Normalizing Property Graphs

Philipp Skavantzos
The University of Auckland
Auckland, New Zealand
philipp.skavantzos@auckland.ac.nz

ABSTRACT

Normalization aims at minimizing sources of potential data incon-
sistency and costs of update maintenance incurred by data redun-
dancy. For relational databases, different classes of dependencies
cause data redundancy and have resulted in proposals such as Third,
Boyce-Codd, Fourth and Fifth Normal Form. Features of more ad-
vanced data models make it challenging to extend achievements
from the relational model to missing, non-atomic, or uncertain
data. We initiate research on the normalization of graph data, start-
ing with a class of functional dependencies tailored to property
graphs. We show that this class captures important semantics of
applications, constitutes a rich source of data redundancy, its im-
plication problem can be decided in linear time, and facilitates the
normalization of property graphs flexibly tailored to their labels and
properties that are targeted by applications. We normalize property
graphs into Boyce-Codd Normal Form without loss of data and
dependencies whenever possible for the target labels and proper-
ties, but guarantee Third Normal Form in general. Experiments on
real-world property graphs quantify and qualify various benefits
of graph normalization: 1) removing redundant property values as
sources of inconsistent data, 2) detecting inconsistency as violation
of functional dependencies, 3) reducing update overheads by orders
of magnitude, and 4) significant speed ups of aggregate queries.

PVLDB Reference Format:

Philipp Skavantzos and Sebastian Link. Normalizing Property Graphs.
PVLDB, 16(11): 3031 - 3043, 2023.

doi:10.14778/3611479.3611506

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/GraphDatabaseExperiments/normalization_experiments.

1 INTRODUCTION

Normalization minimizes sources of potential data inconsistency
and costs of integrity maintenance incurred by updates of redun-
dant data. Based on data dependencies that cause redundancy, clas-
sical normalization transforms schemata into normal forms where
these dependencies can be enforced by keys only, or come close
to it. For example, this is achieved by Boyce-Codd Normal Form
(BCNF) for functional dependencies (FDs) [11, 50], Fourth Nor-
mal Form for multivalued dependencies [13], Fifth Normal Form

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611506

3031

Sebastian Link
The University of Auckland
Auckland, New Zealand
slink@auckland.ac.nz

for join dependencies [41], Inclusion Dependency Normal Form
for functional and inclusion dependencies [27], and Domain-Key
Normal Form [14]. Third Normal Form (3NF) minimizes sources
of data redundancy under the additional target of enforcing all
FDs without joining relation schemata [7, 25], and Bounded Car-
dinality Normal Form minimizes the level of data redundancy
caused by FDs [28, 30]. Some achievements carry forward to richer
data formats, including SQL [23, 24] and models with missing
data [26, 47, 48], Nested [34, 42], Object-Oriented [40], Tempo-
ral [22], Web [3, 33], and Uncertain Databases [29].

Graph databases experience new popularity due to more mature
technology in response to the demand of applications for finding
relationships within large amounts of heterogeneous data, such as
social network analysis, outlier and fraud detection. Graphs can
represent data intuitively and efficiently. Both research and indus-
try have brought forward sophisticated technologies with mature
capabilities for processing graph data. Recently, classical classes
of data dependencies, such as keys and FDs, have been extended
to graph databases, and have been put to use for data cleaning
and fraud detection tasks [15]. Indeed, Fan [15] remarks that graph
dependencies provide a rare opportunity to capture the semantics
of application domains on graph databases, which are schema-less.
Interestingly, however, the normalization of graph data has neither
been mentioned in the literature nor has it been subject of inves-
tigation yet. This is surprising since it is a very natural question
to ask what normalization of graph data may actually mean. In-
deed, any mature data model needs to facilitate principles of data
integrity. Since a strong use case of graph data is analytics, the
quality of analysis depends fundamentally on the quality of graph
data. This firmly underpins the need to understand sources of data
inconsistency and other data quality issues. This includes the chal-
lenge of understanding opportunities for more efficient integrity
maintenance and query processing, and database design principles
within schema-less graph environments. In relational databases,
constraints restrict instances of a given schema to those considered
meaningful for the underlying application. Normalization restruc-
tures the schema and constraints such that data redundancy is
minimized and constraint management made more efficient. When
attempting to normalize property graphs, we do not have a schema
and will therefore need to rely on the constraints exclusively. In
particular, it means that a normalized set of constraints would not
admit any graph with redundant data value occurrences, but with-
out any restriction of such a graph’s structure by any schema. This
sounds intriguing and the flexibility of graph data may promote
restructuring only that part of the graph required by an applica-
tion. Our contributions towards the aim of initiating research on
normalizing property graphs can be summarized as follows:

(1) We introduce uniqueness constraints and functional dependen-
cies as declarative means to i) express completeness, integrity, and

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Name = “No Socks”
Company = “Cactus”
Venue = “Vault”
Time = “06/01”

:Event

Name = “Neo” 7y

Hobby = “Games” .;4%00’ Name = “No Socks
$

Company = “Cactus”
Venue = “Vault”

Event Time = “13/07”

:Confirmed

Figure 1: Original Property Graph

uniqueness requirements in the form of business rules that govern
property graph data, and ii) form the source of redundant property
values that drive goals for graph normalization.

(2) We show that our graph dependencies facilitate normalization as
their implication problem can be captured axiomatically finitely by
Horn rules, and algorithmically by a linear-time decision algorithm.
(3) We normalize property graphs into lossless, dependency-
preserving BCNF whenever possible, and guarantee 3NF in general.
Normalization is tailored to nodes with labels and properties the
target application requires. Unlike the relational case, our normal-
ization can even be applied when FDs do not fully hold. Indeed, our
normalization is still lossless and removes redundancy in that part
conforming to the FDs.

(4) We demonstrate the extent and benefits of property graph nor-
malization experimentally. For some popular real-world property
graphs we identify meaningful FDs and quantify how many redun-
dant property values they cause. We provide examples of inconsis-
tencies found as violations of meaningful FDs. We demonstrate that
integrity maintenance and aggregate query evaluation improves
by orders of magnitude on normalized property graphs. While not
achieving the full scale of speed up that graph normalization ac-
complishes, we show that indexing the left-hand side properties of
FDs still gains significant efficiency in integrity maintenance and
aggregate query processing without any changes to the graphs.

Our results motivate a long line of future work on graph data
normalization, including normal forms, the study of more expres-
sive graph dependencies, relationships to conceptual and physical
design of graph data, and the design for quality of graph data.

In what follows, we motivate our work with an application sce-
nario in Section 2. Section 3 includes a concise review of relevant
work. Section 4 contains a brief guide of concepts and notation. The
semantics of property graphs and constraints is given in Section 5.
In Section 6, we introduce our normalization framework, including
the implication problem, normal forms and normalization. Experi-
mental results that qualify and quantify the need and benefits of
normalization are discussed in Section 7. We conclude and briefly
comment on future work in Section 8. More details, including the
full paper, are available at the Artifact URL.

2 ILLUSTRATIVE EXAMPLE

In this section we use a minimal example to illustrate ideas and
concepts as a motivation for our work in this article.

The property graph Gy in Figure 1 models an application scenario
where people attend events. Nodes and edges carry any number of

3032

labels, and may carry pairs of properties and values. In Figure 1 we
have nodes labeled by Person, Event, and Confirmed. The latter label
assures that Event nodes model events that have been confirmed.
We also have edges from Person to (confirmed) Event nodes labeled
by Attends, expressing that a person attends a (confirmed) event.
Event nodes exhibit properties such as N(ame), C(ompany), V(enue)
and T(ime), expressing that a company (like “Cactus") is in charge
of an event with a name (like "No Socks") held at a venue (like
"Vault") and time (like "06/01").

Event data is subject to business rules expressed by uniqueness
constraints (UCs) and FDs: Event nodes with properties C and T
can be uniquely identified by the value combination on these two
properties, N — C (events are managed by at most one company),
NT — V (the time of events uniquely determines its venue), and
TV — N (at any time any venue can host at most one event).
Intuitively, FDs express that nodes with matching values on all
properties of the left side have also matching values on all proper-
ties of the right side. However, characteristics of property graphs
motivate additional features of graph dependencies. Firstly, proper-
ties may not exist on some nodes. Secondly, dependencies apply to
different types of nodes. As a consequence, we want to provide data
stewards with the ability to tailor uniqueness constraints and func-
tional dependencies to i) completeness requirements for properties,
and ii) the labels carried by nodes. For i), we take the principled
approach that missing properties should not have an impact on the
validity of constraints [47, 48]. Hence, graph-tailored UCs (gUC)
and FDs (gFD) feature a property set P that restricts the set of
vertices on which the constraint holds to those nodes for which
all properties in P exist, and P contains at least all the properties
that occur in the constraint. Moreover, a label set L is included in
the specification of gUCs and gFDs that further restricts the set of
vertices on which the constraint holds to those nodes which carry
all the labels in L. We obtain the following constraints in our exam-
ple: the gUC Event:CT:CT (o1), stipulating that all Event nodes that
have properties C and T, are uniquely identified by the combina-
tion of values on these properties. The gFD Event:NC:N — C (032)
stipulates that Event nodes with properties N and C have match-
ing values on C whenever they have matching values on N. Simi-
larly, the gFDs Event:NTV:NT — V (03) and Event:NTV:TV — N
(04) express that Event nodes with properties N, T, and V have
matching values on V (N, respectively) whenever they have match-
ing values on N and T (T and V, respectively). Finally, the gFD
Event, Confirmed : NCTV : NC — T (o) expresses that nodes
with both labels Event and Confirmed, and with properties N, C, T,
and V have matching values on T whenever they have matching
values on N and C. The constraints exhibit non-trivial interactions.
For instance, X = {01, ..., 04} implies 05 = Event:NCTV:TV, and
every gUC L:P:X implies the gFD L:P:X — P, but not vice versa.
For instance, Gy satisfies the gFD Event:NCV:NC — V, but not the
gUC Event:NCV:NC. In particular, no gUC can be expressed by any
set of gFDs. As another example, Gy satisfies o, in particular, but
not the gFD Event:NCTV:NC — T. This illustrates the subtlety of
reasoning with multiple labels. Similarly, if G results from Go by
adding label Confirmed to node 2 and removing property Venue
from node 2, G; would still satisfy the gFD o, but not the gFD
Event, Confirmed:NCT:NC — T resulting from o, by removing
property V from P = NCTV.

:Evt_Comp Company = “Cactus”
Venue = “Vault”

Time = “06/01”

“Evt Detail Name = “No Socks™

Venue = “Vault”
Time = “06/01”

Name = “No Socks”
Company = “Cactus”

:Evt_Detail
, Name = “No Socks™

Venue = “Vault”
Time = “13/07”

:Confirmed Company = “Cactus”

Venue = “Vault”

“Evt_Comp Time = “13/07”

Figure 2: Normalized Property Graph

We observe that every graph satisfying ¥ = {o1,...,04,0c},
such as Gy, cannot exhibit any redundant property values on any
nodes that carry both labels Event, Confirmed and all properties N,
C, T, V. Interestingly, however, Gy is one property graph that does
exhibit a redundant data value occurrence on nodes that carry only
label Event and all properties NCTV. Indeed, each occurrence of
company Cactus is redundant due to oy: If one occurrence of Cactus
is changed to any different value, then o3 will be violated.

While Gy is in BCNF for target label set { Event, Confirmed} and
property set {N,C,T,V}, and in 3NF for target label set {Event}
and property set {N, C, T, V}, it is not in BCNF for label set { Event}
and property set {N,C, T, V'}. Figure 2 shows the normalized prop-
erty graph Gy, resulting from a non-obvious decomposition. Indeed,
Gy, is in BCNF tailored to the application requirements that de-
compose Event nodes exhibiting all properties in NCTV. The de-
composition is lossless, as a simple join via {-labeled edges would
restore the original graph Gy. It is also dependency-preserving:
gUC o1 adds gUC o] = Evt Comp:CVT:CT, and gFDs o3, ... 05
result in gUCs o) = Evt MgtNC:N, o; = Evt DetailNTV:NT,
0'4 = Evt Detaill NTV:TV, and even 05’ = Evt_Comp:CVT:TV. Note
that o, is beyond scope of any decomposition not targeted at nodes
with label Confirmed. The additional properties in the new con-
straints, such as V in ¢}, originate from the requirement for Event
nodes to exhibit all properties NCTV. The new design eliminates
all data redundancy caused by o3, for example in Gy. The fact that
Cactus manages the event No Socks is only represented once (on the
new node 23-1), avoiding data inconsistency, making update and
query operations potentially more efficient. This is achieved by the
new gUC o7, expressing that there cannot be two different Evt_Mgt
nodes with properties N, C and matching values on N. Omitting
the two Evt_Comp-nodes and their outgoing edges from G, would
still result in a lossless BCNF decomposition. However, the gUC oy
would be lost. In other words, the Evt_Comp-nodes ensure G, is
dependency-preserving.

Normalizing a property graph will intuitively minimize sources
of potential inconsistency, bring forward more efficient updates of
companies, and of aggregate queries that require the numbers of
events a company manages. Intuitively, the benefits grow as the
graph size grows. Hence, identifying opportunities and limits of
graph databases in handling normalization has huge potential.

3033

3 PREVIOUS WORK

Normalization is a classical topic [31], but no framework exists for
graph data yet. Normal forms characterize well-designed databases
that only admit instances with no redundant data value caused by
any dependency in the class considered. Fundamental are efficient
solutions to the implication problem: BCNF and 3NF are founded
on Armstrong’s axioms () [4] and linear decision algorithms [6].
The latter drive decompositions into BCNF and 3NF [8].

Schema design for other data quality dimensions is in its in-
fancy [5]. Completeness-tailored UCs and FDs were introduced
for relations with missing values, and a normalization framework
established that tailors relational design to completeness and in-
tegrity requirements [47, 48]. Our work here extends this approach
to property graphs with major differences: in contrast to [47, 48] we
cannot assume an underlying schema, we deal with graphs rather
than relations, and we require an extension to accommodate labels.

Recently, much attention has been given to graph query lan-

guages, but several lines of work on integrity management have
emerged, too. The comprehensive key proposal [2] sets out an ex-
pressive framework for specifying keys on nodes, edges, and proper-
ties. In particular, the gUC {L1, ..., L }:{P1,.. ., Pn}{U1, ..., U}
can be specified as the exclusive PG-key below.
FOR:Ly " - Ly, WHERE x. Py . .. AND x.P, IS NOT NULLEXCLUSIVE x.Uj.....x.Ug
While expressive and flexible, there are no technical results for PG-
keys yet. Our class of gUCs was proposed in [38, 39] to address
the lack of constraints for data quality dimensions. They form a
sub-class of PG-keys that enjoys good computational properties.

The work in [18, 19, 37] defines expressive graph dependencies,
including FDs that compare values of properties or constants for all
pairs of entities identified by a graph pattern. Their expressiveness
is different from gFDs which allow multiple labels and require all
properties in P to exist. While implication for FDs in [19] is NP-
complete and they target entity resolution and fraud detection,
implication for gFDs is decidable in linear time and they target
normalization. Graph dependencies provide a rare opportunity to
specify application semantics in graph databases [2, 18, 19, 37, 39].

In contrast to normalization, [43] propose a schema design frame-
work for graph data that is based on minimizing access to data that
will likely co-occur in query results while keeping independent
concepts separate. In contrast to normalization that is based on
data dependencies, [43] requires a conceptual schema as input.

Schema information is beneficial for data management, including
(property) graphs [1, 32]. Schemata may interact non-trivially with
dependencies, such as PG-keys or gFDs. This motivates further
research, including the normalization of graph schemata.

Already Codd [10] suggests online and a-posteriori enforcement,
where integrity is preserved either as part of every update, or in-
consistencies are reported casually, respectively. Full normalization
with our framework supports online enforcement while casual nor-
malization materializes a-posteriori enforcement, and both can be
balanced by tailoring normalization to target dependencies.

Our work is the first to address normalization for property
graphs. The class of gFDs is new, and results on the combined
implication for gUC/gFDs encompass simpler findings for gUCs
alone. In our work, we transfer state-of-the-art normalization for
FDs from relational to graph databases.

Table 1: Summary of Concepts & Notation To Be Introduced

Concept Notation

Basic concepts for graphs and graph constraints:
Property graph G=(V,Ed, n, A, v)
Label set/Property set L/p

Property subsets X, YCP

gFD L:P:X—>Y

gUC L:P:X

gUC/gFD set >

Translation into relational framework:

L:P-FD set for 3 2r.p (classical FDs originating from X)
Relation schema of P Rp := P U {Ay} with fresh attribute A
Decomposition of Rp D C{S|S CRp}where Usepn = Rp
Projection of 1.p onto S C Rp SLp[S]={X—>YeZ, | XY CS}

Normal forms for property graphs and their achievements:
% in L:P-BCNF/3NF/RENF (Rp, 21.p) in BCNF/3NF/RENF

Normalization of property graphs:
L:P-decomposition of £ wrt D
L:P-projection of G onto S C Rp
S-equivalence between nodes v, v’
L:P-decomposition of G wrt D

3¢ »[D] with fresh edge label £
GI{:P[S] with fresh edge label £
v =g v’ (values match on properties in S)

Usep (GL plS]/=s)

4 GUIDE FOR CONCEPTS AND NOTATION

Table 1 provides a brief outline which concepts and notation we will
develop throughout. In Sec. 5 we will repeat concepts for property
graphs, and introduce graph-tailored constraints called gFDs and
gUCs. Our approach will enable us to translate graph constraints
into classical FDs in Sec. 6.1, to take advantage of the existing theory.
This will enable us to define BCNF and 3NF for property graphs in
Sec. 6.2. In Sec. 6.3, we will transfer achievements for BCNF and
3NF from relational databases to property graphs, and establish a
framework for normalizing property graphs in Sec. 6.4.

5 GRAPH-TAILORED CONSTRAINTS

We recall basics of property graphs, including gUCs [39]. We then
introduce gFDs and illustrate them on our running example.

The property graph model [9] is based on the following disjoint sets:
O for a set of objects, £ for a finite set of labels, K for a set of
properties, and N for a set of values.

A property graph is a quintuple G = (V, Ed, n, A,v) where V C O
is a finite set of objects, called vertices, Ed C O is a finite set of
objects, called edges, n : Ed — V X V is a function assigning
to each edge an ordered pair of vertices, A : VU Ed — P(L)
is a function assigning to each object a finite set of labels, and
v: (VUEd)x K — N is a partial function assigning values for
properties to objects, such that the set of domain values where v
is defined is finite. If v(o, A) is defined, we write v(0, A) =| and T
otherwise. Figures 1 and 2 show examples of property graphs.
Graph-tailored UCs (gUCs) were introduced in [39], and cover UCs
used by Neo4j [21] as a special case. For define the subset Vi C V
of vertices in a property graph that carry all labels of the given set
L C Lasfollows:Vy ={v eV |LCAw)}.

A graph-tailored uniqueness constraint (or gUC) over L and K is
an expression L:P:X where L € £ and X C P C K. For a property
graph G = (V,Ed,n,A,v) over O, L, K, and N we say G satisfies
the gUC L:P:X over £ and K, denoted by |=g L:P:X, iff there are
no vertices v1,vy € Vi such that v # vy, for all A € P, v(v1,A)
and v(vy, A) are defined, and for all A € X, v(v1,A) = v(v2, A).

Neo4j UCs are gUCs L:P:X where L = {{} and P = X = {p}, that
is, {€}{p}:{p}. Hence, we denoted them by £:p. Neo4j’s composite

3034

indices are covered as the special case where L = {¢} and P = X,
that is, {¢}:X:X. Hence, we denote them by ¢:X.

We will now introduce graph-tailored FDs. Intuitively, they express
that nodes carrying a given set of labels and values on a given set of
properties, the combination of values on some of those properties
uniquely determine the values on some other properties.

Definition 5.1. A graph-tailored functional dependency (or gFD)
over L and K is an expression L:P:X — Y where L € L and
X,Y € P C K. For a property graph G = (V,Ed,n, A, v) over O, L,
K, N, we say G satisfies the gFD L:P:X — Y over £ and K, denoted
by =g L:P:X — Y, iff there are no vertices v, vy € Vi such that
v1 # vy, forall A € P, v(v1, A) and v(vy, A) are defined, for all A € X,
v(v1,A) = v(vz, A) and for some A € Y, v(v1, A) # v(vg, A). O

The concept of gFDs provides users with the flexibility to layer
rules for nodes with different sets of labels. While L:P:X — Y
applies to all nodes when L = 0, adding new labels to L allows
the user to declare additional rules that only apply to nodes that
carry all of the labels in L. Secondly, the property set P addresses
completeness requirements of applications on the properties that
nodes may have. Unless a node exhibits values on all properties
in P, it does not need to comply with the FD X — Y. Thirdly, X
and Y are subsets of P. This choice is guided by the principle that
missing properties should not affect the validity of a business rule.
If completeness requirements are not available, we may simply use
the gFD L:XY:X — Y. Most gFDs that express meaningful rules will
have this format, and they imply weaker gFDs L:P:X — Y where
P contains XY. This has multiple benefits as illustrated later, such
as tailoring normalization to different requirements, discovering
gFDs and sources of inconsistent data from property graphs.

Over relation schema R, the UC X can be expressed by the FD
X — R. Indeed, relations are sets of records and no two differ-
ent records can have matching values on all the fields in R. This
observation is significant for normalization which transforms the
underlying schema until all FDs exhibited on the schema are keys.
Intuitively, any FD that may cause data redundancy has been trans-
formed into a key which cannot cause data redundancy.

This situation is different in property graphs that permit duplica-
tion. Indeed, no gUC L:P:X can be expressed by any gFD since we
can always have two different nodes with label set L and matching
values on all properties in P. While this graph satisfies the gFD
L:P:X — P, it does not satisfy the gUC L:P:X. For example, graph
Gy in Figure 1 satisfies the gFD Event:NCV:NC — V but not the
gUC Event:NCV:NC. Since gFDs cause data redundancy, gUCs pro-
hibit data redundancy, and gUCs cannot be expressed by gFDs, we
need to study the combined class of gUCs and gFDs.

6 NORMALIZATION FRAMEWORK

We will first establish axiomatic and algorithmic characterizations
of the implication problem for gUCs and gFDs. We will then in-
troduce 3NF and BCNF for property graphs tailored to labels and
properties as required by applications. We will show that our normal
forms minimize (eliminate) data redundancy. Finally, we will estab-
lish an algorithm that computes a lossless, dependency-preserving
3NF decomposition for a property graph, set of gUCs and gFDs,
and the target set of labels and properties. Whenever possible, the
output will even be in BCNF.

Table 2: Axiomatization € = {R, &, 7, A, W, P} of gUC/FDs

L:P:X > Y

L:P:X — XY
(extension, &)

L:P:XY - X
(reflexivity, R)
LPX—Y L:P:Y—>Z

LL":PP":X — Z
(transitivity, 7)

L:P:X

LL":PP":XX’
(augmentation, A)

L:P:X

L:P:X > P
(weakening, W)

L:P:X - Y L:PXY

L:P:X
(pullback, P)

6.1 Reasoning

Let X U {¢} denote a set of constraints over £ and K from a class
C. The implication problem for C is to decide, given any input set
SU{¢} of constraints from C, whether X implies ¢. In fact, X implies
@, denoted by 2 |= ¢, if and only if every property graph G over O,
L and K that satisfies all constraints in ¥ also satisfies ¢.

Deciding whether ¢ is implied by X is fundamental for node
integrity management on property graphs. If ¢ is implied by X, then
¢ is already specified implicitly by X. Otherwise, failure to specify
¢ explicitly may result in integrity faults that go undetected. The
implication problem for FDs in relational databases is complete for
PTIME [6, 12]. Since FDs form a special case of gFDs, the implication
problem on property graphs is PTIME-hard.

6.1.1 Axiomatic Characterizations. We will establish an axiom-
atization for the combined class C of gUCs and gFDs. The set
Z*C = {¢ € C | Z |= ¢} denotes the semantic closure of X. We aim at

premise

computing Z*C by applying inference rules of the form ————.
conclusion
For a set R of inference rules let X +y ¢ denote the inference of

¢ from X by R. That is, there is some sequence o1, ..., 0, such
that o, = ¢ and every o; belongs to X or is the conclusion that
results from applying an inference rule in R to some premises in
{01,...,0i—1}. Let 2;’? ={¢ | 2 rx ¢} be the syntactic closure of
> under inferences by R. R is sound (complete) if for every set ¥ of
constraints from C we have 2;} c 22, (N Z;{?). The (finite) set
R is a (finite) axiomatization if R is both sound and complete.

We assume the rules of € in Table 2 contain well-formed gUCs
and gFDs. As example, for the rule A with L:P:X and LL":PP":XX’
weassume X C Pand XX’ C PP’. A by itselfis sound and complete
for the implication of gUCs. The full version shows that € is sound
and complete for the implication of gUCs and gFDs. The soundness
is established by contra-position: assume some property graph
violates the conclusion of a rule, one shows that some premise of the
rule must be violated as well. The completeness proof constructs for
any given gUC L:P:X and gFD L:P:X — Y that cannot be inferred
from X by €, a property graph that satisfies X and violates the given
gUC or gFD. This is achieved by introducing two vertices with label
set L, matching values on all properties in XgL:P and non-matching
values on all remaining properties in P. Here, XgL'P denotes all
properties A € P such that L:P:X — A € 3. '

3035

Algorithm 1 Implication of gUCs and gFDs

Require: Set X U {¢} of gUC/FDs; ¢ = L:P:X or ¢ = L:P:X - Y
Ensure: TRUE, if 3 |= ¢, and FALSE, otherwise
1: Compute XgL_P by linear-time attribute set closure for FDs [6]

2: if ¢ = L:P:X and X§ = Rp then

3 return TRUE

4 elseif p=L:P:X - Yand Y C XgL:P then
5 return TRUE

6: else

7

return FALSE

THEOREM 6.1. The set € forms a finite axiomatization for the
implication of gUCs and gFDs over property graphs. O

We illustrate inferencing on our running example.

Example 6.2. Let = contain ¢; Event.CTV:CT — V
and ¢ EventNTV:VT — N. Applying (E) to ¢; gives
us @} Event:CTV:CT — CTV. (R) gives us ¢,
Event:CTV:CTV — VT, and applying (7) to ¢; and ¢, gives us
¢ = Event:CTVN:CTV — N. Finally, applying (7°) to ¢; and ¢;
gives us ¢ = Event:.CNTV:CT — N. Hence, ¥ implies ¢. Note the
subtlety in reasoning with the requirements for properties. As we
will see below, 3 does not imply ¢’ = Event:CNT:CT — N.

{R, &, T} forms an axiomatization for gFDs, a natural extension
of the Armstrong axioms [4]. We will denote the latter by .

6.1.2 Algorithmic Characterization. We use our axiomatization €
to establish an algorithm that decides implication efficiently.

For a set ¥ of gUCs and gFDs, L € L and P C K, we define the
following set of FDs over the relation schema Rp = P U {Ap}:

SLp={X—>Rp|3ILP"X€XAL CLAP CP}U
(X > Y|3LP"X >YeSAL CLAP' CP}.

Ap ¢ P is a fresh property not occurring elsewhere. Ay is only
required in Rp when there is no gUC L":P":X € 3 with L’ C L and
P’ C P.Thatis,if L:P":X € Y withL’ C Land P’ C P,thenRp := P
is sufficient. Next we reduce implication of gUCs and gFDs over
property graphs to the implication of FDs over relation schemata.

THEOREM 6.3. For every set X U {L:P:X, L:P:X — Y} over L and
K andRp, we have (1)% |= L:P:X — Y ifandonlyif2.p F X — Y,
and (2) X |= L:P:X if and only if 31.p = X — Rp O

Theorem 6.3 gives rise to Algorithm 1, which computes the
property set closure X; _ of X for X1.p over Rp using the clas-
sical algorithm [6]. The decision branches in Algorithm 1 reflect
the characterization by Theorem 6.3. Hence, PTIME-completeness
carries over from the classical case [6, 12].

COROLLARY 6.4. Algorithm 1 decides the PTIME-complete impli-
cation problem for gUCs and gFDs in linear input time. O

We illustrate the algorithm on our running example.

Example 6.5. Let 3 = {¢], ¢;} and ¢’ from Example 6.2. Hence,
SEventcNT = 0 and N ¢ (CT)EEWMCNT = CT, which means that
Algorithm 1 returns a negative answer. However, for ZgyenrcNTV =
{CT — V,VT — N}, such that for ¢ we get N € (CT)EEW[;CNTV =
CTVN, and Algorithm 1 returns a positive answer.

6.2 Normal Forms for Property Graphs

We define BCNF and 3NF for property graphs. Based on oppor-
tunities that graph data provides, we first explain our approach,
describe our proposals, and present results on their achievements.

6.2.1 Approach. Since property graphs have no schema, it is chal-
lenging to define classical normal forms for graph data. We address
this challenge using our class of graph-tailored constraints. The
flexibility of graph data provides further opportunities. Since appli-
cations target graph objects based on their labels and properties,
we view these features as requirements: The application targets
only nodes that exhibit a given set L of labels and a given set P
of properties. With that approach, we then normalize that part of
the graph which meets the targets. Hence, normalization becomes
flexible and driven by application requirements.

6.2.2 BCNF. Classical BCNF casts a syntactic definition that pre-
vents any possible occurrence of redundant data values by stipu-
lating that every FD, which could potentially cause redundancy, is
actually a key dependency (unable to ever cause any redundancy).
We will now define BCNF for gUCs and gFDs, aimed at preventing
redundant property values on graphs that satisfy the constraints.

Definition 6.6. (L:P-BCNF) Let 2 denote a set of gUCs and gFDs
over £ and K. For sets L € £ and P C K, we say that X is in
L:P-Boyce-Codd Normal Form (L:P-BCNF) if and only if for every
gFD L:P:X — Y € 3 it is true that Y C X or L:P:X € 3. o

We illustrate the definition on our running example.

Example 6.7. Property graph Go from Figure 1 satisfies & =
{01,...,05}. Indeed, ¥ is in Event:CT-BCNF, but neither in
Event:NC-, Event:NCT-, Event:NTV -, nor Event:NCTV-BCNF. In
contrast, property graph G, from Figure 2 satisfies X’
{o",...,crg} from Section 2, which is in Evi Mgt:NC-BCNF,
Evt_Comp:CVT-BCNF, and Evt_Detail: NVT-BCNF.

For any label set L and property set P, we can check whether ¥
is in L:P-BCNF by checking if (Rp, 2.p) is in BCNF. That is, our
BCNF definition is tailored to label and property sets of graphs.

THEOREM 6.8. For every label set L and property set P, it holds
that ¥ is in L:P-BCNF if and only if (Rp, 21.p) is in BCNF. O

Following Example 6.7, X is not in Event:NTV-BCNF as Rp =
NTV Ay is not in BCNF for XgyenznTv = {VT — N,NT — V}
(Ao e Rpand VT — Rp ¢ ngent:NTV)' Y is not in Event:NCTV -
BCNF as Rp = NCTYV is not in BCNF for XgyensneTy = {N —
C.CT - NV,NT - V,VT - N} (N > Rp ¢ 5}, o0).

The condition for ¥ to be in L:P-BCNF is independent of how %
is represented. That is, for every gUC/FD set © where 3¢ = ©F, =
is in L:P-BCNF iff © is in L:P-BCNF. This is due to Definition 6.6
that checks all gFDs in Z{, which may be exponential in ¥. We can
show it suffices to check X itself, so testing L:P-BCNF is efficient.

THEOREM 6.9. X is in L:P-BCNF iff for every gFDL’':P":X — Y € 3
where L’ C LandP’ CP,Y C X orL:P:X € 2&. O

Theorem 6.9 allows us to check in time quadratic in || whether
¥ is in L:P-BCNF. We simply need to test ifXgL.P = Rp for every
L':P"X —» Y € Xwhere L’ C L,P’ C PandY ¢ X. We can

3036

compute XgL_P in time linear in |21.p U {X}| using the classical
attribute set closure algorithm [6].

COROLLARY 6.10. The condition whether % is in L:P-BCNF can be
checked in time quadratic in |X|. O

6.2.3 3NF. While a lossless BCNF decomposition is always achiev-
able, some FDs may be lost. These require a join of schemata re-
sulting from the decomposition before their validity can be tested.
As this is expensive, dependency-preservation is another goal of
normalization. Current state-of-the-art finds a lossless, dependency-
preserving decomposition into 3NF, which is in BCNF whenever
possible. We target this result for property graphs.

Towards defining 3NF, we say property A € P is L:P-prime for
3 iff there is some L:P:X € ZE such that A € X, and for all proper
subsets Y c X, L:P:Y ¢ 2@ Hence, A is contained in some minimal
key for 21.p. If no key exists, there is no prime property.

Definition 6.11. Let X be a set of gUCs and gFDs over £ and K.
For L € £ and P C K, X is in L:P-Third Normal Form (L:P-3NF) if
and only if for every gFD L:P:X — Y € ZE it is true that Y € X or

L:P:X € Zg or every property in Y — X is L:P-prime. m]

Example 6.7 showed that ¥ is not in Event:NCTV-BCNF. Due
to gUC o7 we obtain gUCs Event:NCTV:VT and Event:NCTV:NT
in Zé, which are Event:NCTV-minimal. Hence, every property in
NCTYV is Event:NCTV-prime, and ¥ is in Event:NCTV-3NF.

Similar to L:P-BCNF, the definition to L:P-3NF is grounded in
classical 3NF but tailored to graph features.

THEOREM 6.12. For every label set L and property set P it holds
that ¥ is in L:P-3NF if and only if (Rp, X 1.p) is in 3NF. O

Given the set of L:P-prime properties for ¥, the quadratic time
required to validate 3NF for X;.p extends to L:P-3NF for X.

THEOREM 6.13. ¥ in L:P-3NF if and only if for every gFD
L":P":X — Y € 3 where L’ C L and P’ C P it is true that Y C X or
L:P:X € Z(Jg or every property in Y — X is L:P-prime. m]

Testing L:P-BCNF is efficient, but validating L:P-3NF is likely
intractable as it is NP-complete to decide if a property is L:P-prime,
already when L = 0 and P = R is a relation schema [6]. It is coNP-
complete to decide if for X, ¥1.p.s is in L:P-BCNF where S C P and
Spps ={LP"X ->YeX{|L'CLAP ' CPAXYCSCP}

THEOREM 6.14. Deciding for X, if 1.p.s is in L:P-BCNF, is coNP-
complete. Deciding whether ¥ is in L:P-3NF is NP-complete. O

6.3 Achievements of Normal Forms

We aim at minimizing sources of property values that may occur
redundantly in graphs that satisfy the given gUCs and gFDs. We
will now illustrate in which formal sense this is actually achieved.

Let v denote a node of property graph G that carries all labels in
L and all properties in P. Let A € P. An L:P-replacement of v on A is
any property graph G’ that results from G by changing value v(v, A)
to some different value. The occurrence v(v, A) is L:P-redundant for
% if and only if for every L:P-replacement G’ of v on A, the graph
G’ violates some constraint L:P:X or L:P:X — Y in Zg.

Definition 6.15. X is in L:P-Redundancy Free Normal Form (RFNF)
iff there is no property graph G that satisfies X, no node v € V.p in
G, and no property A € P such that v(v, A) is L:P-redundant for X.

t
GEvem:CNTv[Nc] Name = “No Socks”

Company = “Cactus”

»~ Evt_Mgt
Name = “No Socks”
Company = “Cactus”
:Event
:Confirmed
Gévem-cNTV [NVT] o
:Event :Evt_Detail . :Evt_Detail
° HA Name = “No Socks” ° L Name = “No Socks”
22 Venue = “Vault” 32 Venue = “Vault”
Time = “06/01” :Event Time = “13/07"
:Confirmed
:Evt_Comp
Company = “Cactus”
- Evt
Venue = “Vault” :Event ;- ‘Evt Comp

:Confirmed 5 Company = “Cactus”
Venue = “Vault”

Time = “13/07”

Time = “06/01”

t
G Event:CNTV [ev

Figure 3: Projections of Gy onto O = {NC,NVT,CVT}

In graph Gy of Figure 1, each occurrence v(2, Company) and
v(3, Company) of “Cactus” is Event: NCV T-redundant. For instance,
if GJ results from Gy by replacing v(2, Company) by a value differ-
ent from “Cactus”, G(') will violate gFD Event:NCVT:N — C € Zé'
Hence, ¥ is not in Event:NCVT-RFNF. In contrast, the occurrence
of v(23 — 1, Company) = “Cactus" in graph G, of Figure 2 is not
Evt_Mgt:NC-redundant. Indeed, 3’ is in Evi_Mgt: NC-RFNF.

THEOREM 6.16. For all sets ¥ of gUC/FDs, for all label sets L and
property sets P, we have X is in L:P-RFNF iff (Rp, X1.p) isin RENF. O

In illustrating Theorem 6.16, the relation r corresponding to node
set Veyent:NcTV of graph Gy in Figure 1 is

Name Company Venue Time
No Socks Cactus Vault 06/01
No Socks Cactus Vault 13/07

and r satisfies XgyensneTy = {N > C,NT - V,TV — N,CT —
NV}, and each occurrence of “Cactus” is redundant. This example is
representative that BCNF captures RFNF. Indeed, Theorem 6.16 lifts
the result from relational databases to property graphs as targeted.

COROLLARY 6.17. For all sets X of gUC/FDs, for all label sets L and
property sets P, we have ¥ is in L:P-RFNF iff ¥ is in L:P-BCNF.

For relational databases, it is known that 3NF exhibits the fewest
sources of data redundancy among all dependency-preserving de-
compositions [25]. Due to Theorem 6.12, these results carry over
to L:P-3NF, pending our definitions below.

6.4 Normalizing Property Graphs

We will now show how to restructure, without loss of information
and guided by target sets L of node labels and P of properties, a given
gUC/FD set ¥ and a given property graph G that satisfies X such
that the restructered constraint set is satisfied by the restructured
graph and is in L : P-3NF, and L : P-BCNF whenever possible.

We first describe the general method informally, illustrate it on
our running example, and then provide the technical definitions.

6.4.1 Method. Intuitively, the normalization process is as follows.
1) Given L, P, G and 3, for each node v € Vy.p and each element
S of a decomposition for P (a set D of subsets for Rp), we introduce

3037

:Event 2
G Event:CNTV [NC]/
=NcC

Name = “No Socks”
Company = “Cactus”

:Event ?
:Confirmed G Evenl:CNTV[Ngl:
=NvVT

:Event :Evt_Detail :Evt_Detail
i Name = “No Socks” ° 4 Name = “No Socks”
22 Venue = “Vault’ 32 Venue = “Vault”
o " :Event Time = “13/07”
Time = “06/01 :Confirmed
:Evt_Comp
Company = “Cactus” N
Ayl :Event (e~ :Evt_ Comp
Venue = “Vault . - >
Time = “06/01" “Confirmed Company = “Cactus”
t Venue = “Vault”
G CV’
Event:oNTv[/Tlé Time = “13/07"
=cvt
: . 0 14 —
Figure 4: Quotient Graphs G . -1y [S]/=s of Go

new nodes vs with fresh label {5 and directed edges (vs, v) with
fresh label ¢, and transfer the properties in S from v to vg. For each
S, these operations result in the projection G{:P [S] of Gr.p onto S,
where Gy.p is the restriction of G onto V.p.

2) We then materialize the "redundancy elimination" by identify-
ing new nodes vs and vg whenever they exhibit matching values
on all properties in S. Technically, this is achieved by a congruence
relation =g, and forming the quotient graph Gi: plS1/=s.

3) We then take the union of quotient graphs over all elements
S of the decomposition D and the original graph G. The resulting
property graph GI(::P[Z)] is an L:P-decomposition of G onto D.

4) Similarly, the L:P-decomposition Zi: pl[D] of X onto D is ob-
tained by adding gUCs £s:S:X for each X — Rp € X1.p[S] and
adding gFDs €5:5:X — Y foreach X — Y € X1.p[S] for Y # Rp.

This construction can easily be inverted by collapsing all edges
(vs,v)labeled ¢ and transferring back the property/value pairs from
vg to the node v they originated from. The original dependencies
imply new ones on the new nodes, transforming gFDs into gUCs
whenever possible, which is why property value redundancy is
removed as far as possible. Due to labels, we can simply add the
new ones, and remove them when the decomposition is inverted.

Consider again Example 6.7. The set 2’ is a lossless, dependency-
preserving Event:CNTV-decomposition of X into BCNF. The prop-
erty graph G, in Figure 2 is the EVENT:NCTV-decomposition of
Gy in Figure 1, based on the decomposition D = {NC,NVT,CVT}
of Rycrv. Indeed, Figure 3 shows the three projections
vaent:CNTV[s] of GeyenrcNTV onto S € D from step 1) of the
process above, including new nodes 2-1 (=2n¢), 2-2(=2NvT), 2-
3(=2¢cvT), 3-1(=3N¢), 3-2(=3NvT) and 3-3(=3cy 1), with node labels
{Ne = :Evt_Mgt,{nvT = :Evt_Detailsand {cyT = :Evt_Comp, and
directed edges 21=(2-1,2), 22=(2-2,2), 23=(2-3,2), 31=(3-1,3), 32=(3-
2,3), and 33=(3-3,3) with edge label ¢.

Step 2) of the process is illustrated in Figure 4 where the quo-
tient graphs of the projections are shown. Here, the only vertices
identified are 2-1 and 3-1 based on their value equality on NC. Step
3) results in G, (Figure 2) by taking the union of quotient graphs
from Figure 4 and the original graph. Finally, step 4) results in the

. ’ r _ vl _ ’ ’
constraint set £ U X" where &' = % v [D] = {o],..., 05}

6.4.2 Formal Definitions. For a property graph G, L € £, and
P € K, we define G1.p to denote the restriction of G to the vertex
set V1.p. For a property set S C P, and a label £ € L that does not
occur in G, we define the L:P-projection Gi: p [S] of G1.p onto S by

o Vi.p[S] == Vi.p UUyev; p{vs}
o Edr.p[S] = Uyev, p{(vs, v)}

v Av) ,ifoeVip
o ALp[S]=4 vs+ s ,ifvs € VL.p[S]
(vs,v) > €, if (vs,v) € Edy.p[S]
(vs,A) > v(v,A) ,if AeSAMous,v)="0
o v.p[S] = (vs,A) > 1T LifAé¢ SAMus,v)=¢
LPWIZA () A) o v(v,A) L ifA¢SAveEVLp
(v,A) > T ,ifAeSAveEVLp

For example, Figure 3 shows the projections of Gy onto S € D =
{NC,NVT,CVT} with identifiers of new nodes vs (edges (vs, v))
marked within node circles (alongside the edges, respectively), and
node labels s carry have real names such as {5 ¢ = :Evt_Mgt.

For a property set S C K and two nodes v, v’ of a property graph,
we define v =g v’ ifand only ifforall A € S, v(v, A) = v(v’, A). That
is, the two nodes are equivalent on the property set S if and only if
they have matching values on all the properties in S. Of course, =g
defines an equivalence relation between the nodes of a property
graph G, so we may define the quotient graph G/=g. For example,
the quotient graphs of Gy onto S € D = {NC,NVT,CVT} are
shown in Figure 4, where nodes 2-1 and 3-1 are equivalent on NC.

For two property graphs G and G’ over O, £, and K we define
the union G U G’ as the property graph obtained as Vg U Vg,
Edg UEdg, Ag U Ag, g U pg’ but where vg U v is defined by
v(v, A) T for any property A € K whenever vg(v, A) and v (v, A)
have non-matching values (eg. only one of them is defined). For
example, property graph G, from Figure 2 is the union of quotient
graphs from Figure 4 and Gy.

For a property graph G and label £ € L we define < G as follows:
o V:=Vg—{v €Vs| A, v) € Edg,A(v',v) = £}
e Ed:=Ed |y, A:=Ag |v, it := g lv, and
(v,A) > vg(v,A) LifveVAvg(v,A)]
(v,A) > vg(v',A) ,if (v/,v) € EdgA
Ac(@',v) =€ Avg(v',A)]

e V:

As example, Gy = l>{1 Gp with Gy from Figure 1 and G, from Figure 2.

In relational databases, a decomposition of attribute set R is a
set D of subsets of R such that [Jsep S = R, for example D =
{NC,NVT,CVT} of CNTV. For an FD set X over R, and subset
SCRE[S]={X — Y e} | XY C S} is the projection of 3 onto
S. As example, for ¥ = ZpyentNery = {N - C,NT - V,TV —
N,CT — NV} we have X[NC] = {N — C}, Z[NTV] = {TV —
N,NT — V} and S[CTV] = {CT — V,VT — C}.

Definition 6.18. For gUC/gFD set %, label set L, property set P,
and decomposition D of Rp, we define the L:P-projection ZE: plD]
of T onto D by T U {€s:S:X | X = Rp € Zp.p[S]forS € D} U
{€s:SX Y| X >YeZp[S]AY #Rp AS € D}. We say the
L:P-decomposition ZizP[D] of 2 is in BCNF (3NF) iff for all S € D,
ZiiP[S] is in £5:S-BCNF (3NF). The L:P-decomposition Zi:P[D] of

3 is dependency-preserving iff Z1.p and Usep (Zi:P[S]) are

ls:S

3038

Algorithm 2 NormMAG

Require: Property graph G that satisfies gUC/FD set X; label set
L U {¢}; property set P
Ensure: Property graph G{: p[D] that satisfies Zi: plD], which is
a lossless, dependency-preserving L:P-decomposition of X into
3NF (which is in BCNF whenever possible)
: Compute atomic closure 3, of 2r.p on Rp [35];
Ya — Ea
: forall X - Ae X, do
forallY - BeS,(YBCXAAXAZ Y')do
if 3, - {X > A} E X — Athen
Sq ¢ 2q—{X > A}
D0
. forallX - A€ X, do
if 34— {X - A} F X — Athen
a2 —-{X > A}
else
D — D U{(XA, Z,[XA]D}
. Remove all (S, Z4[S]) € D if A(S’,34[S"]) € D(S C §)
: if there is no (R’,%’) € D where R — Rp € 3] , then
Choose a minimal key K for Rp with respect to £1.p
D — D U{(K,%[K])}
: return (GI‘;P[D],Zi:P[D])

{Eliminate critical schemata}

R A U T >

_
4

{Eliminate redundant schemata}

[
U W N =

_
=

covers of one another. The L:P-decomposition G{: plD] of a property
graph G onto D is defined by Gi:P[D] =GUUgepn Gi:P[s]/Es.
The L:P-decomposition ZI(:: plD] of Zis lossless iff for every property
graph G that satisfies 3, the L:P-decomposition Gf: p[D] of G onto

D satisfies Gr.p = ‘f“ G[{:p[D]' ;

As example, for ¥ = {o1,...,04}, L = Event, P = CNTV, and
BCNF-decomposition D = {NC,NVT,CVT} of P, Zi:P[D] =3U
% where X' = {o7,...,0{}. Indeed, Zi:P[D] is in BCNF since it is
in Evt_Mgt:NC-BCNF, Evt_Comp:CVT-BCNF, and Evt_Detai NVT-
BCNF, see Example 6.7. The decomposition is also dependency-
preserving since Egyens NcTV and the union of Xgyenr. NeTV[NC],
YEvent: NCTVINTV] and 2 gyent NoTv [CTV] cover one another.

Our decomposition is always lossless, but only when a gFD is con-
verted into a gUC, all redundancy caused by the gFD is eliminated.
Indeed, normalizing a property graph will eliminate redundancy
on those equivalence classes where the underlying gFD holds.

Algorithm 2 normalizes a property graph G and gUC/FD set X
tailored to label set L and property set P. Our techniques make it
possible for lines (1-16) to apply state-of-the-art normalization from
relational databases that achieves a lossless, dependency-preserving
3NF decomposition O into BCNF whenever possible. D is then

converted into the output (GI[::P[D]’ ZI(::P[D]) in line (17).

THEOREM 6.19. On input ((G,2),L U {€},P) such that G sat-
isfies %, Algorithm 2 returns the property graph Gi:P[Z)] that
satisfies ZI‘;P[D], which is a lossless, dependency-preserving L:P-
decomposition of X into 3NF that is in BCNF whenever possible. O

Given Gy from Figure 1, L = Eventand P = CNTV, Algorithm 2
returns G, from Figure 2 and gUC/gFD set 3 U X’ from Section 2.

Table 3: Details on the graph datasets from the experiments

Graph data| L VL] |[P|| %VL:p |#gFDs| AvgRed |#gUCs
Northwind | Order| 830 |14|35.54%| 555 25.13 49
Offshore |Entity|814,345|18|26.14%| 1414 |47,919.13| 102

7 EXPERIMENTS

Our experiments will showcase the extent of both opportunities and
benefits of normalizing graph data. This will be done quantitatively
and qualitatively using popular real-world property graphs, but also
synthetic graph data for scalability tests. The research questions
we aim to answer by our experiments are:

Q1) What gFDs do property graphs exhibit?

Q2) What gFDs cause much data redundancy?

Q3) How much inconsistency can gFDs avoid?

Q4) What does graph normalization actually look like?

Q5) How much better is integrity managed after normalization?

Q6) How much faster are aggregate queries after normalization?

Q7) How do the benefits of normalization scale?

Q1)-Q3) will illustrate why normalization is necessary. Q4) will
showcase normalization on a real-world graph, and Q5-Q7) will
underline benefits of normalization at the operational level.

7.1 Data Sets and Measures

Details of experiments are on our Github repository https://github.
com/GraphDatabaseExperiments/normalization_experiments. We
analyzed graphs Northwind (https://github.com/neo4j-graph-
examples/northwind) with 1,035 nodes, 3,139 edges, and sales data;
and Offshore (https://github.com/ICIJ/offshoreleaks-data-packages)
with 2,016,524 nodes, 3,336,971 edges, and global company data.
Table 3 shows the node labels L we target, the number |V} | of nodes
with label L, the number |P| of properties for those nodes, the per-
centage %V .p of nodes with these properties, the numbers #gFDs
and #gUCs in a minimal cover of constraints that hold on the data
sets, and the average number of redundant property values caused
by gFDs. Note the high number on Offshore.

We used Neo4j and its query language Cypher as currently most
popular graph database (https://db-engines.com/en/ranking/graph+
dbms), its support of unique constraints, indexes, and the measure
of database hits, an abstract unit of the storage engine related to
requests for operations on nodes or edges. For comparison with a
cloud-based provider, we also used Amazon Neptune, which has no
support of indexes or database hits. We also measured run times.
We used Python 3.9.13. Experiments were conducted on a 64-bit
operating system with an Intel Core i7 Processor with 16GB RAM.
Details of experiments are available in the Artifact URL.

7.2 'What gFDs do graphs exhibit?

We mined gFDs with fixed target labels Entity (Offshore) and Order
(Northwind). Figure 5 classifies the gFDs L : P : X — Y by the size
|P| of their property set P. If P = XY, we call P trivial.

The mined gFDs include interesting examples. On Offshore!, for
instance, we have the gFDs

!Properties described here: https://guides.neo4j.com/sandbox/icij-paradise-papers/
datashape.html

3039

300
250

» 200

2 150

oo

* 100

%
o

2 3456 7 8 911121314
mall gFDs m gFDs with trivial P

2 3456 7 8 910111218
m all gFDs m gFDs with trivial P

0

(a) Offshore (b) Northwind
Figure 5: #gFDs by Property Size |P|

Table 4: gFDs on Offshore Ranked by Redundancy Caused

P\XY X Y #red| #inc|
incorporation_date|jurisd_desc, lastEditTimestamp, sourcelD |jurisdiction 788,408| 20,000
incorporation_date|jurisd_desc, sourcelD, valid_until \jurisdiction 788,365(175,871
incorporation_date, jurisd_desc, valid_until|service_provider|754,283| 1,047
ibcRUC jurisd_desc, valid_until service_provider|555,353| 20,000
ibcRUC Jjurisd_desc, lastEditTimestamp service_provider|555,353|175,888
ibcRUC jurisdiction, lastEditTimestamp, valid_until|sourceID 555,338| 20,000
country_codes jurisd_desc, lastEditTimestamp, sourcelD |jurisdiction 504,944(20,000
countries jurisd_desc, lastEditTimestamp, sourcelD |jurisdiction 504,944(20,000
country_codes jurisd_desc, sourcelD, valid_until \jurisdiction 504,902(113,055
countries jurisd_desc, sourcelD, valid_until \jurisdiction 504,902(113,055
country_codes, sourceID countries 504,424| 83,647
countries, sourcelD country_codes 504,424 83,647
country_codes, valid_until countries 504,418| 83,647
countries, valid_until country_codes |504,418| 83,647
countries, jurisd_desc country_codes |504,227| 83,653
countries, jurisdiction country_codes |504,151| 83,647

o Entity : address, country_codes, countries:
countries, address — country_codes

o Entity : service_provider, country_codes, countries:
countries — country_codes.

In particular, for every mined L:P:X — Y, removing any property
from P or X will result in a gFD that is violated by the dataset. Hence,
the gFD Entity:country_codes, countries:countries — country_codes
is not satisfied by the dataset.

7.3 What gFDs cause much data redundancy?

Interesting for normalization are gFDs that cause many occur-
rences of redundant property values. Ultimately, human users de-
cide which constraints express meaningful business rules. However,
ranking gFDs by the number of redundant property value occur-
rences they cause can provide helpful guidance for such decisions.
For Offshore, Table 4 shows gFDs with Label Entity that cause the
most number of redundant value occurrences (#red). These num-
bers are huge, and ought to be targeted by normalization. While
the following gFDs L:P:X — Y may appear to be meaningful:

(1) Entity : jurisd_desc, jurisdiction:jurisd_desc — jurisdiction

(2) Entity : country_codes, countries:country_codes — countries
neither of them actually holds. Nevertheless, adding few properties
to P or X results in various gFDs that do hold and exhibit many
redundant property values. This makes us wonder whether gFDs
(1) or (2) are only violated due to data inconsistencies that are a
result of data redundancy and the fact these gFDs are not enforced.

7.4 How much inconsistency can gFDs avoid?

We have seen various gFDs that cause many redundant value occur-
rences. If these gFDs represent actual business rules, they form a

@
S

1200 1098

400
] 3
1 2 3

S
=
1)
5]
5]

S
®
<}
5]

=3

#country_codes
@
3
3

2N oW oA u
S

o
~
o
3

#jurisdiction_descriptions

o

0
1 2

#distinct values for jurisdiction #distinct values for countries

(b) country_codes —
countries

(a) jurisd_desc —
Jjurisdiction

Figure 6: Consistency Profiles for gFDs

primary target for graph normalization. We will now illustrate how
to inform decisions whether gFDs are meaningful and violations
constitute inconsistencies. We will discuss a negative and positive
case, further strengthening the use of graph constraints and nor-
malization to avoid data redundancy and sources of inconsistency.

Table 4 lists the potential level of inconsistency (#inc) associated
with a gFD Entity:P:X — Y on Offshore. Hence, if the gFD is not
enforced, there may be up to #inc nodes in Vgyyiry.p that have match-
ing values on all properties in X but have each different values on
properties in Y. For each of the gFDs, #inc represents the worst-case
scenario of not enforcing the constraint.

Let us examine gFD (1) which is violated due to Entity-nodes with
matching values for property jurisd_desc and different values for
property jurisdiction. For instance, nodes with jurisd_desc 'Bahamas’
have either jurisdiction ' BAH’, ’BHS’ or 'BA’. Similarly, there are
multiple jurisdictions associated with the same jurisd_desc-value in
32 other cases. This consistency profile is illustrated in Figure 6(a),
where we list the number of jurisdiction_descriptions that have
n distinct jurisdictions associated with them, for n = 1,2,3. It is
plausible that multiple jurisdictions can be associated with the same
jurisdiction description. Hence, gFD (1) may not be meaningful.

In contrast, gFD (2) exhibits a different consistency profile, as
shown in Figure 6(b). There are only three different country_codes
that have two distinct countries linked to them, while the 1098 other
codes are linked to unique countries. Indeed, for country_code’COK’
there are 464 nodes with value “Cook Islands" and 1389 nodes with
value “COK" for property countries. The only other inconsistencies
are linked to values “GBR;VGB” and “VGB;COK” for country_codes.

Hence, mined gFDs and their ranking provide useful heuristics
to identify meaningful gFDs and data inconsistency in the form of
their violations. Meaningful gFDs and consistent graph data form
input desirable for normalization.

7.5 What does graph normalization look like?

While our running example is sufficiently small to illustrate our
concepts and ideas, we will now examine three applications of
Algorithm 2 to the property graph Offshore. All three applications
target nodes with label Entity (E) but different property sets:

Py = {jurisd_desc(jd), countries(c), service_provider(sp), country_codes(cc)},
Py = {jd, valid_until (v), ¢, sourcelD (s), cc} and P3 = P; U P;.

As set 2 we use gFDs E:P:X — Y (we write P = P\XY) as follows:

E:sp:c — cc; E:0:c, jd — cc; E:sp:cc — ¢; E:Q:c, s — cc;
E:Q:c,v — cc E:Q:cc, s — ¢, E:Q:cc,v — ¢
E:Q:sp — s, v; E:spis — v, Exspiv — s,

3040

Table 5: Summary of Normalizing Offshore

P ||P;||#gFDs |#FDs #red| #dbhits|time (ms)||D; |
P 4 3 2| 684,608 8,930,544 5,566| 2
Pyl 5 5 511,008,998 (28,845,388 22,697| 4
Py 10 5(1,369,802 (39,474,122 17,284 5
For Ry = Rp, = {jd,c,sp,cc,a1} and 31 = Zg.p, = {c —

ce, cc — ¢} we get the BCNF decomposition D of (Ry, 21) into

. R% = {c, cc} with 21 ={c — cc;cc — ¢}, and

. R% = {jd, sp, c, a1} with Zf = 0.
Hence, we obtain the gUCs é’Rll :R%:{c} and lel :Ri:{cc}, and
Zi,: P, [D1] is in BCNF. The only properties with E:P;-redundant val-
ues are countries and country_codes. These have been eliminated
by the decomposition without losing dependencies.

For Ry = Rp, = {jd,v,c,s,cc,az} and 33 = 3g.p, = {c,jd —
cc;¢,s — cc;c, v — cc;ec,s — ¢;cc,v — ¢} we obtain the BCNF
decomposition Dy of (R, X3):

. R% = {c, cc,v} with Zé ={c,v > cc;cc,v — ¢}

. R% = {c, cc, s} with Z% ={c,s > cc;cc,s — ¢}

. Rg = {c, cc, jd} with Zg ={c,jd — cc}

° Rg ={jd,s,v,c, az} with 2‘11 =0.
Hence, we get the gUCs €R§ :R%:{c,v}; t’R% :R;:{cc, v}; €R§ :Rg:{c,s};
Cgs Rl:{cc,s}; g R3:{c. jd} and 2, p,[D2] is in BCNF. While L:P;-
redundant values still occur on countries and country_codes only,
there are more sources (left-hand sides of FDs) for them compared
to P;. Correspondingly, our decomposition contains more schemata
to eliminate the redundancies and preserve more FDs.

For R3 = Rp, = {jd,sp,v,c,s,cc,az} and 23 = Xg.p, = {c —
cc;ce,— ¢;sp — S, v;8 — v;v — st we obtain the BCNF decom-
position D3 of (R3, X3):

. Ré = {c, cc} with Zé ={c > cc;ecc — ¢}
. R% = {sp, s} with Z% ={sp — s}

. Rg = {sp, v} with Eg ={sp — v}

. Rg = {s,v} wich‘é ={s > v;v > s}

. Rg = {jd, sp, ¢, a3} with 2‘31. =0.

Hence, we obtain the gUCs KR% :Ré:{c}; KR; :R;:{cc}; €R§ :R%:{sp};
Cro:R3:(sp}s CpeR3:{s): Cgu:R:{v} and 3, [Ds] is in BCNF.
Given P; U Py, the additional sources for E:P2-redundancy in coun-
tries and country_codes become obsolete again, but new schemata
are required to eliminate new E:P; U Py-redundant values on sour-
celD and valid_until, and preserve all FDs.

We then used Cypher to compute, for i = 1, 2,3, the Entity:P;-
decomposition ng tity:P; [D;] of graph G (Offshore). The results are
summarized in Table 5. For each property set P; we show its size
|P;|, the number #gFDs of gFDs Entity:P":X — Y € 3 such that
P’ C P;, the number #FDs in a cover of 3. Entity-P;» the number #red
of distinct redundant value occurrences in G caused by the gFDs, the

number #dbhits of database hits for computing G'én tity:P; [D;], the
Gt

Entity:P; [D;], and the size |D;| of decomposition
Ll

D;. Figure 7 illustrates that the graph normalization query uses its

access and time effectively to eliminate redundant property value

time to compute

60

h] %)
= c
T
c > ®
y: 20
a o L*
0.5 1.5
Millions

Redundancy Eliminated

Figure 7: Good Riddance

Coller German SGSB
Investors GmbH, Company
&Co.KG Limited
‘Samnia Yachts M::::L
Shen S
GREENVIEW
INTER-
NATIONAL
(a) Original Snippet (b) Normalized Snippet

Figure 8: Illustration how redundant property values in an
Offshore snippet are eliminated by normalization

occurrences. Finally, Figure 8 shows a glimpse into the effect of
normalizing Offshore into L:P;-BCNF. The figure illustrates how
redundant values on the property countries are eliminated on some
nodes. In fact, the number of outgoing edges indicate for each new
node (in blue) how many redundant occurrences of the countries-
value have been eliminated by it.

7.6 How does integrity management improve?

We will now quantify the benefits of graph normalization by com-
paring update performance between the original and normalized
graph for gFDs L : P : X — Y as follows:
For Offshore: L = {E}, P = {sp, s, v}, X = {sp}, Y = {s, v}
For Northwind: L {O(rder)}, P {customerID(cI), shipCity(sC),
shipName(sN), shipPostalCode(sP), shipCountry(sCo), shipAddress(sA),
shipRegion(sR)}, X = {cI}, Y = {sC, sN, sP, sCo, sA, sR}.

We applied the following update on the original Offshore graph:

MATCH (e : Entity) WHERE EXISTS(e.service_provider) AND EXISTS(e.sourceID)
AND EXISTS(e.valid until) AND e.service_provider = ‘Appleby’
SET e.valid until = ‘Appleby data is current through 2015

and the following update on the original Northwind graph:

MATCH (o : Order) WHERE EXISTS(o.customerID) AND EXISTS(o.shipCity) AND
EXISTS(0.shipName) AND EXISTS(o.shipPostalCode) AND EXISTS(o.shipCountry)
AND EXISTS(o.shipAddress) AND EXISTS(o.shipRegion) AND

o.customerID = ‘CENTC’ SET o.shipCountry = ‘Estados Unidos Mexicanos’ .

The queries were run using values for sevice_provider and cus-
tomerID with the min, avg, and max number of redundant occur-
rences. We then performed these updates on the graphs normalized
by the gFDs above, compared the number of database hits, and the
runtime. We also performed the operations using an index for Vi,
on the property X. The different results can be seen in Figure 9.

3041

10000000 2400045 2095023

640903
1000000 5570
100000
10000
1000
100 15 15

10 1 1

1

Update (max)

2022649

Database Hits (log scaled)

Update (avg)
w original without index
normalized without index

m original with index
m normalized with index

(a) Offshore - db hits

78409
15
1

Update (min)

10000 2617

288
136,
16

Update (avg)

2925 2505

1000

466
288
100
16
; I
1

Update (max)

288

16 16

Update (min)

-

Database Hits (log scaled)

u original without index m original with index

normalized without index m normalized with index

(b) Northwind - db hits

redundancy redundanc
data (index) max avg min data (index) | max avg min
orig, no | 806 (36905) | 699 (10114) | 650 (4244) orig, no | 1.5 (135) | 0.9 (122) | 0.9 (118)
orig, yes 404 100 38 orig, yes 0.4 0.3 0.2
norm, no 0.2 (1,001) norm, no 0.4 (98)
norm, yes 0.2 norm, yes 0.2

(c) Offshore - times in ms
on Neo4j (Neptune)

(d) Northwind - times in ms
on Neo4j (Neptune)

Figure 9: Update Comparison: Original vs. Normalized

10000000

3601053
1000000
100000

1720431
10000

E II T
: |

100000
12451 10791
10000
1429 1254

1000

1000 100
10

10

Database Hits (log scaled)
Database Hits (log scaled)

1

Aggregation query Aggregation query

m original without index m original with index m original without index m original with index

normalized without index m normalized with index normalized without index m normalized with index

(a) Offshore - db hits (b) Northwind - db hits

data/index | without index | with index data/index | without index | with index
original | 679 (9253) 414 original 3 (128) 2.9
normalized | 0.3 (7022) 0.2 normalized 0.5 (113) 0.5

(c) Offshore - times in ms on
Neo4;j (Neptune)

(d) Northwind - times in ms on
Neo4j (Neptune)

Figure 10: Aggregate Queries: Original vs. Normalized

Normalization for Offshore took 6,475 ms (103,995 ms) in Neo4;j
(Neptune), and 494 ms (3769 ms) for Northwind.

Neptune queries are cloud-based, so cannot be compared to
Neo4j. Important is the runtime difference between original and
normalized graphs. Due to high redundancy in Offshore, normaliza-
tion improves update performance by multiple orders of magnitude.
On Northwind, with less redundancy, update performance still im-
proves by an order of magnitude. The benefits already apply for
normalization with a single FD. While indices result in further
optimization for database hits and runtime, these are marginal com-
pared to normalization. Normalized graphs outperform the original
graph when indexed, which is similar for queries as shown next.

7.7 How do aggregate queries improve?

Next we illustrate the benefit of speeding up aggregate queries,
using the parameters for node set V7.p from the previous section.
As typical aggregate queries, we access information on the num-
bers of orders associated with a given customerID in Northwind, and
on the numbers of entities for a given service_provider in Offshore:
MATCH (e : Entity) WHERE EXISTS(e.service_provider) AND EXISTS(e.sourcelD) AND

EXISTS(e.valid_until) WITH (e.service_provider) AS provider, COUNT(x) AS amount
RETURN min(amount), max(amount), avg(amount), and

1000000

100000

10000

1000

\

Database Hitsx 100000

ORrNWS GO N ®

100

Database Hits (log scaled)

10

1
1 2 5 10 25 50 100 250 500 1000 12 s
Scaling factor for graph order (vertex set V)

10 25 50 100 250 500 1000
Scaling factor for graph order (vertex set V)

—original ——normalized —original ——normalized

(a) Updates (b) Aggregate Queries

Figure 11: Scaling Comparison: Original vs. Normalized

MATCH (0 : Order) WHERE EXISTS(o.customerID) AND EXISTS(o.shipCity) AND
EXISTS(0.shipName) AND EXISTS(o.shipPostalCode) AND EXISTS(o.shipCountry) AND
EXISTS(0.shipAddress) AND EXISTS(o.shipRegion) WITH o.customerID AS orders,
COUNT (%) AS amount RETURN min(amount), max(amount), avg(amount) .

We compare their performance to corresponding queries on the
normalized graph. Results are shown in Figure 10, including those
after introducing an index for V7 on the property X. Normalization
improves query performance by several orders of magnitude on
Offshore, and one order of magnitude on Northwind. The index does
improve performance, but has not as big an impact as for updates.

7.8 How do the benefits of normalization scale?

We will report how graph size impacts on update and aggregate
query performance, but also on the validation of our constraints
and their features. We utilized synthetic datasets as follows.

We created graphs that consist of a node labelled Company
with edges to Employee-nodes that have properties name, depart-
ment and manager, with additional properties for some experi-
ments. Our underlying business rule says that every department
has at most one manager, resulting in the gFD ¢ = {Employee} :
{department, manager} : {department} — {manager}. For each ex-
periment, we perform a query on the same baseline graph and scale
this graph by factor k to have k times as many Employee-nodes
while keeping the number of departments fixed.

Figure 11 compares the performance of (a) updating manager
names, and (b) querying the minimum, average and maximum num-
ber of employees per department, both between the original and
normalized graph (with respect to gFD ¢), respectively. In particular,
Figure 11(a) conveys the main message that normalization scales
update performance perfectly. Indeed, access to the normalized
graph using gUCs remains constant while access to the original
graph using gFDs keeps on growing. For aggregate queries the
performance improvement is also very noticeable.

Figure 12(a) underlines the perfect scalability of validating gUCs
resulting from gFD ¢ on the normalized graph in contrast to grow-
ing access necessary for validating ¢ on the original graph. From
(b) it can be seen how validation performance scales with the ratio
of nodes that have all properties in P. From (c) we observe how
validation performance scales in the size of the underlying property
set P. Indeed, Pi contains i + 1 properties. Finally, (d) shows how
validation of ¢ scales in the node selectivity of labels in ¢. Indeed,
the database hits required are directly proportional to the number
of nodes with the given label set present.

3042

~

5

10000

N

0

=
S

Database Hits x 100000
&

Database Hits (log scaled)

100 1 2 5 10 25 50 100 250 500 1000
Scaling factor for graph order (vertex set V)

1 2 10 25 50
Scaling factor for graph order (vertex set V)

——gFD (original) gUC (normalized) —1/5 —2/5 3/5 ——4/5 —1

(a) gFDs vs gUCs (b) Ratio of P-complete Nodes

N
]

g
£ 14

Database Hits x 100000
BoR N
w &8 & 8

o

1 2 5 10 25 50 100 250 500 1000

Scaling factor for graph order (vertex set V)

1 2 5 10 25 50 100 250 500 1000
Scaling factor for graph order (vertex set V)

—p2 P3 —pat —_—l1 —L2 13

(c) Size of P (d) Node-selectivity of L

Figure 12: Validation at Scale

8 CONCLUSION AND FUTURE WORK

Our research is the first to address the challenging area of nor-
malizing property graphs. Challenges include the unavailability
of a schema, the desire to customize normalization of property
graphs to flexible requirements of applications, the robustness of
normalization under different interpretations of missing properties,
the abilities to express and eliminate many redundant property
values, and to transfer achievements of BCNF and 3NF from rela-
tional databases to property graphs. Indeed, we have turned these
challenges into an opportunity by enabling our class of graph-
tailored functional dependencies to express application-specific
requirements for node labels and properties; plus specifying their
semantics to be robust under different interpretations of missing
property values. Having created this opportunity, we have then
transferred comprehensive achievements from relational databases
to property graphs, including BCNF, 3NF, and the State-of-the-Art
algorithm that returns a lossless, dependency-preserving BCNF de-
composition whenever possible. Our experiments with real-world
graph data illustrate how our constraints capture many redundant
property value occurrences and potential inconsistency, and how
our algorithms transform graphs to eliminate/minimize them. Our
experiments have further demonstrated the efficacy of property
graph normalization. Indeed, the reduction of overheads for update
maintenance and the speed up of aggregate queries by orders of
magnitude, and the effort required to normalize the property graph
are all proportional to the amount of redundancy removed.

In future work, we will address other classes of constraints and
normal forms. We will also initiate research on conditional normal-
ization, employing conditional versions of constraints [16] to graph
normalization. Finally, we will address data-driven normalization
by combining dependency discovery [17, 20, 36, 44-46, 49] with
graph normalization.

REFERENCES

(1]

s

[10]
(1]

[12

[13]

[14

[15]

=
&

[17]

[18

[19]

[20]

[21]
[22

[23]

[24]

[25]

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip
Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan Sequeda,
Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi
Wu, and Dusan Zivkovic. 2023. PG-Schema: Schemas for Property Graphs. Proc.
ACM Manag. Data 1, 2 (2023), 198:1-198:25.

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In SIGMOD °21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021. 2423-2436.

Marcelo Arenas. 2006. Normalization theory for XML. SIGMOD Record 35, 4
(2006), 57-64.

William Ward Armstrong. 1974. Dependency Structures of Data Base Rela-
tionships. In Information Processing, Proceedings of the 6th IFIP Congress 1974,
Stockholm, Sweden, August 5-10, 1974. 580-583.

Carlo Batini and Andrea Maurino. 2018. Design for Data Quality. In Encyclopedia
of Database Systems, Second Edition, Ling Liu and M. Tamer Ozsu (Eds.).

Catriel Beeri and Philip A. Bernstein. 1979. Computational Problems Related to
the Design of Normal Form Relational Schemas. ACM Trans. Database Syst. 4, 1
(1979), 30-59.

Philip A. Bernstein. 1976. Synthesizing Third Normal Form Relations from
Functional Dependencies. ACM Trans. Database Syst. 1, 4 (1976), 277-298.
Joachim Biskup, Umeshwar Dayal, and Philip A. Bernstein. 1979. Synthesizing
Independent Database Schemas. In Proceedings of the 1979 ACM SIGMOD Inter-
national Conference on Management of Data, Boston, Massachusetts, USA, May 30
- June 1. 143-151.

Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.
Querying Graphs. Morgan & Claypool Publishers.

E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (1970), 377-387.

Edgar F. Codd. 1972. Further normalization of the database relational model. In
Courant Computer Science Symposia 6: Data Base Systems. 33—64.

William F. Dowling and Jean H. Gallier. 1984. Linear-Time Algorithms for Testing
the Satisfiability of Propositional Horn Formulae. J. Log. Program. 1, 3 (1984),
267-284.

Ronald Fagin. 1977. Multivalued Dependencies and a New Normal Form for
Relational Databases. ACM Trans. Database Syst. 2, 3 (1977), 262-278.

Ronald Fagin. 1981. A Normal Form for Relational Databases That Is Based on
Domains and Keys. ACM Trans. Database Syst. 6, 3 (1981), 387-415.

Wenfei Fan. 2019. Dependencies for Graphs: Challenges and Opportunities. ACM
7. Data Inf. Qual. 11, 2 (2019), 5:1-5:12.

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-
ditional functional dependencies for capturing data inconsistencies. ACM Trans.
Database Syst. 33, 2 (2008), 6:1-6:48.

Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph
Functional Dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1-15:42.
Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database
Syst. 44, 2 (2019), 5:1-5:40.

Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for
Graphs. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
1843-1857.

Miika Hannula, Zhuoxing Zhang, Bor-Kuan Song, and Sebastian Link. 2023.
Discovery of Cross Joins. IEEE Trans. Knowl. Data Eng. 35, 7 (2023), 6839-6851.
Emil Eifrem Ian Robinson, Jim Webber. 2015. Graph Databases. O’Reilly Media.
Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. 1996. Extending
Existing Dependency Theory to Temporal Databases. IEEE Trans. Knowl. Data
Eng. 8,4 (1996), 563-582.

Henning Kohler and Sebastian Link. 2016. SQL Schema Design: Foundations,
Normal Forms, and Normalization. In Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016. 267-279.

Henning Kéhler and Sebastian Link. 2018. SQL schema design: foundations,
normal forms, and normalization. Inf. Syst. 76 (2018), 88-113.

Solmaz Kolahi and Leonid Libkin. 2010. An information-theoretic analysis of
worst-case redundancy in database design. ACM Trans. Database Syst. 35, 1 (2010),

3043

)
&

)
22

'@
=

@
&,

‘%
3

&
=)

'®
i

®
=

[38

[39

[40

[41

=
)

[43

[44

[45

[46]

N
=

(48

[49

[50

5:1-5:32.

Mark Levene and George Loizou. 1999. Database Design for Incomplete Relations.
ACM Trans. Database Syst. 24, 1 (1999), 80-125.

Mark Levene and Millist Vincent. 2000. Justification for Inclusion Dependency
Normal Form. IEEE Trans. Knowl. Data Eng. 12, 2 (2000), 281-291.

Sebastian Link, Henning K6hler, Aniruddh Gandhi, Sven Hartmann, and Bernhard
Thalheim. 2023. Cardinality constraints and functional dependencies in SQL:

Taming data redundancy in logical database design. Inf. Syst. 115 (2023), 102208.
Sebastian Link and Henri Prade. 2019. Relational database schema design for

uncertain data. Inf. Syst. 84 (2019), 88-110.

Sebastian Link and Ziheng Wei. 2021. Logical Schema Design that Quantifies
Update Inefficiency and Join Efficiency. In SIGMOD °21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021. 1169-1181.
Heikki Mannila and Kari-Jouko Réihé. 1992. Design of Relational Databases.
Addison-Wesley.

Stephan Mennicke. 2019. Modal Schema Graphs for Graph Databases. In Concep-
tual Modeling - 38th International Conference, ER 2019, Salvador, Brazil, November
4-7, 2019, Proceedings. 498-512.

Wai Yin Mok. 2016. Utilizing Nested Normal Form to Design Redundancy Free
JSON Schemas. Int. J. Recent Contributions Eng. Sci. IT 4, 4 (2016), 21-25.

Wai Yin Mok, Yiu-Kai Ng, and David W. Embley. 1996. A Normal Form for
Precisely Characterizing Redundancy in Nested Relations. ACM Trans. Database
Syst. 21, 1 (1996), 77-106.

Sylvia L. Osborn. 1979. Testing for Existence of a Covering Boyce-Codd normal
Form. Inf. Process. Lett. 8, 1 (1979), 11-14.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schénberg, Jakob Zwiener, and Felix Naumann. 2015. Functional
Dependency Discovery: An Experimental Evaluation of Seven Algorithms. Proc.
VLDB Endow. 8, 10 (2015), 1082-1093.

Larissa Capobianco Shimomura, George Fletcher, and Nikolay Yakovets. 2020.
GGDs: Graph Generating Dependencies. In CIKM °20: The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020. 2217-2220.

Philipp Skavantzos, Uwe Leck, Kaiqi Zhao, and Sebastian Link. 2023. Uniqueness
Constraints for Object Stores. ACM J. Data Inf. Qual. 15, 2 (2023), 13.1-13.29.
Philipp Skavantzos, Kaiqi Zhao, and Sebastian Link. 2021. Uniqueness Con-
straints on Property Graphs. In Advanced Information Systems Engineering - 33rd
International Conference, CAISE 2021, Melbourne, VIC, Australia, June 28 - July 2,
2021, Proceedings. 280-295.

Zahir Tari, John Stokes, and Stefano Spaccapietra. 1997. Object Normal Forms and
Dependency Constraints for Object-Oriented Schemata. ACM Trans. Database
Syst. 22, 4 (1997), 513-569.

Millist Vincent. 1997. A Corrected 5NF Definition for Relational Database Design.
Theor. Comput. Sci. 185, 2 (1997), 379-391.

Millist Vincent and Mark Levene. 2000. Restructuring Partitioned Normal Form
Relations without Information Loss. SIAM J. Comput. 29, 5 (2000), 1550-1567.
Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. 2014. Model-
Driven Design of Graph Databases. In Conceptual Modeling - 33rd International
Conference, ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings. 172-185.
Ziheng Wei, Sven Hartmann, and Sebastian Link. 2020. Discovery Algorithms
for Embedded Functional Dependencies. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. 833-843.

Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the
discovery of embedded functional dependencies. VLDB J. 30, 6 (2021), 1069—
1093.

Ziheng Wei, Uwe Leck, and Sebastian Link. 2019. Discovery and Ranking of
Embedded Uniqueness Constraints. Proc. VLDB Endow. 12, 13 (2019), 2339-2352.
Ziheng Wei and Sebastian Link. 2019. Embedded Functional Dependencies and
Data-completeness Tailored Database Design. Proc. VLDB Endow. 12, 11 (2019),
1458-1470.

Ziheng Wei and Sebastian Link. 2021. Embedded Functional Dependencies and
Data-completeness Tailored Database Design. ACM Trans. Database Syst. 46, 2
(2021), 7:1-7:46.

Ziheng Wei and Sebastian Link. 2023. Towards the efficient discovery of mean-
ingful functional dependencies. Inf. Syst. 116 (2023), 102224.

Zhuoxing Zhang, Wu Chen, and Sebastian Link. 2023. Composite Object Normal
Forms: Parameterizing Boyce-Codd Normal Form by the Number of Minimal
Keys. Proc. ACM Manag. Data 1, 1 (2023), 13:1-13:25.

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Previous Work
	4 Guide for Concepts and Notation
	5 Graph-Tailored Constraints
	6 Normalization Framework
	6.1 Reasoning
	6.2 Normal Forms for Property Graphs
	6.3 Achievements of Normal Forms
	6.4 Normalizing Property Graphs

	7 Experiments
	7.1 Data Sets and Measures
	7.2 What gFDs do graphs exhibit?
	7.3 What gFDs cause much data redundancy?
	7.4 How much inconsistency can gFDs avoid?
	7.5 What does graph normalization look like?
	7.6 How does integrity management improve?
	7.7 How do aggregate queries improve?
	7.8 How do the benefits of normalization scale?

	8 Conclusion and Future Work
	References

