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ABSTRACT
This paper evaluates the suitability of Apache Arrow, Parquet, and

ORC as formats for subsumption in an analytical DBMS. We sys-

tematically identify and explore the high-level features that are

important to support efficient querying in modern OLAP DBMSs

and evaluate the ability of each format to support these features.

We find that each format has trade-offs that make it more or less

suitable for use as a format in a DBMS and identify opportunities to

more holistically co-design a unified in-memory and on-disk data

representation. Our hope is that this study can be used as a guide

for system developers designing and using these formats, as well

as provide the community with directions to pursue for improving

these common open formats.
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1 INTRODUCTION
Over the last decade, a number of new common and open formats

have been proposed that purport to improve performance and ease

interoperation across OLAP DBMSs and storage layers such as

data lakes [49]. Today, storage formats such as Parquet [12] and

ORC [11] are the cornerstone reference architectures for cloud-

scale data warehousing systems [14]. At the same time, the in-

memory format Apache Arrow [8] is widely considered to be the

default means of interoperation across different data systems [50],

and several systems are even exploring how to leverage it end-to-

end [18]. Each of these in-memory and storage formats attempt

to minimize disk, memory, and IO costs, and each applies a wide

variety of optimizations to maximize analytic read performance.

Though the benefits for common open formats are now well

established [29], there has been less exploration of the relative

benefits of these formats for direct subsumption in an analytical

DBMS as a native format. This is despite the robust discussion in

database community about the relative merits of these formats for

this purpose (e.g., [3, 43, 58]). One reason for this is that each for-

mat makes design choices that optimize for its use as a common
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and open format, and these choices often conflict with longstand-

ing analytical DBMS techniques. For example, we increasingly see

a push to directly leverage Arrow as an end-to-end, in-memory

format within a DBMS [37]. At the same time, DBMS in-memory

columnar formats typically encode data [4, 20] to minimize space

and reduce memory requirements. However, Apache Arrow by de-

fault provides no encoding support, leaving it at odds with typical

DBMS design. On the other hand, on-disk formats such as Parquet

arrange data in a form that is much closer to that found in modern

columnar DBMSs (e.g., by employing run-length encoding mixed

with dictionary encoding and bit packing). However, Parquet is

widely leveraged only as storage format and exposes no dedicated

in-memory representation. Instead, developers bring Parquet data

into memory and convert it to the Arrow format, which, as stated

above, is suboptimal for a columnar DBMS. Finally, a format such

as ORC at first glance appears to offer the best of both worlds, since

it provides both an efficiently encoded data format and a related

in-memory representation. Nevertheless, Arrow and Parquet are

considered the standard nowadays because of their popularity in

terms of activity in open-source projects and support from big data

frameworks and large-scale query providers [30].

Given this environment, the goal of this paper is to evaluate these

three formats, explore their trade-offs, and evaluate their perfor-

mance as candidates for direct subsumption in an analytical DBMS.

Three main challenges exist in subsuming an in-memory format

such as Arrow or traditionally on-disk formats such as Parquet or

ORC. First, a DBMS needs to be able to efficiently (de)serialize and

(de)compress on-disk data to and from an in-memory representa-

tion. For this, efficiency directly depends on format’s compression

ratio, decompression speed, and transcoding performance. These

trade-offs can be subtle and the line between an “in-memory” or

“on-disk” format is often blurry. For example, in some cases a DBMS

could improve performance by writing Arrow to disk or directly

operating on Parquet in memory, avoiding transcoding costs and

taking advantage of the features offered by each format.

Second, prior work has established that it is highly advantageous

for a DBMS to “push down” computation as far as possible (e.g., to

disk coprocessors or into the compressed domain) and to do so over

as many data types as possible [24, 56]. Computation pushdown

subsumes a number of related techniques. Column pruning and

data skipping respectively enable a DBMS to avoid decompressing

columns or rows that do not contain data relevant to a query answer

(e.g., when executing a range query by skipping data regions that

do not contain data within the range). Techniques such as direct
querying enable a DBMS to retrieve query answers without an

expensive decode or decompression step [5, 6, 59]. As we show

in Table 1, the ability for common in-memory and on-disk formats

to support these techniques is uneven; to maximize performance a

DBMS should optimize for the resulting trade-offs.
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Finally, to maximize performance, modern DBMSs leverage mod-

ern techniques such as vectorized execution (e.g., SIMD) [27, 31, 33,

38, 40, 55] and query compilation [19]. Here again the ability for a

format to support these techniques is uneven. For example, Parquet

can vectorize operations over some query types whereas Arrow is

inherently unencoded and more amenable to vectorized execution.

In summary, in this paper we present the first detailed, empirical

evaluation of three popular and increasingly-adopted formats and

evaluate their suitability to be used as a native format in a DBMS.

Our hope is that this study can be used as a guide for system devel-

opers using these formats, as well as provide the community with

directions to pursue for improving these common open formats.

Our contributions include:

• We succinctly summarize the design nuances and distinc-

tions of threewidely-adopted open columnar formats: Apache

Arrow, Parquet and ORC (Section 3).

• We systematically identify and explore the high-level fea-

tures that are important to support efficient querying in

modern OLAP DBMSs (Section 4).

• For each format, we evaluate its ability to support efficient

encoding, compression, and transcoding (Section 5) for both

real-world, synthetic datasets, and various data types.

• We benchmark the ability of each format to support select-

project (SP) operations found near the leaves of query plans.

We evaluate these in isolation (Section 6) and in combina-

tion (Section 7) using TPC-DS query plan fragments and

over various data types.

• We evaluate the ability for each format to take advantage

of recent trends such as vectorization, query compilation,

and direct querying (Section 8).

• We identify key opportunities to holistically co-design a

unified in-memory and on-disk data representation.

2 BACKGROUND: COMPRESSION AND DATA
ENCODING

Data systems employ compression algorithms to reduce on-disk

or in-memory data sizes and improve bandwidth utilization [25].

Conventional compression has traditionally focused on minimizing

file size. This focus on size alone, while appropriate for storage,

overlooks DBMS query execution performance [33, 46, 51]. Con-

versely, in an analytical columnar DBMS, compressed size is usually

balanced with the ability to query directly on the compressed data.

2.1 Compression
Because of their generality, byte-oriented compression techniques

(e.g., Gzip [17], Snappy [23], and Zlib [22]) are widely used to re-

duce data size [5, 46]. They treat the input values as a byte stream

and compress them sequentially. Byte-oriented compression is ap-

plicable to all data types and, in general, exhibits good compression

ratios [33]. However, these methods are computationally inten-

sive [5]. A data block needs to be fully decompressed before indi-

vidual values can be accessed. This often introduces unnecessary

overhead for query execution.

2.2 Encoding
For decades, many data engines used row-oriented storage formats

for OLTP query workloads [3]. As more complex OLAP workloads

Columnar Table
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Row Batch n

Row Batch 2

…

Chunked 
Column 1

Chunked  
Column 2

Chunked 
Column m

Metadata

…

Figure 1: Columnar format layout.
became common, columnar storage formats began to predominate

[6]. Columnar databases store data of the same type together [52],

allowing systems to leverage lightweight compression, also referred

to as encoding [5]. Encoding methods such as dictionary encoding,
run-length encoding, and bit-packed encoding are typically designed

to compress a specific type of data, enabling efficient compres-

sion and better record-level access relative to the general-purpose

compression approaches described in the previous section.

Some encoding methods also support direct querying and data

skipping to improve query performance [5, 33, 39]. Systems such

as Redshift [26] and SQL Server [35] support many lightweight

compression approaches that reduce the storage cost of data; at

the same time, they apply compression-specific optimizations to

improve query execution performance. Previous research [16, 32, 40,

41] has also demonstrated that, for specific datasets, good encoding

achieves a comparable compression ratio with far fewer CPU cycles

than does byte-oriented compression algorithms.

We next give an overview of several popular encoding algorithms

referred to in this paper and highlight their applicable scenarios.

Bit-Packed Encoding (BP) works on numerical data. It finds the

minimal number of bits needed to represent values and removes

superfluous leading zeros. It works best when the target numbers

have similar bit-width.

Dictionary Encoding (DICT) works on all data types. It encodes

each distinct entry with an integer key and bit-packs the integers.

Dictionary encoding works best when the dataset has small cardi-

nality and many repetitions. Queries on dictionary encoded data

can be applied either on the fully decoded data or directly in the

encoded domain after query rewriting using dictionary translation.

Run-Length Encoding (RLE) works on data with many consec-

utive repetitions. It replaces a run of the same value with a pair

consisting of the value and how many times it is repeated.

Hybrid Encodings are derived from the above encoding tech-

niques. Dictionary run-length encoding (DICT-RLE) applies RLE
on the dictionary encoded keys to further compress data. Bit-packed

and run-length hybrid encoding is used as a default implementa-

tion for the Parquet RLE encoder. Hybrid encoding usually achieves

better compression performance at the cost of performance.

3 COLUMNAR OPEN FORMATS
In big data environments today, there are many optimized data

formats for columnar data storage and computation, as we show

in Table 1. Interestingly, these data formats share the same basic
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Table 1: A comparison of the features found in common open columnar data formats.
Encoding Methods Compression Codecs Skipping Direct Query Primary Purpose Representative Systems

Arrow DICT None Chunk-level None In-Memory Compute Dremio, Spark, Pandas, etc.

Feather DICT Zstd, LZ4 None None On-Disk Storage Pandas

Parquet DICT(-RLE), RLE, BP, Delta, etc. Gzip, Snappy, Zstd, LZ4, (LZO) Record-level None On-Disk Storage Spark, Hive, Presto, etc.

ORC DICT, RLE, BP, Delta Snappy, Zlib, LZ4 Chunk-level None On-Disk Storage Hive, Presto, etc.

Row Batch x

Chunked 
Column 1

Chunked 
Column 2

Chunked 
Column m

Zone Map

…

Dictionary
Page

Data Page i

Data Page 1

…

…
Row Batch x

Index data Index Col 1 Index Col 2 Index Col n

Row Batch Footer

Row data Chunked Col 1 Chunked Col 2 Chunked Col n…

Index data column n:
Min/Max values.
Row position.
Block offsets.
Bloom filter.

Row data column n with Integer:
Present (non-null) bit stream.
Integers encoded as RLE/Bitpacking.
/////////////////////
Row data column n with String:
Present (non-null) bit stream.
Dictionary data (bytes).
Dictionary length (RLE).
Encoded row data (RLE).

Figure 2: A Parquet row batch. Figure 3: An ORC row batch.

Table 2: Column format name convention mapping.

Row Batch Chunked Column

Arrow Record Batch Chunked Array

Parquet Row Group Column Chunk

ORC Stripe Row Column

underlying design. Therefore, we begin by providing a “generic”

architecture that summarizes the substantial commonality in mod-

ern columnar data format design (Section 3.1). Then, we drill into

the idiosyncrasies found in Arrow, Parquet and ORC (Sections 3.2,

3.3, and 3.4, respectively). To ease the parsing for non-familiar read-

ers, we take the liberty of providing a unified naming convention.

Table 2 has the mapping between our naming and each format.

3.1 Open Columnar Formats 101
Figure 1 summarizes a generic columnar format design. Columnar

storage formats physically arrange data such that all the records

belonging to the same column are stored sequentially. To achieve

better data access at scale, columnar formats partition columns into

chunks. Chunked columns are not created arbitrarily; instead, row-

level alignment is attained by first splitting a table horizontally into

row batches where, within each batch, rows are then partitioned

into column chunks. Metadata about the row batches (e.g., their

location, number, length, compression algorithm, etc.) are stored

either into the footer or in the preamble of the file.

3.2 Apache Arrow (Feather)
Apache Arrow [8] is a columnar data structure supporting effi-

cient in-memory computing. Arrow can represent both flat and

hierarchical data. Arrow is designed to be complementary to on-

disk columnar data formats such as Parquet and ORC, and in fact it

shares with them the same design depicted in Figure 1. On-disk data

files are decompressed, decoded, and loaded into Arrow in-memory

columnar arrays. Each row batch has a default size of 64K rows.

Arrow column chunks have a present bit-vector signaling whether

a value is null (or not), and, for strings, optionally a dictionary.

The Arrow columnar format has some compelling properties:

random access is O(1) for entries in the same chunked column,

and each value cells are sequential in memory, so it’s efficient

to iterate over. Arrow also defines a binary serialization protocol

for converting a collection of row batches that can be used for

messaging, interprocess communication (IPC), and writing blobs

into storage. Deserializing an Arrow blob has effectively zero cost.

Closely related to the Arrow format, Arrow Feather [10] is a

column-oriented binary disk-based format, leveraging the same

IPC as the in-memory Arrow format. Additionally, Feather adds dic-

tionary encoding (for strings) and compression (Zstd, LZ4). Datasets

stored in Arrow Feather are loaded in-memory as Arrow Tables.

3.3 Parquet
Parquet [12] is a columnar-oriented storage format inspired by the

nested data storage format outlined in Google Dremel [44]. Parquet

integrates many efficient compression and encoding approaches to

achieve space-efficiency. A Parquet file is structured almost exactly

as described in Section 3.1; however, as illustrated in Figure 2, each

column chunk is partitioned into a dictionary page and series of data
pages. Its file footer additionally contains zone maps (e.g., min, max,

and number of NULLs) at the row batch, chunked column, and data

page level. This enables efficient data skipping. Row batches have

a recommended size of 512-1024 MB. Parquet applies dictionary

encoding per data page and falls back to plain encoding when

a dictionary grows larger than a predefined threshold. Parquet

is designed to be space and IO-efficient at the expense of CPU

utilization for decoding. It does not provide any data structures for

in-memory computing.

3.4 ORC
Optimized Row Columnar (ORC) [11] is a storage format designed

for read-heavy analytical workloads. ORC files are organized as in

Figure 1 where the default row batch size is 250 MB. Differently

than Parquet, as is shown in Figure 3, ORC organizes columns into

an index that contains min/max values, bloom filters, etc., and row
datawith a present bit-vector indicating NULL entries. The chunked
columns in the row data are formatted based on the encoding type.

ORC exposes a corresponding in-memory format, which contains

a row-level index and NULL bit-vector data structures for fast

querying and NULL checks. ORC supports dictionary encoding

(at the row batch level) for string data. Similar to Parquet, ORC

falls back to plain encoding when the number of distinct values is

greater than a threshold (e.g., for Hive, 80% of the records).
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Table 3: Default encoding by format and data type. Parquet
uses DICT as default in the latest C++ API, while DICT-RLE
was used in its legacy Java API. Int-RLE refers to the encoding
where the decimal value is scaled to an integer and then
encoded with RLE encoding.

Integer Double String/Binary Decimal

Parquet DICT(-RLE) DICT(-RLE) DICT(-RLE) DICT(-RLE)

Arrow None None DICT None

ORC RLE None DICT-RLE Int-RLE

3.5 Discussion
Overall, Parquet and ORC provide the most comprehensive com-

pression support for common data types, whereas Arrow Feather

supports the fewest. ORC provides more auxiliary information for

query execution (e.g., its zone map and support for bloom filters).

Arrow Feather applies the same compression type to all arrays

in the same record batch, whereas Parquet is more granular and

allows compression to vary across column chunks. This flexibility

enables intelligent encoding and compression selection based on

the data features or workload characteristics [33]. As summarized

in Table 3, each format applies different default encoding strategies.

In terms of data access, both Arrow and ORC require data to be

fully loaded into dedicated in-memory data structures (an Arrow

Table or ORC ColumnVectorBatch, respectively) before further

query execution can begin. On the other hand, Parquet exposes a

streaming API that allows pipelining data parsing and query execu-

tion, leading to more optimization opportunities. However, Parquet

does not itself provide any dedicated in-memory data structures.

4 METHODOLOGY
In the subsequent sections, we benchmark the performance of Ar-

row, Parquet, and ORC over (non-nested) relational data. This is not

strictly an apples-to-apples comparison because each format was

developed with a different use case in mind: Arrow eases the shar-

ing of in-memory data across systems, Parquet is a generic on-disk

format, and ORC is a storage format for relational big data systems.

Nevertheless, this comparison is important for evaluating the de-

sign choices (e.g., encoding method, compression, implementation

decisions) made by each format and to understand the limitations

and opportunities when using these formats in analytical DBMSs.

Dimensions. To most fairly compare the formats, we evaluate each

format across the following dimensions:

1. Compression ratio. Each format applies different encoding

methods and supports different compression algorithms. The final

achievable compression ratio is a result of these decisions, and so

we evaluate each format using the variously supported encoding

and compression algorithms (Section 5.1).

2. Transcoding throughput.While compression ratio alone is

sufficient if we care only about minimizing disk or memory usage,

this comes at the cost of having to compress, convert, and decom-

press (i.e., transcode) the data when accessing it (Section 5.2).

3. Data access. For each data type, what are the costs of accessing

them? Data is often accessed by column (i.e., projected) or filtered

using a predicate. We evaluate the costs of each format when

applying simple data access operations (Section 6).

4. End-to-end evaluation over subexpressions. Since we care
about the performance of each format when evaluating analytical

queries, we explore the performance of each format over a set of

query subexpressions drawn from TPC-DS (Section 7).

5. Advanced features. Given the many trade-offs baked into

each format, we explore the extent to which we can extend them

to support novel features such as computation pushdown into

the encoded domain and hardware acceleration (Section 8).

To summarize our findings, in Table 4 we show the structure of

our experiments and the overall best format for each dimension.

Setup. All experiments are performed on an Azure Standard D8s v3

(8 vCPUs, 32 GiB memory), premium SSD LRS, and Ubuntu 18.04.

We test Apache Arrow 5.0.0, ORC 1.7.2, and the Apache Parquet Java

API version 1.9.0. Where needed, we use the Apache Arrow C++

library to write in-memory Arrow tables to disk. We perform exper-

iments using (i) the TPC-DS dataset at scale 10, (ii) the Join Order

Benchmark (JOB) [1], (iii) the Public BI Benchmark (BI) [2], and (iv)

real-world datasets drawn from public data sources including GIS,

machine learning, and financial datasets (CodecDB) [33]. For all the

experiments, we report numbers when the system caches are cold

by default. For selected experiments we also report numbers when

caches have been warmed up, i.e., to simulate frequently accessed

datasets. Unless stated otherwise, we use each format’s default

settings. Different results could certainly be obtained if dataset-

specific parameter tuning were applied to each format. However,

such fine-grained configuration tuning is beyond the scope of the

paper and left as future work.

5 COMPRESSION AND TRANSCODING
In this section, we evaluate the compression performance of Arrow,

Parquet, and ORC (Section 5.1) and the related costs for transcoding

data from compressed to in-memory formats (Section 5.2).

5.1 Encoding & Compression Performance
Wefirst explore the compression performance of each format through

three sets of experiments. In the first experiment (Section 5.1.1) we

evaluate how each format’s supported encodings perform over a set

of real-world datasets. The last two experiments leverage TPC-DS

[45] to illustrate the performance of each format when compres-

sion is applied on top of encodings. For the synthetic experiments

on TPC-DS, we begin by evaluating compression algorithms over

the full dataset (Section 5.1.2), and then explore how compression

performance varies by data type (Section 5.1.3).

5.1.1 Encoding Performance over Real-World Datasets. In this ex-

periment, we group each data column by data type, convert each

column one-by-one into each format, and finally aggregate the

statistics of the compressed columns. Table 5 and Table 6 show

the overall compression performance and statistics over the ∼31k
columns in the CodecDB, Public BI and JOB, datasets. We further

show the compression ratio CDFs for each data type in Figure 4

where we focus on the effective compression ratio range (0.0, 1.0).
Finally, Figure 5 shows, for each data type, CDFs that takes into

account the number of distinct values in each column. To avoid
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Table 4: Evaluation overview and key results.
Evaluation dimension Best Overall Key Advantage Section

Compression ratio Parquet Comprehensive encoding and compression support 5.1

Compression throughput Arrow Feather Fast serialization 5.2.1

Decompression throughput Arrow Feather Fast deserialization 5.2.2

Projection evaluation Parquet and ORC Fine-grained skipping while loading data 6.1

Predicate evaluation ORC Fine-grained loading control with dedicated in-memory representation 6.2

Bitmap evaluation ORC Fine-grained loading control with dedicated in-memory representation 6.2.3

Subexpression evaluation ORC

Fine-grained loading control with dedicated in-memory representation

and efficient skipping

7

Direct querying Parquet In-memory mapping with data skipping and direct querying 8

Vectorized execution Parquet In-memory mapping with data skipping, direct querying, and SIMD support 8

(a) Integers (b) Floats (c) Strings

Figure 4: Column compression ratio CDFs over the CodecDB, BI and JOB datasets. Figure 5: Distinct value CDFs.

Table 5: Total size (in GB) by format for columns in the
CodecDB, BI, and JOB datasets. We serialize each column
separately into each format and group their compressed size
by data type. The raw dataset is in CSV format. For Arrow, we
report with dictionary encoding enabled (Arrow DICT) and
disabled (the default). We copy the file size (marked with *)
from the Arrow default column for CR computation as there
is no dictionary support for integer and float types.

Data # Raw Parquet ORC Arrow Arrow
Type Cols. Size Size Size Size (DICT)

Integer 12k 57.3 9.8 13.5 59.3 59.3∗

Float 7k 58.8 24.0 58.2 59.8 59.8∗

String 13k 373.5 31.0 62.2 403.4 118.3

Total 31k 489.7 64.7 133.9 522.5 237.4

Compression Ratio (CR) 0.13 0.27 1.07 0.48

Table 6: Average and stddev compression ratios by data type.

Type Parquet ORC Arrow ArrowDICT
AVG STD AVG STD AVG STD AVG STD

Int 0.25 0.27 0.26 0.18 1.41 0.84 - -

Float 0.34 0.26 1.43 1.00 1.49 1.09 - -

String 0.21 0.34 0.22 0.31 1.54 0.68 0.92 0.87

confusion, we do not apply any further compression after default

encoding techniques are applied (we will explore how each format

behaves when compression is enabled in the following sections).

As we can see in Table 5, overall, Parquet performs the best over

the whole dataset and is able to reduce the size of the column data

to about 13% of the original. ORC is able to compress the dataset to

∼27%. By contrast, Arrow Feather—with default settings—exhibits

a 7% increase in size compared with the raw text file. We found

that this overhead is introduced by the format’s metadata, which

adds a four-byte length prefix to each variable binary entry (i.e., the

string “abc” consumes seven bytes in total). It also pads numerical

data types. On the other hand, with DICT enabled, Arrow Feather

compresses string columns by 68% and the whole dataset by 52%.

For integers, ORC exhibits varying compression performance

relative to Parquet. ORC achieves a better compression ratio for

the CodecDB and JOB datasets (which contain a relatively higher

number of distinct values), while it is worse for the BI dataset

(which has a lower number of distinct values). This is because ORC

applies RLE for integer columns (see Table 3), which performs better

for columns with fewer distinct values, whereas Parquet applies

DICT-RLE, which is slightly worse. Because of this, we observe a

crossover point for the Parquet and ORC CDFs in Figure 4a.

For floats, as we can see from Figure 4b, Parquet outperforms

ORC and Arrow Feather because of dictionary encoding. ORC and

Arrow Feather perform similarly as they both use plain encoding.

For strings, Parquet and ORC outperform Arrow. Interestingly, both

Parquet and ORC fall back to plain encoding on some columns when

dictionary encoding takes up larger space than plain encoding,

but their dictionary encoding work differently: Parquet’s plain

encoding introduces a higher space cost for saving the string length

values, while ORC’s plain encoding uses RLE for string length

values. However, Parquet’s dictionary encoding is more effective

than ORC because of the extra layer of RLE for the dictionary-

encoded keys. That is why Parquet works better in terms of total

compressed size (see Tables 5 and 6) while ORC works better in

terms of the effectiveness (compression ratio < 1; see Figure 4c).
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5.1.2 Compression Performance. For this experiment, we report

the compression ratio of each format on the full TPC-DS dataset

when different compression algorithms are applied. We evaluate

Zstandard (Zstd) at level 1 (we evaluate other levels later in this

section), LZ4, Gzip, Snappy, and Zlib compression algorithms, and

compare them against an uncompressed variant where data is en-

coded using the default settings. The results of this experiment are

shown in Figure 6. In the uncompressed case, Parquet is about 2×
better than Arrow Feather because Arrow Feather does not apply

any encoding. However, when compression is enabled, Arrow per-

forms within ∼30% of Parquet. ORC achieves a similar compression

ratio as Parquet, except under LZ4. In this case, ORC automatically

disables compression because it detects that the LZ4 compressed

data size is greater than the original data size.

Finally, we observe that different compression algorithms yield

different compression ratios. For example, increasing Zstd’s level

from 5 to 9 yieldsmore aggressive compression and achieves smaller

sizes. However, this gain is minimal (< 1.5%) while the compression

time increases by ∼3× for Arrow Feather and ∼2× for Parquet. We

will show in Section 5.2 how decompression costs are also impacted

by the choice of compression algorithm.

5.1.3 Compression Performance by Data Type. In this experiment,

we look at the performance over various column types in the TPC-

DS dataset. Specifically, we evaluate compression performance on
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Figure 8: Total size on disk after compressing the string
columns in TPC-DS.

integer (both int32 and int64), double, and string data types. We

extract all columns of a given data type, compress them, and report

the aggregate sizes by type. The results are in Figures 7 and 8.

First, consider Figure 7a which shows the aggregate compres-

sion performance on the integer columns. ORC achieves slightly

better compression performance than Parquet. This is because Par-

quet applies DICT and switches to plain encoding for some of the

columns, whereas ORC always applies RLE. Arrow Feather does

not encode by default. This leads to the worst compression ratio

when compression is disabled. Nevertheless, all three data formats

perform similarly when compression is enabled, except for LZ4,

where Arrow Feather is almost 50% worse because it lacks encoding

support for integers (we observe a similar result in Figure 6).

Next, Figure 7b shows the aggregate compression performance

for the double columns. Parquet also applies DICT to this data type,

whereas ORC and Arrow Feather do not encode at all. Because of

this, Arrow and ORC have very similar performance both in the

uncompressed and compressed setting, whereas Parquet is slightly

better. The ORC outlier for LZ4 happens for the same reason as

discussed in Section 5.1.2.

Finally, Figure 8 shows compression performance on string columns

(both variable- and fixed-length). By default, Arrow does not encode

this type, whereas ORC and Parquet apply DICT. Among all formats,

Parquet has the best compression performance, followed by ORC

and Arrow. ORC produces larger compressed sizes than Parquet,

because: (i) ORC has a smaller default block size and thus pays more

dictionary overhead per row batch; and (ii) it more frequently falls

back to plain encoding because of its row batch-level dictionary

encoding (versus the chunk-level used in Parquet). Again, LZ4 ORC

disables compression because it offers no benefit.

5.2 Transcoding Overhead
In practice, storage formats are converted into (or from) an in-

memory presentation on reads (writes). We now evaluate the over-

heads in transcoding (i.e., decompressing, converting, and com-

pressing) each format. Specifically, Section 5.2.1 explores the time

required to compress and serialize each format from a common in-

memory representation, while Section 5.2.2 evaluates the overhead

of loading data, i.e., deserializing and decompressing each format

into an in-memory representation amenable to query execution.

5.2.1 Compression Overhead. Our first experiment in this sec-

tion explores how long it takes to serialize (and compress) the

data from an in-memory representation to each disk format. For

this experiment we use the catalog_sales TPC-DS table. The

catalog_sales is a large (∼14M rows) and wide (34 columns) ta-

ble containing integers and doubles. Its raw data size is 3GB. All
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Figure 9: Write time from an Arrow in-memory table to each format stored either on disk or in memory.
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Figure 10: Runtime (in seconds) for decompressing the TPC-
DS catalog_sales table from the on-disk formats into in-
memory Arrow.

formats support serializing from an Arrow Table, and so we adopt

it as our common in-memory representation.

Figure 9 shows the runtimes when: (i) writing to disk (9a); (ii)

writing to the null device, which avoids any I/O overhead (9b); as

well as (iii) the data sizes per format (9c). We omit the LZ4 and

Snappy bars for ORC as the Apache Arrow C++ library has limited

compression support for the ORC format. Starting with Figure 9a,

we can see that Arrow Feather is the most efficient format in terms

of compression and serialization runtime because it does not encode

data. On the other hand, Arrow Feather’s lack of encoding leads

to almost a 50% larger footprint on disk (Figure 9c). Interestingly,

ORC compression time is 50% slower than Parquet with comparable

or slightly better compression ratio on disk (up to 15% better). We

think that this is because of better Parquet support in Arrow; both

projects share the same codebase and data structures.

Finally, we isolate the compression overhead in Figure 9b by

avoiding disk I/O by writing to the null device. Here we can see

a decrease in runtime for all the formats, although of different

magnitudes. Arrow Feather has the biggest difference, thanks to

its inherent zero-copy implementation in Arrow. The compression

time for Parquet and ORC does not change substantially because the

encoding and compression operations dominate the total runtime.

5.2.2 Decompression Overhead (i.e., table scan). In this experiment

we investigate the overhead of loading the catalog_sales TPC-

DS table from disk into memory. Our goal with this experiment

is to simulate the overheads involved when a query processor is

required to load and transform a compressed dataset into a plain

in-memory format amenable to query execution. We start from

data on disk in the Parquet, ORC, or Arrow Feather formats, and

we report the time required to load the data and convert it into the

Arrow in-memory format. The results are shown in Figure 10.

Interestingly, loading compressed data has 30% less overhead

than the uncompressed case for Arrow under LZ4. This is because

LZ4 requires less disk I/O (since the file on disk is smaller; see

Figure 9c) while also providing “fast enough” decompression rela-

tive to the other compression methods. For the other cases, Arrow
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Figure 11: Runtime (in seconds) for decompressing the
TPC-DS catalog_sales table from the formats in memory
(ramdisk) into in-memory Arrow.

always exhibits the best performance: this is expected since it does

not require decoding the data and its on-disk compressed size is

reasonable. Parquet is slightly worse than Arrow because of the

cost of decoding data, while ORC has the worst performance (it is

particularly bad for Zstd and zlib). We think that this is due to de-

compression settings such as block size, buffer size, etc. In general,

for formats that heavily leverage encoding (i.e., Parquet and ORC)

data compression leads to a heavy penalty on read performance.

To isolate disk I/O from compression overheads, we load each

compressed dataset onto amemory-resident diskmounted on tmpfs.
As we can see from Figure 11, in all cases the runtimes decrease,

especially for Arrow without compression. This result is intuitive

because, for uncompressed data, the data size is much larger and

disk bandwidth is saturated. Conversely, decompression is CPU-

bound and not substantially impacted by the cost of bringing data

into memory. Combined with previous compression experiments

in Figure 9, this shows the benefits of Arrow as a fast inter-process

format, when disk I/O and size are not the bottleneck.

To summarize, encoding and compression choices greatly impact

performance, with formats like Parquet and ORC targeting size on

disk, while Arrow targets raw read performance. To optimize both

size and performance, formats should be carefully tuned to the

workload and use case, and workload-aware compression selection

is crucial. It remains an open question of how much computation

can be pushed into the encoded space to minimize the decoding

step while maximizing the compression ratio.

6 DATA ACCESS MICROBENCHMARKS
Having explored the overheads associated with encoding, com-

pression, and scan operations, we next evaluate the performance

of accessing data in the context of common relational operations

found near the leaves of a query plan. Specifically, we explore the

performance of projecting columns in a dataset (Section 6.1) and

applying filters (Section 6.2). In this and subsequent sections we

only consider Zstd and LZ4 compression since we evaluated the

trade-offs of the other compression algorithms in Section 5.
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Figure 12: Projecting numeric types on the catalog_sales table.
Figure 13: Projecting strings on the
customer_demographic table.
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Figure 15: Arrow serial vs parallel (de-
fault).

6.1 Projection
We first explore projection performance for common data types. To

do so, we: (i) load the data from disk, (ii) decompress and decode

the projected columns, and (iii) convert to in-memory Arrow.

Figures 12a and 12b show the respective runtimes for projecting

an integer and double column in the catalog_sales table of TPC-

DS. Since catalog_sales does not contain any string columns,

Figure 13 instead shows the runtime of projecting a string column

drawn from the customer_demographic table. This table is nar-

rower than catalog_sales and has 9 integer and string columns.

The raw data size is 80 MB with ∼2 million rows.

ORC is the most performant format for projections over integer

columns because it applies RLE encoding, which yields a higher

compression ratio and lower I/O costs. Parquet is slightly slower

as it leverages DICT, which (i) inflates the compressed file size due

to dictionary storage overhead; and (ii) slows down the loading

process by introducing dictionary lookup overhead. Arrow Feather

is by far the worst in this experiment since its API requires parsing

the entire byte-array including all columns (not just the projected

subset) from disk before column chunks loading can commence

(we further discuss this in Section 6.1.1).

For doubles, Parquet offers the best performance, as we can see

from Figure 12b. In this case Parquet’s DICT encoding leads to

a much smaller compressed size in this dataset (which has low

cardinality; see Section 2.2). ORC does not encode doubles and is

thus slightly slower than Parquet. Arrow Feather lags far behind

for the same reason it did with integer columns.

Figure 13 shows the results of projecting a string column.
1
De-

spite loading all columns into memory before projecting, Arrow

Feather outperforms the other formats in this experiment. This is

because by default Arrow Feather does not dictionary encode its

data and is therefore able to entirely avoid the associated lookup

1
The runtimes between the numeric and string experiments are not directly

comparable since catalog_sales has an order of magnitude more records (and

∼5× average row size in bytes) than does customer_demographic. Nevertheless,
customer_demographic is the largest table in TPC-DS that contains a string column.

overhead. ORC performs slightly worse thanArrow Feather because

ORC separately RLE-encodes each string’s lengths, introducing ad-

ditional decoding overhead. Parquet, however, performs the worst

because its application of DICT encoding inflates projection time rel-

ative to the modest I/O cost of loading the customer_demographic
table. Finally, we want to point out that ORC is also faster than Par-

quet because of its API, which allows for efficiently transforming

data into its dedicated in-memory representation, whereas Parquet

deserializes data into memory using its relatively slow streaming

style API with rudimentary data access control.

6.1.1 Profiling Data Loading. Our previous experiments show that

Arrow Feather loading is far more expensive than ORC and Parquet.

We observed that Arrow Feather, even when projecting a single

column, requires parsing the entire byte-array. To better understand

these trade-offs, we now explore Arrow’s data loading code in

deeper depth and contrast it with ORC.

We begin by evaluating the cost of loading a single column

against the cost of loading the whole table. The results are shown

in Figure 14. Overall, ORC performs best when extracting a single

column. Relative to Arrow Feather, this occurs for several reasons.

First, ORC offers the ability to perform fine-grained reads at the

column level while Arrow Feather requires reading, decompressing

and decoding the entire row batch before projecting the target

column(s). This means that ORC’s runtime is proportional to the

number of columns extracted, while extracting one single column

from an Arrow Feather file is only 2× faster than extracting the full

table. Second, upon examining the Arrow Feather deserialization

logic, we observed that it suffers from substantial synchronization

overhead when parsing column chunks within each row batch. In

particular, we found that the lock acquisition step consumed ∼80%
of the runtime for each row batch.

To better understand synchronization issues, we finally evalu-

ate Arrow Feather table loading using its native data loading API

in both sequential and parallel execution modes. Parallel loading

mode leverages a global CPU thread pool to parallelize column
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Figure 16: Filtering numeric types on the catalog_sales table.
Figure 17: Filtering strings on the
customer_demographic table.

decompression. This potentially results in a performance advan-

tage relative to ORC, which serially decompresses columns. We

see this improvement in Figure 15 where there is a large difference

between the two modes when compression is enabled (the Zstd

lines in Figure 15) and no difference when compression is disabled.

6.2 Filtering
In this section we evaluate each format’s performance when ap-

plying filter operations. We separately consider predicate evalua-

tion (Sections 6.2.1 and 6.2.2 respectively for numeric and string

columns) and bit-vector evaluation (Section 6.2.3).

6.2.1 Numeric predicates. We evaluate two predicates over the

customer_sale table (with respective selectivities of 65% and 30%):

cs_ship_date_sk > n (integer column filter)

cs_wholesale_cost > n (double column filter)

For each format, we load the data from disk, decode the target

column to its in-memory representation when available (see Sec-

tion 3), and evaluate the predicate to generate a bit-vector 𝑥 (i.e.,

entry 𝑥𝑖 = ⊤when row 𝑖 matches the predicate). For Parquet, which

does not have a dedicated in-memory representation, we use its

native API and interleave decompression with predicate evaluation.

The results for each predicate are shown respectively in Fig-

ures 16a and 16b. The trends are similar: overall, ORC outperforms

both Parquet and Arrow Feather for each data type and compres-

sion scheme. Arrow Feather’s performance is 3–4× worse than

Parquet in the compressed case, but when uncompressed it further

lags (to more than 7×) because the file is 2× larger than Parquet.

This is due to the same reasons described in Section 6.1.1. Across

all formats and for all expressions, we found that the majority of

the time (i.e., >90%) is spent on data loading and decoding, whereas

the contribution of the execution of the filter condition is minimal.

6.2.2 String predicates. We next evaluate a predicate on a string

column in the customer_demographic table with 14% selectivity:

cd_education_status = n (string column filter)

The results are shown in Figure 17. Parquet is faster than ORC

while Arrow with plain string encoding (“Arrow Feather”) is slower

in the uncompressed case, but faster than both when compression is

enabled. This is because the customer_demographic table is small,

implying that I/O is not a bottleneck for this experiment. As a result

decompression dominates overall cost and Arrow Feather outper-

forms because it avoids the cost of decoding. String filtering on

Parquet is faster than on ORC. In fact, ORC’s bulk loading data

access interface requires more string copying than Parquet because

it materializes all strings into memory before filtering. Conversely,

Parquet’s streaming-style data access API does not require keeping
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Figure 18: Bit-vector application performance by selectivity.

Table 7: Evaluated TPC-DS SP query subexpressions.

Q1
SELECT cs_ship_date_sk, cs_bill_customer_sk FROM catalog_sales

WHERE cs_sold_time_sk=12032 AND cs_sold_date_sk=2452653

Q2
SELECT cd_demo_sk, cd_dep_college_count FROM customer_demographics

WHERE cd_gender=’F’ AND cd_education_status = ’Secondary’

Q3
SELECT cd_demo_sk FROM customer_demographics WHERE cd_gender = ’M’ AND

cd_marital_status = ’D’ AND cd_education_status = ’College’

Q4
SELECT cs_ext_sales_price, cs_sold_date_sk, cs_item_sk FROM catalog_sales

WHERE cs_wholesale_cost>80.0 AND cs_ext_tax < 500.0

Q5
SELECT cs_ext_sales_price, cs_sold_date_sk, cs_item_sk, cs_net_paid_inc_tax,

cs_net_paid_inc_ship_tax, cs_net_profit

FROM catalog_sales WHERE cs_wholesale_cost > 80

all the strings in memory while filtering. Enabling Arrow DICT en-

coding (“Arrow Feather (DICT)”) marginally improves performance

because Arrow decodes everything when loading.
2

6.2.3 Bit-vector evaluation. The previous sections produced a bit

vector mask that indicates which entries match a given predicate. In

this section we look into the performance of applying these bitmaps

to produce a result. We start with Zstd-compressed data on disk and,

for each format, load a column 𝐶 = ⟨𝑐1, ..., 𝑐𝑛⟩ into an in-memory

representation. We then mask 𝐶 using a randomly-generated bit

vector 𝐵 = ⟨𝑏1, ..., 𝑏𝑛⟩ to produce a result 𝑅 = ⟨𝑐𝑖 | 𝑏𝑖 = 1⟩.
Figure 18a shows performance for each format at various selectiv-

ity levels (i.e., at selectivity 𝑠 ,
∑︁
𝑏𝑖 = 𝑠 · 𝑛) on the cs_sold_time_sk

integer column of the catalog_sales table. We can see Arrow

Feather and ORC runtimes are approximately constant across all

selectivity levels (though ORC is far faster). This is because both

formats load all data into their in-memory structure before extract-

ing the target records. Conversely, instead of fully loading all data,

Parquet “pushes down” the operation by decoding only the tar-

get records that pass the filter condition. Because of this, Parquet

runtimes vary for different selectivity levels. However, Parquet run-

time is not a simple linear function of selectivity level. Instead, we

observe the highest runtime for this format at ∼0.5 selectivity, the
point at which the largest number of branch mispredictions occur.

2
We discuss the “Arrow Feather (Direct)” bar in Section 8.1.1.

3052



Fi
gu

re
 1

4
(a

)

1

10

100

1000

10000

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

Cold, No compression

104

103

102

101

100

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Ti
m

e 
(m

s)
Fi

gu
re

 1
4

 la
b

el
s

Q1 Q5Q4Q3Q2

(a) Uncompressed
Fi

gu
re

 1
4

(b
)

1

10

100

1000

10000

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

P
ar

q
u

et
A

rr
o

w
O

R
C

Cold, LZ4

104

103

102

101

100

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Pa
rq

u
et

A
rr

o
w

O
R

C

Ti
m

e 
(m

s)
Fi

gu
re

 1
4

 la
b

el
s

Q1 Q5Q4Q3Q2

(b) LZ4

Fi
gu

re
 1

4
le

ge
n

d

1

10

100

1000

10000
R

u
n

ti
m

e

Load Compute Combined Load & Compute

Figure 19: Log-scale runtimes by format for Table 7 queries
with a cold cache.
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Figure 20: Table 7 runtimes for cold and warm caches on LZ4
compressed data (Parquet not shown; changes were negligible).

Overall, at all but the lowest selectivities ORC performs best.

However, if we “zoom into” Figure 18a at the very lowest selectivi-

ties (i.e., we approach point selection) a different pattern emerges.

As shown in Figure 18b, at extremely low selectivity levels (i.e.,

≤ 0.001), Parquet performs better because it supports fine-grained

record level data skipping. Conversely, ORC becomes better than

Parquet at slightly higher selectivity (∼0.01) since ORC provides a

dedicated in-memory representation that efficiently loads batches.

Specifically, ORC data loading consumes full data blocks, incurring

extra overhead for queries with low selectivity where few entries

are evaluated. On the other hand, this cost is amortized for queries

with high selectivity where more data entries pass the predicate.

We also implement an advanced Arrow variant that supports chunk

level skipping (CLS), which we discuss in Section 8.1.3.

To summarize, trade-offs exist for simple data access operations,

with no format being the best in every case. Data skipping is im-

portant, but it does not always help. Record-level data access APIs

provide flexibility for data skipping but has reduced performance

on queries with high selectivity compared to bulk loading APIs. To

improve performance, on-disk formats should be more adaptive

and co-designed with an in-memory representation.

7 LEAF SUBEXPRESSION EVALUATION
In this section we bring together the previous microbenchmarks

and explore how select/project (SP) subexpressions found at the

leaves of a query plan can be directly evaluated on each storage

format. We use the standard API provided by each format. For

Parquet, we use its streaming-style API to parse, decompress and

decode the data entries while, interleaved, we evaluate the queries.

For Arrow Feather and ORC, we load the data into their in-memory

representations before applying the query.

We select five representative SP subexpressions from TPC-DS

(see Table 7) representing a wide variety of use cases. They project

few (Q1, Q3) and many (Q5) columns. They contain both equality

(Q1–Q3) and range predicates (Q4–Q5). They contain predicates on

integers (Q1), strings (Q2–Q3), and doubles (Q4–Q5). Queries have

low (Q5), medium (Q2–Q4), and high (Q1) selectivities.

We execute each subexpression: (i) for each format, (ii) with and

without compression (LZ4), and (iii) with and without clearing the

system cache (to simulate the cases with repeated queries on the

hot data, and infrequent queries on cold files, respectively).

The results are shown in Figure 19 (uncompressed vs LZ4), and

Figure 20 (warm vs cold cache). Since, both Arrow and ORC provide

a custom data loading interface (including parsing, decompressing,

and decoding the data into their in-memory representations) before

any query evaluation (see Section 3), we separately report “Load”

and “Query” runtimes for each phase. Parquet pipelines data loading

and computation, so we report only the total runtime for this format.

Overall, ORC performs best in terms of query performance be-

cause of its efficient in-memory mapping representation (lower

loading time for large files) andmore data-skipping opportunities re-

sulting from a smaller row batch size. With the default setting, ORC

and Arrow have 14,064 and 228 batches for the catalog_sales ta-

ble, and 1,876 and 1 batches for the customer_demographic table,

respectively. ORC’s finer granularity allows it to skip more entries

when no qualified item satisfies the filter condition. Conversely,

Arrow loading time dominates runtime, slowing query evaluation,

as we also observed in Figure 14. Parquet outperforms Arrow for

Q1, Q4 and Q5 over large tables since Parquet file has a smaller size

(i.e., less I/O) when loading the file. Parquet lags when compression

is enabled as Arrow Feather sizes (I/O) decrease.

In Figure 20, we also see that other than Q2 and Q3 (which

are both evaluated on the smaller customer_demographic table)

both Arrow Feather and ORC are impacted by the system cache

(significantly so for Arrow). This is because loading data from disk

and building the required in-memory data structures is expensive

(as we also discussed in Section 6.1.1).

In summary, smaller batches allow for more data skipping, but

at the cost of space overhead and increased complexity. Workload-

aware data partitioning can be used to balance these factors.

8 ADVANCED OPTIMIZATIONS
Given that there has been extensive discussion about pushing the

limits of common open formats [7, 28, 59], the goal of this section

is to evaluate the amenability of the Arrow and Parquet formats to

support more advanced and emerging optimizations of execution

engines. We will first discuss optimizations related to Arrow (Sec-

tion 8.1) and then turn into Parquet (Section 8.2). While we focus on

Arrow and Parquet because of space constraints and their relatively

wide adoption, similar optimizations could also be applied to ORC.

8.1 Optimizing Arrow
We first evaluate the feasibility and effectiveness of integrating new

optimizations into Arrow: namely its ability to support direct query-

ing [6, 33] (Section 8.1.1), and data skipping (Section 8.1.3). We then
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Figure 21: Arrow Feather runtime with and without direct
query (warm cache execution).

compare the performance of this hand-optimized variant against

Gandiva [19], a LLVM-based backend for Arrow (Section 8.1.2).

8.1.1 Direct Filtering over String Columns. We begin by exploring

Arrow filtering pushdown (i.e., direct querying) into the encoded

space for string columns (we separately evaluate a Parquet variant

in Section 8.2.1). We modify Arrow to implement direct querying

as follows. For each data chunk, we decompress and extract the

dictionary from the metadata. We then map the string constant

in the query predicate from the string domain into the encoded

integer domain of the extracted dictionary. This process allows

us to: (i) transform string comparisons into integer comparisons,

which can be executed efficiently; and (ii) decode only the records

admitted by the predicate.

We evaluate by repeating the experiment described in Section 6.2.2.

The result is shown as the “Arrow Feather (Direct)” bar in Figure 17.

Our results demonstrate a 2× to 4× improvement over other formats.

The approach could be extended to range queries by employing an

order-preserving dictionary (e.g., as explored in [41]).

8.1.2 Gandiva. Gandiva [19] is an LLVM-based execution backend

for Apache Arrow. It is part of the Arrow project, and employs a

number of optimizations (e.g., vectorization) applied via LLVM com-

piler passes. Gandiva further improves performance (especially for

string and binary data types) by maximizing zero-copy operations.
3

We test Gandiva by executing the queries evaluated in Section 7

(listed in Table 7). To do so, we construct expression trees for each

query using TreeExprBuilder instances, which Gandiva trans-

forms into machine code. As illustrated in Figure 21, Gandiva is

able to slightly reduce computation time for all queries, while load-

ing time (which is the dominant component of the queries with

numeric predicates) remains unchanged. For queries with string

predicates (i.e., Q2–Q3), we further compare with the optimized

Arrow direct query variant described in Section 8.1.1. For these

queries, the direct query variant achieves 3× speedup compared to

vanilla Arrow and outperforms Gandiva as well. This is because

direct query not only reduces compute time, but data loading also

improves because the data decoding step is skipped.

Interestingly, Gandiva fails to generate vectorized versions for

any of the evaluated queries. To test this aspect, we use Gandiva to

execute a variant of Q4 that it was able to vectorize:

SELECT cs_ext_list_price - cs_ext_wholesale_cost -

cs_ext_discount_amt + cs_ext_sales_price

FROM catalog_sales

3
The Parquet and ORC APIs could benefit from reducing or eliminating redundant

string duplication.

Gandiva’s use of vectorization (and other LLVM optimizations)

resulted in a 1.8× speedup (74ms vs 42ms) relative to normal Arrow.

Finally, we observe that Gandiva’s compilation process is ex-

pensive relative to execution time. For the queries on the smaller

dataset (i.e., Q2–Q3), the compilation time exceeded execution time

(e.g., for Q2 compilation time was 103ms and runtime was 79ms).

8.1.3 Data Skipping. In Section 6.2.3 we showed how Parquet

achieves excellent performance for low-selectivity filters by avoid-

ing decode overhead for unnecessary records. We implement a

similar technique for Arrow. Specifically, we augmented the bulk

loading API in Arrow with the data skipping approach leveraged in

Parquet. To do so, we modified the Arrow Feather API to support

chunk-level skipping (CLS) where we only load the column chunks

necessary to answer a given query. Because of its data layout, CLS

is the most granular skipping we can employ for Arrow Feather.

To evaluate, we repeat the experiment described in Section 6.2.3,

which requests a random set of row IDs. We show the result in

Figure 18b as the “Arrow Feather (CLS)” series. As we see in the

figure, this variant initially performs well but quickly degrades to

perform similarly to unmodified Arrow. This is because the input

is a bit-vector with random row IDs: even at extremely low selec-

tivities, we quickly select at least one tuple per chunk, obviating

any performance advantages.

8.2 Optimizing Parquet
In this section, we build on the lessons learned throughout the paper

and augment Parquet with an efficient in-memory representation

as well as vectorized instructions (Section 8.2.1). Finally, we put

everything together and wrap up with an experimental evaluation

comparing all optimizations (Section 8.2.2).

8.2.1 In-Memory Parquet and Vectorization. In columnar databases,

it is common to encode data for better memory and bandwidth

utilization. Therefore Parquet (and ORC) could potentially be lever-

aged as a useful in-memory data structure, without transcoding

(to Arrow). Parquet’s existing data access API either (i) fully de-

serializes data (precluding opportunities for fine-grained skipping

or direct querying) or (ii) exposes record-level data access, which

is typically much less efficient than batch loading. OLAP systems

could benefit from an access pattern falling in between these two.

One example of this is CodecDB [33], which introduced a dedi-

cated in-memory representation for Parquet. In CodecDB, Parquet

data is lazily materialized (memory mapped) and fully decoded only

when needed. This enables support for row batch-level, column

chunk-level, and record-level skipping. Lazily-decompressed in-

memory Parquet can be further optimized by leveraging vectorized

instructions over in-place encoded data, as described in SBoost [31].

We implemented these optimizations based on the code as-provided

by CodecDB and SBoost. We then compare the scalar performance

with direct query, vectorization, and their combinations.

8.2.2 Results. We apply the above optimizations to Parquet and

evaluate the performance over the queries listed in Table 7. The re-

sults are in Figure 22. As baselines, we show Parquet with its default

streaming API (“Parquet”). We also show a variant in which we load

Parquet into Arrow Table before query execution (“P-ArrowTable”);

we included this second baseline because in Section 7 we observed
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Figure 22: Parquet performance with various optimizations.

that loading data into an in-memory data structure can be quite

efficient. Next, “P-IM” is the Parquet variant augmented with the in-

memory format described in Section 8.2.1. “P-IM+D” further adds

direct querying in the encoded domain. Finally, “P-IM+D+SIMD”

enables SIMD instructions directly in the encoded domain.

As we can see from the figure, P-ArrowTable outperforms the

streaming API. Nevertheless, Arrow still requires fully decoding

the data into its table format, which limits the optimization op-

portunities. In fact, P-IM shows even better performance than

P-ArrowTable, and achieves more than one order of magnitude

improvement over the Parquet baseline because of its lazy material-

ization avoiding unnecessary decoding overhead from Parquet into

Arrow. This can be further improved with direct query and avoiding

decoding; P-IM+D is up to 60× faster than the Parquet baseline.

Finally, if we enable SIMD execution (AVX_512) we observe up to

100× speedup compared with the Parquet baseline.

Overall, there is huge potential for query speedup when we

push the query operator further down into the on-disk format and

encoded domain, which demonstrates the feasibility of query push-

down in the storage format when augmented with a corresponding

optimized in-memory representation.

9 RELATEDWORK
Columnar data format trade-offs. There has been substantial

recent discussion both online (e.g., [3, 43]) and in the research

community [29, 53] about the benefits and drawbacks of having

multiple, often-overlapping open formats for representing columnar

data. Differently than [53] our goal is not to propose a new format.

Differently than [29] and other SQL-over-Hadoop evaluations [21,

48] our goal is not to evaluate the end-to-end performance of big

data systems, but rather to understand how these format can be

leveraged as native formats in analytical DBMSs (and how close they

conform to columnar RDBMSs standards) [6, 20]. Our takeaways

are consistent with the observations of Abadi [3]. Nevertheless,

we provide an updated view of the trade-offs in these formats.

Interestingly, we find that several limitations described in [3] persist

to this day, despite their being highlighted more than six years ago.

Other encodings. In addition to the encoding methods discussed

in Section 2.2, delta encoding is a basic encoding supported by many

columnar data formats. Delta encoding works on integer data. Be-

cause differences between adjacent numbers are generally smaller

than the numbers themselves, delta encoding greatly reduces data

redundancy. Delta encoding works best when the numbers are

large, but the value range is small. Direct querying on delta en-

coded data is challenging because sequential decoding is required

to recover a specific record. Delta encoding variations, such as FOR

and PFOR [36] use a fixed reference value instead of the previ-

ous value, which better serves the direct query on the encoded

format. Even though Parquet and ORC support these delta-like

encodings, the formats never elected to employ them in our ex-

periments, presumably due to reduced performance or suboptimal

encoding selection.

Other formats. Apache CarbonData [9] is an indexed columnar

data format for analytics. Similar to Parquet, it uses compression and

encoding to improve efficiency. Apache Avro [54] is a row-oriented

storage format. It stores schema as JSON in the file header, making

it an excellent choice for schema evolution tasks and write-heavy

data operations such as whole-row consumption and processing.

Avro also supports serialization and block level compression. We

did not evaluate these formats in the paper since they are either

not columnar or rarely employed by OLAP systems.

Other optimizations. The latest version of Parquet introduces

the concept of an index page that contains statistics for data pages

and can be used to skip pages when scanning data in ordered and

unordered columns [13]. Even with the newly added index page to

facilitate the access of data entries, Parquet’s random-access opera-

tions are still costly in general compared with Arrow. Velox [47] is

a recent effort trying to unify the execution layer across analytical

engines. As also highlighted in this paper, Velox recognizes that

Apache Arrow limited support for encodings is not a good fit for

performant analytical engines. Velox therefore proposes improve-

ments on top of Arrow for addressing this gap. It also highlights

the need for a smart partition policy where data layout is organized

for a given task (e.g., so that many data blocks can be skipped).

Other recent workload-driven data partition approaches such

as Qd-tree [57], SDCs [42], Jigsaw [34] and Pixels [15] address the

partition problem by focusing on data access patterns. Differently,

in this paper we focus on workload-agnostic columnar formats

without considering any workload-specific techniques. Workload-

driven data partitioning is an exciting area (further motivated by

our experimental results) and could be a promising direction for

future work. The co-design of query engine and columnar formats

should take workload-driven partitioning into consideration to

enhance query performance (e.g., through efficient data skipping

and improved compression).

10 CONCLUSION
In this paper, we evaluated three widely-used open columnar for-

mats. We systematically evaluated them using micro-benchmarks

including basic database operations and end-to-end query subex-

pression evaluation. We found trade-offs that make each format

more or less suitable for use as an internal format in a DBMS. By

applying various optimizations, we identified opportunities to more

holistically co-design a unified in-memory and on-disk data repre-

sentation for better query execution in modern OLAP systems.
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