
SHiFT: An Eicient, Flexible Search Engine for Transfer Learning
Cedric Renggli

ETH Zurich
cedric.renggli@inf.ethz.ch

Xiaozhe Yao
ETH Zurich

xiaozhe.yao@inf.ethz.ch

Luka Kolar
ETH Zurich

luka.kolar@inf.ethz.ch

Luka Rimanic⇤
ETH Zurich

luka.rimanic@inf.ethz.ch

Ana Klimovic
ETH Zurich

aklimovic@inf.ethz.ch

Ce Zhang
ETH Zurich

ce.zhang@inf.ethz.ch

ABSTRACT
Transfer learning can be seen as a data- and compute-ecient alter-
native to trainingmodels from scratch. The emergence of richmodel
repositories, such as TensorFlow Hub, enables practitioners and
researchers to unleash the potential of these models across a wide
range of downstream tasks. As these repositories keep growing
exponentially, eciently selecting a good model for the task at hand
becomes paramount. However, a single generic search strategy (e.g.,
taking the model with the highest linear classier accuracy) does
not lead to optimal model selection for diverse downstream tasks.
In fact, using hybrid or mixed strategies can often be benecial.
Therefore, we propose SHiFT, the rst downstream task-aware,
exible, and ecient model search engine for transfer learning.
Users interface with SHiFT using the SHiFT-QL query language,
which gives users the exibility to customize their search criteria.
We optimize SHiFT-QL queries using a cost-based decision maker
and evaluate them on a wide rang of tasks. Motivated by the itera-
tive nature of machine learning development, we further support
ecient incremental executions of our queries, which requires a
special implementation when jointly used with our optimizations.

PVLDB Reference Format:
Cedric Renggli, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic, and
Ce Zhang. SHiFT: An Ecient, Flexible Search Engine for Transfer
Learning. PVLDB, 16(2): 304 - 316, 2022.
doi:10.14778/3565816.3565831

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DS3Lab/shift.

1 INTRODUCTION
Transfer learning [26, 47] is an emerging paradigm of building
machine learning (ML) applications, which can have a profound
impact on the architecture of today’s machine learning systems and
platforms. In a nutshell, transfer learning aims at training ML mod-
els with high quality without having to collect enormous datasets
or spend a fortune on training from scratch. Instead, models are

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565831

* Now at Google.

Table 1: Example search queries supported by SHiFT, return-
ing an ordering of registered models by their...

Q1: best reported upstream accuracy [14]
Q2: best nearest neighbor classier accuracy [25, 34]
Q3: best linear classier accuracy [5, 29, 43]
Q4: Q1 and Q3 (on models excluding the result of Q1) [37]
Q5: highest (ne-tune) accuracy on the most similar task [1]

rst pre-trained on typically large and possibly private upstream
datasets, and are then made available via model repositories such
as TF-Hub, PyTorch Hub, and HuggingFace. Given a new down-
stream dataset, representative for the ML task, a user picks some
of these pre-trained models to ne-tune, which typically requires
adding randomly initialized layers to parts of the pre-trained deep
network, and tuning all the parameters using the limited amount of
downstream data. Transfer learning has been successfully applied
to many domains and tasks [3, 11, 24, 39].

This process, despite being cheaper compared to training from
scratch (i.e., with a fully randomly initialized network), still requires
all parameters to be updated several times, which can be compu-
tationally demanding. With the growing number of pre-trained
models available in online platforms like TF-Hub, PyTorch Hub,
and HuggingFace, it is computationally infeasible to ne-tune all
models to nd the one that performs best for a downstream task. As
a result, a key dening component of a transfer learning application
is a model search strategy, which provides cheaper ways to identify
promising models to use. One challenge is that dierent tasks might
require very dierent search strategies [26, 53] and Table 1 illustrates
several popular ones. Today, a user of these model repositories con-
ducting transfer learning needs to manage models and implement
search strategies all by themselves. Over the years, in the context of
building usable machine learning system (e.g., Ease.ML [2, 13, 23]),
we have observed several challenges that our users face:

Challenge 1. Our rst observation is that the amount of data
and computation a user needs to perform quickly exceedswhatmost
users, even competent software engineers, can handle. Some chal-
lenges are more on the engineering side — today’s pre-trained mod-
els are scattered in dierent repositories, including HuggingFace,
TF-Hub, and PyTorch Hub, lacking a unied abstraction. However,
many others are technical — HuggingFace, TF-Hub, and PyTorch
Hub contain 34K, 1K, and 48 models, respectively, and sum up to
more than 100GB in size. Simply downloading all these models
can take hours, not to mention running inference of all these mod-
els over a given dataset and implementing state-of-the-art search
strategies. As a consequence, many users in our experience simply

304

https://doi.org/10.14778/3565816.3565831
https://github.com/DS3Lab/shift
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565831
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Three stages of a transfer learning setup: (1) Models are trained upstream for various architecture and datasets, (2)
the models are restricted into a pool, and ranked by a search strategy, and (3) a subset of the models based on the ranking are
ne-tuned on user’s dataset in a downstream process. SHiFT focuses on supporting the middle stage (2) eciently and in a
exible, generic way.

resort to only using the latest model — this ignores the vast diver-
sity of available models and, as we show in our previous systematic
benchmark [37], can lead to a signicant quality gap.

Challenge 2. The second challenge we observe is that to-
day’s data-centric development pattern of ML applications provides
unique opportunities to speed up the model search process, which,
if left to the users, are quite hard to capture. In many cases, users
will conduct iterations on the datasets—data cleaning, acquisition of
both labels and features—and execute similar model search queries
for each of these datasets over time. Since these datasets are similar
to each other, it is possible to save a signicant amount of computa-
tion if we carefully design incremental maintenance strategies for
dierent search queries — all these opportunities to speed up model
search are not captured by today’s model repositories.

Challenge 3. The third challenge we observe is that model
search is an active research area where new strategies are coming
out quite frequently, yet easily implementing them in a system
and comparing them to existing search strategies is a painful task.
Just in the last three years, researchers proposed at least eight new
strategies [1, 5, 9, 14, 25, 29, 34, 37]. Having users to catch up with
these latest developments can be tedious and potentially a huge
waste of resources. We are in a dire need for a unied framework
that can be extended in a exible way to support, benchmark, and
automatically optimize newly proposed search strategies.

SHiFT: Towards Data Management for Transfer Learning.
All three challenges, in our opinion, lead to the same hypothesis:

We should shift the responsibility of querying and conductingmodel
search over today’s model repositories from individual users to a data
management system, which can (1) provide a unied abstraction to
connect all major model repositories, (2) provide a exible, extendable
way of specifying search strategies, (3) automatically optimize its
execution, and (4) support ecient incremental execution.

In this paper, we present SHiFT, one of the rst data management
systems for transfer learning — SHiFT is denitely not the rst
“model management system”, an area that has attracted a lot of
interest from the data management community [18, 19, 31, 40, 44,
51]; however, to our best knowledge, it is the rst one that focuses
on enabling an ecient and exible model search functionality for
transfer learning. This is achieved by supporting diverse model

search queries to nd (near-)optimal pre-trained models for ne-
tuning them on a downstream task. Our technical contributions
are as follows:
• C1 System Design. We propose a unied abstraction in SHiFT

that can model all existing model search strategies that we are
aware of, and is extendable with respect to new models, model
repositories, as well as potential new search strategies. We then
present SHiFT-QL, a novel query language used to interract with
SHiFT. To compare dierent search strategies, we furthermore
design an easy-to-use benchmark module.

• C2 System Optimization. We carefully studied several system
optimization opportunities, both for a single query run and for
incremental maintenance. (C2.1) For a single query run, we pro-
pose several optimizations to speed up the model search process,
including a novel strategy based on successive halving [12] to
use resources more eciently. (C2.2) Furthermore, we develop
a cost model to automatically decide whether to apply dierent
system optimizations, given a search query, as well as systems
and model properties. (C2.3) SHiFT also eciently supports in-
cremental query execution, as required by the iterative nature of
the model development process. This functionality is non-trivial,
and we carefully design an incremental maintenance strategy
for successive-halving.

• C3 Evaluation. We evaluate SHiFT over a diverse set of queries
across three computer vision and two NLP datasets and more
than 150 diverse models. We show that SHiFT outperforms a
baseline implementation of the same search strategy by up to
1.57⇥, and in the incremental scenario up to 4.0⇥ for 10% feature
changes for reasonably large test sets. Comparedwith ne-tuning
all models without search strategy, SHiFT can be up to 22.6⇥-
45.0⇥ faster on vision tasks.We furthermore provide an extensive
study using our benchmark module.

• C4 Open Source. We make SHiFT publicly available by open-
sourcing it under https://github.com/DS3Lab/shift. We provide a
clean documentation on how to implement new search strategies
as well as guidelines and best-practices for choosing the right
SHiFT-QL query under: http://docs.shift.ml

305

https://github.com/DS3Lab/shift
http://docs.shift.ml

Figure 2: The dierence between pre-training (left) and ne-
tuning (right). The features stem from the last layer.

2 BACKGROUND AND MOTIVATION
2.1 Transfer Learning
Transfer learning has been applied very successfully on popular
deep learning modalities such as computer vision (CV) and natu-
ral language process (NLP) over the last few years [32, 42, 46, 47].
Transfer learning is typically divided into three steps as illustrated
in Figure 1: (1) An upstream, or pre-training part, where a machine
learning model is trained using a well-established approach (e.g.,
randomly initialized weights and using mini-batch stochastic gra-
dient descent as an optimizer) and an upstream dataset. (2) Having
access to multiple such models trained on various datasets or model
architectures, users pick a single or a subset of the available models,
through some model search strategy, for the subsequent part. Note
that users typically do not have access to the upstream datasets
for this model search part. (3) The chosen models are ne-tuned
in a downstream part on users’ datasets. There are multiple strate-
gies on how to ne-tune a pre-trained model, the most prominent
being illustrated in Figure 2. Transfer learning and searching for
models is mainly studied for classication tasks. We focus on this
setting, hoping that our ndings and proposed system will enable
progress beyond classication. The pre-trained model is split into
two parts: a feature extractor, typically the entire network until the
last layer, and the classication head consisting of the nal linear
classication layer. The new model is then a copy of the feature
extractor (i.e., weights and architecture), and a new randomly ini-
tialized head. Replacing the pre-trained linear head by a new one is
usually unavoidable, as the number of classes often changes from
the upstream task to the downstream one. All the weights of the
network are then rened for multiple iterations using an iterative
optimization algorithm like stochastic gradient descent (SGD).

The benets of this three-step transfer learning process over
training from scratch (i.e., training a randomly initialized network
using the downstream dataset only) are twofold: (A) Using transfer
learning, one can ne-tune a very large and complex network (i.e.,
many parameters forming a highly non-convex space to optimize
in) even for limited amount of downstream data. (B) The ne-tuning
process requires a much smaller number of steps in the iterative op-
timization process. Both (A) and (B) ensure a good initial condition
to start the ne-tune optimization process. They are enabled by
the fact that much larger, sometimes private upstream datasets are
used to train for many iterations. The choice of which pre-trained
model to ne-tune has a high impact on the nal accuracy one
can expect (e.g., a sub-optimal pick in our experiments can lead
to a 43% downstream accuracy gap). If we are not concerned with
optimization compute and power, we could ne-tune all models and

pick the best one afterwards. This brute-force approach is usually
infeasible in practice given the amount of currently available pre-
trained models, along with the fact that this will not scale to more
models in the future. Therefore, we require a more ecient search
strategy, which limits the number of models we need to ne-tune.

2.2 Existing Pre-Trained Model Hubs
There exist multiple prominent online pre-trained model reposi-
tories, most notably Tensorow Hub, PyTorch Hub and Hugging-
Face.1 Each repository has its own interface for accessing the fully
trained model, using the corresponding deep learning framework,
with optional direct access to the (last-layer) feature extractor in the
case of TF-Hub. HuggingFace has an interface for both Tensorow
and PyTorch. These existing online repositories enable easy access
to pre-trained models along with their weights and some additional
meta-data such as the domain and tasks this model is designed for
(e.g., vision and classication), number of parameters, name of the
dataset used to pre-train, or performance on this upstream dataset.

Limitations. Whilst accessing the models via existing online
repositories is simple, they all share a common limitation when
searching for the right model. That is, all platforms oer only plain
search elds or lters2, which retrieve models by their name or
somemeta-data properties. As wewill see in the next section, this al-
lows to restrict the model pool and run (some) task-agnostic search
queries. The implementation and support of any other search strat-
egy is currently left to the user.

2.3 Model Search Strategies
A search query is a function <(M,D,⌫) with a budget ⌫, a set
of modelsM, and a downstream task represented by a dataset D
as its input. The function outputs a set S< ⇢ M with |S< |  ⌫.
The input setM either represents all models registered in SHiFT,
or a restricted subset, which we call a model pool. The quality
of a query is not measured by the metric that the query itself
uses (e.g., proxy accuracy or task similarity), but rather by the
maximal accuracy attained when ne-tuning the resulting models,
those in S< . The dierence between this accuracy and the maximal
achievable accuracy if one would ne-tune all available models to
the user is called regret, formally:

max
<8 2M

E[C (<8 ,D)]  E

max
B8 2S<

C (B8 ,D)

, (1)

where C (<,D) is the test accuracy achieved when ne-tuning
model< on dataset D. Clearly, the budget ⌫, which restricts the
size of the subset S< , has a direct impact on the regret. A large and
diverse set S< , with any diversity measure, is much more likely to
result in small regret, while having a budget of ⌫ = 1 makes the
task of nding exactly the best model challenging.

Pool Restriction. The downstream task itself denes the input
modality (e.g., image or text) that needs to be supported by the
models. Users then usually have use-case specic constraints, such
as the framework (e.g., TensorFlow or Pytorch) one is restricted to,
or the total number of parameters.

1https://tfhub.dev, https://pytorch.org/hub, and https://huggingface.co/models
2HuggingFace released an evaluation library (https://huggingface.co/docs/evaluate)
after the submission of this paper. The functionality corresponds to simple task-aware
search queries, yet not more complex hybrid or nested queries.

306

https://tfhub.dev
https://pytorch.org/hub
https://huggingface.co/models
https://huggingface.co/docs/evaluate

Figure 3: Categorization of model search strategies with their
computational complexity. The # benchmark datasets are
dierent from the ones used to train upstream, and the com-
putation of the cross-product ne-tune table (" ⇥ #) is de-
coupled from the search complexity.

We do not consider the pool restriction itself as a search strategy
but rather as an integral part of any other search strategy that we
outline next. Note that in the illustration in Figure 3, the search
strategies do not return a subset of the model poolM, but rather
rank models in M. We can map this ranking to our formal descrip-
tion of a search query<(M,D,⌫), by selecting the top-B models
according to the ranking, randomly breaking ties.

Strategies. Figure 3 illustrates the dierent model search strate-
gies along with their computational requirements. We remark that
model search strategies were extensively studied in our work [37],
whereas here we present an overview of these methods and facts
that are important from the perspective of SHiFT. As in [37], we
divide model search strategies into two main categories: (A) task-
agnostic strategies, which are those that ignore the downstream
dataset, and (B) task-aware strategies, those that do take the down-
stream dataset into consideration.

(A.1) Task-Agnostic Search. The rst category ranks the models
in the pool by completely ignoring the downstream dataset. This
can range from naively ordering the models by their name, size,
or date of appearance, to more prominent strategies suggested by
related work: (a) ranking models trained on ImageNet based on
the upstream accuracy [14] (for images), or the average GLUE [45]
performance (for text), and (b) favoring more robust models [8].

(A.2) Meta-Learned Task-Agnostic Search. Instead of restricting
to meta-data reported by the model publishers, one could ne-tune
every model registered in the system on a xed set of # benchmark
datasets (e.g., the 19 from VTAB [53]), or on a subset (e.g., only
natural datasets in VTAB) and the aggregation metric used to rank
the models (e.g., maximum over this subset) chosen by the user.
Supporting such meta-learned search strategies requires SHiFT to
run some computation upon registering a newmodel by ne-tuning
it using all suitable benchmark datasets, whereas the retrieval phase
remains independent of the downstream task.

(B.1) Task-Aware Search. Using linear classier accuracies as a
proxy to rank the models is often regarded as the standard when
incorporating the downstream task into the search process [9, 14].
Instead of ne-tuning the weights of the pre-trained network as
described previously, one freezes them and only learns the weights
of a newly initialized linear head. In a large empirical study we
have shown that such a linear proxy can suer from a relatively
high regret when trusting this search strategy over exhaustively

ne-tuning all models and then picking the best one [37]. Never-
theless, this approach still represents one of the most powerful
known search strategy. To improve computation time, researchers
have proposed faster proxy methods by approximating the linear
classier accuracy [5, 29, 43], or relying on a cheaper classier like
the k-nearest neighbor [34, 37] and its approximations [25].

(B.2) Meta-Learned Task-Aware Search. The goal is to favor mod-
els that perform well on benchmark datasets similar to the down-
stream one. A prominent way of determining the similarity between
datasets representing an ML task was introduced via learned task
representations by Achille et al. [1]. To return a ranking of the
models, one has to compute a Task2Vec representation for the new
dataset and then nd the nearest task (i.e., via the distance metric
introduced by Achille et al. [1]). Registering a new model can be
computationally demanding as it requires ne-tune accuracies of
this new model on all benchmark dataset, but is decoupled from
the model search performed by the user.

Hybrid Search. Empirically, with currently publicly available
pre-trained models, for every single method there exists a case
in which it suers from a relatively high regret (i.e., returning a
suboptimal model to ne-tune) [37]. In our prior work, we proposed
to extend the returned set to two or more models, where one can
start mixing strategies (e.g., best task-agnostic and best task-aware
model) [37]. In particular, we showed that a simple hybrid search
strategy that suggests ne-tuning the top-1 task-agnostic and top-
(⌫  1) task-aware model, often leads to superior results compared
to ne-tuning the best ⌫ models based on a single strategy.

2.4 Need For SHiFT
The hybrid strategy outlined above represents the most robust
choice for searching models independently from the model pool
or possible relations between downstream task and benchmark
datasets. Users may nonetheless want to break this independence
assumption by incorporating specic knowledge about the ltered
models or the relation to benchmark datasets. As an example, if
users restrict the pool to models trained on the same upstream
dataset, ranking the models based on upstream accuracy often
represents a cheap and near-optimal search strategy. Hence, we
require a system that gives users the exibility to express a model
search query that reects their most important criteria. The sys-
tem should also eciently execute search queries, automatically
applying query execution optimizations under the hood. In order
to support inexperienced users, we provide detailed guidelines for
using the best queries in our system and mimicking best-practices
under https://docs.shift.ml/guidelines. Finally, bearing in mind that
model development is typically an iterative process, if a user is not
happy with the returned models or ne-tuning results, she may
iterate by changing the data or the query, and then use the newly
returned models. Thus, we need a system that can support various
search strategies with ecient initial and iterative executions.

Benchmarking. Comparing new search strategies is a demanding
task. Firstly, as explained before, existing search strategies are not
supported by the existing model repositories and therefore have to
be re-implemented by every researcher. Secondly, when evaluating
strategies, users need to have access to a large set of (diverse)
models, each of them being ne-tuned on a large set of benchmark

307

https://docs.shift.ml/guidelines

Figure 4: The logical components and dierent types that
connect them that compose SHiFT, where (*) represents com-
ponents that we optimize in Section 4 and 5.

datasets. Researchers need support in both aspects to be able to
derive new theoretical understanding for existing approaches, or
to test new search strategies against existing ones.

3 SYSTEMS ARCHITECTURE
We now present the architecture of SHiFT, allowing us to eciently
and exibly execute the search queries outlined in the previous
section. We abstract our system into multiple logical components,
visualized in Figure 4. The labels on the arrows indicate types of
the input for each component. We start by describing our novel
logical model for transfer learning in Section 3.1. We then present
our query language and its parser in Section 3.2, and use Section 3.3
to describe the scheduler and execution layer. Figure 13 in Appen-
dix A3 provides a complete overview of SHiFT. SHiFT is designed
as a server-client architecture connected by standard HTTP re-
quests. From the client perspective, the input to the system is a
SHiFT-QL query, and the output is the corresponding result, i.e., a
list of models, together with the information whether the query
was executed successfully or not. On the server side, SHiFT takes
the parsed SHiFT-QL query tree as the input, and determines how
to provide the results. SHiFT internally caches intermediate results
within and across queries to optimize execution time. We elaborate
on caching and other system optimizations in Section 4.

3.1 Logical Model of Transfer Learning
One of the most important challenges in building SHiFT is to pro-
vide a clean abstraction for the search process of transfer learning,
which needs to be exible enough tomodel most popular search pro-
cesses that users are using in practice, but in the meantime, needs to
be high-level enough for us to capture the opportunities of system
optimizations and incremental maintenance. In the following, we
describe the SHiFT’s logical model, which is based not only on our
own experience in model search [37] but also a comprehensive sur-
vey of existing popular search strategies [1, 5, 9, 14, 25, 26, 29, 34].

Unied Logical Views for Model Repositories and Datasets. During
the model search process, there are two key players: (1) a diverse
collection of model repositories (e.g., TF-Hub, PyTorch Hub, and
HuggingFace) and (2) a collection of datasets stored in a diverse
set of formats (e.g., numpy, CSV, TFDS, etc.). The starting point of
SHiFT is to provide a unied view for both models and datasets.
The ‘Models’ view is a relational view containing information of
models across various sources. As illustrated in Figure 5, each model
corresponds to a single row in the ‘Models’ view, which contains
“meta-data” about its source, modality, number of parameters, etc.
3Accessible via https://github.com/DS3Lab/shift

Figure 5: SHiFT’s Logical Model of Transfer Learning

Each model ID also is associated with various functions to deal
with tasks such as inference and ne-tuning, all of which are vir-
tualized in dockerized environments to unify the API dierences
of dierent model repositories (see Section 3.3). In practice, we
observe that having a relational view for ‘Models’ is particularly
useful as users often conduct specic ltering queries over all mod-
els (e.g., to only keep models with # parameters smaller than a
given constant to ensure inference latency). These can be done via
standard SQL queries over the ‘Models’ view. The ‘DataReaders’
view is a relational view containing information of datasets stored
in dierent formats. Each dataset corresponds to a single row in
the ‘DataReaders’ view, which contains its meta-data. Each unique
DataReaders is also associated with an iterator that enumerates
(G,~) pairs where G is a Numpy array for a single feature vector
and ~ is a Numpy array for a single label.

Benchmark Results View. In addition to the two views outlined
before, SHiFT gives access to a view called ‘BenchmarkResults’,
acting as a many-to-many join between models and datasets. The
view is populated by the administrator of SHiFT with the accu-
racy reported when ne-tuning a xed model on a xed bench-
mark dataset. The system does not distinguish between bench-
mark and non-benchmark datasets, and treats both as tuples in the
‘DataReaders’ view. The ‘BenchmarkResults’ is useful for two dis-
tinct use-cases. Firstly, when designingmeta-learned search queries,
users can join and use the results between models and datasets via
this view. Secondly, in order to easily compare dierent search
strategies, given a set of" models and # benchmark datasets, for
which the post ne-tune accuracies are present in the view, the
benchmark module of SHiFT can run a search strategy for any of
those # benchmark datasets by simulating a state of the system
where the corresponding ne-tune results are not present in the
‘BenchmarkResults’ view. The accuracy of the returned model can
then be compared to the best model accuracy out of the" ignored
ne-tune results.

SHiFT-QL Query. A SHiFT-QL query denes a unique search
strategy for transfer learning. In our design, a SHiFT-QL query
consists of two components: (1) a collection of “scoring views”
and (2) a generic SQL query over these scoring views. Note that all
scoring views are lazily evaluated up to various delity and precision,
which renders the query execution and optimization non-trivial
and unique for SHiFT.

Lazily Materialized top-K Scoring Views. Given the ‘Models’ view
and the ‘DataReaders’ view, a user can dene scoring views of two
types. The rst type, which we call proxy scoring views aims to
capture proxy tasks that are used to assess a model’s transferability.
A proxy scoring view extends the SQL syntax and can be dened as

308

https://github.com/DS3Lab/shift

CREATE PROXY SCORING VIEW name
SQLQUERY -- e.g., SELECT * FROM Models

-- WHERE nParam < 12M
<SHIFT>
ORDER BY ScoringAlgorithm [DESC | ASC] LIMIT K
[TESTED ON DataReader1]
[TRAINED ON DataReader2]
[WITH DataReader3 ...]

</SHIFT>

where SQLQUERY is a standard SQL querywhose output has the same
schema as the Models view. In this way, a user can use arbitrary
SQL queries to conduct dierent ltering strategies or join with
auxiliary information about models to select models. Given all
models that SQLQUERY returns, a ScoringAlgorithm is associated
with a function (see Section 3.3) that maps a single Model, and a
series of DataReader into a real-valued score:

ScoringAlgorithm : Model[⇥DataReader⇥...⇥DataReader] ! R
By default, a proxy scoring view will only return the top-K models
according to the output of the ScoringAlgorithm. This is often the
case in most search strategies that we see in practice, and as we will
see later, will open up novel opportunities for system optimizations.

The second type of scoring views are what we call dataset similar-
ity views, which are used to compute similarities between dierent
datasets, an important signal in many model search strategies — a
model that performs well on a similar dataset is likely to perform
well on the target dataset, if we are able to compute datasets sim-
ilarities reliably. A dataset similarity view also extends the SQL
syntax and can be dened as

CREATE DATASET SIMILARITY VIEW name
SQLQUERY -- e.g., SELECT * FROM DataReaders

-- WHERE Modality = Image
<SHIFT>
ORDER BY DataSimMetric [DESC | ASC] LIMIT K
TESTED AGAINST TargetDataReader

</SHIFT>

where SQLQUERY is a standard SQL query whose output has the
same schema as the DataReaders view. In this way, a user can
use arbitrary SQL queries to conduct dierent ltering strategies
or join with auxiliary information about datasets similar to the
selected dataset. DataSimMetric is associated with a function that
computes the similarity between a pair of datasets:

DataSimMetric : DataSet ⇥ DataSet 7! R
Given all datasets returned by SQLQUERY, SHiFT computes its simi-
larity with the target TargetDataReader. Similar to a proxy scor-
ing view, a dataset similarity view also by default keeps the top-K
datasets according to its similarity with the TargetDataReader.

SHiFT-QL Query: Putting Things Together. Given a collection
of scoring views, a SHiFT-QL query is a generic SQL statement
querying these views. This allows exible aggregation and voting
strategies, and are crucial for many search strategies [37]. We pro-
vide several syntax sugars to make the query more succinct. When
there is no ambiguity, we often ignore the <SHIFT> and </SHIFT>
tags. Moreover, we also support creating scoring views implicitly
if such a query is nested in another SQL query. As an example, to

specify one hybrid search strategy developed in [37]: Return the
vision model with fewer than 10M parameters and the best upstream
accuracy and another vision model that has the best linear classier
accuracy, a user can write the following SHiFT-QL query:

(SELECT ModelId FROM Models
WHERE Input = Vision AND nParam <= 10M
ORDER BY UpstreamAccuracy DESC LIMIT 1) Q1

UNION
(SELECT ModelId FROM Models
WHERE Input = Vision AND ModelId NOT IN Q1
ORDER BY Linear(lr=0.1) ASC LIMIT 1
TESTED ON TestReader TRAINED ON TrainReader) Q2

We provide the SHiFT-QL for the popular search queries Q1-Q5
from Table 1, as well as a more complex nested query in Appendix B.

Tracking Data Changes via Change- and Add-Readers. To support
ecient incremental executions over data changes, we extend this
simple concept of a data reader to a mutable reader, allowing a
reader to be a composite of an initial data reader and a list of change-
or add-readers. Every change-reader is accompanied by a list of
indices of the same length as the initial reader, indicating which
samples to replace. The change- and add-readers are then processed
in a linear order to build the nal mutable data reader. The two
advantages of representing our data as such are (a) extensibility to
other data sources and (b) the ability to cache inferred features on a
per-reader (initial, change, or add) level. On the ip side, removing
samples from a data reader requires users of SHiFT to dene a
new reader, resulting in a new execution from scratch. We plan
to support deletions in the future. It is also important to note that
our current data provenance system tracks the changes in a rather
naive way. In the future, we should provide the support of modern
data provenance systems for ML (e.g., [10] and [41]).

Supporting New Search Strategies. One design goal of SHiFT and
SHiFT-QL is to make it easier for researchers to provide new search
strategies in the future. In our current system, this can be done
by registering a new ScoringAlgorithm or a new DataSimMetric.
We are optimistic that this will support many new search strategies
in the near future (e.g., the “more robust model is more transfer-
able” strategy that just comes up months ago [8], which requires
registration of robustness metrics as additional attributes in the
dataset). We provide simple tutorials on how to implement new
simple strategies online, and evaluate additional search strategies
beyond the ones present in the paper (e.g., random sampling or
LEEP [29]) in Appendix F using our benchmark module.

3.2 Query Parser and Translator
Our query parser takes a possibly complex SHiFT-QL query as
an input, and generates a parsed query tree, where every node
is either a proxy scoring or dataset similarity view. The tree is
then traversed in a bottom-up approach, by evaluating the leaf
nodes until completion before evaluating the parent nodes. We
leave query tree optimizations such as push-down operations or
balancing compute across dierent nodes for future work. Every
SQLQUERY is evaluated directly against our database. Task-agnostic
search strategies represent SHiFT-QL queries using neither proxy
scoring nor dataset similarity views. Meta-learned task-agnostic
queries can be dened by the user by using dataset similarity views

309

Figure 6: SHiFT tasks and their dependencies to model or data
sources. The numbers specify on howmany objects a specic
task depends on (e.g. Proxy tasks depends on 2 data readers).

and ltering models using populated benchmark ne-tune results in
it. For queries relying on proxy scoring views, the query translator
will check if the result for the specied method name is known in
the corresponding view (i.e., a tuple for eachmodel and the specied
readers exists in the database). If so, the system will directly return
the results, or pass them to a parent node in the parsed query
tree. Otherwise, the system will dispatch a list of SHiFT tasks for
missing values to the task scheduler. Task-aware search queries
are split into two inference tasks per model, one for the test and
another for the train data source, and an additional single proxy
task per model. The outputs of the inference tasks are used as
input to the corresponding proxy task. This allows us to possibly
reuse the cached feature representations per pre-trained model.
To support better load balancing, we split both inference tasks for
partitions of the datasets (c.f., Section 4). Meta-learned task-aware
search queries rely on dataset similarities. If the embedding for
the downstream task reader is not in the database, the system will
dispatch a DataSim task to compute it. The embeddings are then
used to compute the distance between tasks and rank the readers.

3.3 Task Scheduler and Execution
A SHiFT task represents the smallest computational unit of our
system. The scheduler assigns every task to a single hardware
device. We dene three dierent tasks SHiFT supports: (1) inference
tasks, (2) proxy tasks, and (3) DataSim tasks. The number and types
of tasks executed depend on the query provided by the user, then
parsed and translated by SHiFT (e.g., Q2 will only create inference
and proxy tasks). Each of them has dependencies on models or data
readers, or both (c.f., Figure 6). The scheduler of SHiFT is fairly
simple. Every task gets assigned, in order of entering the queue, to
the next free device, as soon as its dependency tasks are successfully
terminated. Every GPU on a single machine represents a device,
and a subset of the CPU cores forms another one. Costly inference
tasks are assigned to GPU devices, if any are available. Proxy and
DataSim tasks are also handled by the CPU.

Inference Task. To support various pre-trainedmodel sources and
frameworks, we dene a minimal interface used by inference tasks.
All supported model sources require a simple forward function for
a batch of samples originating from every data source visualized
in Figure 6. This function returns a 2D Numpy array with each
sample (out of =) in the data reader representing a row. The feature
dimension is determined by the pre-trained model. The resulting
extracted features are stored on the disk, and references to the

corresponding reader and model combination, using a hash of the
earlier, and the model name as a unique identier of the latter are
saved. Formally, the following interface needs to be specied for
each combination of models and data sources.

def extract(pre_trained_model: model,
source: data_reader) ->
np.array(shape=[n,dim])

Most of these 16 possible combinations are natively supported
by the frameworks and API (e.g., using the Keras fit function for
parts of a Keras model, or KerasLayer with TF-Hub models), or
by casting the data sources into a supported format (e.g, using
tensorow data sources for both Keras and TF Hub). PyTorch Hub
models typically only store the models with their PyTorch code and
no standardize interface. Every model registered in SHiFT therefore
needs to specify a hook function to extract the (last-layer) features,
which requires us to know the internal structure of the models
(i.e., the layer names). Custom trained or ne-tuned models can
be exported as Keras models to disk, and then used for subsequent
search queries upon registration into the database.

Proxy Task. By splitting task-aware search queries into inference
and proxy tasks, we bypass the requirement of implementing the
proxy computation for every combination of model and data source.
The proxies are dened over Numpy arrays, where the extracted =
train and< test features (ending with _X) stem from a model and
data source combination after having performed an inference task,
and the labels (ending with _y) are independent of the models.

def compute_proxy(train_X: np.array(shape=[n,dim]),
test_X: np.array(shape=[m,dim]),
train_y: np.array(shape=[n,]),
test_y: np.array(shape=[m,])) ->
proxy_value: float

We implement two dierent proxy estimators: (1) the nearest
neighbor (NN) accuracy for two dierent distance functions (cosine
dissimilarity, and Euclidean, L2 distance), and (2) a linear classi-
er accuracy trained with stochastic gradient descent (SGD) and
arbitrary hyper-parameters, such as learning rate, L2 regularizer,
mini-batch size and number of epochs.

DataSim Task. A dataset similarity (DataSim) task computed
embeddings of a data reader representing a machine learning task
(e.g., Task2Vec [1] to compute 8512 dimensional vectors). The em-
bedding is then stored along with the meta-data of the reader in
the database. Using any distance function (e.g., the non-symmetric
one suggested by Achille et al. [1]), a subset of registered data read-
ers in the database, for which the embeddings are pre-computed,
can be ordered and limited in a straightforward fashion. The nal
meta-learned task-aware search query is then no dierent from the
meta-learned task-agnostic. We use the code provided by Achille
et al. [1] for running the DataSim tasks.

4 SYSTEM OPTIMIZATIONS
4.1 Successive-Halving (SH)
In SHiFT, all proxy scoring views consist of a top-K query over a
list of scores; furthermore, each score is computed as a function
over DataReaders which consist of a set of data examples. This
structure opens up unique opportunities for system optimizations
— since many of these scoring functions are relatively stable with

310

respect to sub-sampled datasets, we can approximate this top-K
view with a scoring function evaluated over only a subset of data
examples. One key optimization is to estimate the proxy value only
for a small subset of the (training) data on most models, and a large
fraction of the data only on a small subset of the models. There can
be various ways for this. Currently, SHiFT uses successive-halving
(SH) [12], which is invoked as a subroutine inside the popular
Hyperband algorithm [20]. Algorithm 1 in Appendix C outlines the
algorithm, noting that an arm in our context represents amodel, and
pulling an arm corresponds to running inference on more data and
estimating the proxy using the extracted features for all the data
seen by the model so far. In a nutshell, we can summarize the idea
of SH as follows: Start by uniformly allocating a xed initial budget
(⌫/log2 (")) to all" models and then evaluating their performance.
Keep only the better half of the models and repeat this until a single
model remains. The algorithm has two dierent hyper-parameters:
a chunk size (how many samples represent an arm pull) and the
overall budget ⌫. Both can be specied by the user and have an
impact on the accuracy of the results and compute time.We propose
a chunk size guaranteeing that the last model has processed the
entire dataset as a default for SHiFT, and use the minimal budget
required to return a xed number of models.

SH Minimal Budget and Chunk Size. In order to preserve the
semantic of the queries whilst performing successive halving (i.e.,
not sub-sampling the data), we need to guarantee A: > 0,8: ()

⌫
! dlog2 (|" |) e > 1. Let us assume a top-q queries with @ = 1 (the
derivation can simply be extended to arbitrary values of @). We
need ⌫  !dlog2 (|" |)e,8!. The largest ! is reached at the rst
step where ! = |" |. Hence, we need to have ⌫  |" |dlog2 (|" |)e.
Conversely, at :th step, each remaining model is given A: ⇥ ⇠
additional training samples, in total each remaining model has pro-
cessed

Õ:
9=0 A 9 ⇥ ⇠ training samples. When : = dlog2 (|" |)e  1,

the remaining models have processed ⇠ ⇥Õ dlog2 (|" |) e1
9=0 A 9 train-

ing samples. Hence, the minimal chunk size ⇠<8= such that the
remaining models have processed all training samples is given by

⇠<8= =
#Õ dlog2 (|" |) e1

9=0 A 9

where A 9 = b ⌫
d"/29 e blog2 (|" |) c c.

4.2 Cost Model for Successive Halving
Successive-halving, while always being able to decrease the amount
of examples processed, does not always outperform the baseline
strategies in wall clock time. Moreover, as we show in the experi-
ments, it can sometimes even be slower. This might seem counter-
intuitive, but the main reason lies in hardware accelerators, such
as GPUs, which oer the ability to massively parallelize tasks up to
a xed number of samples. For instance, running inference for one
sample through a deep neural network requires roughly the same
time as a mini-batch of multiple samples. The maximummini-batch
size is often limited by the device memory. Therefore, one should
not split very small readers into multiple chunks to speed up a
task, rendering SH inappropriate for small datasets. Additionally,
SH introduces sequential dependencies between tasks, which can
render the algorithm inecient or unable to scale to multiple GPUs.

One such a cause lies in the repeated model loading, or access to
the extracted test features, noticing that we always use the entire
test set to estimate a proxy value after an arm pull.

We therefore introduce another key component into SHiFT: a
cost-based decision making process that automatically decides
whether to use successive halving. To this end, we derive a cost
model for SHiFT with and without SH. Our cost model requires a
few variables, either pre-computed or available based on the query.
Let # be the size of our training dataset, $ the size of the test
dataset, and" the number of models. Furthermore, let % represent
the number of equal devices (e.g., GPUs). The time required to load
a model 8 onto a device is given by !8 . Furthermore, the time to
load the (training) dataset is represented by)# , whereas the time
required to load the inferred test representations for the model
8 is given by)8 . We simplify this by assuming a global)$, since
the representations only dier in their dimensions. We neglect the
time to load the raw test dataset as this is equal regardless of the
optimization. The time to run inference for : samples and model
8 on the device is given by 8 (:), which we assume to be linear,
hence 8 (:) = 8: , for some constant 8 . The time to compute a
proxy ⇢8%A>G~ (:) follows the same principle, although we assume
that it is independent of the model (neglecting the dimension of the
representations), hence ⇢8%A>G~ (:) = ⇢%A>G~: . The cost for running
a top-1 query without SH on multiple GPUs is computed with

)w/o :=
1
%

"’
8=1

⇣
)# +)$| {z }
Load data

+ 2!8|{z}
Load model

+ 8$|{z}
Test inference

+ 8#|{z}
Train inference

+ ⇢%A>G~#| {z }
Proxy estimation

⌘
,

Notice that we need to load the train dataset again every time
when there is a new model (request), as every task is executed
independently. The counterpart, running a top-1 query with SH on
multiple GPUs, where we assume perfect parallelization which is
harder to achieve for heterogeneous models and small chunks ⇠ , is
given by

)w/ :=
1
%

"’
8=1

(!8 + 8$)

| {z }
Test inference

+
dlog2 (") e’

:=1

1
min (%, |(: |)

⇥

| {z }
SH iterations

⇣ ’
9 2(:


!9 +)# +  9⇠A:


| {z }

Train inference

+
’
9 2(:

⇣
)$ + ⇢%A>G~

:’
;=1

(⇠A;)
⌘

| {z }
Test load and proxy estimation

⌘
,

where⇠ is specied by the user or taken as⇠<8= (c.f., Section 4),
(: and A: are taken from Algorithm 1. Clearly, the sets (: of models
surviving during the SH algorithm have an impact on the runtime.
Following the trend of larger and slower models surviving the
longest, we dene (: to be the set of : models with the largest
inference time  9 for all 9 2 ["]. SHiFT will use this cost model
(i.e., the minimum of)w/o and)w/) to automatically decide, based

311

on system’s specications (e.g., hardware devices and model infer-
ence times), number of samples, and models in the restricted pool,
whether to use the SH algorithm.

SH for Other Queries. We only use the SH optimization for task-
aware queries for which a fraction of the samples can be used for
ranking models with high condence. Classier accuracies (e.g.,
NN or linear classier) are known to satisfy this property [38]. Fur-
thermore, the overhead of running multiple sequential tasks when
using the SH algorithm is kept small for task-aware queries, thanks
to the two-stage approach (i.e., the inference and proxy estimation
phase), which is not the case for the other search queries. Inference
tasks are typically much more time-consuming compared to the
proxy estimation. Nonetheless, when pulling an arm an additional
time, the data from the previous arm pulls are not required to be
run through the network again as they can be fetched from the disk
for the subsequent proxy estimation tasks.

4.3 Other Optimizations
Caching. Caching is crucial for rapid incremental query execu-

tions. SHiFT internally caches dataset similarities, feature vectors,
and proxy values in order to reuse intermediate results within and
across queries as much as possible. When dispatching task requests,
SHiFT ensures that only necessary requests are executed. For ex-
ample, if a user sends a request for a proxy estimator (e.g., the
nearest neighbor accuracy) and a single model, SHiFT will create
two inference requests, one for the test and train reader, and a
proxy estimator request. The former requests turn the input data
into feature vectors and store them on the disk. If, at a later stage,
the user requests another proxy estimator for the same model (e.g.,
the linear classier accuracy), SHiFT will notice that it can reuse
the cached feature vectors. Therefore, SHiFT will only dispatch a
proxy estimation request, which uses the feature vectors to calcu-
late the proxy value. The dispatched requests are then handled by
the task scheduler asynchronously. Once a certain request is done,
the results will be written into the database and ultimately returned
to the user upon running the same query.

Load-Balancing. To automatically load-balance heterogeneous
workloads, mainly stemming from large discrepancies in inference
times between models, to multiple hardware devices, we automati-
cally split readers for every inference task. The number of partitions
is equal to the number of GPU devices, unless a reader is smaller
than a xed threshold. This guarantees fast executions especially
when running inference on small readers (i.e., change-readers).

5 INCREMENTAL EXECUTIONS
If a user is not satised with the results of the query, either in terms
of the proxy values or other properties of the models returned (e.g.,
diversity or downstream performance), she typically iterates by
incrementally executing another, often similar query, or re-run the
same query performing one of the following changes:

(1) add a model to the database,
(2) change the data (features or labels) to test or train readers

by using change-readers,
(3) add data to the test or train reader using an add-reader.
Incremental Scenario 1: Changing Data or Queries, or Adding Mod-

els. Changing data (features or labels), a query, or adding a model

Figure 7: Two models (linear and quadratic), for which the
order (i.e., based on the minimal MSE) changes if they have
access to data only from the rst distribution (A), compared
to both distributions (A+B).

to the database will naturally benet for the caching mechanisms
we introduced in the previous section. For example, a task-aware
search query will only require SHiFT to dispatch two inference
tasks and a single proxy task per additional model, retrieving the
other results directly from the database. When using the SH op-
timization, the same idea of reusing the caches for intermediate
results (features and proxy estimation values) applies. Data manip-
ulations are slightly more involved. Based on the dened mutable
data reader concept in Section 3.1, costly inference operations only
need to be executed for the changed features. The cheaper proxy
task is then evaluated on the nal mutable reader (i.e., after having
iterated over all change- and add-readers) only once, or for every
subsequent iteration in the SH algorithm.

Incremental Scenario 2: Adding Data. Adding data to the test
reader requires us, similarly to changing data, to run inference on
all models of the query using these additional data samples, and
then rerun the proxy estimation value for every intermediate step
in the SH algorithm. However, blindly appending training data
at the end of the data reader can result in an undesired behavior.
Concretely, all models that did not process the entire dataset (i.e.,
were eliminated in the SH algorithm based on a subset the head
of the data reader) will not benet from the appended samples.
This can be problematic if the added data stems from a dierent
distribution, thus possibly eliminating better arms (i.e., models)
while running the SH algorithm. We construct and illustrate one
such synthetic case in Figure 7, where we assume to have two
models (a linear one on the left and a quadratic one on the right),
and data coming from two distributions (A in blue and B in orange).
If the models were ranked on the basis of the errors of distribution
A alone, the quadratic model would be eliminated. If then data from
distribution B is appended to the reader (via an add-reader), the
winning linear model from before would actually be inferior to the
quadratic one. We show another real-world example in Section 6.5.

To address this issue, ideally, one would randomly reshue the
full data reader with appended data. Despite being favorable from
a statistical point of view, managing the cache and preventing a
complete re-execution is far from trivial.

In SHiFT we uniformly distribute the new samples as an alterna-
tive strategy. This enables high performance and results in a small
dierence compared to the fully shue approach from a statistical
point of view. As a justication of its statistical property, let us
assume that we have an initial data reader of size # together with

312

an add-reader that contains U# samples, with U  0. Moreover,
assume that the chunk sizes used by the SH algorithm on the initial
data reader is of size V# , with 0  V  1. We want to compare the
two strategies: (1) randomly inserting the new samples anywhere
between the existing ones and re-partitioning the samples into
buckets afterwards, and (2) uniformly distributing the new samples
amongst all existing buckets. Notice that the number of buckets
remains constant after handling the new samples, thus increasing
the size of the buckets to V# (1 + U). Furthermore, it is obvious
that from an implementation perspective, the second strategy is
superior to the rst, whereas the rst strategy introduces less bias
into the sampling process. However, both approaches yield the
same number of samples from both distributions in expectation.
We dene a random variable ⇠ , which represents the number of
initial samples in the rst bucket when the rst strategy is run.
Coincidentally, ⇠ follows a hyper-geometric distribution with an
expectation of E [⇠] = V# , which is exactly the number of samples
in the same rst bucket we get when applying the second strategy.

6 EVALUATION
6.1 Experimental Setup
We conduct our experimental study next on computer vision and
NLP classication tasks, representing the most prominent applica-
tions of transfer learning [53]. Nonetheless, SHiFT is exible and
the code-base supports workload beyond these modalities.

Models. We compile a diverse list of 100 computer vision and 60
NLP models, whose details, including additional conguration such
as inference time for the GPU type needed in the next paragraph,
are given in Appendix D. To restrict the search space for ne-tuning,
we follow Zhai et al. [53] and train the models for 20 epochs, using
a mini-batch size of 16, momentum of 0.9, and learning rate of 0.01,
with the Adam optimizer.

Datasets. We conduct our experiments with 3 vision datasets rep-
resenting dierent downstream tasks: (1) Oxford Flowers 102 [30]
(Flowers) with 1K training and 6K test samples, (2) CIFAR-100 [17]
(CIFAR), with 50K training and 10K test samples, and (3) Dmlab [53]
with 65K training and 23K test samples. We furthermore use two
NLP datasets from the glue benchmark [45]: (1) cola, with 8.5K
training and 1K test samples, and (2) sst2, with 67K training and
1.8K test samples.

Hardware. We use a GPU cluster (single machine) with 8 NVIDIA
TITAN Xp for SHiFT. The system is congured to either use a single
or all eight GPUs. For ne-tuning models, we use a dierent cluster
with slightly more performant NVIDIA GeForce RTX 2080 Ti GPUs.

Queries. We evaluate the performance of the 3 queries Q2-Q4
from Table 1, with a focus on computational eciency. Q1 is in-
cluded in Q4 and directly evaluated against the database and there-
fore omitted in the experiments. Q5 uses the Task2Vec code to nd
the nearest benchmark task. To successfully apply Q5, or any meta-
learned query, we require a large set of benchmark datasets, all
ne-tuned on all modules. We provide results for both meta-learned
queries Q5 and Q7 using our benchmark module in Appendix F.
Whenever the SH algorithm is used, depending on the cost model
and specied in the experiments, we set the budget and chunk size
to be minimal according to Section 4. This ensures that the seman-
tics of the queries are kept intact, i.e. the data is not sub-sampled.

Table 2: Execution time for ne-tuning (FT) all the models
via enumeration compared to running Q2-Q4 using SHiFT

with and without automatic optimization (AO).
1 GPU 8 GPU

Runtime
(Hours)

Speedup
(vs. FT)

Runtime
(Hours)

Speedup
(vs. FT)

CIFAR

FT 251.8 31.5

Q2 w/o AO 8.7 28.8x 1.6 19.8x
w/ AO 5.9 42.9x 1.3 24.1x

Q3 w/o AO 9.1 27.6x 1.6 19.2x
w/ AO 5.8 43.4x 1.3 24.3x

Q4 w/o AO 7.9 31.7x 1.0 30.0x
w/ AO 5.6 45.0x 1.2 25.6x

Dmlab

FT 314.8 39.4

Q2 w/o AO 14.3 22.0x 2.4 16.2x
w/ AO 9.6 32.7x 2.0 19.7x

Q3 w/o AO 14.6 21.6x 2.5 16.0x
w/ AO 9.9 31.8x 1.9 21.2x

Q4 w/o AO 13.3 23.7x 1.7 22.6x
w/ AO 9.3 33.9x 2.0 20.0x

Flowers

FT 9.6 1.2

Q2 w/o AO 2.9 3.3x 0.4 2.8x
w/ AO 2.9 3.3x 0.4 2.8x

Q3 w/o AO 3.1 3.1x 0.4 2.7x
w/ AO 3.1 3.1x 0.4 2.7x

Q4 w/o AO 2.8 3.4x 0.4 3.1x
w/ AO 2.8 3.4x 0.4 3.1x

Figure 8: Fine-tune (FT) accuracy of returned model for
queries with and without automatic optimization (AO). The
variance illustrates themin andmax over 4 independent runs,
showing some uctuations for the small Flowers dataset and
the linear proxy, which is sensitive to its hyper-parameters.

6.2 End-to-end Performance
We start by validating the end-to-end performance of SHiFT on
computer vision task. Due to the space limitation we present the
corresponding NLP results to Appendix E. Table 2 compares the
runtimes of ne-tuning all the models, the method which we call
enumerate, to running and using the output of queries Q2-Q4 on
SHiFT, with and without automatic optimization (AO). Our cost
model, which we validate later in this section, suggests not to use
SH for the small Flowers dataset, which is why the SH optimization
is enabled only for CIFAR and Dmlab. When it comes to accuracy,
Albeit being up to 1.5 orders of magnitude faster (c.f., Table 2),
Figure 8 shows that the queries manage to retrieve near-optimal
models for all datasets (i.e., suering from very small regret). Fur-
thermore, the SH optimizations for CIFAR and Dmlab retain the
query semantics, not aecting the accuracy over the baseline for

313

Figure 9: Incremental execution using SHiFT on 8 GPUs. 10%
of the samples are randomly replaced.

(a) Execution times of Q2 for CI-
FAR.

(b) Cost model for Q2 on 50K train-
ing samples.

Figure 10: Increasing number of (homogeneous) models. The
ResNet-101 V2 model is replicated for the experiments and
the cost model.

each query. Remember that the main focus of this SHiFT is to sup-
port a large set of possibly complex queries independent of the
actions on the returned model (e.g., ne-tuning) as eciently as
possible. For a complete empirical study that compares dierent
search queries, we refer to our companion work [37] and Section 6.6,
where we benchmark dierent strategies using SHiFT. Finally, Fig-
ure 9 shows the runtime for incrementally running SHiFT on 10%
randomly changed samples, leading to signicant speedups for
larger datasets, where the GPUs are fully utilized.

6.3 Scalability of SHiFT
With the experimental setting described, we implicitly analyze the
scaling behavior of SHiFT for an increasing number of GPUs (one
and eight), and (training) samples (1K, 50K, and 62K). Increasing
the number of models is analyzed in Figure 10 (left), where we
deliberately chose a homogeneous setting of replicating the same
model architecture multiple times.

6.4 Cost Model: SH Trade-os
Figure 10 (right) validates the relative performance of our cost
model for a set of homogeneous models. In Figure 11 we show the
dierent runtimes with and without SH for 1 and 8 GPU and all
queries along with the conguration picked by SHiFT on the 100
diverse models. On the Flowers dataset, our cost model accurately
predicts the relative improvements to be expected when not using
SH over using SH for a single (1.68x) and multiple GPUs (1.95x).
On the larger datasets, CIFAR and Dmlab, the ratio for using 1
GPU (both 1.8x) is validated by our experiments. For multiple GPUs
and the larger datasets, SHiFT predicts that SH should outperform

(a) 1 GPU

(b) 8 GPUs

Figure 11: Execution times for all settings. The variance in
black illustrates the min and max over 4 independent runs,
showing little uctuation. The hatched bar indicates the se-
lected plan based on the cost model.

non-SH by 1.2x, e.g. on CIFAR for all three queries, while the perfor-
mance only matches Q2 and Q3, as visible in Figure 11. The hybrid
query Q4 removes a very large model, however, our cost model
overestimates the benets of SH in such a case. The reason lies in
the heterogeneity of the models (e.g., the largest model takes up
almost 10% of the overall inference time) and the order of execution
currently neglected in the cost model for both with and without
SH on multiple GPUs. This explains the gaps visible in Figure 11b.
Fusing these aspects into the cost model requires runtime-specifc
variables (e.g., information about other queries executed in parallel),
making it much more complex and potentially introducing extra
latency when executing a query. It is therefore left as future work.

6.5 Incremental Execution
In Figure 12a, we randomly change a xed percentage of the sam-
ples (i.e., manipulating the features) and plot the time required to
perform an incremental execution of Q2 on CIFAR. Unsurprisingly,
after a signicant fraction of changes (e.g., > 50%), users might
want to enforce a re-execution from scratch (i.e., by building a new
initial reader instead of using a change-reader). However, when
a small fraction of the samples are changed and the query is run
incrementally, SHiFT oers a signicant speedup over the baseline.
The computational performance of adding data follows the same
trend as changing data. Note that the accuracy of any incremental
query executions is heavily dataset- and distribution-dependent.
The compute time for adding models to the query corresponds
to the time needed to run a second independent query on these
new models, due to the independence between the computation

314

(a) Execution time with respect
to dierent number of feature
changes for Q2 on CIFAR.

(b) Distribution of new train-
ing data (a full class) for Q2 on
Retinopathy.

Figure 12: Incremental Execution.

on the new models and the old ones. Changing any number of
labels in SHiFT is signicantly cheaper compared to a re-execution.
The reason lies in the large computational overhead of running
inference compared to the cheap proxy computation. SHiFT only
requires to re-run the latter for all models. Finally, to further show
the importance of distributing new samples, we construct a data
reader for the Retinopathy dataset consisting of only four out of
ve classes. We then append the fth class via an add-reader and
compare the post ne-tune accuracy using dierent shuing vari-
ants in Figure 12b. This example illustrates a scenario in which
the distributional dierence between both readers, the initial one
and the add-reader, leads to a good overall model being eliminated
before seeing the new data if the samples are not distributed.

6.6 Using The Benchmark Module
We empirically validate the usefulness of the benchmark module
of SHiFT be ne-tuning all VTAB-1K datasets [53] on a large set
of more than 250 Huggingface transformer modules. Due to space
limitations, we give the detailed time vs. post ne-tune accuracy
comparison for all 19 datasets and a wide range of search queries,
including randomly selecting one or two models, in Appendix F.
The results conrm the usefulness of our guidelines, as well as the
results given by previous work [14, 37].

7 OTHER RELATEDWORK
ML Specic Data Management. The data-management has been

working on improving the usability of ML in a urry of work over
the last decade, by focusing on dierent components of the ML
development process. A few examples include data acquisition with
weak supervision (e.g., Snorkel [35], ZeroER [48]), debugging and
validation (e.g., TFX [6, 33], “Query 2.0” [49], Krypton [27]), Model
deployment (e.g., MLFlow [51]), knowledge integration (e.g., Deep-
Dive [54]), data cleaning (e.g., HoloClean [36], ActiveClean [16]),
and interaction (e.g., NorthStar [15]). All these systems facilitate the
ML development process without focusing on transfer learning.

Model Management. The data management community has also
seen an intriguing line of work aroundmodel management. Systems
like Cerebro [28] or ModelDB [44], and follow-up works [18, 21, 22,
40], are part of the main motivation to work on this new, transfer
learning specic model management system. We hope that by lying

the initial conceptual foundation of a model management system
specically for transfer learning, and by open sourcing SHiFT, we
are able to trigger and facilitate future research in this area.

Dataset Search. Neural Data Server [7, 50] takes the approach
of searching for datasets instead of pre-trained models to improve
transfer learning. Other works such as Data2Vec [4] follow a similar
goal by embedding a dataset and searching for similarity. Both ap-
proaches are orthogonal to our work, since we do not require access
to the upstream datasets used to pre-train the models registered
in SHiFT. Furthermore, it is unclear how these techniques can be
used to distinguish models trained on the same upstream dataset.

Other Search Strategies. There are other search strategies omit-
ted in Section 2 operating on semantical level (i.e., via a learned
taxonomy) [52]. These methods are not well suited for searching in
a pre-trained model hub, mainly given that they assume the input
domain to remain x, and datasets only to dier in their labels.

8 CONCLUSION
We presented SHiFT, the rst downstream task-aware search engine
for transfer learning. Using our custom query language SHiFT-QL,
users can generically dene dierent model search strategies. Based
on a cost-model, we automatically optimize prominent search queries
and show signicant speedups. Furthermore, by caching intermedi-
ate results, we allow our users to eciently execute similar queries
incrementally. In the future, we hope that SHiFT, together with our
benchmark module, will enable researchers to easily implement
and evaluate newer search strategies.

ACKNOWLEDGMENTS
CZ and the DS3Lab gratefully acknowledge the support from the
Swiss State Secretariat for Education, Research and Innovation
(SERI) under contract number MB22.00036 (for European Research
Council (ERC) Starting Grant TRIDENT 101042665), the Swiss Na-
tional Science Foundation (Project Number 200021_184628, and
197485), Innosuisse/SNF BRIDGE Discovery (Project Number 40B2-
0_187132), European Union Horizon 2020 Research and Innovation
Programme (DAPHNE, 957407), Botnar Research Centre for Child
Health, Swiss Data Science Center, Alibaba, Cisco, eBay, Google
Focused Research Awards, Kuaishou Inc., Oracle Labs, Zurich In-
surance, and the Department of Computer Science at ETH Zurich.

REFERENCES
[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,

Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. 2019.
Task2vec: Task embedding for meta-learning. IEEE International Conference on
Computer Vision (2019), 6430–6439.

[2] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nezihe M Gürel, Nora Hollen-
stein, Jiawei Jiang, Bojan Karlaš, Thomas Lemmin, Tian Li, Yang Li, et al. 2021.
Ease. ML: A Lifecycle Management System for Machine Learning. In 11th Annual
Conference on Innovative Data Systems Research. CIDR.

[3] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and
Stefan Carlsson. 2015. Factors of transferability for a generic convnet represen-
tation. IEEE transactions on pattern analysis and machine intelligence 38, 9 (2015),
1790–1802.

[4] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael
Auli. 2022. Data2vec: A general framework for self-supervised learning in speech,
vision and language. arXiv preprint arXiv:2202.03555 (2022).

[5] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir, and
Leonidas Guibas. 2019. An Information-Theoretic Approach to Transferability
in Task Transfer Learning. IEEE International Conference on Image Processing
(2019), 2309–2313.

315

[6] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1387–1395.

[7] Tianshi Cao, Sasha (Alexandre) Doubov, David Acuna, and Sanja Fidler. 2021. Scal-
able Neural Data Server: A Data Recommender for Transfer Learning. NeurIPS
(2021).

[8] Zhun Deng, Linjun Zhang, Kailas Vodrahalli, Kenji Kawaguchi, and James Zou.
2021. Adversarial Training Helps Transfer Learning via Better Representations.
arXiv preprint arXiv:2106.10189 (2021).

[9] Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca
Zancato, Charless Fowlkes, Rahul Bhotika, Stefano Soatto, and Pietro Perona.
2021. A linearized framework and a new benchmark for model selection for
ne-tuning. arXiv preprint arXiv:2102.00084 (2021).

[10] Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian Schelter. 2021.
Mlinspect: A data distribution debugger for machine learning pipelines. In Pro-
ceedings of the 2021 International Conference on Management of Data. 2736–2739.

[11] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-ecient transfer learning for NLP. In International Conference on
Machine Learning. PMLR, 2790–2799.

[12] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm identi-
cation and hyperparameter optimization. In Articial intelligence and statistics.
PMLR, 240–248.

[13] Bojan Karlaš, Ji Liu, WentaoWu, and Ce Zhang. 2018. Ease. ml in action: Towards
multi-tenant declarative learning services. Proceedings of the VLDB Endowment
11, 12 (2018), 2054–2057.

[14] Simon Kornblith, Jonathon Shlens, and Quoc V Le. 2019. Do better Imagenet mod-
els transfer better? IEEE Conference on Computer Vision and Pattern Recognition
(2019).

[15] Tim Kraska. 2018. Northstar: an interactive data science system. Proceedings of
the VLDB Endowment 11, 12 (2018), 2150–2164.

[16] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-
berg. 2016. Activeclean: Interactive data cleaning for statistical modeling. Pro-
ceedings of the VLDB Endowment 9, 12 (2016), 948–959.

[17] Alex Krizhevsky, Georey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009). http://www.cs.toronto.edu/~kriz/cifar.html

[18] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data management in machine
learning: Challenges, techniques, and systems. In Proceedings of the 2017 ACM
International Conference on Management of Data. 1717–1722.

[19] Arun Kumar, Robert McCann, Jerey Naughton, and Jignesh M Patel. 2016.
Model selection management systems: The next frontier of advanced analytics.
ACM SIGMOD Record 44, 4 (2016), 17–22.

[20] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[21] Liangde Li, Supun Nakandala, and Arun Kumar. 2021. Intermittent human-in-
the-loop model selection using cerebro: a demonstration. Proceedings of the
VLDB Endowment 14, 12 (2021), 2687–2690.

[22] Side Li and Arun Kumar. 2021. Towards an optimized GROUP by abstraction for
large-scale machine learning. Proceedings of the VLDB Endowment 14, 11 (2021),
2327–2340.

[23] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease. ml: Towards
multi-tenant resource sharing for machine learning workloads. Proceedings of
the VLDB Endowment 11, 5 (2018), 607–620.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[25] Amiel Meiseles and Lior Rokach. 2020. Source Model Selection for Deep Learning
in the Time Series Domain. IEEE Access (2020).

[26] Thomas Mensink, Jasper Uijlings, Alina Kuznetsova, Michael Gygli, and Vittorio
Ferrari. 2021. Factors of inuence for transfer learning across diverse appearance
domains and task types. arXiv preprint arXiv:2103.13318 (2021).

[27] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. 2019. Incremental
and approximate inference for faster occlusion-based deep cnn explanations. In
Proceedings of the 2019 International Conference on Management of Data. 1589–
1606.

[28] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system
for optimized deep learning model selection. Proceedings of the VLDB Endowment
13, 12 (2020), 2159–2173.

[29] Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and Matthias Seeger. 2020.
LEEP: A New Measure to Evaluate Transferability of Learned Representations.
International Conference on Machine Learning (2020).

[30] Maria-Elena Nilsback and Andrew Zisserman. 2008. Automated ower classica-
tion over a large number of classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing. IEEE, 722–729.

[31] Laurel Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan Leszczynski.
2021. Managing ML pipelines: feature stores and the coming wave of embedding
ecosystems. Proceedings of the VLDB Endowment 14, 12 (2021), 3178–3181.

[32] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering (2009).

[33] Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven Whang.
2019. Data validation for machine learning. Proceedings of Machine Learning and
Systems 1 (2019), 334–347.

[34] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric Renggli, André Susano
Pinto, Sylvain Gelly, Daniel Keysers, and Neil Houlsby. 2021. Scalable Transfer
Learning with Expert Models. International Conference on Learning Representa-
tions (2021).

[35] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: rapid training data creationwithweak supervision.
Proceedings of the VLDB Endowment 11, 3 (2017), 269–282.

[36] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. Proceedings of the VLDB
Endowment 10, 11 (2017), 1190–1201.

[37] Cedric Renggli, André Susano Pinto, Luka Rimanic, Joan Puigcerver, Carlos
Riquelme, Ce Zhang, and Mario Lucic. 2022. Which model to transfer? nding
the needle in the growing haystack. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2022).

[38] Luka Rimanic, Cedric Renggli, Bo Li, and Ce Zhang. 2020. On convergence of
nearest neighbor classiers over feature transformations. Advances in Neural
Information Processing Systems 33 (2020), 12521–12532.

[39] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf.
2019. Transfer learning in natural language processing. In Proceedings of the
2019 conference of the North American chapter of the association for computational
linguistics: Tutorials. 15–18.

[40] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine Learning Model
Management. Data Engineering (2018), 5.

[41] Sebastian Schelter, Stefan Grafberger, Shubha Guha, Olivier Sprangers, Bojan
Karlaš, and Ce Zhang. 2022. Screening Native ML Pipelines with “ArgusEyes”.
(2022).

[42] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A survey on deep transfer learning. International Conference on
Articial Neural Networks (2018).

[43] Anh T Tran, Cuong V Nguyen, and Tal Hassner. 2019. Transferability and
hardness of supervised classication tasks. IEEE International Conference on
Computer Vision (2019), 1395–1405.

[44] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. 1–3.

[45] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. 2018. GLUE: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint arXiv:1804.07461 (2018).

[46] Zirui Wang. 2018. Theoretical Guarantees of Transfer Learning. arXiv preprint
arXiv:1810.05986 (2018).

[47] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big data (2016).

[48] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1149–1164.

[49] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven training data debugging for query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1317–1334.

[50] Xi Yan, David Acuna, and Sanja Fidler. 2020. Neural Data Server: A Large-Scale
Search Engine for Transfer Learning Data. CVPR (2020).

[51] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the Machine Learning Lifecycle with MLow. IEEE Data
Eng. Bull. 41, 4 (2018), 39–45.

[52] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik,
and Silvio Savarese. 2018. Taskonomy: Disentangling task transfer learning.
IEEE Conference on Computer Vision and Pattern Recognition (2018).

[53] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos
Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann,
Alexey Dosovitskiy, et al. 2019. The Visual Task Adaptation Benchmark. arXiv
preprint arXiv:1910.04867 (2019).

[54] Ce Zhang, Christopher Ré, Michael Cafarella, Christopher De Sa, Alex Ratner,
Jaeho Shin, Feiran Wang, and Sen Wu. 2017. DeepDive: Declarative knowledge
base construction. Commun. ACM 60, 5 (2017), 93–102.

316

http://www.cs.toronto.edu/~kriz/cifar.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Transfer Learning
	2.2 Existing Pre-Trained Model Hubs
	2.3 Model Search Strategies
	2.4 Need For SHiFT

	3 Systems Architecture
	3.1 Logical Model of Transfer Learning
	3.2 Query Parser and Translator
	3.3 Task Scheduler and Execution

	4 System Optimizations
	4.1 Successive-Halving (SH)
	4.2 Cost Model for Successive Halving
	4.3 Other Optimizations

	5 Incremental Executions
	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-end Performance
	6.3 Scalability of SHiFT
	6.4 Cost Model: SH Trade-offs
	6.5 Incremental Execution
	6.6 Using The Benchmark Module

	7 Other Related Work
	8 Conclusion
	Acknowledgments
	References
	A Overall Architecture of SHiFT
	B Example SHiFT-QL Queries
	C Successive-Halving Algorithm
	D Model Details
	E NLP Results
	F Benchmark Module Results
	F.1 Protocol
	F.2 Strategies
	F.3 Evaluation

