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ABSTRACT
Normalization aims at minimizing sources of potential data incon-

sistency and costs of update maintenance incurred by data redun-

dancy. For relational databases, different classes of dependencies

cause data redundancy and have resulted in proposals such as Third,

Boyce-Codd, Fourth and Fifth Normal Form. Features of more ad-

vanced data models make it challenging to extend achievements

from the relational model to missing, non-atomic, or uncertain

data. We initiate research on the normalization of graph data, start-

ing with a class of functional dependencies tailored to property

graphs. We show that this class captures important semantics of

applications, constitutes a rich source of data redundancy, its im-

plication problem can be decided in linear time, and facilitates the

normalization of property graphs flexibly tailored to their labels and

properties that are targeted by applications. We normalize property

graphs into Boyce-Codd Normal Form without loss of data and

dependencies whenever possible for the target labels and proper-

ties, but guarantee Third Normal Form in general. Experiments on

real-world property graphs quantify and qualify various benefits

of graph normalization: 1) removing redundant property values as

sources of inconsistent data, 2) detecting inconsistency as violation

of functional dependencies, 3) reducing update overheads by orders

of magnitude, and 4) significant speed ups of aggregate queries.
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1 INTRODUCTION
Normalization minimizes sources of potential data inconsistency

and costs of integrity maintenance incurred by updates of redun-

dant data. Based on data dependencies that cause redundancy, clas-

sical normalization transforms schemata into normal forms where

these dependencies can be enforced by keys only, or come close

to it. For example, this is achieved by Boyce-Codd Normal Form

(BCNF) for functional dependencies (FDs) [11, 50], Fourth Nor-

mal Form for multivalued dependencies [13], Fifth Normal Form
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for join dependencies [41], Inclusion Dependency Normal Form

for functional and inclusion dependencies [27], and Domain-Key

Normal Form [14]. Third Normal Form (3NF) minimizes sources

of data redundancy under the additional target of enforcing all

FDs without joining relation schemata [7, 25], and Bounded Car-

dinality Normal Form minimizes the level of data redundancy

caused by FDs [28, 30]. Some achievements carry forward to richer

data formats, including SQL [23, 24] and models with missing

data [26, 47, 48], Nested [34, 42], Object-Oriented [40], Tempo-

ral [22], Web [3, 33], and Uncertain Databases [29].

Graph databases experience new popularity due to more mature

technology in response to the demand of applications for finding

relationships within large amounts of heterogeneous data, such as

social network analysis, outlier and fraud detection. Graphs can

represent data intuitively and efficiently. Both research and indus-

try have brought forward sophisticated technologies with mature

capabilities for processing graph data. Recently, classical classes

of data dependencies, such as keys and FDs, have been extended

to graph databases, and have been put to use for data cleaning

and fraud detection tasks [15]. Indeed, Fan [15] remarks that graph

dependencies provide a rare opportunity to capture the semantics

of application domains on graph databases, which are schema-less.

Interestingly, however, the normalization of graph data has neither

been mentioned in the literature nor has it been subject of inves-

tigation yet. This is surprising since it is a very natural question

to ask what normalization of graph data may actually mean. In-

deed, any mature data model needs to facilitate principles of data

integrity. Since a strong use case of graph data is analytics, the

quality of analysis depends fundamentally on the quality of graph

data. This firmly underpins the need to understand sources of data

inconsistency and other data quality issues. This includes the chal-

lenge of understanding opportunities for more efficient integrity

maintenance and query processing, and database design principles

within schema-less graph environments. In relational databases,

constraints restrict instances of a given schema to those considered

meaningful for the underlying application. Normalization restruc-

tures the schema and constraints such that data redundancy is

minimized and constraint management made more efficient. When

attempting to normalize property graphs, we do not have a schema

and will therefore need to rely on the constraints exclusively. In

particular, it means that a normalized set of constraints would not

admit any graph with redundant data value occurrences, but with-

out any restriction of such a graph’s structure by any schema. This

sounds intriguing and the flexibility of graph data may promote

restructuring only that part of the graph required by an applica-

tion. Our contributions towards the aim of initiating research on

normalizing property graphs can be summarized as follows:

(1) We introduce uniqueness constraints and functional dependen-

cies as declarative means to i) express completeness, integrity, and
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Figure 1: Original Property Graph

uniqueness requirements in the form of business rules that govern

property graph data, and ii) form the source of redundant property

values that drive goals for graph normalization.

(2) We show that our graph dependencies facilitate normalization as

their implication problem can be captured axiomatically finitely by

Horn rules, and algorithmically by a linear-time decision algorithm.

(3) We normalize property graphs into lossless, dependency-

preserving BCNF whenever possible, and guarantee 3NF in general.

Normalization is tailored to nodes with labels and properties the

target application requires. Unlike the relational case, our normal-

ization can even be applied when FDs do not fully hold. Indeed, our

normalization is still lossless and removes redundancy in that part

conforming to the FDs.

(4) We demonstrate the extent and benefits of property graph nor-

malization experimentally. For some popular real-world property

graphs we identify meaningful FDs and quantify how many redun-

dant property values they cause. We provide examples of inconsis-

tencies found as violations of meaningful FDs. We demonstrate that

integrity maintenance and aggregate query evaluation improves

by orders of magnitude on normalized property graphs. While not

achieving the full scale of speed up that graph normalization ac-

complishes, we show that indexing the left-hand side properties of

FDs still gains significant efficiency in integrity maintenance and

aggregate query processing without any changes to the graphs.

Our results motivate a long line of future work on graph data

normalization, including normal forms, the study of more expres-

sive graph dependencies, relationships to conceptual and physical

design of graph data, and the design for quality of graph data.

In what follows, we motivate our work with an application sce-

nario in Section 2. Section 3 includes a concise review of relevant

work. Section 4 contains a brief guide of concepts and notation. The

semantics of property graphs and constraints is given in Section 5.

In Section 6, we introduce our normalization framework, including

the implication problem, normal forms and normalization. Experi-

mental results that qualify and quantify the need and benefits of

normalization are discussed in Section 7. We conclude and briefly

comment on future work in Section 8. More details, including the

full paper, are available at the Artifact URL.

2 ILLUSTRATIVE EXAMPLE
In this section we use a minimal example to illustrate ideas and

concepts as a motivation for our work in this article.

The property graphG0 in Figure 1models an application scenario

where people attend events. Nodes and edges carry any number of

labels, and may carry pairs of properties and values. In Figure 1 we

have nodes labeled by Person, Event, and Confirmed. The latter label
assures that Event nodes model events that have been confirmed.

We also have edges from Person to (confirmed) Event nodes labeled

by Attends, expressing that a person attends a (confirmed) event.

Event nodes exhibit properties such as N(ame), C(ompany), V(enue)
and T(ime), expressing that a company (like “Cactus") is in charge

of an event with a name (like "No Socks") held at a venue (like

"Vault") and time (like "06/01").

Event data is subject to business rules expressed by uniqueness

constraints (UCs) and FDs: Event nodes with properties C and T
can be uniquely identified by the value combination on these two

properties, N → C (events are managed by at most one company),

NT → V (the time of events uniquely determines its venue), and

TV → N (at any time any venue can host at most one event).

Intuitively, FDs express that nodes with matching values on all

properties of the left side have also matching values on all proper-

ties of the right side. However, characteristics of property graphs

motivate additional features of graph dependencies. Firstly, proper-

ties may not exist on some nodes. Secondly, dependencies apply to

different types of nodes. As a consequence, we want to provide data

stewards with the ability to tailor uniqueness constraints and func-

tional dependencies to i) completeness requirements for properties,

and ii) the labels carried by nodes. For i), we take the principled

approach that missing properties should not have an impact on the

validity of constraints [47, 48]. Hence, graph-tailored UCs (gUC)

and FDs (gFD) feature a property set P that restricts the set of

vertices on which the constraint holds to those nodes for which

all properties in P exist, and P contains at least all the properties

that occur in the constraint. Moreover, a label set L is included in

the specification of gUCs and gFDs that further restricts the set of

vertices on which the constraint holds to those nodes which carry

all the labels in L. We obtain the following constraints in our exam-

ple: the gUC Event:CT :CT (σ1), stipulating that all Event nodes that
have properties C and T , are uniquely identified by the combina-

tion of values on these properties. The gFD Event:NC:N → C (σ2)
stipulates that Event nodes with properties N and C have match-

ing values on C whenever they have matching values on N . Simi-

larly, the gFDs Event:NTV :NT → V (σ3) and Event:NTV :TV → N
(σ4) express that Event nodes with properties N , T , and V have

matching values onV (N , respectively) whenever they have match-

ing values on N and T (T and V , respectively). Finally, the gFD

Event,Confirmed : NCTV : NC → T (σc ) expresses that nodes
with both labels Event and Confirmed, and with properties N , C , T ,
and V have matching values on T whenever they have matching

values on N and C . The constraints exhibit non-trivial interactions.
For instance, Σ = {σ1, . . . ,σ4} implies σ5 = Event:NCTV :TV , and
every gUC L:P :X implies the gFD L:P :X → P , but not vice versa.
For instance,G0 satisfies the gFD Event:NCV :NC → V , but not the

gUC Event:NCV :NC . In particular, no gUC can be expressed by any

set of gFDs. As another example, G0 satisfies σc , in particular, but

not the gFD Event:NCTV :NC → T . This illustrates the subtlety of

reasoning with multiple labels. Similarly, if G ′
0
results from G0 by

adding label Confirmed to node 2 and removing property Venue
from node 2, G ′

0
would still satisfy the gFD σc but not the gFD

Event,Confirmed:NCT :NC → T resulting from σc by removing

property V from P = NCTV .
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Figure 2: Normalized Property Graph

We observe that every graph satisfying Σ = {σ1, . . . ,σ4,σc },
such as G0, cannot exhibit any redundant property values on any

nodes that carry both labels Event, Confirmed and all properties N ,

C , T , V . Interestingly, however, G0 is one property graph that does

exhibit a redundant data value occurrence on nodes that carry only

label Event and all properties NCTV . Indeed, each occurrence of

company Cactus is redundant due to σ2: If one occurrence of Cactus
is changed to any different value, then σ2 will be violated.

While G0 is in BCNF for target label set {Event,Confirmed} and
property set {N ,C,T ,V }, and in 3NF for target label set {Event}
and property set {N ,C,T ,V }, it is not in BCNF for label set {Event}
and property set {N ,C,T ,V }. Figure 2 shows the normalized prop-

erty graphGn resulting from a non-obvious decomposition. Indeed,

Gn is in BCNF tailored to the application requirements that de-

compose Event nodes exhibiting all properties in NCTV . The de-
composition is lossless, as a simple join via ℓ-labeled edges would

restore the original graph G0. It is also dependency-preserving:

gUC σ1 adds gUC σ ′
1
= Evt_Comp:CVT :CT , and gFDs σ2, . . . σ5

result in gUCs σ ′
2
= Evt_Mgt:NC:N , σ ′

3
= Evt_Detail:NTV :NT ,

σ ′
4
= Evt_Detail:NTV :TV , and even σ ′

5
= Evt_Comp:CVT :TV . Note

that σc is beyond scope of any decomposition not targeted at nodes

with label Confirmed. The additional properties in the new con-

straints, such as V in σ ′
1
, originate from the requirement for Event

nodes to exhibit all properties NCTV . The new design eliminates

all data redundancy caused by σ2, for example in G0. The fact that

Cactus manages the event No Socks is only represented once (on the

new node 23-1), avoiding data inconsistency, making update and

query operations potentially more efficient. This is achieved by the

new gUC σ ′
2
, expressing that there cannot be two different Evt_Mgt

nodes with properties N , C and matching values on N . Omitting

the two Evt_Comp-nodes and their outgoing edges from Gn would

still result in a lossless BCNF decomposition. However, the gUC σ1
would be lost. In other words, the Evt_Comp-nodes ensure Gn is

dependency-preserving.

Normalizing a property graph will intuitively minimize sources

of potential inconsistency, bring forward more efficient updates of

companies, and of aggregate queries that require the numbers of

events a company manages. Intuitively, the benefits grow as the

graph size grows. Hence, identifying opportunities and limits of

graph databases in handling normalization has huge potential.

3 PREVIOUS WORK
Normalization is a classical topic [31], but no framework exists for

graph data yet. Normal forms characterize well-designed databases

that only admit instances with no redundant data value caused by

any dependency in the class considered. Fundamental are efficient

solutions to the implication problem: BCNF and 3NF are founded

on Armstrong’s axioms (A) [4] and linear decision algorithms [6].

The latter drive decompositions into BCNF and 3NF [8].

Schema design for other data quality dimensions is in its in-

fancy [5]. Completeness-tailored UCs and FDs were introduced

for relations with missing values, and a normalization framework

established that tailors relational design to completeness and in-

tegrity requirements [47, 48]. Our work here extends this approach

to property graphs with major differences: in contrast to [47, 48] we

cannot assume an underlying schema, we deal with graphs rather

than relations, and we require an extension to accommodate labels.

Recently, much attention has been given to graph query lan-

guages, but several lines of work on integrity management have

emerged, too. The comprehensive key proposal [2] sets out an ex-

pressive framework for specifying keys on nodes, edges, and proper-

ties. In particular, the gUC {L1, . . . ,Lm }:{P1, . . . , Pn }:{U1, . . . ,Uk }
can be specified as the exclusive PG-key below.

FOR x :L1 · · ·:Lm WHERE x .P1 . . . AND x .Pn IS NOT NULL EXCLUSIVE x .U1 ,. . . ,x .Uk
While expressive and flexible, there are no technical results for PG-

keys yet. Our class of gUCs was proposed in [38, 39] to address

the lack of constraints for data quality dimensions. They form a

sub-class of PG-keys that enjoys good computational properties.

The work in [18, 19, 37] defines expressive graph dependencies,

including FDs that compare values of properties or constants for all

pairs of entities identified by a graph pattern. Their expressiveness

is different from gFDs which allow multiple labels and require all

properties in P to exist. While implication for FDs in [19] is NP-
complete and they target entity resolution and fraud detection,

implication for gFDs is decidable in linear time and they target

normalization. Graph dependencies provide a rare opportunity to

specify application semantics in graph databases [2, 18, 19, 37, 39].

In contrast to normalization, [43] propose a schema design frame-

work for graph data that is based on minimizing access to data that

will likely co-occur in query results while keeping independent

concepts separate. In contrast to normalization that is based on

data dependencies, [43] requires a conceptual schema as input.

Schema information is beneficial for data management, including

(property) graphs [1, 32]. Schemata may interact non-trivially with

dependencies, such as PG-keys or gFDs. This motivates further

research, including the normalization of graph schemata.

Already Codd [10] suggests online and a-posteriori enforcement,

where integrity is preserved either as part of every update, or in-

consistencies are reported casually, respectively. Full normalization

with our framework supports online enforcement while casual nor-

malization materializes a-posteriori enforcement, and both can be

balanced by tailoring normalization to target dependencies.

Our work is the first to address normalization for property

graphs. The class of gFDs is new, and results on the combined

implication for gUC/gFDs encompass simpler findings for gUCs

alone. In our work, we transfer state-of-the-art normalization for

FDs from relational to graph databases.
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Table 1: Summary of Concepts & Notation To Be Introduced

Concept Notation
Basic concepts for graphs and graph constraints:
Property graph G = (V , Ed, η, λ, ν )
Label set/Property set L/P
Property subsets X , Y ⊆ P
gFD L : P : X → Y
gUC L : P : X
gUC/gFD set Σ
Translation into relational framework:
L:P -FD set for Σ ΣL:P (classical FDs originating from Σ)
Relation schema of P RP := P ∪ {A0 } with fresh attribute A0

Decomposition of RP D ⊆ {S | S ⊆ RP } where
⋃
S∈D = RP

Projection of ΣL:P onto S ⊆ RP ΣL:P [S ] = {X → Y ∈ Σ+L:P | XY ⊆ S }
Normal forms for property graphs and their achievements:
Σ in L:P -BCNF/3NF/RFNF (RP , ΣL:P ) in BCNF/3NF/RFNF

Normalization of property graphs:
L:P -decomposition of Σ wrt D Σℓ

L:P [D] with fresh edge label ℓ

L:P -projection of G onto S ⊆ RP G ℓ
L:P [S ] with fresh edge label ℓ

S -equivalence between nodes v, v ′ v ≡S v ′ (values match on properties in S )
L:P -decomposition of G wrt D

⋃
S∈D

(
G ℓ
L:P [S ]/≡S

)
4 GUIDE FOR CONCEPTS AND NOTATION
Table 1 provides a brief outline which concepts and notation we will

develop throughout. In Sec. 5 we will repeat concepts for property

graphs, and introduce graph-tailored constraints called gFDs and

gUCs. Our approach will enable us to translate graph constraints

into classical FDs in Sec. 6.1, to take advantage of the existing theory.

This will enable us to define BCNF and 3NF for property graphs in

Sec. 6.2. In Sec. 6.3, we will transfer achievements for BCNF and

3NF from relational databases to property graphs, and establish a

framework for normalizing property graphs in Sec. 6.4.

5 GRAPH-TAILORED CONSTRAINTS
We recall basics of property graphs, including gUCs [39]. We then

introduce gFDs and illustrate them on our running example.

The property graph model [9] is based on the following disjoint sets:

O for a set of objects, L for a finite set of labels, K for a set of

properties, and N for a set of values.

A property graph is a quintupleG = (V ,Ed,η, λ,ν ) whereV ⊆ O
is a finite set of objects, called vertices, Ed ⊆ O is a finite set of

objects, called edges, η : Ed → V × V is a function assigning

to each edge an ordered pair of vertices, λ : V ∪ Ed → P(L)

is a function assigning to each object a finite set of labels, and

ν : (V ∪ Ed) × K → N is a partial function assigning values for

properties to objects, such that the set of domain values where ν
is defined is finite. If ν (o,A) is defined, we write ν (o,A) =↓ and ↑
otherwise. Figures 1 and 2 show examples of property graphs.

Graph-tailored UCs (gUCs) were introduced in [39], and cover UCs

used by Neo4j [21] as a special case. For define the subset VL ⊆ V
of vertices in a property graph that carry all labels of the given set

L ⊆ L as follows: VL = {v ∈ V | L ⊆ λ(v)}.
A graph-tailored uniqueness constraint (or gUC) over L and K is

an expression L:P :X where L ⊆ L and X ⊆ P ⊆ K . For a property
graph G = (V ,Ed,η, λ,ν ) over O, L, K , and N we say G satisfies
the gUC L:P :X over L and K , denoted by |=G L:P :X , iff there are

no vertices v1,v2 ∈ VL such that v1 , v2, for all A ∈ P , ν (v1,A)
and ν (v2,A) are defined, and for all A ∈ X , ν (v1,A) = ν (v2,A).

Neo4j UCs are gUCs L:P :X where L = {ℓ} and P = X = {p}, that
is, {ℓ}:{p}:{p}. Hence, we denoted them by ℓ:p. Neo4j’s composite

indices are covered as the special case where L = {ℓ} and P = X ,
that is, {ℓ}:X :X . Hence, we denote them by ℓ:X .

We will now introduce graph-tailored FDs. Intuitively, they express

that nodes carrying a given set of labels and values on a given set of

properties, the combination of values on some of those properties

uniquely determine the values on some other properties.

Definition 5.1. A graph-tailored functional dependency (or gFD)
over L and K is an expression L:P :X → Y where L ⊆ L and

X ,Y ⊆ P ⊆ K . For a property graph G = (V ,Ed,η, λ,ν ) over O, L,
K ,N , we sayG satisfies the gFD L:P :X → Y overL andK , denoted

by |=G L:P :X → Y , iff there are no vertices v1,v2 ∈ VL such that

v1 , v2, for allA ∈ P , ν (v1,A) and ν (v2,A) are defined, for allA ∈ X ,

ν (v1,A) = ν (v2,A) and for some A ∈ Y , ν (v1,A) , ν (v2,A). □

The concept of gFDs provides users with the flexibility to layer

rules for nodes with different sets of labels. While L:P :X → Y
applies to all nodes when L = ∅, adding new labels to L allows

the user to declare additional rules that only apply to nodes that

carry all of the labels in L. Secondly, the property set P addresses

completeness requirements of applications on the properties that

nodes may have. Unless a node exhibits values on all properties

in P , it does not need to comply with the FD X → Y . Thirdly, X
and Y are subsets of P . This choice is guided by the principle that

missing properties should not affect the validity of a business rule.

If completeness requirements are not available, we may simply use

the gFD L:XY :X → Y . Most gFDs that express meaningful rules will

have this format, and they imply weaker gFDs L:P :X → Y where

P contains XY . This has multiple benefits as illustrated later, such

as tailoring normalization to different requirements, discovering

gFDs and sources of inconsistent data from property graphs.

Over relation schema R, the UC X can be expressed by the FD

X → R. Indeed, relations are sets of records and no two differ-

ent records can have matching values on all the fields in R. This
observation is significant for normalization which transforms the

underlying schema until all FDs exhibited on the schema are keys.

Intuitively, any FD that may cause data redundancy has been trans-

formed into a key which cannot cause data redundancy.

This situation is different in property graphs that permit duplica-

tion. Indeed, no gUC L:P :X can be expressed by any gFD since we

can always have two different nodes with label set L and matching

values on all properties in P . While this graph satisfies the gFD

L:P :X → P , it does not satisfy the gUC L:P :X . For example, graph

G0 in Figure 1 satisfies the gFD Event:NCV :NC → V but not the

gUC Event:NCV :NC . Since gFDs cause data redundancy, gUCs pro-
hibit data redundancy, and gUCs cannot be expressed by gFDs, we

need to study the combined class of gUCs and gFDs.

6 NORMALIZATION FRAMEWORK
We will first establish axiomatic and algorithmic characterizations

of the implication problem for gUCs and gFDs. We will then in-

troduce 3NF and BCNF for property graphs tailored to labels and

properties as required by applications.Wewill show that our normal

forms minimize (eliminate) data redundancy. Finally, we will estab-

lish an algorithm that computes a lossless, dependency-preserving

3NF decomposition for a property graph, set of gUCs and gFDs,

and the target set of labels and properties. Whenever possible, the

output will even be in BCNF.
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Table 2: Axiomatization E = {R, E,T ,A,W,P} of gUC/FDs

L:P :XY → X

L:P :X → Y

L:P :X → XY
(reflexivity, R) (extension, E)

L:P :X

LL′:PP ′:XX ′
L:P :X → Y L′:P ′:Y → Z

LL′:PP ′:X → Z
(augmentation, A) (transitivity, T )

L:P :X

L:P :X → P

L:P :X → Y L:P :XY

L:P :X
(weakening,W) (pullback, P)

6.1 Reasoning
Let Σ ∪ {φ} denote a set of constraints over L and K from a class

C. The implication problem for C is to decide, given any input set

Σ∪{φ} of constraints from C, whether Σ impliesφ. In fact, Σ implies
φ, denoted by Σ |= φ, if and only if every property graph G over O,

L and K that satisfies all constraints in Σ also satisfies φ.
Deciding whether φ is implied by Σ is fundamental for node

integrity management on property graphs. If φ is implied by Σ, then
φ is already specified implicitly by Σ. Otherwise, failure to specify

φ explicitly may result in integrity faults that go undetected. The

implication problem for FDs in relational databases is complete for

PTIME [6, 12]. Since FDs form a special case of gFDs, the implication

problem on property graphs is PTIME-hard.

6.1.1 Axiomatic Characterizations. We will establish an axiom-

atization for the combined class C of gUCs and gFDs. The set

Σ∗
C
= {φ ∈ C | Σ |= φ} denotes the semantic closure of Σ. We aim at

computing Σ∗
C
by applying inference rules of the form

premise

conclusion

.

For a set R of inference rules let Σ ⊢R φ denote the inference of
φ from Σ by R. That is, there is some sequence σ1, . . . ,σn such

that σn = φ and every σi belongs to Σ or is the conclusion that

results from applying an inference rule in R to some premises in

{σ1, . . . ,σi−1}. Let Σ
+
R
= {φ | Σ ⊢R φ} be the syntactic closure of

Σ under inferences by R. R is sound (complete) if for every set Σ of

constraints from C we have Σ+
R
⊆ Σ∗
C
(Σ∗
C
⊆ Σ+
R
). The (finite) set

R is a (finite) axiomatization if R is both sound and complete.

We assume the rules of E in Table 2 contain well-formed gUCs

and gFDs. As example, for the rule A with L:P :X and LL′:PP ′:XX ′

we assumeX ⊆ P andXX ′ ⊆ PP ′.A by itself is sound and complete

for the implication of gUCs. The full version shows that E is sound

and complete for the implication of gUCs and gFDs. The soundness

is established by contra-position: assume some property graph

violates the conclusion of a rule, one shows that some premise of the

rule must be violated as well. The completeness proof constructs for

any given gUC L:P :X and gFD L:P :X → Y that cannot be inferred

from Σ by E, a property graph that satisfies Σ and violates the given

gUC or gFD. This is achieved by introducing two vertices with label

set L, matching values on all properties in X+ΣL:P and non-matching

values on all remaining properties in P . Here, X+ΣL:P denotes all

properties A ∈ P such that L:P :X → A ∈ Σ+
E
.

Algorithm 1 Implication of gUCs and gFDs

Require: Set Σ ∪ {φ} of gUC/FDs; φ = L:P :X or φ = L:P :X → Y
Ensure: TRUE, if Σ |= φ, and FALSE, otherwise
1: Compute X+ΣL:P by linear-time attribute set closure for FDs [6]

2: if φ = L:P :X and X+ΣL:P = RP then
3: return TRUE
4: else if φ = L:P :X → Y and Y ⊆ X+ΣL:P then
5: return TRUE
6: else
7: return FALSE

Theorem 6.1. The set E forms a finite axiomatization for the
implication of gUCs and gFDs over property graphs. □

We illustrate inferencing on our running example.

Example 6.2. Let Σ contain ϕ ′
1
= Event:CTV :CT → V

and ϕ ′
2
= Event:NTV :VT → N . Applying (E) to ϕ ′

1
gives

us ϕ ′
3
= Event:CTV :CT → CTV . (R) gives us ϕ ′

4
=

Event:CTV :CTV → VT , and applying (T ) to ϕ ′
4
and ϕ ′

2
gives us

ϕ ′
5
= Event:CTVN :CTV → N . Finally, applying (T ) to ϕ ′

3
and ϕ ′

5

gives us φ = Event:CNTV :CT → N . Hence, Σ implies φ. Note the
subtlety in reasoning with the requirements for properties. As we

will see below, Σ does not imply φ ′ = Event:CNT :CT → N .

{R, E,T } forms an axiomatization for gFDs, a natural extension

of the Armstrong axioms [4]. We will denote the latter by A.

6.1.2 Algorithmic Characterization. We use our axiomatization E

to establish an algorithm that decides implication efficiently.

For a set Σ of gUCs and gFDs, L ⊆ L and P ⊆ K , we define the
following set of FDs over the relation schema RP = P ∪ {A0}:

ΣL:P = {X → RP | ∃L′:P ′:X ∈ Σ ∧ L′ ⊆ L ∧ P ′ ⊆ P}∪
{X → Y | ∃L′:P ′:X → Y ∈ Σ ∧ L′ ⊆ L ∧ P ′ ⊆ P} .

A0 < P is a fresh property not occurring elsewhere. A0 is only

required in RP when there is no gUC L′:P ′:X ∈ Σ with L′ ⊆ L and

P ′ ⊆ P . That is, if L′:P ′:X ∈ Σwith L′ ⊆ L and P ′ ⊆ P , then RP := P
is sufficient. Next we reduce implication of gUCs and gFDs over

property graphs to the implication of FDs over relation schemata.

Theorem 6.3. For every set Σ ∪ {L:P :X ,L:P :X → Y } over L and
K and RP , we have (1) Σ |= L:P :X → Y if and only if ΣL:P |= X → Y ,
and (2) Σ |= L:P :X if and only if ΣL:P |= X → RP □

Theorem 6.3 gives rise to Algorithm 1, which computes the

property set closure X+ΣL:P of X for ΣL:P over RP using the clas-

sical algorithm [6]. The decision branches in Algorithm 1 reflect

the characterization by Theorem 6.3. Hence, PTIME-completeness

carries over from the classical case [6, 12].

Corollary 6.4. Algorithm 1 decides the PTIME-complete impli-
cation problem for gUCs and gFDs in linear input time. □

We illustrate the algorithm on our running example.

Example 6.5. Let Σ = {ϕ ′
1
,ϕ ′

2
} and φ ′ from Example 6.2. Hence,

ΣEvent:CNT = ∅ and N < (CT )+ΣEvent:CNT = CT , which means that

Algorithm 1 returns a negative answer. However, for ΣEvent:CNTV =

{CT → V ,VT → N }, such that for φ we get N ∈ (CT )+ΣEvent:CNTV =

CTVN , and Algorithm 1 returns a positive answer.
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6.2 Normal Forms for Property Graphs
We define BCNF and 3NF for property graphs. Based on oppor-

tunities that graph data provides, we first explain our approach,

describe our proposals, and present results on their achievements.

6.2.1 Approach. Since property graphs have no schema, it is chal-

lenging to define classical normal forms for graph data. We address

this challenge using our class of graph-tailored constraints. The

flexibility of graph data provides further opportunities. Since appli-

cations target graph objects based on their labels and properties,

we view these features as requirements: The application targets

only nodes that exhibit a given set L of labels and a given set P
of properties. With that approach, we then normalize that part of

the graph which meets the targets. Hence, normalization becomes

flexible and driven by application requirements.

6.2.2 BCNF. Classical BCNF casts a syntactic definition that pre-

vents any possible occurrence of redundant data values by stipu-

lating that every FD, which could potentially cause redundancy, is

actually a key dependency (unable to ever cause any redundancy).

We will now define BCNF for gUCs and gFDs, aimed at preventing

redundant property values on graphs that satisfy the constraints.

Definition 6.6. (L:P-BCNF) Let Σ denote a set of gUCs and gFDs

over L and K . For sets L ⊆ L and P ⊆ K , we say that Σ is in

L:P-Boyce-Codd Normal Form (L:P-BCNF) if and only if for every

gFD L:P :X → Y ∈ Σ+
E
it is true that Y ⊆ X or L:P :X ∈ Σ+

E
. □

We illustrate the definition on our running example.

Example 6.7. Property graph G0 from Figure 1 satisfies Σ =
{σ1, . . . ,σ5}. Indeed, Σ is in Event:CT -BCNF, but neither in

Event:NC-, Event:NCT -, Event:NTV -, nor Event:NCTV -BCNF. In
contrast, property graph Gn from Figure 2 satisfies Σ′ =
{σ ′

1
, . . . ,σ ′

5
} from Section 2, which is in Evt_Mgt:NC-BCNF,

Evt_Comp:CVT -BCNF, and Evt_Detail:NVT -BCNF.

For any label set L and property set P , we can check whether Σ
is in L:P-BCNF by checking if (RP , ΣL:P ) is in BCNF. That is, our

BCNF definition is tailored to label and property sets of graphs.

Theorem 6.8. For every label set L and property set P , it holds
that Σ is in L:P-BCNF if and only if (RP , ΣL:P ) is in BCNF. □

Following Example 6.7, Σ is not in Event:NTV -BCNF as RP =
NTVA0 is not in BCNF for ΣEvent:NTV = {VT → N ,NT → V }
(A0 ∈ RP and VT → RP < Σ+Event:NTV ). Σ is not in Event:NCTV -
BCNF as RP = NCTV is not in BCNF for ΣEvent:NCTV = {N →
C,CT → NV ,NT → V ,VT → N } (N → RP < Σ

+
Event:NCTV ).

The condition for Σ to be in L:P-BCNF is independent of how Σ
is represented. That is, for every gUC/FD set Θ where Σ+

E
= Θ+
E
, Σ

is in L:P-BCNF iff Θ is in L:P-BCNF. This is due to Definition 6.6

that checks all gFDs in Σ+
E
, which may be exponential in Σ. We can

show it suffices to check Σ itself, so testing L:P-BCNF is efficient.

Theorem 6.9. Σ is in L:P-BCNF iff for every gFD L′:P ′:X → Y ∈ Σ
where L′ ⊆ L and P ′ ⊆ P , Y ⊆ X or L:P :X ∈ Σ+

E
. □

Theorem 6.9 allows us to check in time quadratic in |Σ| whether
Σ is in L:P-BCNF. We simply need to test if X+ΣL:P = RP for every

L′:P ′:X → Y ∈ Σ where L′ ⊆ L, P ′ ⊆ P and Y ⊈ X . We can

compute X+ΣL:P in time linear in |ΣL:P ∪ {X }| using the classical

attribute set closure algorithm [6].

Corollary 6.10. The condition whether Σ is in L:P-BCNF can be
checked in time quadratic in |Σ|. □

6.2.3 3NF. While a lossless BCNF decomposition is always achiev-

able, some FDs may be lost. These require a join of schemata re-

sulting from the decomposition before their validity can be tested.

As this is expensive, dependency-preservation is another goal of

normalization. Current state-of-the-art finds a lossless, dependency-

preserving decomposition into 3NF, which is in BCNF whenever

possible. We target this result for property graphs.

Towards defining 3NF, we say property A ∈ P is L:P-prime for
Σ iff there is some L:P :X ∈ Σ+

E
such that A ∈ X , and for all proper

subsets Y ⊂ X , L:P :Y < Σ+
E
. Hence, A is contained in some minimal

key for ΣL:P . If no key exists, there is no prime property.

Definition 6.11. Let Σ be a set of gUCs and gFDs over L and K .

For L ⊆ L and P ⊆ K , Σ is in L:P-Third Normal Form (L:P-3NF) if
and only if for every gFD L:P :X → Y ∈ Σ+

E
it is true that Y ⊆ X or

L:P :X ∈ Σ+
E
or every property in Y − X is L:P-prime. □

Example 6.7 showed that Σ is not in Event:NCTV -BCNF. Due
to gUC σ1 we obtain gUCs Event:NCTV :VT and Event:NCTV :NT
in Σ+

E
, which are Event:NCTV -minimal. Hence, every property in

NCTV is Event:NCTV -prime, and Σ is in Event:NCTV -3NF.

Similar to L:P-BCNF, the definition to L:P-3NF is grounded in

classical 3NF but tailored to graph features.

Theorem 6.12. For every label set L and property set P it holds
that Σ is in L:P-3NF if and only if (RP , ΣL:P ) is in 3NF. □

Given the set of L:P-prime properties for Σ, the quadratic time

required to validate 3NF for ΣL:P extends to L:P-3NF for Σ.

Theorem 6.13. Σ in L:P-3NF if and only if for every gFD
L′:P ′:X → Y ∈ Σ where L′ ⊆ L and P ′ ⊆ P it is true that Y ⊆ X or
L:P :X ∈ Σ+

E
or every property in Y − X is L:P-prime. □

Testing L:P-BCNF is efficient, but validating L:P-3NF is likely

intractable as it is NP-complete to decide if a property is L:P-prime,

already when L = ∅ and P = R is a relation schema [6]. It is coNP-
complete to decide if for Σ, ΣL:P :S is in L:P-BCNF where S ⊆ P and

ΣL:P :S = {L
′
:P ′:X → Y ∈ Σ+

E
| L′ ⊆ L ∧ P ′ ⊆ P ∧ XY ⊆ S ⊆ P}.

Theorem 6.14. Deciding for Σ, if ΣL:P :S is in L:P-BCNF, is coNP-
complete. Deciding whether Σ is in L:P-3NF is NP-complete. □

6.3 Achievements of Normal Forms
We aim at minimizing sources of property values that may occur

redundantly in graphs that satisfy the given gUCs and gFDs. We

will now illustrate in which formal sense this is actually achieved.

Let v denote a node of property graphG that carries all labels in

L and all properties in P . Let A ∈ P . An L:P-replacement of v on A is

any property graphG ′ that results fromG by changing value ν (v,A)
to some different value. The occurrence ν (v,A) is L:P-redundant for
Σ if and only if for every L:P-replacement G ′ of v on A, the graph
G ′ violates some constraint L:P :X or L:P :X → Y in Σ+

E
.

Definition 6.15. Σ is in L:P-Redundancy Free Normal Form (RFNF)
iff there is no property graphG that satisfies Σ, no nodev ∈ VL:P in

G, and no property A ∈ P such that ν (v,A) is L:P-redundant for Σ.
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Figure 3: Projections of G0 onto D = {NC,NVT ,CVT }

In graph G0 of Figure 1, each occurrence ν (2,Company) and

ν (3,Company) of “Cactus” is Event:NCVT -redundant. For instance,
if G ′

0
results from G0 by replacing ν (2,Company) by a value differ-

ent from “Cactus”, G ′
0
will violate gFD Event:NCVT :N → C ∈ Σ+

E
.

Hence, Σ is not in Event:NCVT -RFNF. In contrast, the occurrence

of ν (23 − 1,Company) = “Cactus" in graph Gn of Figure 2 is not

Evt_Mgt:NC-redundant. Indeed, Σ′ is in Evt_Mgt:NC-RFNF.

Theorem 6.16. For all sets Σ of gUC/FDs, for all label sets L and
property sets P , we have Σ is in L:P-RFNF iff (RP , ΣL:P ) is in RFNF. □

In illustrating Theorem 6.16, the relation r corresponding to node
set VEvent:NCTV of graph G0 in Figure 1 is

Name Company Venue Time
No Socks Cactus Vault 06/01

No Socks Cactus Vault 13/07

and r satisfies ΣEvent:NCTV = {N → C,NT → V ,TV → N ,CT →
NV }, and each occurrence of “Cactus” is redundant. This example is

representative that BCNF captures RFNF. Indeed, Theorem 6.16 lifts

the result from relational databases to property graphs as targeted.

Corollary 6.17. For all sets Σ of gUC/FDs, for all label sets L and
property sets P , we have Σ is in L:P-RFNF iff Σ is in L:P-BCNF.

For relational databases, it is known that 3NF exhibits the fewest

sources of data redundancy among all dependency-preserving de-

compositions [25]. Due to Theorem 6.12, these results carry over

to L:P-3NF, pending our definitions below.

6.4 Normalizing Property Graphs
We will now show how to restructure, without loss of information

and guided by target sets L of node labels and P of properties, a given

gUC/FD set Σ and a given property graph G that satisfies Σ such

that the restructered constraint set is satisfied by the restructured

graph and is in L : P-3NF, and L : P-BCNF whenever possible.
We first describe the general method informally, illustrate it on

our running example, and then provide the technical definitions.

6.4.1 Method. Intuitively, the normalization process is as follows.

1) Given L, P ,G and Σ, for each node v ∈ VL:P and each element

S of a decomposition for P (a setD of subsets for RP ), we introduce

Figure 4: Quotient Graphs Gℓ
Event:CNTV [S]/≡S of G0

new nodes vS with fresh label ℓS and directed edges (vS ,v) with
fresh label ℓ, and transfer the properties in S from v to vS . For each

S , these operations result in the projection Gℓ
L:P [S] of GL:P onto S ,

where GL:P is the restriction of G onto VL:P .
2) We then materialize the "redundancy elimination" by identify-

ing new nodes vS and v ′S whenever they exhibit matching values

on all properties in S . Technically, this is achieved by a congruence

relation ≡S , and forming the quotient graph Gℓ
L:P [S]/≡S .

3) We then take the union of quotient graphs over all elements

S of the decomposition D and the original graph G. The resulting

property graph Gℓ
L:P [D] is an L:P-decomposition of G onto D.

4) Similarly, the L:P-decomposition ΣℓL:P [D] of Σ onto D is ob-

tained by adding gUCs ℓS :S :X for each X → RP ∈ ΣL:P [S] and
adding gFDs ℓS :S :X → Y for each X → Y ∈ ΣL:P [S] for Y , RP .

This construction can easily be inverted by collapsing all edges

(vS ,v) labeled ℓ and transferring back the property/value pairs from
vS to the node v they originated from. The original dependencies

imply new ones on the new nodes, transforming gFDs into gUCs

whenever possible, which is why property value redundancy is

removed as far as possible. Due to labels, we can simply add the

new ones, and remove them when the decomposition is inverted.

Consider again Example 6.7. The set Σ′ is a lossless, dependency-
preserving Event:CNTV -decomposition of Σ into BCNF. The prop-

erty graph Gn in Figure 2 is the Event:NCTV -decomposition of

G0 in Figure 1, based on the decomposition D = {NC,NVT ,CVT }
of RNCTV . Indeed, Figure 3 shows the three projections

Gℓ
Event:CNTV [S] of GEvent:CNTV onto S ∈ D from step 1) of the

process above, including new nodes 2-1 (=2NC ), 2-2(=2NVT ), 2-

3(=2CVT ), 3-1(=3NC ), 3-2(=3NVT ) and 3-3(=3CVT ), with node labels

ℓNC = :Evt_Mgt, ℓNVT = :Evt_Details and ℓCVT = :Evt_Comp, and
directed edges 21=(2-1,2), 22=(2-2,2), 23=(2-3,2), 31=(3-1,3), 32=(3-

2,3), and 33=(3-3,3) with edge label ℓ.

Step 2) of the process is illustrated in Figure 4 where the quo-

tient graphs of the projections are shown. Here, the only vertices

identified are 2-1 and 3-1 based on their value equality on NC . Step
3) results in Gn (Figure 2) by taking the union of quotient graphs

from Figure 4 and the original graph. Finally, step 4) results in the

constraint set Σ ∪ Σ′ where Σ′ = ΣℓEvent:NCTV [D] = {σ
′
1
, . . . ,σ ′

5
}.
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6.4.2 Formal Definitions. For a property graph G, L ⊆ L, and
P ⊆ K , we define GL:P to denote the restriction of G to the vertex

set VL:P . For a property set S ⊆ P , and a label ℓ ∈ L that does not

occur in G, we define the L:P-projection Gℓ
L:P [S] of GL:P onto S by

• VL:P [S] := VL:P ∪
⋃
v ∈VL:P {vS }

• EdL:P [S] :=
⋃
v ∈VL:P {(vS ,v)}

• λL:P [S] :=


v 7→ λ(v) , if v ∈ VL:P
vS 7→ ℓS , if vS ∈ VL:P [S]
(vS ,v) 7→ ℓ , if (vS ,v) ∈ EdL:P [S]

• νL:P [S] :=


(vS ,A) 7→ ν (v,A) , if A ∈ S ∧ λ(vS ,v) = ℓ
(vS ,A) 7→↑ , if A < S ∧ λ(vS ,v) = ℓ
(v,A) 7→ ν (v,A) , if A < S ∧v ∈ VL:P
(v,A) 7→↑ , if A ∈ S ∧v ∈ VL:P

For example, Figure 3 shows the projections of G0 onto S ∈ D =
{NC,NVT ,CVT } with identifiers of new nodes vS (edges (vS ,v))
marked within node circles (alongside the edges, respectively), and

node labels ℓS carry have real names such as ℓNC = :Evt_Mgt.
For a property set S ⊆ K and two nodesv,v ′ of a property graph,

we definev ≡S v ′ if and only if for allA ∈ S ,ν (v,A) = ν (v ′,A). That
is, the two nodes are equivalent on the property set S if and only if

they have matching values on all the properties in S . Of course, ≡S
defines an equivalence relation between the nodes of a property

graph G, so we may define the quotient graph G/≡S . For example,

the quotient graphs of G0 onto S ∈ D = {NC,NVT ,CVT } are
shown in Figure 4, where nodes 2-1 and 3-1 are equivalent on NC .

For two property graphs G and G ′ over O, L, and K we define

the union G ∪ G ′ as the property graph obtained as VG ∪ VG′ ,
EdG ∪ EdG′ , λG ∪ λG′ , µG ∪ µG′ but where νG ∪ νG′ is defined by

ν (v,A) ↑ for any property A ∈ K whenever νG (v,A) and νG′(v,A)
have non-matching values (eg. only one of them is defined). For

example, property graph Gn from Figure 2 is the union of quotient

graphs from Figure 4 and G0.

For a property graphG and label ℓ ∈ L we define

ℓ
▷◁ G as follows:

• V := VG − {v
′ ∈ VG | ∃(v ′,v) ∈ EdG , λ(v ′,v) = ℓ}

• Ed := Ed |V , λ := λG |V , µ := µG |V , and

• ν :=


(v,A) 7→ νG (v,A) , if v ∈ V ∧ νG (v,A) ↓
(v,A) 7→ νG (v

′,A) , if (v ′,v) ∈ EdG∧
λG (v

′,v) = ℓ ∧ νG (v
′,A) ↓

As example,G0 =
ℓ
▷◁ Gn withG0 from Figure 1 andGn from Figure 2.

In relational databases, a decomposition of attribute set R is a

set D of subsets of R such that

⋃
S ∈D S = R, for example D =

{NC,NVT ,CVT } of CNTV . For an FD set Σ over R, and subset

S ⊆ R, Σ[S] = {X → Y ∈ Σ+
A
| XY ⊆ S} is the projection of Σ onto

S . As example, for Σ = ΣEvent:NCTV = {N → C,NT → V ,TV →
N ,CT → NV } we have Σ[NC] = {N → C}, Σ[NTV ] = {TV →
N ,NT → V } and Σ[CTV ] = {CT → V ,VT → C}.

Definition 6.18. For gUC/gFD set Σ, label set L, property set P ,

and decomposition D of RP , we define the L:P-projection ΣℓL:P [D]
of Σ onto D by Σ ∪ {ℓS :S :X | X → RP ∈ ΣL:P [S] for S ∈ D} ∪
{ℓS :S :X → Y | X → Y ∈ ΣL:P [S] ∧ Y , RP ∧ S ∈ D}. We say the

L:P-decomposition ΣℓL:P [D] of Σ is in BCNF (3NF) iff for all S ∈ D,

ΣℓL:P [S] is in ℓS :S-BCNF (3NF). The L:P-decomposition ΣℓL:P [D] of

Σ is dependency-preserving iff ΣL:P and

⋃
S ∈D

(
ΣℓL:P [S]

)
ℓS :S

are

Algorithm 2 NormaG

Require: Property graph G that satisfies gUC/FD set Σ; label set
L ∪ {ℓ}; property set P

Ensure: Property graph Gℓ
L:P [D] that satisfies Σ

ℓ
L:P [D], which is

a lossless, dependency-preserving L:P-decomposition of Σ into

3NF (which is in BCNF whenever possible)

1: Compute atomic closure Σa of ΣL:P on RP [35];

2: Σa ← Σa
3: for all X → A ∈ Σa do
4: for all Y → B ∈ Σa (YB ⊆ XA ∧ XA ⊈ Y+) do
5: if Σa − {X → A} |= X → A then
6: Σa ← Σa − {X → A} {Eliminate critical schemata}

7: D ← ∅

8: for all X → A ∈ Σa do
9: if Σa − {X → A} |= X → A then
10: Σa ← Σa − {X → A} {Eliminate redundant schemata}

11: else
12: D ← D ∪ {(XA, Σa [XA])}
13: Remove all (S, Σa [S]) ∈ D if ∃(S ′, Σa [S ′]) ∈ D(S ⊆ S ′)
14: if there is no (R′, Σ′) ∈ D where R′ → RP ∈ Σ

+
L:P then

15: Choose a minimal key K for RP with respect to ΣL:P
16: D ← D ∪ {(K , Σa [K])}

17: return
(
Gℓ
L:P [D], Σ

ℓ
L:P [D]

)
covers of one another. The L:P-decompositionGℓ

L:P [D] of a property
graph G onto D is defined by Gℓ

L:P [D] := G ∪
⋃
S ∈D Gℓ

L:P [S]/≡S .

The L:P-decomposition ΣℓL:P [D] of Σ is lossless iff for every property

graph G that satisfies Σ, the L:P-decomposition Gℓ
L:P [D] of G onto

D satisfies GL:P =
ℓ
▷◁ Gℓ

L:P [D]. □

As example, for Σ = {σ1, . . . ,σ4}, L = Event, P = CNTV , and

BCNF-decomposition D = {NC,NVT ,CVT } of P , ΣℓL:P [D] = Σ ∪

Σ′ where Σ′ = {σ ′
1
, . . . ,σ ′

5
}. Indeed, ΣℓL:P [D] is in BCNF since it is

in Evt_Mgt:NC-BCNF, Evt_Comp:CVT -BCNF, and Evt_Detail:NVT -
BCNF, see Example 6.7. The decomposition is also dependency-

preserving since ΣEvent:NCTV and the union of ΣEvent:NCTV [NC],
ΣEvent:NCTV [NTV ] and ΣEvent:NCTV [CTV ] cover one another.

Our decomposition is always lossless, but onlywhen a gFD is con-

verted into a gUC, all redundancy caused by the gFD is eliminated.

Indeed, normalizing a property graph will eliminate redundancy

on those equivalence classes where the underlying gFD holds.

Algorithm 2 normalizes a property graph G and gUC/FD set Σ
tailored to label set L and property set P . Our techniques make it

possible for lines (1-16) to apply state-of-the-art normalization from

relational databases that achieves a lossless, dependency-preserving

3NF decomposition D into BCNF whenever possible. D is then

converted into the output

(
Gℓ
L:P [D], Σ

ℓ
L:P [D]

)
in line (17).

Theorem 6.19. On input ((G, Σ),L ∪ {ℓ}, P) such that G sat-
isfies Σ, Algorithm 2 returns the property graph Gℓ

L:P [D] that
satisfies ΣℓL:P [D], which is a lossless, dependency-preserving L:P-
decomposition of Σ into 3NF that is in BCNF whenever possible. □

Given G0 from Figure 1, L = Event and P = CNTV , Algorithm 2

returns Gn from Figure 2 and gUC/gFD set Σ ∪ Σ′ from Section 2.
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Table 3: Details on the graph datasets from the experiments

Graph data L |VL | |P| %VL:P #gFDs AvgRed #gUCs

Northwind Order 830 14 35.54% 555 25.13 49

Offshore Entity 814,345 18 26.14% 1414 47,919.13 102

7 EXPERIMENTS
Our experiments will showcase the extent of both opportunities and

benefits of normalizing graph data. This will be done quantitatively

and qualitatively using popular real-world property graphs, but also

synthetic graph data for scalability tests. The research questions

we aim to answer by our experiments are:

Q1) What gFDs do property graphs exhibit?

Q2) What gFDs cause much data redundancy?

Q3) How much inconsistency can gFDs avoid?

Q4) What does graph normalization actually look like?

Q5) How much better is integrity managed after normalization?

Q6) How much faster are aggregate queries after normalization?

Q7) How do the benefits of normalization scale?

Q1)-Q3) will illustrate why normalization is necessary. Q4) will

showcase normalization on a real-world graph, and Q5-Q7) will

underline benefits of normalization at the operational level.

7.1 Data Sets and Measures
Details of experiments are on our Github repository https://github.

com/GraphDatabaseExperiments/normalization_experiments. We

analyzed graphs Northwind (https://github.com/neo4j-graph-

examples/northwind) with 1,035 nodes, 3,139 edges, and sales data;

and Offshore (https://github.com/ICIJ/offshoreleaks-data-packages)

with 2,016,524 nodes, 3,336,971 edges, and global company data.

Table 3 shows the node labels L we target, the number |VL | of nodes
with label L, the number |P | of properties for those nodes, the per-
centage %VL:P of nodes with these properties, the numbers #gFDs

and #gUCs in a minimal cover of constraints that hold on the data

sets, and the average number of redundant property values caused

by gFDs. Note the high number on Offshore.
We used Neo4j and its query language Cypher as currently most

popular graph database (https://db-engines.com/en/ranking/graph+

dbms), its support of unique constraints, indexes, and the measure

of database hits, an abstract unit of the storage engine related to

requests for operations on nodes or edges. For comparison with a

cloud-based provider, we also used Amazon Neptune, which has no

support of indexes or database hits. We also measured run times.

We used Python 3.9.13. Experiments were conducted on a 64-bit

operating system with an Intel Core i7 Processor with 16GB RAM.

Details of experiments are available in the Artifact URL.

7.2 What gFDs do graphs exhibit?
We mined gFDs with fixed target labels Entity (Offshore) and Order
(Northwind). Figure 5 classifies the gFDs L : P : X → Y by the size

|P | of their property set P . If P = XY , we call P trivial.

The mined gFDs include interesting examples. On Offshore1, for
instance, we have the gFDs

1
Properties described here: https://guides.neo4j.com/sandbox/icij-paradise-papers/

datashape.html

(a) Offshore (b) Northwind

Figure 5: #gFDs by Property Size |P |

Table 4: gFDs on Offshore Ranked by Redundancy Caused

P\XY X Y #red #inc
incorporation_date jurisd_desc, lastEditTimestamp, sourceID jurisdiction 788,408 20,000

incorporation_date jurisd_desc, sourceID, valid_until jurisdiction 788,365 175,871

incorporation_date, jurisd_desc, valid_until service_provider 754,283 1,047

ibcRUC jurisd_desc, valid_until service_provider 555,353 20,000

ibcRUC jurisd_desc, lastEditTimestamp service_provider 555,353 175,888

ibcRUC jurisdiction, lastEditTimestamp, valid_until sourceID 555,338 20,000

country_codes jurisd_desc, lastEditTimestamp, sourceID jurisdiction 504,944 20,000

countries jurisd_desc, lastEditTimestamp, sourceID jurisdiction 504,944 20,000

country_codes jurisd_desc, sourceID, valid_until jurisdiction 504,902 113,055

countries jurisd_desc, sourceID, valid_until jurisdiction 504,902 113,055

country_codes, sourceID countries 504,424 83,647

countries, sourceID country_codes 504,424 83,647

country_codes, valid_until countries 504,418 83,647

countries, valid_until country_codes 504,418 83,647

countries, jurisd_desc country_codes 504,227 83,653

countries, jurisdiction country_codes 504,151 83,647

• Entity : address, country_codes, countries:
countries, address→ country_codes
• Entity : service_provider, country_codes, countries:
countries→ country_codes.

In particular, for everymined L:P :X → Y , removing any property

from P orX will result in a gFD that is violated by the dataset. Hence,

the gFD Entity:country_codes, countries:countries→ country_codes
is not satisfied by the dataset.

7.3 What gFDs cause much data redundancy?
Interesting for normalization are gFDs that cause many occur-

rences of redundant property values. Ultimately, human users de-

cide which constraints express meaningful business rules. However,

ranking gFDs by the number of redundant property value occur-

rences they cause can provide helpful guidance for such decisions.

For Offshore, Table 4 shows gFDs with Label Entity that cause the

most number of redundant value occurrences (#red). These num-

bers are huge, and ought to be targeted by normalization. While

the following gFDs L:P :X → Y may appear to be meaningful:

(1) Entity : jurisd_desc, jurisdiction:jurisd_desc→ jurisdiction
(2) Entity : country_codes, countries:country_codes→ countries

neither of them actually holds. Nevertheless, adding few properties

to P or X results in various gFDs that do hold and exhibit many

redundant property values. This makes us wonder whether gFDs

(1) or (2) are only violated due to data inconsistencies that are a

result of data redundancy and the fact these gFDs are not enforced.

7.4 How much inconsistency can gFDs avoid?
We have seen various gFDs that cause many redundant value occur-

rences. If these gFDs represent actual business rules, they form a
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(a) jurisd_desc→
jurisdiction

(b) country_codes →
countries

Figure 6: Consistency Profiles for gFDs

primary target for graph normalization. We will now illustrate how

to inform decisions whether gFDs are meaningful and violations

constitute inconsistencies. We will discuss a negative and positive

case, further strengthening the use of graph constraints and nor-

malization to avoid data redundancy and sources of inconsistency.

Table 4 lists the potential level of inconsistency (#inc) associated
with a gFD Entity:P :X → Y on Offshore. Hence, if the gFD is not

enforced, there may be up to #inc nodes inVEntity:P that have match-

ing values on all properties in X but have each different values on

properties inY . For each of the gFDs, #inc represents the worst-case
scenario of not enforcing the constraint.

Let us examine gFD (1) which is violated due to Entity-nodes with
matching values for property jurisd_desc and different values for

property jurisdiction. For instance, nodes with jurisd_desc ’Bahamas’

have either jurisdiction ’BAH’, ’BHS’ or ’BA’. Similarly, there are

multiple jurisdictions associated with the same jurisd_desc-value in
32 other cases. This consistency profile is illustrated in Figure 6(a),

where we list the number of jurisdiction_descriptions that have
n distinct jurisdictions associated with them, for n = 1, 2, 3. It is

plausible that multiple jurisdictions can be associated with the same

jurisdiction description. Hence, gFD (1) may not be meaningful.

In contrast, gFD (2) exhibits a different consistency profile, as

shown in Figure 6(b). There are only three different country_codes
that have two distinct countries linked to them, while the 1098 other

codes are linked to unique countries. Indeed, for country_code ’COK’
there are 464 nodes with value “Cook Islands" and 1389 nodes with

value “COK" for property countries. The only other inconsistencies

are linked to values “GBR;VGB” and “VGB;COK” for country_codes.
Hence, mined gFDs and their ranking provide useful heuristics

to identify meaningful gFDs and data inconsistency in the form of

their violations. Meaningful gFDs and consistent graph data form

input desirable for normalization.

7.5 What does graph normalization look like?
While our running example is sufficiently small to illustrate our

concepts and ideas, we will now examine three applications of

Algorithm 2 to the property graph Offshore. All three applications
target nodes with label Entity (E) but different property sets:

P1 = {jurisd_desc(jd), countries(c), service_provider(sp), country_codes(cc)},
P2 = {jd, valid_until (v), c, sourceID (s), cc} and P3 = P1 ∪ P2.
As set Σ we use gFDs E:P :X → Y (we write P = P\XY ) as follows:

E:sp:c→ cc;E:∅:c, jd→ cc;E:sp:cc→ c;E:∅:c, s→ cc;
E:∅:c, v→ cc;E:∅:cc, s→ c;E:∅:cc, v→ c;
E:∅:sp→ s, v;E:sp:s→ v;E:sp:v→ s.

Table 5: Summary of Normalizing Offshore

P |Pi | #gFDs #FDs #red #dbhits time (ms) |Di |

P1 4 3 2 684,608 8,930,544 5,566 2

P2 5 5 5 1,008,998 28,845,388 22,697 4

P3 6 10 5 1,369,802 39,474,122 17,284 5

For R1 = RP1 = {jd, c, sp, cc,a1} and Σ1 = ΣE :P1 = {c →
cc, cc → c} we get the BCNF decomposition D1 of (R1, Σ1) into

• R1
1
= {c, cc} with Σ1

1
= {c → cc; cc → c}, and

• R2
1
= {jd, sp, c,a1} with Σ2

1
= ∅.

Hence, we obtain the gUCs ℓR1

1

:R1
1
:{c} and ℓR1

1

:R1
1
:{cc}, and

ΣℓE :P1
[D1] is in BCNF. The only properties with E:P1-redundant val-

ues are countries and country_codes. These have been eliminated

by the decomposition without losing dependencies.

For R2 = RP2 = {jd,v, c, s, cc,a2} and Σ2 = ΣE :P2 = {c, jd →
cc; c, s → cc; c,v → cc; cc, s → c; cc,v → c} we obtain the BCNF

decomposition D2 of (R2, Σ2):

• R1
2
= {c, cc,v} with Σ1

2
= {c,v → cc; cc,v → c}

• R2
2
= {c, cc, s} with Σ2

2
= {c, s → cc; cc, s → c}

• R3
2
= {c, cc, jd} with Σ3

2
= {c, jd → cc}

• R4
2
= {jd, s,v, c,a2} with Σ4

1
= ∅.

Hence, we get the gUCs ℓR1

2

:R1
2
:{c,v}; ℓR1

2

:R1
2
:{cc,v}; ℓR2

2

:R2
2
:{c, s};

ℓR1

2

:R1
2
:{cc, s}; ℓR3

2

:R3
2
:{c, jd} and ΣℓE :P2

[D2] is in BCNF. While L:P2-

redundant values still occur on countries and country_codes only,

there are more sources (left-hand sides of FDs) for them compared

to P1. Correspondingly, our decomposition contains more schemata

to eliminate the redundancies and preserve more FDs.

For R3 = RP3 = {jd, sp,v, c, s, cc,a3} and Σ3 = ΣE :P3 = {c →
cc; cc,→ c; sp → s,v; s → v;v → s} we obtain the BCNF decom-

position D3 of (R3, Σ3):

• R1
3
= {c, cc} with Σ1

3
= {c → cc; cc → c}

• R2
3
= {sp, s} with Σ2

3
= {sp → s}

• R3
3
= {sp,v} with Σ3

3
= {sp → v}

• R4
3
= {s,v} with Σ4

3
= {s → v ;v → s}

• R5
3
= {jd, sp, c,a3} with Σ4

3
= ∅.

Hence, we obtain the gUCs ℓR1

3

:R1
3
:{c}; ℓR1

3

:R1
3
:{cc}; ℓR2

3

:R2
3
:{sp};

ℓR3

3

:R3
3
:{sp}; ℓR4

3

:R4
3
:{s}; ℓR4

3

:R4
3
:{v} and ΣℓE :P3

[D3] is in BCNF.

Given P1 ∪ P2, the additional sources for E:P2-redundancy in coun-

tries and country_codes become obsolete again, but new schemata

are required to eliminate new E:P1 ∪ P2-redundant values on sour-

ceID and valid_until, and preserve all FDs.

We then used Cypher to compute, for i = 1, 2, 3, the Entity:Pi -
decomposition Gℓ

Entity:Pi
[Di ] of graphG (Offshore). The results are

summarized in Table 5. For each property set Pi we show its size

|Pi |, the number #gFDs of gFDs Entity:P ′:X → Y ∈ Σ such that

P ′ ⊆ Pi , the number #FDs in a cover of ΣEntity:Pi , the number #red

of distinct redundant value occurrences inG caused by the gFDs, the

number #dbhits of database hits for computing Gℓ
Entity:Pi

[Di ], the

time to computeGℓ
Entity:Pi

[Di ], and the size |Di | of decomposition

Di . Figure 7 illustrates that the graph normalization query uses its

access and time effectively to eliminate redundant property value
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Figure 7: Good Riddance

(a) Original Snippet (b) Normalized Snippet

Figure 8: Illustration how redundant property values in an
Offshore snippet are eliminated by normalization

occurrences. Finally, Figure 8 shows a glimpse into the effect of

normalizing Offshore into L:P1-BCNF. The figure illustrates how
redundant values on the property countries are eliminated on some

nodes. In fact, the number of outgoing edges indicate for each new

node (in blue) how many redundant occurrences of the countries-

value have been eliminated by it.

7.6 How does integrity management improve?
We will now quantify the benefits of graph normalization by com-

paring update performance between the original and normalized

graph for gFDs L : P : X → Y as follows:

For Offshore: L = {E}, P = {sp, s, v}, X = {sp}, Y = {s, v}
For Northwind: L = {O(rder)}, P = {customerID(cI), shipCity(sC),
shipName(sN), shipPostalCode(sP), shipCountry(sCo), shipAddress(sA),
shipRegion(sR)}, X = {cI}, Y = {sC, sN, sP, sCo, sA, sR}.

We applied the following update on the original Offshore graph:
MATCH (e : Entity) WHERE EXISTS(e .service_provider) AND EXISTS(e .sourceID)
AND EXISTS(e .valid_until) AND e .service_provider = ‘Appleby’
SET e .valid_until = ‘Appleby data is current through 2015’

and the following update on the original Northwind graph:

MATCH (o : Order) WHERE EXISTS(o .customerID) AND EXISTS(o .shipCity) AND
EXISTS(o .shipName) AND EXISTS(o .shipPostalCode) AND EXISTS(o .shipCountry)
AND EXISTS(o .shipAddress) AND EXISTS(o .shipRegion) AND
o .customerID = ‘CENTC’ SET o .shipCountry = ‘Estados Unidos Mexicanos’ .

The queries were run using values for sevice_provider and cus-
tomerID with the min, avg, and max number of redundant occur-

rences. We then performed these updates on the graphs normalized

by the gFDs above, compared the number of database hits, and the

runtime. We also performed the operations using an index for VL
on the property X . The different results can be seen in Figure 9.

(a) Offshore - db hits (b) Northwind - db hits
redundancy

data (index) max avg min

orig, no 806 (36905) 699 (10114) 650 (4244)

orig, yes 404 100 38

norm, no 0.2 (1,001)

norm, yes 0.2

(c) Offshore - times in ms
on Neo4j (Neptune)

redundancy

data (index) max avg min

orig, no 1.5 (135) 0.9 (122) 0.9 (118)

orig, yes 0.4 0.3 0.2

norm, no 0.4 (98)

norm, yes 0.2

(d) Northwind - times in ms
on Neo4j (Neptune)

Figure 9: Update Comparison: Original vs. Normalized

(a) Offshore - db hits (b) Northwind - db hits
data/index without index with index

original 679 (9253) 414

normalized 0.3 (7022) 0.2

(c) Offshore - times in ms on
Neo4j (Neptune)

data/index without index with index

original 3 (128) 2.9

normalized 0.5 (113) 0.5

(d) Northwind - times in ms on
Neo4j (Neptune)

Figure 10: Aggregate Queries: Original vs. Normalized

Normalization for Offshore took 6,475 ms (103,995 ms) in Neo4j

(Neptune), and 494 ms (3769 ms) for Northwind.
Neptune queries are cloud-based, so cannot be compared to

Neo4j. Important is the runtime difference between original and

normalized graphs. Due to high redundancy in Offshore, normaliza-

tion improves update performance by multiple orders of magnitude.

On Northwind, with less redundancy, update performance still im-

proves by an order of magnitude. The benefits already apply for

normalization with a single FD. While indices result in further

optimization for database hits and runtime, these are marginal com-

pared to normalization. Normalized graphs outperform the original

graph when indexed, which is similar for queries as shown next.

7.7 How do aggregate queries improve?
Next we illustrate the benefit of speeding up aggregate queries,

using the parameters for node set VL:P from the previous section.

As typical aggregate queries, we access information on the num-

bers of orders associated with a given customerID in Northwind, and
on the numbers of entities for a given service_provider in Offshore:

MATCH (e : Entity) WHERE EXISTS(e .service_provider) AND EXISTS(e .sourceID) AND
EXISTS(e .valid_until) WITH (e .service_provider) AS provider, COUNT(∗) AS amount
RETURN min(amount),max (amount), avд(amount), and
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(a) Updates (b) Aggregate Queries

Figure 11: Scaling Comparison: Original vs. Normalized

MATCH (o : Order) WHERE EXISTS(o .customerID) AND EXISTS(o .shipCity) AND
EXISTS(o .shipName) AND EXISTS(o .shipPostalCode) AND EXISTS(o .shipCountry) AND
EXISTS(o .shipAddress) AND EXISTS(o .shipRegion) WITH o .customerID AS orders,
COUNT (∗) AS amount RETURN min(amount),max (amount), avд(amount) .

We compare their performance to corresponding queries on the

normalized graph. Results are shown in Figure 10, including those

after introducing an index forVL on the property X . Normalization

improves query performance by several orders of magnitude on

Offshore, and one order of magnitude on Northwind. The index does
improve performance, but has not as big an impact as for updates.

7.8 How do the benefits of normalization scale?
We will report how graph size impacts on update and aggregate

query performance, but also on the validation of our constraints

and their features. We utilized synthetic datasets as follows.

We created graphs that consist of a node labelled Company
with edges to Employee-nodes that have properties name, depart-
ment and manager, with additional properties for some experi-

ments. Our underlying business rule says that every department

has at most one manager, resulting in the gFD φ = {Employee} :
{department,manager} : {department} → {manager}. For each ex-

periment, we perform a query on the same baseline graph and scale

this graph by factor k to have k times as many Employee-nodes
while keeping the number of departments fixed.

Figure 11 compares the performance of (a) updating manager

names, and (b) querying the minimum, average and maximum num-

ber of employees per department, both between the original and

normalized graph (with respect to gFDφ), respectively. In particular,
Figure 11(a) conveys the main message that normalization scales

update performance perfectly. Indeed, access to the normalized

graph using gUCs remains constant while access to the original

graph using gFDs keeps on growing. For aggregate queries the

performance improvement is also very noticeable.

Figure 12(a) underlines the perfect scalability of validating gUCs

resulting from gFD φ on the normalized graph in contrast to grow-

ing access necessary for validating φ on the original graph. From

(b) it can be seen how validation performance scales with the ratio

of nodes that have all properties in P . From (c) we observe how

validation performance scales in the size of the underlying property

set P . Indeed, Pi contains i + 1 properties. Finally, (d) shows how
validation of φ scales in the node selectivity of labels in φ. Indeed,
the database hits required are directly proportional to the number

of nodes with the given label set present.

(a) gFDs vs gUCs (b) Ratio of P -complete Nodes

(c) Size of P (d) Node-selectivity of L

Figure 12: Validation at Scale

8 CONCLUSION AND FUTUREWORK
Our research is the first to address the challenging area of nor-

malizing property graphs. Challenges include the unavailability

of a schema, the desire to customize normalization of property

graphs to flexible requirements of applications, the robustness of

normalization under different interpretations of missing properties,

the abilities to express and eliminate many redundant property

values, and to transfer achievements of BCNF and 3NF from rela-

tional databases to property graphs. Indeed, we have turned these

challenges into an opportunity by enabling our class of graph-

tailored functional dependencies to express application-specific

requirements for node labels and properties; plus specifying their

semantics to be robust under different interpretations of missing

property values. Having created this opportunity, we have then

transferred comprehensive achievements from relational databases

to property graphs, including BCNF, 3NF, and the State-of-the-Art

algorithm that returns a lossless, dependency-preserving BCNF de-

composition whenever possible. Our experiments with real-world

graph data illustrate how our constraints capture many redundant

property value occurrences and potential inconsistency, and how

our algorithms transform graphs to eliminate/minimize them. Our

experiments have further demonstrated the efficacy of property

graph normalization. Indeed, the reduction of overheads for update

maintenance and the speed up of aggregate queries by orders of

magnitude, and the effort required to normalize the property graph

are all proportional to the amount of redundancy removed.

In future work, we will address other classes of constraints and

normal forms. We will also initiate research on conditional normal-
ization, employing conditional versions of constraints [16] to graph

normalization. Finally, we will address data-driven normalization

by combining dependency discovery [17, 20, 36, 44–46, 49] with

graph normalization.
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