, stopping

at each breakpoint. A coordinator thread runs Algorithm 1

(discussed in Section 3.3), signaling the request threads when

to execute and commit each transaction.

R3 repeats step (2) and step (3) until all requests and transactions

in the specified range finish.

3.3 Replay Algorithm
The main challenge in replay is supporting transactions that origi-

nally executed concurrently under snapshot isolation. To address

this, we develop a novel algorithm (Algorithm 1). The high-level

idea is that R3 should execute each transaction over a snapshot that

is equivalent to the one it saw in its original execution. R3 executes
transactions sequentially based on their original start order. How-

ever, it does not commit a transaction𝑇 right after it completes. This

3087

Algorithm 1 R3 Replay for Snapshot Isolation

1: dr← connectDataRecorder() ⊲ Connect to the data recorder.
2: rt← getRuntime() ⊲ Runtime for executing handlers/transactions.
3: function replay(beginReq, endReq) ⊲ Replay [beginReq, endReq)
4: startOrder← dr.getStartOrder(beginReq, endReq)

5: for 𝑡 ∈ startOrder do
6: for 𝑠 ∈ 𝑡 .snapshot do ⊲ Commit transactions visible to 𝑡 .
7: await(𝑠 .execCompleted) ⊲ Wait for 𝑠 execution to complete.
8: rt.commit(𝑠) ⊲ Signal runtime to commit 𝑠 .
9: if 𝑡 .originallyCommitted then
10: rt.execOnly(𝑡) ⊲ Signal runtime to execute 𝑡 (do not commit).
11: else
12: rt.returnError(𝑡) ⊲ Signal runtime to skip 𝑡 and return error.
13: for 𝑡 ∈ startOrder do ⊲ Commit remaining transactions.
14: await(𝑡 .execCompleted)

15: rt.commit(𝑡)

ensures the next few transactions do not see the writes of 𝑇 , but

rather see their expected snapshot. 𝑇 commits immediately before

the execution of the first transaction that has 𝑇 in its snapshot.

To perform replay followingAlgorithm 1, R3 executes all requests
and their transactions between beginReq (included) and endReq
(excluded). R3 first queries the data recorder to retrieve a list of all

transactions in requests between [beginReq, endReq) in the order

in which they started (line 4).

After retrieving transaction information, R3 sequentially exe-

cutes each transaction following this start order, using Algorithm 1

to coordinate the execution of request threads. When a request

thread encounters a breakpoint (before each transaction), it waits

for a signal from the coordinator thread that runs Algorithm 1 be-

fore executing the transaction. Request threads do not immediately

commit transactions after they complete. Instead, before signaling

the execution of a transaction, the coordinator checks if there are

any transactions in its snapshot which have not committed. If there

are, it signals their request threads to commit them (lines 6 – 8).

After executing all transactions, the coordinator signals the request

threads to commit all remaining uncommitted transactions (lines

13 – 15). Note that if a transaction originally aborted, R3 does not
execute it during replay, but instead directly returns the recorded

error. As we prove in Section 3.4, this algorithm is guaranteed to

faithfully replay all transactions and requests without blocking.

For simplicity, in this section we assume transactions execute

sequentially. In practice, they can often execute concurrently. In

Section 3.5, we discuss strategies for parallelizing transactions and

show they provide equivalent guarantees as sequential execution.

3.4 Replay Guarantees
We now prove the correctness of R3’s replay algorithm under snap-

shot isolation. We first prove two lemmas, then use them to prove

a correctness theorem.

Replay Lemma 1. Each replayed transaction sees the same snap-
shot as its original execution.

Proof. Specifically, 𝑇 observes all transactions as it did origi-

nally, and no other transactions. The former is easy to show: because

R3 executes transactions based on their original start order, transac-

tions committed before 𝑇 are guaranteed to have completed before

𝑇 starts. Then, before executing 𝑇 , R3 commits all completed but

uncommitted transactions that are in 𝑇 ’s snapshot.

We show the latter by contradiction: Algorithm 1 does not com-

mit a transaction 𝑇𝑐 until right before the execution of the first

transaction 𝑇𝑖 that has 𝑇𝑐 in its snapshot, and since the snapshot of

a transaction is the set of transactions which committed before it

started,𝑇𝑐 must also be in the snapshot of all transactions that start

after 𝑇𝑖 . Thus, for there to exist a transaction 𝑇𝑐 which commits

before 𝑇 executes but is not in its snapshot, there must be a prior

transaction 𝑇𝑖 which begins before 𝑇 but has 𝑇𝑐 in its snapshot.

However, this is impossible: if 𝑇𝑐 committed before 𝑇𝑖 that started

before 𝑇 , then 𝑇𝑐 must also be in the snapshot of 𝑇 . □

Replay Lemma 2. During replay, a transaction 𝑇 that originally
committed will always commit and never block.

Proof. Specifically, we show that 𝑇 can execute without block-

ing. We require (Section 2.2) that transactions under snapshot isola-

tion can only block due to write conflicts, so we must show that 𝑇

has no write conflicts with concurrent transactions that committed

in the original execution. Under snapshot isolation, a transaction

can only commit if it does not have write conflicts with transactions

that committed before it but are not in its snapshot. We have already

shown in Lemma 1 that all replayed transactions observe the same

snapshots they did originally. Since transactions are deterministic,

their write sets must remain the same. Thus, 𝑇 cannot have any

write conflicts with concurrent transactions that committed before

it, or𝑇 would not have originally committed. Conversely,𝑇 cannot

have any write conflicts with concurrent transactions that com-

mitted after it, or else they would not have originally committed.

Therefore,𝑇 has no write conflicts with concurrent transactions and

does not block during replay. If 𝑇 committed originally, does not

block during replay, observed the same snapshot as it did originally,

and is deterministic, then it must commit during replay. □

Theorem 1. When replaying a request, R3 returns the same final
output (or error state) as the original execution and applies the same
state changes to the database.

Proof. We require (Section 2.1) that request handlers are deter-

ministic, so their output and state changes are determined entirely

by their input and the database state they observe. R3 supplies re-
played requests with the same input they saw originally. Moreover,

we proved in the two previous lemmas that each transaction in a

replayed request observes the same snapshot of database state that

it did originally, and that replayed requests never block. Therefore,

requests must return the same final output (or error state) and apply

the same state changes to the database. □

3.5 Optimizations
Algorithm 1 executes and commits transactions sequentially, how-

ever, we can parallelize some transactions during replay. For exam-

ple, suppose transactions𝑇1,𝑇2, and𝑇3 originally executed and com-

mitted following the order 𝑠 (𝑇1)𝑠 (𝑇2)𝑐 (𝑇1)𝑐 (𝑇2)𝑠 (𝑇3)𝑐 (𝑇3). During
replay, 𝑇1 and 𝑇2 can execute concurrently because 𝑇1 is not in the

snapshot of 𝑇2. Similarly, before starting 𝑇3, we can commit 𝑇1 and

𝑇2 in parallel. Moreover, if𝑇1 and𝑇2 are read-only, they can commit

right after execution and 𝑇3 does not need to wait for them as they

3088

do not change the database. Since snapshot isolation guarantees

that a transaction cannot see effects from concurrent transactions,

parallel execution does not impact replay correctness. To speed up

transaction commit during replay, we note that replayed transac-

tions need not be durable, so if the database allows it, a commit can

succeed without waiting for writes to be flushed to disk.

3.6 Discussion and Possible Extensions
Other Isolation Levels. R3 can record and replay at transaction-level

granularity because under SI, the behavior of committed transac-

tions depends only on the order in which they start and commit.

To support other isolation levels where the outcome of a query

depends on the schedule of queries across concurrent transactions

(e.g., isolation levels that allow anomalies such as phantoms or non-

repeatable reads), we must record fine-grained timing information

for each data operation and reconstruct the same schedule during

replay. For instance, to faithfully replay under read committed (RC),

we must record the snapshot and timing for each query and control

the replay execution at query-level granularity.

Aborted Transactions. Aborts can be application-induced (e.g.,

ABORT issued by a handler) or conflict-induced (e.g., lock con-

tentions and constraint violations). To replay a single application-

induced aborted transaction without other transactions, R3 can

simply re-execute it and roll it back after the ABORT. However,
faithfully replaying aborts in the presence of concurrent transac-

tions requires knowledge of concurrency control implementation

and detailed timing information for data operations, even under

SI or serializable isolation. For instance, consider transactions 𝑇1
and𝑇2 originally followed 𝑠 (𝑇1)𝑠 (𝑇2)abort(𝑇2)𝑐 (𝑇1), where𝑇2 was
aborted by the application; 𝑇2 also had a write conflict with 𝑇1, but

𝑇2 acquired the lock first and aborted before 𝑇1 needed the lock. To

replay them faithfully, we must ensure that 𝑇2 acquires the lock

first and aborts before 𝑇1 needs the lock, so 𝑇2 can abort due to

the same application-induced abort rather than lock contention.

Therefore, this coordination of individual data operations across

transactions adds overhead for both recording and replay.

4 RETROACTION
In addition to faithful replay, R3 also supports retroaction: devel-

opers can modify their code and re-execute it on traces of past

requests. Retroaction is challenging because there is no ground

truth for executions that never happened originally. Thus, we pro-

vide high-fidelity retroaction, defined as retroaction that preserves

transaction order and the concurrency of their schedules, so de-

velopers can fairly compare a retroactive execution to the original

one, for example to test bug fixes. In this section, we discuss what

code modifications are supported by R3, propose our retroaction
algorithm, prove its guarantees, and introduce optimizations.

As a running example, we use a request handler (simplified) from

the popular online education platform Moodle, as shown below.

1 def subscribeUser(userId, forumId):
2 isSub = execTxn(isSubscribed(userId, forumId))
3 if (not isSub):
4 execTxn(forumInsert(userId, forumId))

This handler subscribes a user to a forum and contains a race condi-

tion (MDL-59854 [22]). Since the handler checks in one transaction

if a user is subscribed to a forum and then in a separate transaction

subscribes them to a forum, a user can be subscribed to the same

forum multiple times if concurrent requests are interleaved.

4.1 Supported Modifications
To guarantee that R3 can always re-execute those past requests, we

assume the modified code is compatible with past inputs. Moreover,

we do not allow modifications to the recorded traces other than

skipping specific past requests; new requests cannot be added, and

existing requests cannot be modified. R3 requires that all modifica-

tions to application code follow the principles defined in Section 2.1.

We categorize modifications as follows:

Retroactive Analysis. Developers may want to write analysis code

inside the original handler code. R3 supports arbitrary analysis code
as long as it does not alter the handler’s logic: it must run the same

queries in the same transactions in the same order. If modifications

only contain retroactive analysis, R3 can reuse its replay algorithm

to execute the modified code and faithfully reproduce past program

state with the guarantees in Section 3.4. This is useful for debug-

ging. For example, as shown below, developers can inspect a past

execution by retroactively adding logging statements.

1 def subscribeUser(userId, forumId):
2 isSub = execTxn(isSubscribed(userId, forumId))
3 if (not isSub):

4 LOG("Add User " + userId + " Forum" + forumId)
5 execTxn(forumInsert(userId, forumId))

Retroactive Modification. Developers may want to change applica-

tion code both inside transactions (e.g., changes to query parameters

or query statements) and outside transactions (e.g., changes to trans-

action execution order within a request). Retroactive modification

may not change the number of transactions to be executed given

the same user request input. Retroactive modification is useful for

verifying bug fixes and for testing new application features over

past events. For example, as shown below, we could fix the Moodle

duplication issue by changing the forum insert to an upsert (and

adding a uniqueness constraint over forumId and userId pair), then

test this fix using retroactive modification.

1 def subscribeUser(userId, forumId):
2 isSub = execTxn(isSubscribed(userId, forumId))
3 if (not isSub):

4 execTxn(forumUpsert(userId, forumId))

Transaction Deletion. Developers may want to reduce the number of

transactions for serving a request. For example, if a request handler

originally contains two transactions, but the developer later decides

to merge the second transaction into the first one, then the second

transaction is effectively deleted. Wrapping multiple transactions

into one transaction is a common strategy to fix bugs [32]. For

example, as shown below, we could fix the Moodle duplication

issue by performing both the check and insert in one transaction,

then test this fix using retroactive deletion.

1 def subscribeUser(userId, forumId):

2 beginTxn()

3 if (not isSubscribed(userId, forumId)):
4 forumInsert(userId, forumId)

5 commitTxn()

3089

Transaction Addition. Developers may also want to add additional

transactions to a request, for example to split a large transaction

into smaller transactions to improve application performance, or

to introduce new functionality. Transaction addition increases the

number of transactions to be executed given the same user request

input. For example, as shown below, we can add a new transaction

to fetch a list of all the forum’s subscribers.

1 def subscribeUser(userId, forumId):
2 isSub = execTxn(isSubscribed(userId, forumId))
3 if (not isSub):
4 execTxn(forumInsert(userId, forumId))

5 subscribers = execTxn(fetchSubscribers(forumId))

4.2 Retroaction Goals
R3 allows nearly arbitrary modifications to application code, which

may alter execution paths unpredictably. For example, a transaction

that committed originally may abort during retroaction due to new

write conflicts, and a transaction that aborted originally may com-

mit because a modification fixed the issue that caused the original

abort. Therefore, unlike in replay, there exists no ground truth to

faithfully reproduce. Our goal is to maintain high fidelity with the

original trace of concurrent transactions. We define high-fidelity

retroaction as executions that preserve transaction order and the

concurrency of their schedules, providing these guarantees:

• Retroactive execution executes all requests without blocking.

• Concurrent transactions from parallel requests that committed

originally are still concurrent.

• A transaction observes all transactions (if they commit) it did

originally and possibly transactions that aborted originally, but

it cannot see other originally committed transactions that were

not in its original snapshot.

These guarantees allow developers to fairly compare the be-

havior of a retroactive execution to that of the original execu-

tion. For example, consider transactions 𝑇1, 𝑇2, and 𝑇3 followed

𝑠 (𝑇1)𝑠 (𝑇2)𝑐 (𝑇1)𝑐 (𝑇2)𝑠 (𝑇3)𝑐 (𝑇3). R3 ensures that retroaction pre-

serves both the order (𝑇3 executes after𝑇1,𝑇2) and the concurrency

of their schedules (𝑇2 does not see 𝑇1). If the bug occurs only when

𝑇1 and 𝑇2 are concurrent and 𝑇3 executes after them, R3 allows

developers to test their bug fix under the same conditions. For in-

stance, the Moodle bug [22] only occurs when transactions from

concurrent requests are interleaved. If R3 were to execute without

any coordination, this buggy scenario might never arise.

One important issue during retroaction is that sometimes, origi-

nally committed transactions are aborted due to write conflicts or

other concurrency issues with new or modified transactions, then

retried by request handler code. If this occurs, we treat the retry as

a new transaction that may execute in a different order relative to

other transactions, so the latter two guarantees do not apply to it.

4.3 Retroactive Execution
To retroactively execute modified code, developers must register all

changes with R3, then select a range of past requests for retroaction.

Developers can also specify a list of requests to be skipped.

R3 uses Algorithm 2 (we highlight major differences compared

to Algorithm 1) to execute modified code over past requests while

following the goals discussed in Section 4.2. Similar to replay, R3

Algorithm 2 R3 Retroactive Execution for Snapshot Isolation

1: dr← connectDataRecorder() ⊲ Connect to the data recorder.
2: rt← getRuntime() ⊲ Runtime for executing handlers/transactions.
3: function retroExec(beginReq, endReq, skipReqs)

4: startOrder← dr.getStartOrderDistinct(beginReq, endReq)

5: for 𝑡 ∈ startOrder do
6: if 𝑡 .reqId ∈ skipReqs ∨ rt.retroDeleted(𝑡) then
7: continue ⊲ Skip this transaction.
8: for 𝑠 ∈ 𝑡 .snapshot do ⊲ Commit non-skipped txns visible to 𝑡 .
9: await(𝑠 .execCompleted) ⊲ Wait for 𝑠 execution to complete.
10: commitTxn(𝑠)

11: if 𝑡 .originallyCommitted then
12: rt.execOnly(𝑡) ⊲ Signal runtime to execute 𝑡 (do not commit).
13: else
14: rt.execCommit(𝑡) ⊲ Signal runtime to execute and commit 𝑡 .
15: ⊲ Note: Retroactively added transactions execute and commit

immediately without requiring a signal.
16: for 𝑡 ∈ startOrder do ⊲ Commit remaining transactions.
17: await(𝑡 .execCompleted)

18: commitTxn(𝑡)

19: function commitTxn(𝑡)

20: if ¬ 𝑡 .aborted then
21: rt.commit(𝑡) ⊲ Signal runtime to commit 𝑡 .
22: else
23: rt.rollback(𝑡) ⊲ Signal runtime to roll back 𝑡 .

executes each request in a separate thread and stops before each

transaction. A coordinator thread runs Algorithm 2, signaling the

request threads when to execute and commit each transaction.

Note that Algorithm 2 retrieves a deduplicated list of transac-

tions for the start order (line 4), omitting transactions that failed

but retried in the original execution. R3 executes transactions in
their original start order and only tries to commit an originally

committed transaction 𝑇 immediately before the first transaction

that has 𝑇 in its snapshot. However, in retroaction, an originally

committed transaction may abort. Thus, R3 must check if a transac-

tion has aborted before committing it (lines 19 – 23). If a transaction

originally aborted but completes successfully, the request thread

commits it immediately after it completes (line 14). If a handler

has more transactions than it did originally (e.g., if a developer

added a new one), the request thread executes and commits the

new transactions without requiring a signal from the coordinator

(line 15). If a transaction𝑇 is aborted and retried during retroactive

execution, R3 treats the retries as new transactions: the request

thread retries 𝑇 without requiring a signal from the coordinator.

R3 supports transaction deletions and skipping requests. There-

fore, R3 checks if a transaction𝑇 must be skipped (lines 6 – 7), either

because the developer specified to skip it or deleted it, or because

it was omitted by our selective execution algorithm (Section 4.5).

One challenge in retroaction is that modifications may intro-

duce write conflicts between transactions that did not previously

conflict. For example, suppose transactions 𝑇1, 𝑇2, and 𝑇3 origi-

nally executed and committed concurrently following the order

𝑠 (𝑇1)𝑠 (𝑇2)𝑐 (𝑇2)𝑠 (𝑇3)𝑐 (𝑇1)𝑐 (𝑇3), but a modification introduced a

write conflict between 𝑇1 and 𝑇2. Algorithm 2 may hang indefi-

nitely: 𝑇2 requires a lock held by 𝑇1, but 𝑇1 will not commit until

3090

𝑇2 commits and 𝑇3 starts. To solve this problem, when a previously

committed transaction 𝑇𝑖 becomes blocked, R3 checks the DBMS

to find which transaction 𝑇𝑗 conflicts with it (e.g., by checking the

lock holder from the DBMS). R3 aborts 𝑇𝑖 if 𝑇𝑗 is completed but

pending commit, returning a database-specific conflict error to the

request. In this example, R3 aborts 𝑇2 so 𝑇1 can proceed to commit.

4.4 Retroaction Correctness
We now prove that Algorithm 2 correctly provides the guarantees

outlined in Section 4.2.

Retroaction Guarantee 1. Retroactive execution executes all
requests without blocking.

Proof. If a transaction𝑇 is blocked during retroactive execution,

R3 checks if it is blocked on a transaction that is completed but

pending commit. If so, R3 aborts𝑇 (Section 4.3). Otherwise, R3 relies
on the DBMS’s deadlock detection to ensure that all transactions

are eventually completed and either committed or aborted. □

Retroaction Guarantee 2. Concurrent transactions from par-
allel requests that committed originally are still concurrent during
retroaction (does not apply to retries).

Proof. 𝑇1 and𝑇2 are concurrent if neither is in the other’s snap-

shot. Assuming𝑇1 started before𝑇2, they are concurrent if and only

if𝑇1 committed after𝑇2 started. We will prove that their correspond-

ing retroactive executions𝑇 ′
1
and𝑇 ′

2
remain concurrent. Retroactive

execution preserves the start order of originally committed transac-

tions, so if 𝑇1 started before 𝑇2, then 𝑇
′
1
starts before 𝑇 ′

2
. Moreover,

during retroactive execution, originally committed transaction 𝑇 ′
1

does not commit until the start of the first transaction 𝑇 ′
3
that has

𝑇 ′
1
in its snapshot. 𝑇 ′

3
must start after 𝑇 ′

2
, so 𝑇 ′

1
must commit after

𝑇 ′
2
starts and they remain concurrent. Note that this guarantee does

not apply to transactions that, during retroactive execution, abort

and are retried. For example, if 𝑇 ′
1
aborts and is retried, the retried

execution may have 𝑇 ′
2
in its snapshot. □

Retroaction Guarantee 3. A transaction observes all transac-
tions (if they commit) it did originally and possibly transactions that
aborted originally, but it cannot see other committed transactions that
were not in its original snapshot (the latter does not apply to retries).

Proof. For originally committed transactions, our retroactive

execution algorithm is identical to our replay algorithm: transac-

tions execute in their original start order and a transaction 𝑇 does

not commit until the start of the first transaction that had 𝑇 in

its original snapshot. Thus, this guarantee follows naturally from

Replay Lemma 1: a retroactively executed transaction observes all

originally committed transactions it originally observed (if they

commit during retroactive execution without needing to be re-

tried), but no other originally committed transactions. Similar to

Retroaction Guarantee 2, the latter guarantee does not apply to

retries, which may start later than their original execution and thus

observe more transactions in their snapshot. □

Algorithm 3 R3 Selective Retroactive Execution of Request Types

1: rd← connectDataRecorder()

2: rt← getRuntime()

3: function selectiveExecReqTypes(beginReq, endReq)

4: allTypes = rd.getDistinctRequestTypes(beginReq, endReq)

5: execTypes = rt.modified(allTypes) ⊲ Initially onlymodified requests.
6: wset = rt.getWriteTables(execTypes) ⊲ Write set.
7: rset = rt.getReadTables(execTypes) ⊲ Read set.
8: reqs = rt.hasWrites(allTypes \ execTypes) ⊲ Reqs containing writes.
9: while ¬ reqs.isEmpty() do
10: newReqTypes = {}

11: for 𝑟 ∈ reqs do
12: if (𝑟 .writeSet ∩ (wset ∪ rset)) ∨ (𝑟 .readSet ∩ wset) then
13: ⊲ Add request types with data dependencies on execTypes.
14: newReqTypes.add(𝑟)

15: execTypes.add(𝑟)

16: wset.add(𝑟 .writeSet) ⊲ Update write set.
17: rset.add(𝑟 .readSet) ⊲ Update read set.
18: if newReqTypes.isEmpty() then
19: break ⊲ No more request types to be added.
20: reqs.removeAll(newReqTypes)

21: return execTypes

4.5 Selective Execution of Request Types
Retroactively executing every past request is expensive, especially

when a modification is small and only affects a subset of past re-

quests. We leverage data dependencies across transactions to selec-

tively execute requests.

We sketch the selective execution algorithm in Algorithm 3. This

is a static analysis algorithm that executes once before retroac-

tive execution and returns a list of request types that must be

re-executed. Invocations of the same request handler are consid-

ered to be the same request type. For example, users may send

multiple requests to invoke the subscribeUser handler with dif-

ferent userId or forumId input parameters, but they belong to

one request type (subscribeUser). The number of request types

is typically much smaller than the total number of requests. This

design guarantees that our algorithm scales to large traces.

The key idea is to always execute handlers that contain modified

code, and only execute unmodified handlers if they have both data

dependencies with retroactively executed transactions and contain

updates to the application state. This algorithm is not guaranteed

to skip all irrelevant requests, but ensures the re-execution of all

requests that either serve as dependencies for modifications or are

dependent on modified requests. In order to check dependencies, R3

assumes all queries are defined statically as parameterized prepared

statements; this is a common practice to prevent SQL injection.

Algorithm 3 computes a transitive closure of request types

(line 4) that must be re-executed within the range of [beginReq,
endReq). Specifically, we re-execute requests if their write sets

intersect with the read or write sets of re-executed requests, or if

their read sets intersect with the write sets of re-executed requests

(line 12). We compute this closure statically and use table-level

read and write sets, because computing it dynamically may require

backtracking. For example, if the re-execution so far has a read and

write set of Table {A}, then we are only re-executing transactions

that write to Table A. If we then encountered a transaction that

3091

reads from Table B then writes to Table A, we would be missing all

writes to Table B, so we would have to restart from the beginning

re-executing all transactions that write to Tables A or B. Given that

we compute the closure statically, we must use table-level read and

write sets because only table-level access information is known

ahead of time for parameterized prepared statements; finer-grained

dependencies may be path-dependent.

Supporting Data Correction. We can extend R3 selective execution
to efficiently correct past transactions. For example, in an online

shopping web backend, developers might want to double the price

of an item and re-calculate shipping fees for past orders. Developers

may use R3 to selectively re-execute relevant past order requests

with the new price and update the production database to reflect

the corrected fees. However, supporting data correction may re-

quire human intervention because updating past data might cause

cascading effects on later requests. For example, customers might

not have bought the item if the price were doubled. In this case,

we must capture the causal relationships between requests and

incorporate causality in our dependency checks.

5 IMPLEMENTATION
We implemented R3 record, replay, and retroaction using Postgres

as the application DBMS backend and Vertica as the analytical

database for the data recorder. In this section, we discuss how our

implementation records information on transactions and requests,

efficiently exports that information to the data recorder, and restores

the database to a past state for replay and retroaction.

5.1 Implementing R3 Recording
Capturing Requests and Transactions. R3 must capture four pieces

of information for each request: its unique request ID, its input, the

ID of each of its transactions, and the snapshot of each transaction

(only required for SI). Obtaining the first three is straightforward,

but capturing transaction snapshots depends on the DBMS.

If the DBMS exposes an efficient representation of transaction

snapshot, we can directly use it. For example, our implementation

leverages the Postgres pg_current_snapshot() system informa-

tion function that returns the snapshot in a summary format with

three fields: xmin, xmax, and xip_list. xmin is the smallest active

transaction ID, xmax is one past the highest completed transaction

ID, and xip_list is the list of active transactions at the time the

snapshot was taken (under SI, it is the start of a transaction). During

replay and retroaction, to check if a transaction 𝑇 is in the current

transaction’s original snapshot, R3 uses the following expression:

(𝑇 < xmax) ∧ (𝑇 ∉ xip_list)

If the DBMS provides a globally logical order for transaction

starts and commits (e.g., SQL Server records transaction begin and

commit timestamps), R3 can obtain the start and commit logical

order/timestamp per transaction 𝑇 at runtime. During replay, R3

can compare the begin timestamp of 𝑇 to the commit timestamps

of previous transactions to decide which ones are visible to 𝑇 .

If the DBMS supports SI but does not expose any information

other than the start order (transaction IDs), we can maintain a

committed_txns table that stores the list of committed transaction

IDs. Transactions that contain writes must insert their transaction

IDs into this table before they commit. Then, when a transaction

𝑇 begins, R3 can query this table and record the list of previous

transactions that are visible to 𝑇 . This alternative method may

be further optimized for efficiency, for example, we can regularly

delete old IDs to cap the number of rows in this table, but this is

out of the scope of this paper and we leave it to future work.

Exporting Recorded Information. To minimize recording overhead,

R3 exports information to a remote data recorder asynchronously

and in batches. R3 maintains an in-memory buffer in the interceptor

and appends recorded information to this buffer when processing

requests. Periodically (in our implementation, every two seconds),

a background thread exports the entire contents of the buffer to the

data recorder (Vertica). Because captured information is buffered in

memory and exported asynchronously, it is possible for it to be lost

if the application server crashes before the buffer is exported, mean-

ing requests that happened immediately before the crash could not

be replayed. If developers cannot tolerate this data loss, we can op-

tionally place the buffer on disk to guarantee its durability at some

performance cost. We leave the decision of data retention policies

to the developer; most analytical databases (including Vertica) have

robust capabilities in this area.

5.2 Restoring Database State
R3 replay and retroaction both require restoring the database to the

state it was in immediately before the first request to be re-executed.

Our Postgres-based implementation supports two database restora-

tion methods. If the Postgres server is configured with write-ahead

log (WAL) archiving, R3 restores it to the latest backup and leverage
Postgres’s native support for point-in-time recovery to recover the

database to the original transaction ID of the first transaction to

be re-executed. This requires the application to have the full WAL

archives since the backup. If WAL archives are unavailable, R3 re-
stores the server to the latest DBMS backup, then uses the replay

algorithm to re-execute all transactions containing writes from the

original backup time to the first transaction to be re-executed, thus

faithfully recovering the database to the correct state.

6 CASE STUDIES
To concretely show how developers can use R3 to debug and test

their applications, we study common hard-to-reproduce concur-

rency bugs discussed in prior work on non-reproducible bugs [11]

and server-side request races [32]. We examine three bugs from

two popular open-source database-backed web applications, each

with millions of users: the education platform Moodle (MDL) [23]

and the content management system WordPress (WP) [40]. The

bugs we study have different effects on the application (silent data

corruption or database errors), different root causes (concurrent

requests to the same or different handlers), and must be fixed in

different ways (merge multiple transactions or modify queries).

Each bug took developers substantial effort to reproduce and fix.

6.1 Moodle: Duplicate Entry
MDL-59854 [22] is a bug where concurrent requests to the same

handler can cause silent data corruption. It is the issue on which we

based the buggy Moodle forum subscription example in Section 4:

3092

if two forum subscription requests are interleaved, a user may be

subscribed to the same forum twice. Duplication occurred rarely

in production because it required a user to send two identical re-

quests simultaneously to the application. Thus, it was difficult to

reproduce when it did occur: it took three months for developers

debug and release the bug fix. The developer who reported this bug

commented: “you have to be pretty fast and pretty lucky to actually
reproduce this issue.” By contrast, if Moodle is integrated with R3,
developers can easily reproduce the race condition by using R3 to
replay recorded past requests that contain the issue.

To fix the bug, developers initially attempted to merge the two

transactions in the buggy request handler into one. When testing

this bug fix retroactively using R3, we found the bug may still

occur under SI due to write skew: two concurrent transactions see

the same snapshot and both add a subscription to the table. This

issue was also observed by the Moodle developers, who eventually

fixed it by adding a uniqueness constraint over the (forumId,
userId) pair. Thus, R3 retroaction enables developers to efficiently

test whether a bug fix works.

6.2 WP-Option: Unique Constraint Violation
WP-11437 [39] is a bug where concurrent requests to the same han-

dler may violate database constraints and cause errors. The buggy

code contains two transactions that are similar to the previously-

discussed Moodle forum subscription, which has a race condition

when inserting a new option to the option table. Unlike in Moodle,

the WordPress option table uses option name as a primary key,

so the database returns a “duplicate key violates unique constraint”

exception if multiple requests try to insert the same option.

To fix the bug, developers used ON DUPLICATE KEY UPDATE for

the insert statement, which effectively turns the insert operation

to an upsert. We test this bug fix using R3 and find it eliminates

constraint violation errors when retroactively executing a recorded

trace with the fixed code. We still see serialization errors when

multiple queries try to update the same option, but we fix this

easily by retrying transactions that fail due to serialization errors.

R3 retroaction enables developers to effectively test whether a bug

fix works and further improve the robustness of application code

through better error handling.

6.3 WP-Comment: Inconsistent Status
WP-11073 [38] is a bug where concurrent requests to different

handlers cause silent data corruption. Specifically, there is a race

condition between adding a comment for a post (AddComment) and
deleting the post and its comments (TrashPost). While deleting

a post, the request handler first backs up the comment IDs and

statuses to a post_meta table, and then in a separate transaction it

updates all comment statuses to trashed. If AddComment executes

in between these two steps, the new comment is not backed up in

the post_meta table in the first transaction, but is still marked as

trashed by the second transaction. This becomes a problem if a later

request restores the deleted post and comments (UntrashPost).
This restores all backed-up comments, but if new comments were

not backed up, they are not restored.

To solve this issue, the developers added a query in AddComment
to first check in the post table if a post is being deleted. If so,

the comment fails and is never made visible to other users. We

test this bug fix using R3, finding that similarly to the Moodle

issue, it only works if transactions run under serializable isolation.

Otherwise, a write skew issue can occurwhere both TrashPost and

AddComment see the same snapshot, so they execute concurrently

without being aware of each other.

7 EVALUATION
We evaluate R3 with workloads adapted from popular benchmarks

and database-backed applications. We analyze the runtime and

storage overhead of R3 recording compared to a baseline that does

not record or capture any application information. We also evaluate

R3 replay and retroactive execution performance. We show that:

(1) R3 adds runtime overhead of <25% for point queries and <0.1%

for complex transactions such as those in TPC-C. R3 storage
overhead is on average 42 – 100 bytes per request.

(2) R3 can faithfully replay past recorded traces within 0.33 – 1.6×
of the original execution time.

(3) R3 can retroactively execute bugfixed code over recorded traces
within 0.11 – 0.78× of the original execution time, by selec-

tively re-executing only requests with data dependencies.

7.1 Experimental Setup
We implement R3 in ∼500 lines of Java code for recording trans-

action information, and ∼1.2K lines of Java code for replay and

retroactive execution. For our experiments, we use Postgres [29]

v14.5 for application data and store R3 recorded data in Vertica [37]

v12.0.3. We use JDBC to communicate with Postgres and Vertica,

and set Postgres connections to use the Repeatable Read (imple-

mented as snapshot isolation) isolation level. For communications

between request handlers, we use JeroMQ [30] v0.5.2 over TCP.

We run experiments on Google Cloud using c2-standard-8
VM instances with 8 vCPUs, 32GB DRAM, and a SCSI HDD. We

run the Postgres server, Vertica server, and application request

handlers on separate VMs. We configure each application to use 128

parallel JDBC connections to communicate with Postgres. During

replay and retroactive execution, we disable Postgres synchronous

commit [28], as discussed in Section 3.5.

Baselines. To assess the overhead of R3 recording during normal

application execution, we use a no-record baseline that executes the

benchmark workloads but does not retrieve snapshot information

from Postgres and does not record per-request input. We run this

baseline in a setup identical to that of R3, but do not capture any

transaction or request information or export any data to Vertica.

To evaluate the effectiveness of our optimizations (Section 3.5) for

replay, we use a sequential baseline that follows Algorithm 3.3 but

executes and commits transactions sequentially.

7.2 Experimental Workloads
We evaluate R3 using TPC-C as well as Moodle andWordPress from

our case studies (Section 6). We implement these workloads in Java,

use Postgres as the backend database, and follow their original table

schema. To demonstrate that R3 works for distributed applications,

we adapt Moodle and WordPress using a microservice architecture:

if a request contains multiple transactions, we implement each one

3093

0 500 1000
0

1

10

100

La
te

nc
y

[m
s;

 lo
g1

0] a) TPC-C Payment

0 10K 20K
0

1

10
b) Moodle ListSubscribers

0 10K 20K 30K
0

1

10
c) WP-Option GetOption

0 5K 10K
0

1

10

100
d) WP-Comment ReadPost

0 500 1000
Throughput (requests/sec)

0

1

10

100

La
te

nc
y

[m
s;

 lo
g1

0] e) TPC-C NewOrder

0 10K 20K
Throughput (requests/sec)

0

1

10

f) Moodle SubscribeUser

0 10K 20K 30K
Throughput (requests/sec)

0

1

10

g) WP-Option Insert/UpdateOption

0 5K 10K
Throughput (requests/sec)

0

1

10

100

h) WP-Comment Writes

No Record p50 No Record p99 R3 p50 R3 p99

Figure 2: Throughput versus p50 and p99 latencies of R3 and a no-record baseline on TPC-C, Moodle, and WordPress workloads.

Table 1: Experimental workloads information. The last col-
umn shows the estimated state size that a request accesses.

Workload Operation Ratio Read-
Only?

of
Txns.

Avg. #
of SQL

Avg. Access
State Size

Payment 50% No 1 8 ∼500B
TPC-C

NewOrder 50% No 1 25 ∼2KB
ListSubscribers 90% Yes 1 1 ∼500B

Moodle

SubscribeUser 10% No 2 2 ∼10B
GetOption 99% Yes 1 1 ∼100B
InsertOption 0.5% No 2 2 ∼100BWP-Option

UpdateOption 0.5% No 2 2 ∼100B
ReadPost 80% Yes 1 2 ∼10KB

AddComment 10% No 1 2 ∼1KB
TrashPost 5% No 2 5 ∼200BWP-Comment

UntrashPost 5% No 1 13 ∼200B

in a separate RPC handler and compose handlers into a workflow

to serve the request. As shown in Table 1, our workloads cover

different scenarios for database-backed applications.

TPC-C. We first benchmark R3 with the Payment and NewOrder
transactions from TPC-C, the industry-standard benchmark for

OLTP databases. The NewOrder transaction mimics customers sub-

mitting orders to their local warehouse district. The Payment trans-

action mimics customers making payments on the submitted orders.

We choose these two transactions because they comprise 90% of the

TPC-C workload. Our workload consists of 50% Payment and 50%

NewOrder. We populate the TPC-C database with 24 warehouses.

Moodle. Our Moodle workload consists of 10% requests subscribing

users to forums (SubscribeUser) and 90% requests retrieving the

subscribers to a forum (ListSubscribers). We pre-load 1000 fo-

rums, and for each forum we initially load one subscriber. Note that

the SubscribeUser handler contains the race condition described

in Section 6, which may create duplicate forum subscriptions.

WP-Option. Our first WordPress workload consists of 99% requests

retrieving an option value (GetOption) and 1% requests setting

an option value, split evenly between inserts (InsertOption) and
updates (UpdateOption). We pre-load 10K options with a 10B

option key and 100B option value. Note that the InsertOption

handler contains the bug discussed in Section 6, which may cause

primary key errors.

WP-Comment. Our second WordPress workload consists of 80%

requests reading a post (ReadPost), 10% requests adding comments

on a post (AddComment), 5% requests deleting a post and its asso-

ciated comments (TrashPost), and 5% requests undoing a delete

(UntrashPost). We pre-load 2000 posts, each starting with 10 com-

ments (for an initial total of 20K comments). Each post and comment

contains 1KB of text. Note that the AddComment handler contains

the bug discussed in Section 6, which may cause inconsistent com-

ment statuses after undoing a post deletion.

7.3 Recording Overhead Analysis
Runtime Overhead Analysis. We first investigate R3 recording over-

head. We execute all four workloads with R3 recording enabled and
compare performance to the no-record baseline, showing results

in Figure 2. We find that R3 shows negligible (<0.1%) performance

difference for TPC-C and adds throughput and latency overhead

of <10% for the WP-Comment workload, but overhead increases to

25% for WP-Option and Moodle.

To further investigate the causes of R3 recording overhead, we
show in Figure 3 the latency breakdown of individual point read

and point write operations with R3 recording enabled. We find

that most R3 overhead comes from the implementation of Postgres:

to retrieve snapshot information, each transaction must make a

pg_current_snapshot query, which adds an additional round trip

to the database. This fixed per-transaction overhead is significant

for small transactions such as these point operations, but small for

large transactions such as those in TPC-C and WP-Comment. We

could further optimize this by modifying Postgres to return the

snapshot in the same operation that initializes a transaction.

Storage Overhead Analysis. Our implementation of R3 exports

recorded data to the column-oriented analytical database Vertica,

which stores data in a compressed format while providing high

performance for analytical queries. We find that the storage over-

head for storing transaction information in Vertica is on average

24B per request. The overhead for storing recorded request input is

application dependent. For TPC-C, storing input in Vertica requires

3094

WP-Option Point Read (361 μs)
Get Snapshot

(102 μs)
Query Execution

(159 μs)
Commit
(100 μs)

WP-Option Point Update (811 μs)
Snapshot

(83 μs)
Execution
(146 μs)

Commit
(579 μs)

Figure 3: Latency breakdowns of the WP-Option point read
and update transactions with R3 recording. Each transaction
needs a round trip to Postgres to retrieve snapshot.

76B per request because the original input contains a long list of

integers such as customer IDs, warehouse IDs, and timestamps. For

Moodle, input storage requires 18B per request because the original

request input only contains a few integers representing user IDs

and forum IDs. For WordPress, input storage requires 73B per re-

quest because the original request input contains 100B – 1KB of text.

Thus, even in the worst case, an application would have to execute

10B requests to fill a 1TB disk drive with recording information.

7.4 Replay Performance
We next analyze the performance of R3 replay. We combine the

WordPress workloads, running a mix of 50% requests from WP-

Comment and 50% fromWP-Option. First, we collect data for replay

by running TPC-C, Moodle, and the combined WordPress work-

loads for 60 seconds at different request rates. Then, we replay

three workloads using R3, with and without our optimizations that

execute and commit transactions in parallel, and measure the total

execution time. We show results in Figure 4.

We find that our optimizations improve performance by up to

7.2× compared to the sequential baseline, because we leverage paral-

lelisms across concurrent transactions. Note that the improvement

is greater at high request rates because the original trace would have

higher concurrency and can be parallelized across more threads.

For optimized parallel executions, R3 can always replay TPC-

C workloads within 60 seconds. For Moodle and WordPress, R3

parallel replay is slower than the original execution at high load

because it must follow the original execution’s start order and snap-

shot information. Specifically, R3 must validate that each replayed

transaction 𝑇 observes the correct snapshot, committing all un-

committed transactions in 𝑇 ’s snapshot if necessary. This is not

a problem for complex transactions like in TPC-C where threads

are mainly occupied by transaction execution and commit; R3 can
achieve better throughput than the original execution because it

uses non-durable commits. However, for small, read-mostly trans-

actions like in Moodle and WordPress, R3 coordination may cause

longer stalls and not saturate threads as in their original executions.

7.5 Retroactive Execution Performance
We now analyze the performance of R3 retroaction with Moodle

and WordPress. We re-execute collected traces from Section 7.4

with the bug fixes discussed in Section 6. We perform re-execution

with and without the selective execution optimization, which uses a

static analysis algorithm to only re-execute requests that have data

dependencies with modified requests. Both use parallel executions

as discussed in Section 3.5. We show results in Figure 5.

6K 24K 44K 61K
Number of Requests in the Recorded Trace

0

200

R
un

tim
e

(s
ec

)

20.1
74.8

137.2
189.0

19.5 47.0 59.7 44.5

a) TPC-C Replay

60K 294K 570K 1M
Number of Requests in the Recorded Trace

0

500

R
un

tim
e

(s
ec

)

33.0
159.3

321.2

606.5

11.6 37.0 58.5 84.6

b) Moodle Replay

60K 293K 563K 912K
Number of Requests in the Recorded Trace

0

500

R
un

tim
e

(s
ec

)

42.4
194.3

374.5
592.6

15.3 45.2 68.8 97.0

c) WordPress Replay

Preparation Execution - Sequential Execution - Parallel

Figure 4: Execution time for replaying a trace that originally
executed in 60 seconds, varying the number of requests in
(thus the throughput of) the original execution. We show
results with and without parallel execution optimizations.
We break down runtime into preparation (retrieving recorded
information) time and replay execution time.

60K 294K 570K 1M
Number of Requests in the Recorded Trace

0

100

R
un

tim
e

(s
ec

)

10.0
32.4

53.9
87.2

8.6 23.8 35.8 40.2

a) Moodle Retroaction - SubscribeUser Fix

60K 293K 563K 912K
Number of Requests in the Recorded Trace

0

100

R
un

tim
e

(s
ec

)

15.6
46.4

69.5
92.7

13.9
36.8 46.6 41.0

b) WordPress Retroaction - AddComment Fix

60K 293K 563K 912K
Number of Requests in the Recorded Trace

0

100

R
un

tim
e

(s
ec

)

15.2
45.4

67.9
95.3

6.8 11.9 15.3 19.8

c) WordPress Retroaction - InsertOption Fix

Preparation Execution - All Execution - Selective

Figure 5: Execution time for retroactively executing bugfixed
code over a trace that originally executed in 60 seconds, vary-
ing the number of requests in (thus the throughput of) the
original execution. We show results with and without the
selective execution optimization. We break down runtime
into preparation (retrieving recorded information) time and
retroactive execution time.

Without the selective execution optimization, retroaction takes

up to 1.6× longer than the original trace execution, similar to replay

3095

and for the same reasons. However, our selective execution opti-

mization decreases re-execution time by 1.16 – 4.8× by skipping

transactions unrelated to the modified request, so the optimized

retroaction takes less time than the original execution.

8 RELATEDWORK
Record and Replay. There has been much prior work on determinis-

tic record and replay for both operating system kernels and user-

level programs. Whole-system replay tools like Arnold [8] and Om-

niTable [33] require expensive and heavyweight instrumentation

(e.g., kernel modification) to capture detailed timing of individual

instructions. SMT-ReVirt [10] replays the entire VM and all ap-

plications by modifying the hypervisor and using hardware page

protection to accurately capture accesses to shared state, which

incurs high runtime overhead. RR [27] supports record and replay

for unmodified user-level applications running with stock Linux

kernels. However, RR is limited to single-threaded execution and

causes a large slowdown for programswith high parallelism. R2 [14]

can efficiently record and replay multi-threaded applications but

may replay incorrectly if the program has race conditions. REPT [7]

and Kernel REPT [13] use a circular buffer to record detailed in-

formation on the last few instructions to execute on each thread,

which enables reproducing recent system failures but does not

allow replaying arbitrary past executions.

Several record and replay systems rely on specialized hardware

or propose new hardware architectures. For example, BugNet [24]

and FDR [42] propose new hardware architectures to continuously

trace program execution and provide enough information to de-

terministically replay the last several instructions before a system

crash. Castor [18] leverages hardware transactional memory to

support low-overhead always-on record and replay for multi-core

applications, but it cannot deterministically replay all data races.

DeLorean [21] proposes a new hardware architecture where pro-

cessors execute atomic blocks of instructions, so it only needs to

record the commit order of these blocks for faithful replay.

Compared to existing tools, R3 focuses on database-backed dis-

tributed applications and achieves low-overhead always-on record-

ing by capturing traces at transaction-level granularity. R3 does not
require modifications to applications, the OS kernel, or hardware.

Transaction Reenactment. Reenactment [2–4, 26] is a technique

that replays and retroactively captures data provenance of past

transactions running under SI or read committed in MVCC DBMSs.

It provides detailed information about how tuples were derived

through past updates, but unlike R3, it works only for collections of
SQL statements and does not support procedural code such as appli-

cation business logic. It relies on DBMS features such as time-travel

queries and audit logging, resulting in non-trivial overhead from

fine-grained tracking [2]. In comparison, R3 focuses on application-

level time travel: it supports end-to-end replay and retroaction for

entire application request handlers and makes this practical by

providing always-on low-overhead recording in production.

Retroactive Program Execution. Existing systems that support

retroactive execution either limit code modifications or have restric-

tive programming semantics, and they do not support concurrent

executions. Retroactive Aspects [35] is designed to analyze and

replay Linux kernel execution. Its implementation only allows in-

strumenting the Linux kernel, and while it supports evaluating

analysis code (e.g., logging) in the past, it does not allow retroactive

modification of kernel logic. The GProM debugger [26] uses reen-

actment to test changes to SQL queries in one transaction at a time;

their following work Mahif [6] can efficiently test hypothetical

changes to multiple transactions, but unlike R3, it only considers

a serial history, not a concurrent one, and does not support proce-

dural code. Reverb [25] supports speculative bug fix analysis, which

is similar to R3 retroaction. Reverb replays a past application execu-

tion to a point and allows developers to edit the code or data of the

application; post-edit, Reverb follows the recorded event order and

other non-determinisms in the trace. However, unlike R3, Reverb
requires both the server and client to be single-threaded and event-

driven. R3 retroaction is inspired by Retro-𝜆 [19], but that system

only supports retroaction for event-sourced serverless applications

built with the command query responsibility segregation (CQRS)

architectural pattern. Retro-𝜆 also only considers a single-threaded

isolated microservice and does not support transactions.

Deterministic Databases. R3 faithful replay is related to prior work

on deterministic databases [12, 16, 31, 34, 36, 44]. These guaran-

tee serializable transactions by predetermining a serial order prior

to execution through a sequencing layer. They usually run trans-

actions in batches to reduce the sequencing overhead. They also

support efficient replication without coordination by replaying the

same batches of transactions with the deterministic serial order.

Whether the DBMS is deterministic is orthogonal to R3 design. If
the application uses a deterministic database, R3 only needs to gen-

erate one record per transaction batch and can faithfully replay

past executions by sequentially running recorded batches.

Database Command Logging. Command logging is a recovery

scheme for main-memory databases [17, 41, 44], where instead

of logging modifications to data, the DBMS only records the trans-

action’s logic (e.g., SQL queries). Then, to recover, the DBMS starts

from a checkpoint and replays the commands in the log. Command

logging significantly reduces log data sizes because, similar to R3,
it only needs one record per transaction. However, it only supports

serializable isolation and requires the commit order to be the same

as the serial order. Otherwise, sequentially replayed transactions

running with non-serializable isolation levels (like snapshot iso-

lation) may cause divergence [17] (we also discuss this issue in

Section 3). R3 solves this issue by proposing a novel algorithm to

efficiently replay transactions executed with snapshot isolation.

9 CONCLUSION
We presented R3, a tool that can faithfully replay recorded past exe-

cutions and retroactively execute modified code over past requests

for database-backed distributed applications. R3 only requires the

database to support at least snapshot isolation, and implements

a lightweight interceptor to record concurrency information for

distributed applications at a coarse transaction-level granularity.

We evaluate R3 on popular open-source applications and show its

always-on recording has small runtime overhead during normal

application execution and can help debug real, hard-to-reproduce

concurrency bugs.

3096

REFERENCES
[1] Atul Adya. 1999. Weak consistency: a generalized theory and optimistic implemen-

tations for distributed transactions. Ph.D. Dissertation. Massachusetts Institute of

Technology, Dept. of Electrical Engineering and Computer Science.

[2] Bahareh Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakrish-

nan, and Boris Glavic. 2016. Formal foundations of reenactment and transaction
provenance. Technical Report. Technical report, IIT.

[3] Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Rad-

hakrishnan, and Boris Glavic. 2016. Reenactment for Read-Committed Snap-

shot Isolation. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management (Indianapolis, Indiana, USA) (CIKM
’16). Association for Computing Machinery, New York, NY, USA, 841–850.

https://doi.org/10.1145/2983323.2983825

[4] Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Rad-

hakrishnan, and Boris Glavic. 2017. Using reenactment to retroactively capture

provenance for transactions. IEEE Transactions on Knowledge and Data Engineer-
ing 30, 3 (2017), 599–612.

[5] AWS. 2022. AWS Lambda. https://aws.amazon.com/lambda/.

[6] Felix S. Campbell, Bahareh Sadat Arab, and Boris Glavic. 2022. Efficient

Answering of Historical What-If Queries. In Proceedings of the 2022 Interna-
tional Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 1556–1569.

https://doi.org/10.1145/3514221.3526138

[7] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu

Wang, and Insu Yun. 2018. {REPT}: Reverse debugging of failures in deployed

software. In 13th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18). 17–32.

[8] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen.

2014. Eidetic Systems. In OSDI 2014. Broomfield, CO, 525–540.

[9] Akon Dey, Alan Fekete, and Uwe Röhm. 2015. Scalable distributed transactions

across heterogeneous stores. In ICDE 2015. 125–136.
[10] George W Dunlap, Dominic G Lucchetti, Michael A Fetterman, and Peter M

Chen. 2008. Execution replay of multiprocessor virtual machines. In Proceedings
of the fourth ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. 121–130.

[11] Mona Erfani Joorabchi, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Works for

me! characterizing non-reproducible bug reports. In MSR 2014. 62–71.
[12] Jose M Faleiro, Daniel J Abadi, and Joseph MHellerstein. 2017. High performance

transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017).

[13] Xinyang Ge, Ben Niu, and Weidong Cui. 2020. Reverse debugging of kernel

failures in deployed systems. In Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference. 281–292.

[14] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M Frans

Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record

and Replay.. In OSDI, Vol. 8. 193–208.
[15] Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe, Chris-

tos Kozyrakis, Michael Stonebraker, Lalith Suresh, and Matei Zaharia. 2023.

Transactions Make Debugging Easy. In CIDR 2023.
[16] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical

deterministic OLTP database. Proceedings of the VLDB Endowment 13, 12 (2020),
2047–2060.

[17] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.

2014. Rethinking main memory OLTP recovery. In 2014 IEEE 30th International
Conference on Data Engineering. IEEE, 604–615.

[18] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and Mendel

Rosenblum. 2017. Towards practical default-on multi-core record/replay. ACM
SIGPLAN Notices 52, 4 (2017), 693–708.

[19] Dominik Meissner, Benjamin Erb, Frank Kargl, andMatthias Tichy. 2018. Retro-𝜆:

An event-sourced platform for serverless applications with retroactive computing

support. In DEBS 2018. 76–87.
[20] MongoDB. 2023. MongoDB Transactions. https://www.mongodb.com/docs/

manual/core/transactions/.

[21] Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. Delorean: Recording and

deterministically replaying shared-memory multiprocessor execution efficiently.

ACM SIGARCH Computer Architecture News 36, 3 (2008), 289–300.
[22] Moodle. 2017. Duplicate forum subscriptions due to race conditions. https:

//tracker.moodle.org/browse/MDL-59854.

[23] Moodle. 2023. Moodle. https://moodle.org/.

[24] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. Bugnet: Continu-

ously recording program execution for deterministic replay debugging. In 32nd
International Symposium on Computer Architecture (ISCA’05). IEEE, 284–295.

[25] Ravi Netravali and James Mickens. 2019. Reverb: Speculative debugging for

web applications. In Proceedings of the ACM Symposium on Cloud Computing.
428–440.

[26] Xing Niu, Boris Glavic, Seokki Lee, Bahareh Arab, Dieter Gawlick, Zhen Hua Liu,

Vasudha Krishnaswamy, Su Feng, and Xun Zou. 2017. Debugging Transactions

and Tracking their Provenance with Reenactment. Proceedings of the VLDB
Endowment (Demonstration Track) 10, 12 (2017), 1857–1860.

[27] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and

Nimrod Partush. 2017. Engineering Record and Replay for Deployability.. In

USENIX Annual Technical Conference. 377–389.
[28] PostgreSQL. 2023. Asynchronous Commit. https://www.postgresql.org/docs/

current/wal-async-commit.html.

[29] PostgreSQL. 2023. PostgreSQL. https://www.postgresql.org/.

[30] The ZeroMQ project. 2023. JeroMQ, Pure Java implementation of libzmq. https:

//github.com/zeromq/jeromq.

[31] Thamir M Qadah and Mohammad Sadoghi. 2018. Quecc: A queue-oriented,

control-free concurrency architecture. In Proceedings of the 19th International
Middleware Conference. 13–25.

[32] Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang

Jin. 2022. A Deep Study of the Effects and Fixes of Server-Side Request Races in

Web Applications. In MSR 2022. 744–756.
[33] Andrew Quinn, Jason Flinn, Michael Cafarella, and Baris Kasikci. 2022. Debug-

ging the OmniTable Way. In OSDI 2022. Carlsbad, CA, 357–373.
[34] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. Slog: Serializable, low-latency,

geo-replicated transactions. Proceedings of the VLDB Endowment 12, 11 (2019).
[35] Robin Salkeld, Wenhao Xu, Brendan Cully, Geoffrey Lefebvre, Andrew Warfield,

and Gregor Kiczales. 2011. Retroactive aspects: programming in the past. In

Proceedings of the Ninth International Workshop on Dynamic Analysis. 29–34.
[36] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transactions for parti-

tioned database systems. In Proceedings of the 2012 ACM SIGMOD international
conference on management of data. 1–12.

[37] Vertica. 2023. Vertica. https://www.vertica.com/.

[38] WordPress. 2009. Comment Status for Posts in the Trash. https://core.trac.

wordpress.org/ticket/11073.

[39] WordPress. 2009. Option inserts triggered from front page can cause duplicate

entry errors. https://core.trac.wordpress.org/ticket/11437.

[40] WordPress. 2023. WordPress. https://wordpress.com/.

[41] Yu Xia, Xiangyao Yu, Andrew Pavlo, and Srinivas Devadas. 2020. Taurus: light-

weight parallel logging for in-memory database management systems. (2020).

[42] Min Xu, Rastislav Bodik, and Mark D Hill. 2003. A "flight data recorder" for

enabling full-system multiprocessor deterministic replay. In Proceedings of the
30th annual international symposium on Computer architecture. 122–135.

[43] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, et al.

2021. Foundationdb: A distributed unbundled transactional key value store. In

SIGMOD 2021. 2653–2666.
[44] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. 2022. Lotus:

scalable multi-partition transactions on single-threaded partitioned databases.

Proceedings of the VLDB Endowment 15, 11 (2022), 2939–2952.

3097

	Abstract
	1 Introduction
	2 R3 Overview
	2.1 Requirements for Applications
	2.2 Requirements for DBMS
	2.3 Non-Goals

	3 Faithful Replay
	3.1 Always-On Recording
	3.2 End-to-End Replay Workflow
	3.3 Replay Algorithm
	3.4 Replay Guarantees
	3.5 Optimizations
	3.6 Discussion and Possible Extensions

	4 Retroaction
	4.1 Supported Modifications
	4.2 Retroaction Goals
	4.3 Retroactive Execution
	4.4 Retroaction Correctness
	4.5 Selective Execution of Request Types

	5 Implementation
	5.1 Implementing R3 Recording
	5.2 Restoring Database State

	6 Case Studies
	6.1 Moodle: Duplicate Entry
	6.2 WP-Option: Unique Constraint Violation
	6.3 WP-Comment: Inconsistent Status

	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Workloads
	7.3 Recording Overhead Analysis
	7.4 Replay Performance
	7.5 Retroactive Execution Performance

	8 Related Work
	9 Conclusion
	References

