
JoinBoost: Grow Trees Over Normalized Data Using Only SQL

Zezhou Huang
Columbia University
zh2408@columbia.edu

Rathijit Sen
Microsoft

rathijit.sen@microsoft.com

Jiaxiang Liu
Columbia University
jl6235@columbia.edu

Eugene Wu
DSI, Columbia University
ewu@cs.columbia.edu

ABSTRACT

Although dominant for tabular data, ML libraries that train tree

models over normalized databases (e.g., LightGBM, XGBoost) re-

quire the data to be denormalized as a single table, materialized,

and exported. This process is not scalable, slow, and poses secu-

rity risks. In-DB ML aims to train models within DBMSes to avoid

data movement and provide data governance. Rather than modify a

DBMS to support In-DB ML, is it possible to o�er competitive tree

training performance to specialized ML libraries...with only SQL?

We present JoinBoost, a Python library that rewrites tree train-

ing algorithms over normalized databases into pure SQL. It is

portable to any DBMS, o�ers performance competitive with spe-

cialized ML libraries, and scales with the underlying DBMS capa-

bilities. JoinBoost extends prior work from both algorithmic and

systems perspectives. Algorithmically, we support factorized gra-

dient boosting, by updating the . variable to the residual in the

non-materialized join result. Although this view update problem

is generally ambiguous, we identify addition-to-multiplication pre-

serving, the key property of variance semi-ring to support A<B4 ,

the most widely used criterion. System-wise, we identify residual

updates as a performance bottleneck. Such overhead can be natively

minimized on columnar DBMSes by creating a new column of resid-

ual values and adding it as a projection. We validate this with two

implementations on DuckDB, with no or minimal modi�cations to

its internals for portability. Our experiment shows that JoinBoost

is 3× (1.1×) faster for random forests (gradient boosting) compared

to LightGBM, and over an order of magnitude faster than state-of-

the-art In-DB ML systems. Further, JoinBoost scales well beyond

LightGBM in terms of the # features, DB size (TPC-DS SF=1000),

and join graph complexity (galaxy schemas).

PVLDB Reference Format:

Zezhou Huang, Rathijit Sen, Jiaxiang Liu, and Eugene Wu. JoinBoost:

Grow Trees Over Normalized Data Using Only SQL. PVLDB, 16(11): 3071 -

3084, 2023.

doi:10.14778/3611479.3611509

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/JoinBoost/JoinBoost.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611509

1 INTRODUCTION

Tree-based models—ranging from decision trees, random forests,

and gradient boosting—are recursive space-partitioning algorithms

for classi�cation and regression [48]. They have shown exceptional

e�ectiveness for tabular datasets, outperforming popular neural

network models [31]. In fact, random forests and gradient boosting

were rated the most popular model from 2019 to 2021 on Kag-

gle [8]. In response, the ML community has developed optimized

tree-training libraries like LightGBM [42] and XGBoost [25], that

o�er user-friendly API, superior single-node performance, and com-

patibility with distributed frameworks like Dask [59] or Spark [70].

In practice, however, almost all tabular datasets are normalized

and stored in a DBMS. Using ML libraries introduces performance,

usability, and privacy drawbacks. First, the libraries expect a single

(typically CSV) training dataset. Thus, a developer must denor-

malize the database into a “wide table” 'Z , materialize and export

'Z , and load it into the library. The join materialization cost is

prohibitive for all but the simplest schemas and smallest databases—

the 1.2�� IMDB dataset (Figure 3) is well over 1)� when fully

materialized due to N-to-N relationships. Second, managing the

exported data as well as the separate execution frameworks adds

considerable operational complexity and is error-prone [64, 66].

Third, exporting sensitive data can raise privacy concerns [10].

Ideally, we would “move computation to the data” and train tree-

based models directly within the DBMS. This would let developers

manage the entire data lifecycle—preparation, cleaning, analysis,

andmodeling—within a single DBMS, and bene�t from the DBMSes’

excellent security, performance, and scalability. To be broadly useful,

we believe an initial In-DB solution should meet three criteria: (C1)

be easily portable to any DBMS by translating ML algorithms into

vanilla SQL queries, (C2) o�er training performance comparable

with the SOTA ML libraries (e.g., LightGBM), and (C3) scale to

massive data warehouse sizes and complexity. Unfortunately, these

criteria are often in tension. Common wisdom and prior results

suggest that training tree models via SQL queries is portable but

notoriously slow [32, 68, 70] as DBMSes do not employ model-

speci�c optimizations. However, specialized optimizations [25, 42]

or GPU acceleration [19, 33, 54] achieve competitive performance

at the expense of portability to general DBMSes.

To optimize training over normalized schemas common in DBM-

Ses, recent works in factorized ML [43, 44, 51, 61] avoid material-

izing joins by treating ML as semi-ring aggregation queries over

the join graph; the aggregations can then be pushed through the

joins. This approach potentially provides DBMSes with an edge

over conventional ML libraries that face signi�cant expenses for

3071

https://doi.org/10.14778/3611479.3611509
https://github.com/JoinBoost/JoinBoost
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611509
https://www.acm.org/publications/policies/artifact-review-and-badging-current

join materialization and export during training. Thus, it is intrigu-

ing to investigate the potential of training tree models in DBMSes

using vanilla SQL, with factorized ML optimizations.

Nevertheless, the current applicability of factorized ML to tree-

based models is restricted due to both algorithmic and system-

related limitations. LMFAO [61] describes a factorized algorithm that

is limited to decision trees, and does not support the widely used

gradient boosting models. It rewrites the tree node split algorithm

into a batch of group-by aggregations, and uses multi-query opti-

mization to share work between the aggregations. Unfortunately,

it does not support the residual updates needed for gradient boost-

ing models. Even for single decision tree training, LMFAO fails to

exploit considerable work-sharing between parent-child tree nodes.

Finally, LMFAO lacks portability because its performance is tied to

a compilation engine specially designed for its batch-wise query

execution. In our experiments, despite using an o�-the-shelf DBMS

(DuckDB [57]), we train decision trees 1.9× faster than LMFAO.

To this end, we present JoinBoost, the �rst In-DB ML system

designed for tree-based models (decision trees, random forests,

and gradient boosting) that ful�ll C1-3. Our main contribution

lies in the system design and implementation: we study the feasi-

bility of implementing JoinBoost as a Python library that trans-

lates ML algorithms into simple Select-Project-Join-Aggregation

(SPJA) queries and employs factorized ML as pure query rewriting.

Such design ensures portability (C1) and scalability (C3), as the

translated SQL queries can run on any single node or cloud-based

DBMS. Nonetheless, this design poses signi�cant challenges. Algo-

rithmically, previous factorized ML systems do not support gradient

boosting. Furthermore, while earlier factorized ML systems have

demonstrated good performance, their success is closely linked to

specialized execution engines. It’s unclear whether implementing

factorized ML as pure query rewriting can enable existing DBMSes

to deliver performance (C2) competitive to specialized ML libraries.

To support factorized gradient boosting, each iteration trains a

decision tree on the residuals of the prior tree, requiring updates to

. in the denormalized relation 'Z ; however, 'Z is not materialized

in factorized ML, and the view update generally requires$ ('Z) [1].

To address this, for snow�ake schema, we exploit 1-1 mapping

between 'Z with the fact table � , to update . in � directly. For the

more complex galaxy schema, we found that despite challenges

in directly updating . in 'Z , the tree training only relies on ag-

gregates of . (e.g., count, sum) that could be updated e�ciently.

Our technique identi�es addition-to-multiplication preserving, the

key property to e�ciently update aggregates, by rewriting residual

updates over . in 'Z into a join with an update relation * . How-

ever, each boosting iteration generates a new update relation that

may create cycles and doesn’t scale with the number of iterations.

To address this, we introduce Clustered Predicate Tree (CPT) that

restricts the tree splits to attributes within the same cluster. This

enables us to train gradient boosting on IMDB datasets, which was

previously prohibitive due to the large size of 'Z (>1)�).

To assess the viability of implementing factorized ML with pure

SQL, we conduct extensive experiments on DuckDB and a popular

commercial DBMS. Although columnar DBMS has the potential

to compete with specialized ML libraries, we �nd residual updates

as the major bottleneck for gradient boosting in current columnar

DBMSes: Residual updates require sequential writes to all values in

a column. However, this process is not e�cient in existing DBMSes

due to a combination of columnar compression, write-ahead-log

(WAL), and concurrency control (CC); these are fundamental to

DBMSes but unnecessary for gradient boosting. DisablingWAL, CC,

and compression in existing DBMSes directly is challenging as they

are deeply integrated into the codes. To match the performance

of LightGBM, update performance must be similar to a parallelized

write to an in-memory byte array.

To minimize DBMS overheads for residual updates (C2) with-

out compromising portability (C1), we explore the approach to

create a new column of residual values and adding it as a projec-

tion [67] on columnar DBMSes. We emulate this on DuckDB in two

ways, with no or little modi�cation to its internals. First, by lever-

aging DuckDB Pandas API [7], we store the fact table in a Pandas

dataframe, use DuckDB for joins and aggregations, and update the

residual by creating a new Pandas dataframe column. This results

in a ∼15× improvement in updates, making gradient boosting com-

petitive without modifying DuckDB. However, one drawback is a

∼1.6× slowdown in aggregations due to the DuckDB-Pandas interop

overhead. To explore the full potential, we further modify DuckDB

internals to support column swaps between DuckDB tables. We up-

date residuals by swapping the existing residual column with the

newly created one, making JoinBoost 1.1× faster than LightGBM.

Lastly, we simulate column swap on a commercial DBMS, and see

a potential 15× improvement. Such modi�cations, being both fea-

sible (< 100 LOC on DuckDB) and e�ective, provide direction for

other closed-source columnar DBMSes to support in-DB gradient

boosting e�ciently.

Finally, we apply optimizations to further improve JoinBoost

performance. Algorithmically, we enhance prior batch optimiza-

tion [61] by sharing intermediate results (materialized as tables

in DBMSes) across batches (tree nodes), leading to a 3× improve-

ment. System-wise, we leverage inter-query parallelism among

SQL queries, accelerating the gradient boosting training by 28%

and random forest by 35%. We conduct extensive experiments with

JoinBoost on various DBMS backends (local and cloud), using

datasets with varying feature numbers, sizes (TPC-DS with SF

10→1000), and join graph complexity (galaxy schemas), against

SOTA ML libraries (LightGBM,XGBoost,Sklearn) and In-DB sys-

tems (LMFAO,MADLib). On a single node, JoinBoost trains a gra-

dient boostingmodel with 100 trees 1.1× faster than LightGBM,

and is 3× faster for random forests. Onmultiple nodes, JoinBoost

outperforms the Dask [59] versions of LightGBM and XGBoost

by >9×. JoinBoost easily scales in the # of features, join graph

complexity, and dataset size (TPC-DS SF=1000 in Section 6.2),

whereas LightGBM encounters memory limitations.

Note: The paper is self-contained and references to appendices can

be skipped, or can be found in the technical report [35].

2 RELATED WORK

Tree-based ML Libraries. Random forest [21] and gradient boost-

ing [29] are the de-facto ensemble models supported by almost all

standardML libraries including Sklearn [56], TensorFlow [15] and

Keras [26]. The leading Tree-based ML libraries are LightGBM [42]

3072

and XGBoost [25], both of which are highly optimized and outper-

form others as per previous benchmarks [18]. According to Kag-

gle 2021 surveys [8], among all the commonly used ML libraries,

XGBoost and LightGBM are ranked 4Cℎ and 6Cℎ respectively for pop-

ularity (while all the top 3 also support Tree-based ML). However,

none of them apply factorized ML for normalized datasets.

In-DB ML systems. Most in-DB ML works [28, 32, 68] focus on

extending DBMSes (e.g., PostgreSQL for MADLib) to support linear

algebra using UDFs and user-de�ned types. However, these are not

needed for tree-based models that only rely on simple aggregations.

Other work optimizes ML training by leveraging specialized

features (distributed execution [20, 38, 39, 45, 70] or GPU accelera-

tion [19, 33, 46, 54]) of a speci�c DBMS. Although we focus on op-

timizing the single-node CPU setting via SQL rewrites, JoinBoost

can run on any DBMS and bene�t from its optimizer and executor.

For instance, Section 6.2 scales decision tree training on TPC-DS

SF=1000 using a cloud DBMS. We leave further DBMS-, data-, and

model-speci�c optimizations to future work.

In practice, cloud vendors (Azure [11], Redshift [14], BigQuery [47],

Snow�ake [13]) o�er SQL syntax to train tree models. Under the

covers, however, they still materialize and export join results to an

external library (LightGBM or XGBoost). Thus, we do not consider

them in-DB ML from a performance or portability standpoint.

Factorized ML systems. Factorized ML is optimized to train mod-

els over normalized databases. It translates ML models as aggrega-

tions over an appropriately designed semi-ring, and pushes aggre-

gations through joins to achieve asymptotically lower time com-

plexity. They support many popular models (ridge regression [61],

SVM [43], factorization machine [61]), and approximate others (k-

means [27], GLM [37]). Of these, only LMFAO [61] supports decision

trees, albeit in a limited way (see Section 6.4). Further, most factor-

ized ML works build specialized query optimizers and executors

from scratch, which hinders portability (of the systems and per-

formance wins) to existing DBMSes. JoinBoost extends factorized

ML to tree models via vanilla SQL queries, and shows competitive

performance with LightGBM.

3 BACKGROUND

We provide the background of factorized tree-based models.

3.1 Annotated Relations and Message Passing

This section provides an overview of annotated relations and mes-

sage passing fundamental to factorized query execution [17, 52].

Data Model. We use the traditional relational data model with

the following notations: Given relation ', let uppercase � be an

attribute, 3><(�) be its domain, (' = [�1, · · · , �=] be its schema,

C ∈ ' as a tuple of ', and C [�] be tuple C ’s value of attribute �. For

clarity, we include the schema in the square bracket followed by the

relation ' [�1, · · · , �=]. The domain of ' is the Cartesian product

of attribute domains 3><(') = 3><(�1) × · · · × 3><(�=).

Annotated Relations. The annotated relational model [30, 40, 50]

maps each C ∈ ' to a commutative semi-ring (�, ⊕, ⊗, 0, 1), where

� is a set, ⊕ and ⊗ are commutative binary operators closed over

� , and 0/1 are the zero/unit elements. These annotations form the

basis of provenance semi-rings [30], and are amenable query op-

timizations based on algebraic manipulation. Di�erent semi-ring

de�nitions support di�erent aggregation functions, ranging from

standard statistical functions to ML models. For instance, the nat-

ural numbers semi-ring (N, +,×, 0, 1) allows for integer addition

and multiplication, and supports the COUNT aggregate. For an

annotated relation ', let '(C) denote tuple C ’s annotation.

Semi-ring Aggregation Query. Semi-ring aggregation queries

can now be re-expressed over annotated relations by translating

group-by (general projection) and join operations respectively into

+ and × operations over the semi-ring annotations:

(WA') (C) =
∑
{'(C1) | C1 ∈ ', C = cA (C1)} (1)

(' Z)) (C) = '(c(' (C)) ⊗) (c() (C)) (2)

(1) Each group-by result annotation in WA' sums all the annotations

in its input group. (2) In ' Z) , the annotation of each join result is

the product of annotations from corresponding tuples in ' and) .

Aggregation Pushdown. The key optimization in factorized query

execution [17, 62] is to distribute aggregations (additions) through

joins (multiplications). Consider W� (' [�, �] Z ([�,�] Z) [�, �]).

The naive execution �rst materializes the join and then computes

the aggregation. This costs $ (=3) where = is each relation’s cardi-

nality. An alternative evaluation could apply aggregation (addition)

to ' before joining (multiplication) with (, aggregate again before

joining with) , and then apply a �nal aggregation. The largest

intermediate result, and thus the join complexity, is now $ (=).

W� (W� ((W�' [�, �]) Z ([�,�]) Z) [�, �])

Message Passing. Given a join graph, the above optimization can

be viewed as Message Passing [55]. While Message Passing supports

general SPJA queries [36], it is su�cient for tree models to restrict

ourselves to SPJA queries with zero (W) or one (W�) group-by at-

tribute. Message passing operates over a tree that spans the join

graph. For the root, we can pick any relation (taking cost models

into account) that contains the grouping attribute. Then we direct

all the edges of the join graph toward the root to form a tree.

Starting from the leaf, we send messages along its path to the

root. Each message is computed as: (1) Join the relation with all

incoming messages from children relations, if any. This blocks until

all children have emitted messages. Then (2) let A be the attributes

in the current relation that are also contained in the remaining

relations in the path to the root. Compute WA over the previous join

result, and emit the result to the parent relation.

Consider again W� (' [�, �] Z ([�,�] Z) [�, �]) along the join

graph: ' − (−) . If we choose T as the root, then the directed join

graph is ' → (→) and the messages are:

<'→(=W�' [�,�] , <(→) = W� (<'→(Z ([�,�])

Once the root receives and joins with all messages, it performs

absorption, which simply applies the �nal group-by: W� (<(→) Z

) [�, �]). In some cases, the aggregate result is already part of the

semi-ring (e.g., COUNT and the natural numbers semi-ring); in

other cases, such as tree-based models, the semi-ring decomposes

the training metric into their constituent statistics, so we combine

them in the �nal annotation to restore the metric (see next section).

3073

Table 1: Example commutative semi-rings for decision trees. Variance semi-ring supports regression criteria like Reduction in

Variance; Class Count semi-ring supports classi�cation criteria like Gini Impurity, Information Gain, and Chi-Square.

Semi-ring Zero/One Operator Lift

Variance

(Z,R,R)

0: (0, 0, 0)

1: (1, 0, 0)

(21, B1, @1) ⊕ (22, B2, @2) = (21 + 22, B1 + B2, @1 + @2)

(21, B1, @1) ⊗ (22, B2, @2) = (2122, B122 + B221, @122 + @221 + 2B1B2)
(1, ~,~2)

Class Count

(Z,Z, ...,Z)

0: (0, ..., 0)

1: (1, ..., 0)

(21, 2
1

1
, ..., 2:

1
) ⊕ (22, 2

1

2
, ..., 2:

2
) = (21 + 22, 2

1

1
+ 21

2
, ..., 2:

1
+ 2:

2
)

(21, 2
1

1
, ..., 2:

1
) ⊗ (22, 2

1

2
, ..., 2:

2
) = (2122, 2

1

1
22 + 212

1

2
, ..., 2:

1
22 + 212

:
2
)
(1, 0, ..., 2~ = 1, ..., 0)

3.2 Tree-based Models

In this section, we describe the traditional tree-based models. The

algorithms are based on CART [22], and its extensions (e.g., bagging

and boosting) follow standard ML textbooks [48].

Decision Tree. Decision tree maps (predicts) target variable .

from a set of features X. Internally, it maintains a tree structure

of selection predicates, with each edge containing a predicate f

and selecting data based on the conjunction of predicates along

the path from the root. Leaf nodes associate with a prediction

value ? ∈ 3><(.). The selection predicates by leaves are mutually

exclusive and collectively exhaustive in �><(X). For C ∈ �><(X),

decision tree predicts by traversing the edges where C meets the

edge predicate until a leaf is reached, then outputs its prediction ? .

Training a Decision Tree over relation ' with features X and

target variable . where X ∪ . ⊆ (' involves recursively splitting

' to minimize a criterion 2 (·). For regression, the popular criterion

is Variance for root mean square error (A<B4), while Gini Impurity,

Entropy, and Chi-Square are common for classi�cation. Numer-

ical attribute splits use inequality (f�>E, f̄�≤E), and categorical

attribute splits use equality (f�=E, f̄�≠E) or set-based (f�∈+ , f̄�∉+)

predicates. Given the criteria 2 (·) and split f , the reduction of crite-

ria after the split is 2 (') − (2 (f (')) + 2 (f̄ ('))). Tree growth could

be depth-wise or best-�rst [65]. Depth-wise growth splits the tree

node with the least depth, and best-�rst growth splits the tree node

greedily with the largest criteria reduction. Finally, each leaf pre-

diction is the average . for regression or mode . for classi�cation.

Algorithm 1 presents the training algorithm. Given relation 'Z
(with . encoded in annotations), features X, and the maximum

number of leaves, the algorithm iteratively calls GetBestSplit

to �nd the best next split (L3,8,9). GetBestSplit iterates through

all features, evaluates its best split (based on reduction of criteria),

and returns the best split across all features (L11-16). For best-�rst

growth, a priority queue (L2) sorts leaf nodes descendingly based

on reduction of criteria. In each iteration, the algorithm splits the

best leaf node (L7), creating two tree nodes that partition the parent

node. It then �nds the best split for each new node and pushes

them to the queue (L8,9). Training ends when the number of leaves

reaches the maximum (L5). Leaf node predictions are computed,

and the tree is returned (L10). During training, evaluating the best

split (L14) is the most computationally expensive.

Bagging and Boosting. Big, deep decision trees risk over�tting.

Ensemble methods combine multiple smaller or shallower decision

trees to create a more robust model. Popular tree-based ensemble

models include random forests [21] (bagging) and gradient boost-

ing [29] (boosting). Random forests parallelly train decision trees

on samples of ' and features and aggregate their predictions (e.g.,

Algorithm 1: Decision tree training algorithm. L14 (under-

lined) is the most computationally expensive.

1 Function DecisionTree('Z,X,<0G!40E4B)

2 =D<!40E4B, ?@ ← 1, ?A8>A8C~&D4D4 ();

3 2, f, -, 'Z, A>>C ← GetBestSplit('Z,X, =D;;, =D;;);

4 ?@.?DBℎ(2, f, -, 'Z, A>>C);

5 while =D<!40E4B++ < <0G!40E4B do

6 // get the best split with the highest 2 among leaves;

7 _, f?0A4=C , -, ', ?0A4=C ← ?@.?>? ();

8 ?@.?DBℎ(GetBestSplit(',X, f?0A4=C , ?0A4=C));

9 ?@.?DBℎ(GetBestSplit(',X,¬f?0A4=C , ?0A4=C));

10 return 033%A4382C8>=('Z, A>>C)

11 Function GetBestSplit(',X, f , parent)

12 2∗, f∗, - ∗, =>34 ← 0, =D;;, =D;;, 2A40C4#>34 (f, ?0A4=C);

13 for each feature - ∈ X do
14 f,2← best split and criteria reduction for - over f (') ;

15 if 2 > 2∗ then 2∗, f∗, - ∗ ← 2, f,- ;

16 return 2∗, f∗, - ∗, f ('), =>34

average) for the �nal result. Gradient boosting sequentially trains

decision trees based on preceding trees’ residuals.

3.3 Factorized Decision Tree

We now introduce factorized decision trees over joins. The training

process follows Algorithm 1, but we optimize the computation of

criteria reduction (L14), the most computationally intensive part, by

avoiding join materialization. We consider a database with a set of

relations R = {'1, '2, ..., '=}, and aim to train a decision tree over

'Z = '1 Z '2 ... Z '= with a set of features X and target variable

. . Let '. be the relation that contains . (or pick one if . is in many

relations as a join key). For simplicity, we will assume natural join,

set semantics, and the Variance split criterion; Appendix B describes

extensions to theta and outer joins, bag semantics, and formulas for

classi�cation semi-rings. Factorized learning avoids materializing

'Z by expressing the criterion as semi-ring aggregation queries, and

applying aggregation pushdown over join. We �rst describe semi-

ring annotations for trees and then the computation of criterion.

Tree Semi-rings. We now illustrate how to use variance semi-

ring (Table 1) to compute the Variance for regression. Each semi-

ring de�nes a ;8 5 C (·) function [50] that annotates a base tuple

with its appropriate semi-ring element. Variance semi-ring lifts

C ∈ '. with (1, C [.], C [.]2), and C from the remaining relations

3074

(a) Relations annotated with variance semi-ring, join

graph ' − (−) , target variable B and features C,D.

(b) Naive join 'Z and aggregation query W ('Z) .

(c) Message passing for aggregation query

W� ('Z) . The root node is dotted in green.

(d) Message sharing between aggregation queries W� ('Z)

and W� ('Z) . The reusable message is dotted in blue.

Figure 1: Factorized decision stump training.

with the 1 element (1, 0, 0). Duringmessage passing, the annotations

are combined via ⊕ and ⊗ as de�ned in Table 1. The aggregated

semi-ring W ('Z) then forms a 3-tuple (�, (,&) that denotes the

count, sum of . , and the sum of squares of . . The variance statistic

can be derived from this aggregated semi-ring as E0A80=24 = & −

(2/� . Thus, any �lter aggregation query over the join graph can be

expressed using message passing and lightweight post-processing.

Example 1. Consider R = {', (,) } in Figure 1a with variance

semi-ring, join graph '−(−) and target variable . = �. To compute

the variance over 'Z , the naive solution is to materialize 'Z (Fig-

ure 1b), then compute the variance (=4) over �. Instead, we compute

(�, (,&) = W (' Z (Z)) = (8, 16, 36) and E0A80=24=&−(2/�=4.

To �nd the best split, we similarly use variance semi-ring com-

pute the reduction in variance (Appendix A).

Message Caching. Training a decision stump requires computing

the set of aggregation queries grouped by each feature: {W- ('Z) |- ∈

X}. Executing each independently via message passing is wasteful

due to reusable messages. Consider the example in Figure 1:

Example 2. Let X = {�, �}, and suppose we �rst aggregate on

� (Figure 1c). We choose S as the message passing root because it

contains� ; we then pass messages<1 from R to S and<2 from T to S,

and absorb the messages into (. We then aggregate on � (Figure 1d).

We choose T as the message passing root, pass<1 from R to S,<3

from S to T, and absorb into T. The two queries can reuse<1.

Recent work [36] shows that a simple caching scheme that ma-

terializes all messages between relations in the join graph (in both

directions) is e�ective in various analytical workloads. The fac-

torized learning system LMFAO [61] also optimizes batch queries

for splitting a single decision tree node. For decision trees, where

each query groups by ≤1 feature, its optimizations are equivalent

to this simple caching scheme. However, LMFAO optimizes a single

decision tree node’s batch of queries, missing work-sharing across

tree nodes and not supporting residual updates for boosting.

4 FACTORIZED GRADIENT BOOSTING

This section delves into the algorithms for factorized gradient boost-

ing, which iteratively trains the next tree to predict the residuals

from preceding trees. Recall from Section 3.2 that, each leaf ; in the

decision tree is associated with a predicate ; .f and prediction ; .? .

We aim to update, for each leaf ; , the target variable of C ∈ ; .f ('Z)

to the residual C [E]=C [.]−; .? . The fundamental challenge is to train

decision tree over the updated . in 'Z without materializing 'Z .

One tempting approach is to treat this as a view update prob-

lem: we update . in the 'Z view, translate it into updates over

base relations, re-lift the updated base relations, and train the next

factorized decision tree. However, view updates are susceptible to

"side-e�ects" [1]: for C ∈ '. , ~ = C [.] can be duplicated in 'Z
due to 1-N (or M-N) joins. If one duplicate is updated to a new

value ~′, updating C [.] = ~′ in '. would inadvertently cause other

duplicates to be updated as well (as "side-e�ects"). To address it,

new tuples are created in base relations for new mappings. These

"side-e�ects" are particularly problematic for "residual updates", as

the full . column in 'Z is updated, requiring $ (|'Z |) new tuples.

We address these issues for snow�ake (a single fact table) and

galaxy schemas (multiple fact tables)—arguably the most common

database schema forms. Snow�ake schemas exhibit a 1-to-1 rela-

tionship between the fact table � and 'Z , and we exploit this to

e�ciently updates . over � . We then discuss the system challenges

when performing full-column updates. These techniques do not

apply to galaxy schemas due to the M-N relationships between

the fact tables. While directly updating . in 'Z remains challeng-

ing, we identify the addition-over-multiplication preserving property

that allows us to directly update semi-ring aggregates derived from

updated . , and use this to e�ciently support the popular A<B4 .

4.1 Snow�ake Schemas

Snow�ake schemas have one fact table � and N-to-1 paths along

the dimension tables; this means that � is 1-1 with 'Z
1 and we can

directly update � . Let us �rst assume that. is in � (i.e., '. = �). The

main challenge is to translate a leaf ; ’s predicate ; .f , whichmay refer

to dimension attributes, into one over � . We do so by translating ; .f

as semi-join predicates2 over � . Given join path � − �1 − ... − �: ,

1We assume no missing join keys, or use left outer join to maintain 1-to-1 relationship.
2We treat left semi-joins as �lters over the left relation so its annotations don’t change.

3075

and f (�8), we “move” the predicate to be f′ (�8−1):

�8−1 Z f (�8) = (�8−1 ⋉ f (�8)) Z �8 = f
′ (�8−1) Z �8

where f′ is over the join keys J = (�8−1
∩ (�8

. Note that f

doesn’t have to be equality-based but can be of any arbitrary type:

f is applied to cJ (f (�8)) to identify the matching join keys for

the semi-join. If . is in a dimension table � (i.e., '. ≠ �), we join

the relations along the path from � to � and project all attributes

in � along with . . This reduces to the �rst case above.

System Challenge: Since |� | = |'Z |, factorized gradient boosting

does not o�er an asymptotic advantage over specialized ML libraries.

Theoretically, if the performance is comparable, it could still bene�t

from the parallelization, scaling, and administrative features of

DBMSes. However, in practice, we �nd that bulk updates to � .. are

a major bottleneck (Section 5.3.2) for existing DBMSes. The next

section dives into these system challenges, and explores system

design, logical, and physical optimizations to address them.

4.2 Galaxy Schemas

Galaxy schemas model M-N relationships between multiple fact

tables. They are prevalent in enterprise settings [60]; the recent “se-

mantic layers” trend [5, 12, 24, 34] (pre-de�ned denormalized views)

have made analysis and ML over galaxy schemas more accessible.

However, galaxy schemas induce the 1-N relationship between '.
and 'Z that causes side-e�ects [1] during residual updates.

We observe that individual. values are not needed for training—

the split criteria only refers to semi-ring aggregates over the updated

. values (Section 3.3), and can potentially be updated e�ciently. For

instance, for a leaf ; with original aggregates 2 =
∑
1, B =

∑
~ over

; .f ('Z), we can directly update the sum of residuals as
∑
(~−; .?) =∑

~ −
∑
; .? = B − 2 × ; .? , without referencing individual . values.

Unfortunately, this approach is not e�cient for arbitrary split

criteria. To review, factorized ML maps (via ;8 5 C (·)) ~ in the real

number semi-ring R(R, +,×, 0, 1) (for base relation) to another

semi-ring S(S, ⊕, ⊗, 0′, 1′) (e.g., variance semi-ring for A<B4), and

computes
∑
;8 5 C (~) over 'Z with aggregation pushdown. To di-

rectly update aggregates given leaf ; , we want to �nd a function

5 :(S,R) → S, such that 5 takes the original aggregates
∑
;8 5 C (~)

(without referencing individual~) and additive inverse of prediction

; .?3 as input, and outputs updated aggregates: 5 (
∑
;8 5 C (~),−; .?) =∑

;8 5 C (~ − ; .?). To maintain our asymptotic bene�ts, both 5 and

semi-ring operation/annotation should be of constant time/size.

Such 5 does not exist for all semi-rings. For example, mean abso-

lute error (<04) relies on the count and sum of signs:
∑
1,
∑
B86=(~).

The naive semi-ring would track
∑
;8 5 C (~) = (

∑
1,
∑
B86=(~)).

However, 5 doesn’t exist because given the leaf ; ,
∑
B86=(~ − ; .?)

cannot be solely decided by
∑
1,
∑
B86=(~),−; .? , as it depends on

individual ~ − ; .? . A naive solution uses a semi-ring that collects

all ~ values, but its annotation size will be $ (|'Z |) and defeats

the purpose of factorization. To this end, we identify a su�cient

property for constant sized semi-ring S to construct 5 :

Definition 1. Addition-to-Multiplication Preserving. Given two

semi-rings R(R, +,×, 0, 1), S(S, ⊕, ⊗, 0′, 1′), a lift function ;8 5 C (·) :

R→S is addition-to-multiplication preserving from R to S if

;8 5 C (31 + 32) = ;8 5 C (31) ⊗ ;8 5 C (32) for any 31, 32 ∈ � .

3Additive inverse of ; .? exists because R is also a ring.

Based on the property, we can construct 5 as:

5 (
∑
;8 5 C (~),−; .?) = (

∑
;8 5 C (~)) ⊗ ;8 5 C (−; .?) (5 de�nition)

=
∑
(;8 5 C (~) ⊗ ;8 5 C (−; .?)) (⊗ distributive)

=
∑
;8 5 C (~ − ; .?) (Add-to-Mul Preserving)

It is easy to verify that, the variance semi-ring (and lift) in Table 1

satis�es the property: ;8 5 C (~−; .?) = (1, ~−; .?, ; .?2+~2−2; .?×~) =

(1, ~,~2) ⊗ (1,−; .?, ; .?2) = ;8 5 C (~) ⊗ ;8 5 C (−; .?). In contrast, there

is no known ;8 5 C and constant-sized semi-ring with this property

for<04 . A possible future direction using polynomial approxima-

tions [37] of the semi-ring aggregates. To keep the text concrete,

the subsequent text will refer to the A<B4 criteria.

4.2.1 Update Relation: For decision tree and each of its leaf ; , we

apply the corresponding 5 that multiplies aggregates over ; .f ('Z)

with ;8 5 C (−; .?). We model this as an Update Relation* joins with

'Z . * is constructed as follows: let A be the set of attributes refer-

enced by ; .f for any leaf ; , and* be the projection cA ('Z), along

with a column −% of the additive inverse of leaf prediction (unique

as leaf predicates are non-overlapping). Naively, the next boosting

lifts the residual using ;8 5 C.−% ('ZZ*)
4, where 'ZZ* has to be

materialized. Instead, we rewrite this into ;8 5 C. ('Z)Z;8 5 C−% (*):

Proposition 4.1. Let C∈*Z'Z . ;8 5 CE (*Z'Z) (C) = (;8 5 C. ('Z)

Z ;8 5 C−% (*)) (C) if ;8 5 C (·) is addition-to-multiplication preserving.

Proof. Consider any C∈*Z'Z with ~ = C [.] and −? = C [−%].

Naively, we materialize E = . − % , then lift ;8 5 CE (* Z 'Z) (C) =

;8 5 C (~ − ?). Instead, we compute (;8 5 C. ('Z) Z ;8 5 C−% (*)) (C) =

;8 5 C (~) ⊗ ;8 5 C (−?) without materializing E. They are equivalent

because ;8 5 C (·) is addition-to-multiplication preserving. □

Example 3. The decision tree in Figure 2a has three leaf nodes:

(f�≤1, ?=2.5), (f�>1∧�≤1, ?=1.5), (f�>1∧�>1, ?=2). The set of ref-

erenced attributes is A={�, �}. The update relation * is shown in

Figure 2b. The semi-ring annotations lifted on E=.−% over the mate-

rialized join are shown in Figure 2d. It is easy to verify that they are

the same as those in* Z 'Z , without materialization 'Z .

4.2.2 Algorithmic Challenge. Unfortunately, * can introduce cy-

cles in the join graph over time (e.g., Figure 2c shows cycle � →

� → �); whereas Message Passing requires acyclic join graphs.

Standard hypertree decomposition [17, 41] removes cycles by join-

ing the relations in a cycle, materializing their join result '′ (e.g.,

([�,�] Z) [�, �] Z * [�, �]), and replacing these relations in

the join graph with '′. However, as the number of trees in model

increases, the number of referenced attributes is likely to span the

entire join graph—|* | will thus converge to |'Z |.

To address this, we propose Clustered Predicate Tree (CPT): each

boosted tree restricts split on features that can be pushed to the

same fact table. To do so, we cluster relations such that within each

cluster, a single fact table � maintains N-to-1 relationships with

all other relations. Predicates in this cluster can be rewritten as

semi-joins to the same fact table � (Section 4.1) and won’t create

cycles [17]. During training, while the root decision tree node can

split on any feature, subsequent splits are con�ned to attributes

within the same cluster. Although this might a�ect model accuracy,

4When ;8 5 C is applied to a column� , we denote it as ;8 5 C� .

3076

(a) Decision Tree.

(b) Update Relation U.

(c) Join Graph.

(d) Materialized 'Z with prediction additive inverse −% , residual

E = . − % and annotation (1, n, n2) lifted on E for the next tree.

Figure 2: Update Relation U for decision tree residual up-

dates over the non-materialized 'Z . Each tuple in * Z 'Z
has the same annotation as the materialized 'Z lifted on E.

Therefore, the materialization of 'Z can be avoided.

Figure 3: Clusters for IMDB dataset. Each cluster is enclosed

by dotted lines and its fact table is �lled.

it allows e�cient residual updates over join graphs, which would

otherwise be untrainable using existing techniques.

Example 4. Figure 3 shows the join graph of IMDB datasets [2],

which was previously prohibitive to train gradient boosting due to

the large join size ('Z is >1)�). The �ve clusters are enclosed by

dotted lines and the cluster’s fact table is highlighted. If the current

tree initially splits on Person’s age (in Person Info), the rest of the tree

can only split on attributes in Person or Person Info.

5 JOINBOOST OVERVIEW AND OPTIMIZATIONS

We now present the system overview and optimizations.

5.1 JoinBoost Developer Interface

As described in Section 1, our design goals are portability, perfor-

mance, and scalability. We evaluate performance and scalability in

the experiments, so focus on portability below.

Portability:Our design deviates from prior factorizedMLworks [25,

42, 44, 61], which build (fast) custom execution engines. In contrast,

JoinBoost is implemented as a Python library that transparently

generates SQL queries to the user’s DBMS backend (Figure 4).

API Compatibility: For usability, JoinBoost o�ers Python API

similar to LightGBM and XGBoost, and returns models identical to

LightGBM. In these libraries, users �rst de�ne a training dataset and

pass it, along with training parameters (e.g., objective, criteria, num-

ber of leaves), to a train() method. Likewise, JoinBoost users

de�ne the training dataset as a join graph (the relations and join

conditions between them), providing a database connection, and

specifying the features and target variable. If only relations are spec-

i�ed, JoinBoost infers the join graph that covers those relations

from the database schema and raises an error if the graph is am-

biguous (e.g., multiple foreign key references between relations) or

requires cross-products. Finally, the user passes the training dataset

and training parameters to train(). For consistency, JoinBoost

accepts the same training parameters as LightGBM.

Example 5. Figure 4 illustrates a simple example inspired by TPC-

DS. The user creates a database connection, and initializes the train-

ing dataset as a join graph with relations [sales, date], join at-

tribute date_id, features X = [holiday, weekend] and target vari-

able . = net_profit. Finally, the user chooses model parameters

({>1 942C8E4 = A46A4BB8>=}) and runs train over the training dataset.

JoinBoost internally translates the ML algorithms into CREATE

TABLE and SELECT SQL queries. Compared to in-DB systems like

MADLib [32], JoinBoost generates pure SQL and does not require

user-de�ned types or functions. This enables portability (criteria

C2): JoinBoost runs on embedded databases, single-node databases,

cloud data warehouses, and even Pandas and R dataframes [7].

The compiler fully supports decision trees, random forests, and

gradient boosting with all learning parameters that LightGBM sup-

ports. Currently, regression with '"(� objective supports galaxy

schema with Clustered Predicate Trees; other objectives (e.g.,<04 ,

ℎD14A , B> 5 C<0G...) require snow�ake schema. We are actively ex-

tending capabilities to support pruning, dropout, and early stopping,

which build on the techniques in the preceding sections.

One usability challenge is that JoinBoost end users are typ-

ically domain scientists who lack expertise in data access and

schema, commonly handled by data engineers. While addressing

this is beyond the scope, we highlight the recent trend of "semantic

layer" [5, 6, 12, 24] as a means to bridge the knowledge gap. In the

"semantic layer," data engineers employ SQL-based recipes to trans-

form and preprocess raw data into tables containing meaningful

attributes to domain scientists, and can be queried by JoinBoost

using SQL.

Safety: Training shall never modify user data. To achieve that,

JoinBoost creates temporary tables in a speci�ed namespace or

with a unique pre�x. By default, JoinBoost deletes these tables

after training, but users can keep them for provenance or debugging.

5.2 Architecture Overview

The ML Compiler runs the ML logics (Algorithm 1) to train tree-

based models in Python and translates the most computational

intensive L14, which identi�es the best split across features for tree

nodes, into SQL queries to be executed by DBMS. At this stage, the

compiler treats the join graph as a single "wide" table, with the SQL

query operating on this table, and factorization is applied in a later

step. After training, it returns a reference to the trained model.

3077

Figure 4: JoinBoost Architecture. JoinBoost translates its

Python API calls into message passing algorithms that are

executed as SQL queries on backend DBMSes and dataframes.

The Semi-ring Library stores semi-ring de�nitions and translates

math expressions in the compiler-generated queries (×, +, ;8 5 C) into

SQL aggregation functions. ;8 5 C (') creates a copy of a base relation

' that contains an additional attribute for each component in the

semi-ring (e.g., c, s, q in the variance semi-ring). This also ensures

that any update in-place will not modify user data. In addition to

the variance (for regression) and the class count (for classi�cation)

semi-rings, JoinBoost implements semi-rings for a wide range

of popular objectives; it supports A<B4 for snow�ake and galaxy

schemas, and mae, huber loss, fair loss, log loss, softmax and more

for snow�ake schemas (see Appendix B for full list).

The Factorizer decomposes each aggregation query into message

passing and absorption queries. It also materializes each message

as a database table, and re-uses them when possible. After choosing

a node split, the factorizer keeps messages that can be reused in

descendent nodes (Section 5.5.1) and drops the rest.

Finally, the Connector takes our internal SQL representation,

and translates them into the appropriate SQL string or dataframe

API calls. Although DBMSes are notorious for incompatible SQL

variants, JoinBoost only uses a subset of SQL that is generally

consistent across vendors. For instance, it generates standard non-

nested SPJA queries with simple algebra expressions.

5.3 Residual Updates Logical Optimization

Although correct, the residual update technique in Section 4 is

still expensive to implement naively. For simplicity, if we assume a

single join attribute � between the fact table � and update table * ,

and the variance semiring, the SQL query would be:
CREATE TABLE F_updated AS

SELECT F.c*U.c AS c, F.s*U.c+U.s*F.c AS s,

F.q*U.c+U.q*F.c+2*F.s*U.s AS q, ...

FROM F JOIN U ON A

where 2 , B , @ are semiring components, and the remaining columns

in � are copied over (shown as . . .). Unfortunately, this is >50×

slower than LightGBM’s residual update procedure (see experiments

below), because* can potentially be as large as the materialized 'Z .

To this end, we present an optimization for snow�ake and galaxy

schemas that completely avoids materializing* as well as � Z * .

5.3.1 Semi-join Update Optimization. We directly UPDATE � ’s semi-

ring annotations. Let us start with a snow�ake schema. Each de-

cision tree leaf ; logically corresponds to a separate join graph

containing a set of messages (Figure 6), with ; .f as its predicate and

; .? as its prediction. Using the semi-join optimization (Section 4),

we translate predicates over 'Z (e.g., ; .f) into semi-joins between �

and relevant incoming messagesM. A message<8 ∈ M is relevant

if it is along a join path from a relation containing an attribute in

; .f to � . For each leaf node ; , we execute the following query where

� .08 is the join attribute with its relevant incoming message<8 :
UPDATE F SET c * 1 AS c, s - l.p*c AS s, q + l.p*l.p*c - 2*s*l.p AS q

WHERE F.ai IN (SELECT ai IN mi) AND ...

In some databases, updates in place can be very slow. Thus an

alternative is to create a new fact table with the updated semi-ring

annotations. Let ; 9 be the 9
Cℎ leaf in the decision tree, and<8, 9 , 08, 9

be the 8Cℎ message and its join attribute with � in ; 9 ’s join graph:
CREATE TABLE F_updated AS SELECT

CASE WHEN F.a_ij IN (SELECT a_ij FROM m_ij) AND ... THEN s - l_j.p*c

WHEN ... // Other leaves

END AS s, ... // other semi-ring components

... // copy other attributes in F

FROM F

The same ideas apply to galaxy schemas, where � corresponds to

the fact table of the current tree’s cluster. Further, we show in the

technical report [35] that 2 and @ are not necessary to materialize;

thus only B is needed for the variance semi-ring.

5.3.2 Pilot Study. When should we perform in-place updates as

compared to creating new tables? On which DBMSes? We now

report a microbenchmark to understand the performance trade-

o�s, and use them to motivate a new optimization. We used an

Azure VM, with 16 cores, 128 GB memory, and an SSD.

Workloads.We create a synthetic fact table � (B, 3, 21, ..., 2:) with

100" rows to simulate residual updates in a decision tree with 8

leaves. B is the semi-ring column to update, 3 ∈ [1, 10] is the

join key, and 2: are simply extra columns that would need to be

duplicated in a new table. For the 8Cℎ leaf node, its prediction is

a random �oat, and we construct its semi-join message<8 (3) to

contain all values in (1250 × (8 − 1), 1250 × 8].

Methods.We evaluate three approaches. Naive materializes Up-

date Relation* , then re-create fact table: � ′ = � ZA * as discussed

in Section 4. SET and CREATE use the update-in-place and create

table optimizations in the preceding subsubsection. CREATE-k de-

notes the number of extra columns in � , where : ∈ {0, 5, 10}; we

set : = 0 for Naive, and : does not a�ect SET.

DBMSes.We evaluate two systems. DBMS-X is a popular commer-

cial RDBMS that supports both column-oriented (X-col) and row-

oriented (X-row) storage and query processing. DBMS-X is disk-

based only, and we set the isolation and recovery to the lowest

level (read uncommitted and minimum logging). DuckDB [57] is a

popular embedded column-oriented OLAP DBMS and is highly per-

formant [9]. DuckDB has disk-based (D-disk) and memory-based

(D-mem) modes. As a reference, we also use LightGBM to train 1

iteration of gradient Boosting with the same training settings, and

report residual update time.

Experiment Results. Figure 5 shows that Naive incurs high mate-

rialization and join costs. CREATE is∼ 2× faster for DBMS-X and∼ 4×

faster for DuckDB, but its cost grows linearly with : . SET mainly de-

pends on the DBMS—it is prohibitive for DBMS-X, but more e�cient

than CREATE when : > 5 for DuckDB. All DBMS approaches take

>3B for updating residuals. In contrast, LightGBM stores the target

3078

Figure 5: Residual update time (log) for di�erent DBMSes us-

ing di�erent methods. The red horizontal line is the residual

update time for LightGBM. Column swap (DP, D-Swap) achieves

competitive residual update performance.

variable in a C++ array and performs parallel writes; its residual

update takes ∼0.2B . These poor results are due to four main factors.

• Compression: CREATE in X-col incurs high compression costs:

the database is 1�� in X-col as compared to 2.6�� for DuckDB.

This also penalizes SET due to decompression.

• Write-ahead Log (WAL) introduces costly disk writes.

• Concurrency Control (CC): In-memory DuckDB doesn’t use

WAL, but incurs MVCC [49] overheads, including versioning,

and logging for undo and validation.

• Implementation: DuckDB’s update is currently single-threaded.

5.4 Residual Updates Physical Optimization

Logical rewrites are e�ective but still much slower than LightGBM’s

residual updates, even when existing CC mechanisms are lowered.

We observe that JoinBoost does not need durability and concur-

rency control, since it writes to private tables, performs application-

level concurrency control (Section 5.5), and can simply re-run upon

failure. Compression is also unnecessary for the heavily updated

columns. Unfortunately, WAL, CC, and compression are deeply

integrated into DBMS designs, and nontrivial to fully disable.

We note that columnar engines are well suited to avoid these

costs by adding the new residual column as a projection [67], but is

not generally supported (e.g., by DuckDB, DBMS-X). We thus evaluate

its bene�ts using three methods: one that uses DuckDB’s existing

APIs to swap columns in Pandas dataframe, one that adds “column

swapping” to DuckDB, and one that simulates it in DBMS-X.

The �rst solution, called DP (DuckDB + Pandas), uses the existing

DuckDB Relational API [7] to directly access Pandas dataframes [53]

– an in-memory data structure that stores columns in contiguous

uncompressed C arrays. Internally, it uses a custom scan operator

for Pandas’s matrix format, and DuckDB’s executor for the rest

of the query. We store the fact table � as a dataframe, and the

remaining tables in DuckDB, and join them via the relational API

during training. For residual update, we submit a query over Pandas

and native relations to compute the semi-ring annotations for the

updated residuals, and store the result in a NumPy array. Then

using Pandas, we replace the old column in � with the new NumPy

array (a pointer swap). This is fast because it avoids WAL or CC

overhead, and reduces residual updates to 0.72B–competitive with

LightGBM (Figure 5). The drawback is that the scan overhead slows

down the join-aggregation query, and increases training time by

∼1.6× as compared to querying only native relations (Section 6.3).

The second approach, D-Swap, modi�es DuckDB internals slightly

(<100 LOC) to support pointer-based column swapping between

Figure 6: Share computations between the parent node and

children nodes after the split. Dotted messages are shared.

two DuckDB tables. DuckDB stores tables in row groups, with each

group containing pointers to the column data. D-Swap iterates

through the row groups of the two relations and swaps the column

pointers. Such column swap is a schema-level modi�cation, so it is

very fast and side-steps decompression, CC, and WAL overheads.

It achieves similar residual update performance to DP (Figure 5)

without degrading aggregations (Section 6.3).

Finally, to extend beyond DuckDB, we also simulate column swap-

ping’s impact on DBMS-X in Section 6.3, and see a potential 15×

improvement. We believe that implementing such column swap

in closed-source DBMSes is both feasible and e�ective for residual

updates. We encourage columnar DBMS developers to incorporate

this operation for e�cient In-DB gradient boosting.

5.5 Optimizations and Features

We implement various optimizations and features in JoinBoost for

performance and usability. Due to space limit, we only discuss the

most critical ones here, while the rest can be found in Appendix D.

5.5.1 Message Sharing Among nodes. Previous factorized ML algo-

rithms [44, 61] rely on batch optimization of aggregation queries,

suitable for models with closed-form solutions (e.g., ridge regres-

sion [61]). However, tree-based model training is iterative: queries

for child nodes depend on the parent node’s split, making batching

ahead impossible. Consequently, previous algorithms either miss

work-sharing opportunities between tree nodes or batch all possi-

ble splits, which is impractical due to exponential growth in tree

depth. Our key observation is that messages as intermediate results

can also be shared among tree nodes. Consider the example:

Example 6. Following Example 2, suppose the best root split is

f�>1. The split applies f and ¬f to) (as it contains �), creating

two leaf nodes with relations: f ('Z) and ¬f ('Z). Then, for each leaf

node, we compute the batch of aggregation queries and identify the

next split through Message Passing. As shown in Figure 6, messages

(dotted blue) along the path ' → (→) are the same for both leaf

and root nodes. We only need to recompute message<)→(in each

tree leaf, skipping<(→' as '’s attributes aren’t used in this model.

In general, after a split on'8 , all messages along the path to'8 can

be re-used. This is orthogonal to prior batch optimization work [61]

as we can cache and reuse messages after batching for future nodes,

further improving batch optimization by >3× (Section 6.4).

5.5.2 Sampling for Random Forest. A random forest model simply

trains multiple decision trees over random samples of the training

3079

Figure 7: Favorita schema. Sales is the fact table.

data and features, and aggregates (e.g., averages) their predictions

during inference. Feature sampling can be easily implemented by

using a random subset of X′⊆X features for Algorithm 1. The main

challenge is e�ciently sampling over non-materialized 'Z : Naively

sampling each relation is (1) not uniform and independent, and (2)

may produce non-joinable and hence empty samples. To address

these, we use ancestral sampling [23, 63, 71] over join.

Minor Optimizations. First, we coalesce the messages for COUNT

query with those for the tree criterion. For instance, the 2 element

in Variance Semi-ring captures the COUNT statistics. Second, for

snow�ake schemas where the fact table has N-to-1 relationships

with the rest of the tables, we sample the fact table directly [69].

5.5.3 Inter-query Parallelism. Parallelism is widely used in ML

libraries like LightGBM, which implements parallelized sorting, ag-

gregation, residual updates, and split candidate evaluations. For

JoinBoost, most DBMSes o�er intra-query parallelism, but there

can be diminishing returns for individual queries or operations.

Thus, JoinBoost also aggressively parallelizes across trees, leaf

nodes, candidate splits, and messages. However, there are depen-

dencies between these queries: amessage’s query relies on upstream

messages, absorption depends on incoming messages, tree nodes

depend on ancestor node queries, and gradient boosting trees rely

on preceding trees. To handle this, JoinBoost employs a simple

scheduler. Each query & tracks its dependent queries, and when &

�nishes, it sets the ready bit for these dependencies. If all dependen-

cies for a query are set, it’s added to a FIFO run queue. Empirically,

4 threads work best for intra-query parallelism, while the rest are

used for inter-query parallelism. This reduces gradient boosting

training time by 28% and random forest by 35% (Appendix C).

6 EXPERIMENTS

We focus on the fastest alternative:ML libraries (XGBoost, LightGBM,

Sklearn). We start with a single-node setting, and then evaluate

scalability to the number of features, types of joins, and database

size on multiple nodes. Finally, we compare with factorized (LMFAO)

and non-factorized (MADLib) in-DB ML techniques.

Datasets.We primarily report results using the Favorita [3] dataset

used in prior factorizedMLwork [61, 62] (Figure 7). Sales is the fact

table (2.7��, 80M rows), and has N-to-1 relationships with the other

dimensions (<2"� each). There are 13 features. We report TPC-DS

results for scalability experiments and use IMDB for galaxy schema

experiments; additional TPC-H/DS results are in the Appendix C.

Preprocess. Although Favorita and TPC-H/DS are standard bench-

marks in prior factorized learning evaluations [61], their features

are non-predictive and lead to highly unbalanced trees. This arti�-

cially favors JoinBoost since all but one leaf node in the decision

tree would contain very few records, and thus take negligible train-

ing time—the performance di�erences with other systems are fully

dominated by join materialization. To ensure balanced trees and fair

comparison, we impute one feature attribute in each of the 5 dimen-

sion tables with random integers drawn from [1, 1000]. Then we

impute the target variable as sum of transformed features5. Finally,

we dictionary encode strings into 32-bit unsigned integers [16, 58]

to avoid parsing errors in ML libraries like LightGBM.

Models. We evaluate decision tree, random forest, and gradient

boosting. JoinBoost is intended to complement other DBMS work-

loads, so all experiments start with data persistent on disk but not

in memory. We assume by default that data are already persisted

in the disk-based DBMSes (DBMS-X and disk-based DuckDB). We re-

port the end-to-end training time for decision tree of max depth 10,

and vary the number of trees (iterations) in the random forest and

gradient boosting. For JoinBoost, the main cost is from DBMSes,

and the Python codes introduce negligible (<0.1B) overhead.

Methods. We evaluate JoinBoost with di�erent DBMS backends.

DBMS-X (X-col and X-row for column and row-oriented storage and

execution engines) and DuckDB-disk (D-disk) are disk-based and

directly execute queries on the base DBMS, whereas memory-based

DuckDB (D-mem) �rst loads the DBMS from disk. DP refers to the disk-

based DuckDB backend using Pandas updates through the DuckDB’s

relational API, and D-Swap refers to the modi�ed memory-based

DuckDB for e�cient residual updates (Section 5.4). By default, we use

D-Swap as the backend as it has the best performance (Section 6.3).

ML libraries6 (LightGBM, XGBoost, Sklearn) expect a single CSV

as input, so incur the cost to materialize and export the join result

(∼7�� for Favorita), load the CSV, and train the model. DuckDB joins

and exports the data faster than DBMS-X, so we report its numbers.

Hardware: We use Azure VM: 16 cores, 128 GB memory, and SSD.

6.1 Comparison With ML Libraries

We compare with SOTAML libraries for training tree-based models

(LightGBM [42], XGBoost [25] and Sklearn [56]). Sklearn imple-

ments the standard and histogram-based gradient boosting with

algorithms similar to LightGBM, so we report both implementations.

We set the number of bins to 1000 for LightGBM and XGBoost, and

255 for Sklearn (its limit). By default, we train gradient boosting

and random forest with best-�rst growth, with a maximum of 8

leaves per tree. The gradient boosting learning rate is 0.1. The ran-

dom forest data sampling rate without replacement is 10%, and

feature sampling rate is 80%. We report up to 100 iterations. The

0
Cℎ iteration reports the join materialization, export, and load costs.

Figure 8a shows random forest results. JoinBoost is ∼3× faster

than LightGBM by avoiding materialization and export costs (dotted

black line), and loading costs; it also parallelizes across trees. In

fact, JoinBoost �nishes 100 iterations before the export is done.

Sklearn also parallelizes across trees, but is so slow that we ter-

minate after 32 iterations. The �nal model error (A<B4) is nearly

identical (∼2350) for JoinBoost, LightGBM and XGBoost.

Figure 8b shows gradient boosting results. JoinBoost is ∼1.1×

faster than LightGBM, and is ∼1.2× faster than XGBoost by avoiding

materialization and export costs. Figure 8c shows the model A<B4 .

JoinBoost and LightGBM have equivalent A<B4 as both employ the

same algorithm, while the �nal A<B4 is similar across all. Note that

5Favorita applies: ~ = 58C4<;>6 (58C4<B) + ;>6 (5>8;) − 10530C4B − 105BC>A4B + 5
2
CA0=B

6Python version LightGBM and XGBoost havememory issues [4] so we use CLI version.

3080

(a) Random forest training time. JoinBoost is ∼3× faster than LightGBM.

(b) Gradient boosting Training time. JoinBoost is ∼1.1× faster.

(c) Gradient boosting Accuracy. The �nal A<B4 is nearly identical.

Figure 8: Gradient boosting and random forest training time

and accuracy on Favorita compared to ML libraries when the

materialized join �ts into memory on a single node.

Figure 9: The 1BC iteration of JoinBoost gradient boosting. (a)

The number of queries for passing messages and �nding the

best split. (b) The histogram of query execution time (ms).

the models begin to converge ∼ 60 iterations; JoinBoost converges

by the time LightGBM and XGBoost have loaded their data.

To interpret the JoinBoost cost, we zoom in on the 1BC iteration

of JoinBoost gradient boosting in Figure 9, which displays the

total number of queries for passing messages (orange) and �nding

the best split (blue) along with a histogram for the query execution

time distribution. With a tree of 8 leaves and 15 nodes, there are

270 = 15 × 18 (number of features) queries for feature split, and

75 = 15 × 5 (number of join edges) queries for message passing, as

expected. All feature split queries are e�cient, taking < 10<B . The

performance bottlenecks are the queries passing messages from the

fact table, which require join-aggregation, result materialization,

and take > 200<B . This highlights the importance of aggressively

reusing messages across nodes (Section 5.5.1).

6.2 Scalability

We now study scalability to DB size, and join complexity.

Figure 10: Gradient boosting training time of 10Cℎ (a) and

50
Cℎ (b) iteration. The X-axis varies TPC-DS SF (database size).

LightGBM runs out of memory when SF=25.

Figure 11: Gradient boosting training time of 10 iterations (a)

varying SF on 4machines (b) varying # of machines for SF=40.

LightGBM runs out of memory at SF=40 even on 4 machines.

Single-node Scalability. Favorita is a �xed dataset, so we use

TPC-DS (145 features) to scale the database ((� ∈ [10, 25]). Fig-

ure 10 shows that both systems scale linearly, but JoinBoost has a

lower slope (∼10× lower at 10Cℎ iteration, and ∼2× lower at 50Cℎ).

LightGBM runs out of memory at (� = 25.

Multi-node Scalability.Weuse the Dask version [59] of LightGBM

and XGBoost, and Dask-SQL for JoinBoost to train gradient boost-

ing on multiple machines for 10 iterations on TPC-DS (�∈[30, 40].

We use 4 n1-highmem-16 GCP instances (16 vCPUs, 104 GB RAM

each) with data replicated across all instances; at least 4 machines

are needed for LightGBM to run on (� = 30 due to large join sizes

and ine�cient memory usage [4]. Figure 11 (a) shows that, on 4

machines, all systems scale linearly , but JoinBoost is >9× faster

with a ∼5× lower slope. For (�=40, LightGBM runs out of memory

even on 4 machines. In contrast, Figure 11 (b) shows that for (�=40,

JoinBoost can train on a single machine, outperforms XGBoost

(using 4 machines), and speeds up with more machines.

Cloud-warehouse Scalability. We use a cloud data warehouse

DW-X to train a decision treewithmax depth 3 over TPC-DS SF=1000,

and study multi-machine scalability. Each machine has 74 cores,

300GB of memory, and SSDs. We replicate dimensional tables across

the machines, and hash-partition the fact table. Figure 12 shows

that 2 machines introduce a shu�e stage that slows training, and

increasing to 4 (6) machines reduces training by 10% (25%).

Galaxy Schemas. Galaxy schemas have N-to-N relationships that

are prohibitive to materialize. We use clustered predicate trees (Sec-

tion 4.2.2) to train gradient boosting on the IMDB dataset (Figure 3).

Cast_Info is ∼1�� and the total DB is 1.2��. JoinBoost scales

linearly with the number of iterations (Figure 13); it trains one

tree and updates residuals in each cluster’s fact table within ∼5B .

LightGBM cannot run because the join result is >1)�.

6.3 E�ect of DBMSes

We now use Favorita to train 1 iteration of gradient boosting,

and compare train and update costs for di�erent DBMSes (DBMS-X

3081

Figure 12: Decision Tree Training Time over TPC-DS

(SF=1000) in Data Warehouse. Increasing the number of ma-

chines to 4 (6) reduces the training time by 10% (25%).

Figure 13: Gradient Boosting Training over IMDB dataset

with a galaxy schema. Each tree takes ∼5B. ML libraries do

not run because the join is too large to materialize.

Figure 14: Training and residual update time for one decision

tree on Favorita for di�erent DBMSes. X-Swap* is the theoret-

ical runtime by simulating column swaps.

and DuckDB). To study the potential bene�ts of column swap (Sec-

tion 5.4) in commercial DBMSes, X-Swap* reports the theoretical

cost using the time to create the updated column as a new table

(since column swap is then “free”).

Figure 14 breaks down train and update costs. Decision trees

and random forests only require training (blue bar), which is dom-

inated by columnar execution: X-col and DuckDB take 3.2 − 3.9B

versus 14.5B for X-row. Gradient boosting introduces high update

costs across all of the baseline DBMSes. We see that using Pan-

das to perform the update (DP) reduces residual updates by ∼15×

(17.8B→1.2B), but slows training by 60% (3.2B→5.1B) due to DuckDB-

Pandas interop overhead. D-opt implements column swapping

inside DuckDB and improves training. We also see that adding col-

umn swapping to DBMS-X (X-Swap*) leads to respectable gradient

boosting performance (∼3× of D-Swap) but can bene�t from its

out-of-memory and multi-node scalability features.

6.4 Comparison With In-DB ML Techniques

We�rst comparewith the dominant factorized approach (LMFAO [61]),

followed by the non-factorized approach (MADLib).

Factorized ML.We �rst compare with LMFAO [61], which supports

decision trees (but not gradient boosting or random forests). We

train a decision tree (max depth=10) with best-�rst growth; the

trained tree is balanced and has 1024 leaves. Via correspondence,

the LMFAO authors shared a version that compiles a program for

(a) (b)

Figure 15: Training time for decision tree. JoinBoost’s

caching and work sharing improve over LMFAO, MADLib, naive

materialization, and batching variants.

the queries used to split the root tree node, and reuses it for grow-

ing the rest of the tree. We set the highest optimization level for

LMFAO, and exclude the time for query compilation (∼15B) and data

loading. To separate algorithmic vs implementation di�erences, we

implement two variations of JoinBoost. Naive materializes the

join result without factorized ML. Batch implements LMFAO’s core

logical optimizations (Multi Root, Aggregate Push-down and Merge

View) for decision tree; this corresponds to message passing with

message re-use within, but not between tree nodes.

Figure 15a reports the training time. Evenwith the custom engine

and specialized optimizations, LMFAO is still ∼1.9× slower than

JoinBoost due to the lack of message caching (Section 5.5.1). By

eliminating the implementation di�erences, Batch demonstrates

that message caching improves training by ∼3×. The improvement

is because half the messages across tree nodes are cached, and the

sizes of the cached messages tend to be much larger; the intuition

is that the messages outgoing from the relation containing the split

attributewill be smaller, since the split predicate has been applied. In

theory, two-pass semi-join reduction [17, 52] could reduce message

sizes, but the high overheads outweigh bene�ts [16]. Batch is ∼2×

faster than Naive due to factorization and shared work.

Non-Factorized ML. MADLib [32] is a PostgreSQL extension that

supportsML using user-de�ned types and functions. MADLib doesn’t

apply factorized ML, so the join has to be materialized. MADLib

times out after 1 hour when training a decision tree model (max

depth=10) on the full Favorita, so we reduced the training data size

to 10k rows; for JoinBoost, we reduced the fact table to 10k rows.

Figure 15b shows that JoinBoost is ∼16× faster than MADLib.

7 CONCLUSION

JoinBoost is the �rst In-DB factorized ML system for tree models

(decision trees, random forests, and gradient boosting) with only

SQL. JoinBoost is comparable or faster than the SOTA LightGBM

ML library on in-memory datasets, but scaleswell beyond LightGBM’s

capabilities in terms of # of features, database size, and join graph

complexity. JoinBoost exposes a PythonAPI thatmimics LightGBM’s

API and is portable to any DBMS and dataframe library.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grant No. 1845638,

2008295, 2106197, 2103794, 2312991, Columbia Data Science In-

stitute’s Avanessian PhD fellowship, as well as by support from

Microsoft, Amazon, and Adobe. We are grateful to anonymous

reviewers for their feedback.

3082

REFERENCES
[1] 2006. Updates through views: A new hope. In 22nd International Conference on

Data Engineering (ICDE’06). IEEE, 2–2.
[2] 2013. IMDB. https://www.imdb.com/interfaces/.
[3] 2017. Corporación Favorita Grocery Sales Forecasting. https://www.kaggle.com/

c/favorita-grocery-sales-forecasting.
[4] 2017. Lightgbm memory explodes in start train. https://github.com/microsoft/

LightGBM/issues/1032.
[5] 2020. Looker data modeling. https://www.looker.com/platform/data-modeling/.
[6] 2020. The Tableau Data Model. https://help.tableau.com/current/online/en-

us/datasource_datamodel.htm.
[7] 2021. Client APIs Overview. https://duckdb.org/docs/api/overview.
[8] 2021. Kaggle Data Science and Machine Learning Survey. https:

//www.kaggle.com/code/paultimothymooney/2021-kaggle-data-science-
machine-learning-survey/notebook.

[9] 2022. ClickBench: a Benchmark For Analytical Databases. https://benchmark.
clickhouse.com/.

[10] 2022. Personal-Data-Protection-Act. https://www.pdpc.gov.sg/Overview-of-
PDPA/The-Legislation/Personal-Data-Protection-Act.

[11] 2023. Azure Machine Learning documentation. https://learn.microsoft.com/en-
us/azure/machine-learning/.

[12] 2023. The dbt Semantic Layer. https://www.getdbt.com/product/semantic-layer/.
[13] 2023. Snow�ake Machine Learning Platforms. https://www.snow�ake.com/

guides/machine-learning-platforms.
[14] 2023. Using machine learning in Amazon Redshift. https://docs.amazonaws.cn/

en_us/redshift/latest/dg/machine_learning.html.
[15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensor�ow.org/ Software available from tensor�ow.org.

[16] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,
and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.
ACM Transactions on Database Systems (TODS) 42, 4 (2017), 1–44.

[17] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. 2016. FAQ: questions asked
frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems. 13–28.

[18] Andreea Anghel, Nikolaos Papandreou, Thomas Parnell, Alessandro De Palma,
and Haralampos Pozidis. 2018. Benchmarking and optimization of gradient
boosting decision tree algorithms. arXiv preprint arXiv:1809.04559 (2018).

[19] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Dong
He, Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, et al. 2022. Share
the tensor tea: how databases can leverage the machine learning ecosystem.
arXiv preprint arXiv:2209.04579 (2022).

[20] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
�mievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Freder-
ick R Reiss, Prithviraj Sen, Arvind C Surve, et al. 2016. Systemml: Declarative
machine learning on spark. Proceedings of the VLDB Endowment 9, 13 (2016),
1425–1436.

[21] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[22] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. 2017.

Classi�cation and regression trees. Routledge.
[23] Bishop PRML Ch and Alireza Ghane. 1993. Sampling Methods. (1993).
[24] Damianos Chatziantoniou and Verena Kantere. 2020. Data Virtual Machines:

Data-Driven Conceptual Modeling of Big Data Infrastructures.. In EDBT/ICDT
Workshops.

[25] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[26] Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras
[27] Ryan Curtin, Benjamin Moseley, Hung Ngo, XuanLong Nguyen, Dan Olteanu,

and Maximilian Schleich. 2020. Rk-means: Fast clustering for relational data. In
International Conference on Arti�cial Intelligence and Statistics. PMLR, 2742–2752.

[28] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards
a uni�ed architecture for in-RDBMS analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. 325–336.

[29] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics
& data analysis 38, 4 (2002), 367–378.

[30] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems. 31–40.

[31] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-
based models still outperform deep learning on tabular data? arXiv preprint
arXiv:2207.08815 (2022).

[32] Joe Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li,
et al. 2012. The MADlib analytics library or MAD skills, the SQL. arXiv preprint
arXiv:1208.4165 (2012).

[33] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2021. TCUDB: Accelerating
Database with Tensor Processors. arXiv preprint arXiv:2112.07552 (2021).

[34] Zezhou Huang, Pavan Kalyan Damalapati, and Eugene Wu. 2023. Aggregation
Consistency Errors in Semantic Layers and How to Avoid Them. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics (Seattle, WA, USA) (HILDA
’23). Association for ComputingMachinery, New York, NY, USA, Article 8, 7 pages.
https://doi.org/10.1145/3597465.3605224

[35] Zezhou Huang, Rathijit Sen, Jiaxiang Liu, and Eugene Wu. 2023. Joinboost:
Grow trees over normalized data using only SQL. arXiv preprint arXiv:2307.00422
(2023).

[36] Zezhou Huang and Eugene Wu. 2022. Calibration: A Simple Trick for Wide-table
Delta Analytics. arXiv:2210.03851 [cs.DB]

[37] Jonathan Huggins, Ryan P Adams, and Tamara Broderick. 2017. Pass-glm:
polynomial approximate su�cient statistics for scalable bayesian glm inference.
Advances in Neural Information Processing Systems 30 (2017).

[38] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J Gao. 2019. Declarative recursive computation on an rdbms, or,
why you should use a database for distributed machine learning. arXiv preprint
arXiv:1904.11121 (2019).

[39] Dimitrije Jankov, Binhang Yuan, Shangyu Luo, and Chris Jermaine. 2021. Dis-
tributed numerical and machine learning computations via two-phase execution
of aggregated join trees. Proceedings of the VLDB Endowment 14, 7 (2021).

[40] Manas Joglekar, Rohan Puttagunta, and Christopher Ré. 2015. Aggregations over
generalized hypertree decompositions. arXiv preprint arXiv:1508.07532 (2015).

[41] Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. Ajar: Aggrega-
tions and joins over annotated relations. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 91–106.

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly e�cient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[43] Mahmoud Abo Khamis, Ryan R Curtin, Benjamin Moseley, Hung Q Ngo, Xuan-
Long Nguyen, Dan Olteanu, and Maximilian Schleich. 2020. Functional Aggre-
gate Queries with Additive Inequalities. ACM Transactions on Database Systems
(TODS) 45, 4 (2020), 1–41.

[44] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2018. AC/DC: In-database learning thunderstruck. In
Proceedings of the Second Workshop on Data Management for End-To-End Machine
Learning. 1–10.

[45] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Gri�th, Michael J Franklin,
and Michael I Jordan. 2013. MLbase: A Distributed Machine-learning System.. In
Cidr, Vol. 1. 2–1.

[46] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. Mlog: Towards
declarative in-database machine learning. Proceedings of the VLDB Endowment
10, 12 (2017), 1933–1936.

[47] MarkMucchetti. 2020. BigQueryML. In BigQuery for DataWarehousing. Springer,
419–468.

[48] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[49] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializ-

able multi-version concurrency control for main-memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677–689.

[50] Milos Nikolic and Dan Olteanu. 2018. Incremental view maintenance with triple
lock factorization bene�ts. In Proceedings of the 2018 International Conference on
Management of Data. 365–380.

[51] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. ACM SIGMOD
Record 45, 2 (2016), 5–16.

[52] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations
of query results. ACM Transactions on Database Systems (TODS) 40, 1 (2015),
1–44.

[53] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[54] Johns Paul, Shengliang Lu, Bingsheng He, et al. 2021. Database Systems on GPUs.
Foundations and Trends® in Databases 11, 1 (2021), 1–108.

[55] Judea Pearl. 1982. Reverend Bayes on inference engines: A distributed hierarchical
approach. Cognitive Systems Laboratory, School of Engineering and Applied
Science

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

3083

 https://www.imdb.com/interfaces/
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://github.com/microsoft/LightGBM/issues/1032
https://github.com/microsoft/LightGBM/issues/1032
https://www.looker.com/platform/data-modeling/
https://help.tableau.com/current/online/en-us/datasource_datamodel.htm
https://help.tableau.com/current/online/en-us/datasource_datamodel.htm
https://duckdb.org/docs/api/overview
https://www.kaggle.com/code/paultimothymooney/2021-kaggle-data-science-machine-learning-survey/notebook
https://www.kaggle.com/code/paultimothymooney/2021-kaggle-data-science-machine-learning-survey/notebook
https://www.kaggle.com/code/paultimothymooney/2021-kaggle-data-science-machine-learning-survey/notebook
https://benchmark.clickhouse.com/
https://benchmark.clickhouse.com/
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act
https://learn.microsoft.com/en-us/azure/machine-learning/
https://learn.microsoft.com/en-us/azure/machine-learning/
https://www.getdbt.com/product/semantic-layer/
https://www.snowflake.com/guides/machine-learning-platforms
https://www.snowflake.com/guides/machine-learning-platforms
https://docs.amazonaws.cn/en_us/redshift/latest/dg/machine_learning.html
https://docs.amazonaws.cn/en_us/redshift/latest/dg/machine_learning.html
https://www.tensorflow.org/
https://github.com/fchollet/keras
https://doi.org/10.1145/3597465.3605224
https://arxiv.org/abs/2210.03851
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

[57] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[58] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M Lohman, et al. 2013. DB2 with BLU acceleration: So much more than just
a column store. Proceedings of the VLDB Endowment 6, 11 (2013), 1080–1091.

[59] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th python in science conference, Vol. 130.
Citeseer, 136.

[60] Geetika Saxena and Bharat Bhushan Agarwal. 2014. Data Warehouse Designing:
Dimensional Modelling and ER Modelling. International Journal of Engineering
Inventions 3, 9 (2014), 28–34.

[61] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q Ngo, and
XuanLong Nguyen. 2019. A layered aggregate engine for analytics workloads.
In Proceedings of the 2019 International Conference on Management of Data. 1642–
1659.

[62] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning linear
regression models over factorized joins. In Proceedings of the 2016 International
Conference on Management of Data. 3–18.

[63] Ali Mohammadi Shanghooshabad, Meghdad Kurmanji, Qingzhi Ma, Michael
Shekelyan, Mehrdad Almasi, and Peter Trianta�llou. 2021. PGMJoins: Random
Join Sampling with Graphical Models. In Proceedings of the 2021 International
Conference on Management of Data. 1610–1622.

[64] Shreya Shankar, Rolando Garcia, Joseph M Hellerstein, and Aditya G
Parameswaran. 2022. Operationalizing Machine Learning: An Interview Study.
arXiv preprint arXiv:2209.09125 (2022).

[65] Haijian Shi. 2007. Best-�rst decision tree learning. Ph.D. Dissertation. The Uni-
versity of Waikato.

[66] John B Smelcer. 1995. User errors in database query composition. International
Journal of Human-Computer Studies 42, 4 (1995), 353–381.

[67] Mike Stonebraker, Daniel J Abadi, AdamBatkin, Xuedong Chen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
2018. C-store: a column-orientedDBMS. InMakingDatabasesWork: the Pragmatic
Wisdom of Michael Stonebraker. 491–518.

[68] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The
architecture of SciDB. In Scienti�c and Statistical Database Management: 23rd
International Conference, SSDBM 2011, Portland, OR, USA, July 20-22, 2011. Pro-
ceedings 23. Springer, 1–16.

[69] Swarup Acharya Phillip B Gibbons Viswanath and Poosala Sridhar Ramaswamy.
1998. Join Synopses for Approximate Query Answering. (1998).

[70] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2013. Shark: SQL and rich analytics at scale. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of data. 13–24.

[71] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
sampling over joins revisited. In Proceedings of the 2018 International Conference
on Management of Data. 1525–1539.

3084

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Annotated Relations and Message Passing
	3.2 Tree-based Models
	3.3 Factorized Decision Tree

	4 Factorized Gradient Boosting
	4.1 Snowflake Schemas
	4.2 Galaxy Schemas

	5 JoinBoost Overview and Optimizations
	5.1 JoinBoost Developer Interface
	5.2 Architecture Overview
	5.3 Residual Updates Logical Optimization
	5.4 Residual Updates Physical Optimization
	5.5 Optimizations and Features

	6 Experiments
	6.1 Comparison With ML Libraries
	6.2 Scalability
	6.3 Effect of DBMSes
	6.4 Comparison With In-DB ML Techniques

	7 Conclusion
	Acknowledgments
	References

