
Asymptotically BetterQuery Optimization Using Indexed Algebra
Philipp Fent

Technische Universität München
fent@in.tum.de

Guido Moerkotte
Universität Mannheim

moerkotte@uni-mannheim.de

Thomas Neumann
Technische Universität München

neumann@in.tum.de

ABSTRACT
Query optimization is essential for the efficient execution of queries.
The necessary analysis, if we can and should apply optimizations
and transform the query plan, is already challenging. Traditional
techniques focus on the availability of columns at individual oper-
ators, which does not scale for analysis of data flow through the
query. Tracking available columns per operator takes quadratic
space, which can result in multi-second optimization time for deep
algebra trees. Instead, we need to re-think the naïve algebra repre-
sentation to efficiently support data flow analysis.

In this paper, we introduce Indexed Algebra, a novel representa-
tion of relational algebra that makes common optimization tasks
efficient. Indexed Algebra enables efficient reasoning with an auxil-
iary index structure based on link/cut trees that support dynamic
updates and queries in 𝑂 (log𝑛). This approach not only improves
the asymptotic complexity, but also allows elegant and concise for-
mulations for the data flow questions needed for query optimization.
While large queries see theoretically unbounded improvements,
Indexed Algebra also improves optimization time of the relatively
harmless queries of TPC-H and TPC-DS by more than 1.8×.

PVLDB Reference Format:
Philipp Fent, Guido Moerkotte, and Thomas Neumann. Asymptotically
Better Query Optimization Using Indexed Algebra. PVLDB, 16(11): 3018 -
3030, 2023.
doi:10.14778/3611479.3611505

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tum-db/indexed-algebra.

1 INTRODUCTION
Optimizing the algebra plan of a query can take a significant por-
tion of the overall runtime. The challenge for the optimizer here
is that the data flow through the query, and its analysis can be as-
tonishingly complex. Additionally, automatically generated queries
with complex business logic amplify this problem [5, 18, 19, 37].
Query optimizers struggle to deal with such complex input, which
is especially painful for small datasets where query optimization
can be more expensive than query execution. Small data sizes are
common during testing, but also in the real world, where, for ex-
ample, Tableau reports that many workloads contain fewer than a
million tuples [39]. As a result, query optimization usually operates
on a budget, trading-off optimizations versus optimization time.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611505

A B

Γ

σ

C

A.y=C.y

A.x=B.x C.y;SUM(C.v)

A.z=C.z

Figure 1: Relation algebra tree with subtle data flow. In this
paper, we optimize queries by efficiently analyzing data flow.

Some typical questions that come up during query optimization
are: From which part of the plan does a value come from? What are
the join predicates? Can we push a predicate down into the inputs?
Consider for example the SQL query below:
SELECT *

FROM A, B, C LEFT OUTER JOIN D ON C.u = D.u

WHERE A.v = 5 AND A.w = B.w AND B.x = C.x

AND C.y = 7 AND D.z = 8

In this small example it is easy to see which attributes form join
edges ({u, w, x}), which filters can be pushed down ({v, y}), and which
not directly ({z}). In general, these questions are difficult because
the FROM clause can contain arbitrary subqueries. The traditional
solution to this problem is to keep track of the columns that are
available in each step of the query in a set [9, 10] and to move
predicates around step by step, checking the available columns in
each transformation. But if we have a join tree of depth 𝑛, where
each join produces at least one column, the construction time for
these column sets grows with Ω(𝑛2), which is highly unattractive
for large queries.

Even if we ignore the performance problems, this myopic look
at individual operators is insufficient to express optimizations effi-
ciently. In many cases we want to inspect the full data flow instead.
Consider the small algebra tree shown in Figure 1. The top-most
join predicate in this tree compares an attribute from its left input
(A.y) with an attribute from its right input (C.y). While this data
flow direction might be easy to see for such a small example, it is
non-obvious when there are dozens of operators between the base
tables and the predicate. And note that the example tree contains a
non-trivial data flow that is not obvious at a first glance: The selec-
tion operator on the lower right uses an attribute that is produced
in a different part of the operator tree, which effectively makes
the top-most operator a dependent join. Evaluating such a join is
highly inefficient, since it requires a nested loop join execution.
The query optimizer has to detect these dependent joins and can
then rewrite the query to remove the correlation between parts of
the join tree [27]. While we can detect these dependent joins by

3018

https://doi.org/10.14778/3611479.3611505
https://github.com/tum-db/indexed-algebra
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611505
https://www.acm.org/publications/policies/artifact-review-and-badging-current

reasoning over the columns available after each operator, this again
leads to highly unattractive quadratic (or even cubic) algorithms.

What we need instead is a framework to reason about complex
data flows without inspecting individual operators. For example,
we want to be able to correctly push down a predicate deep into
a query tree in one holistic operation, skipping all intermediate
operators, andwewant to detect dependent joinswithout traversing
the operator tree. This not only makes query optimization more
efficient from an asymptotic perspective, it also makes the optimizer
more pleasant to write, as we can ask data flow questions about the
query itself instead of traversing the operator tree all the time.

In this paper we show how to answer these data flow questions
that arise during query optimization with an Indexed Algebra. To
avoid the frequent tree traversals, we maintain an auxiliary index
of the algebraic query representation. This index answers data flow
questions in 𝑂 (log𝑛) time and supports efficient query transfor-
mation. We implement this index structure as a link/cut tree [35]
that builds a balanced search structure for the paths through our
algebra. Using our Indexed Algebra to answer the data flow ques-
tions during query optimization is dramatically more efficient than
traditional approaches, while additionally leading to concise and
elegant formulations of optimization rules.

Indexed Algebra has the biggest advantage for complex queries,
but also improves relatively harmless queries like the ones from
TPC-H. Before developing Indexed Algebra, our research system
Umbra [26] spent a significant time reasoning over columns. For
example, in the intricate nested TPC-HQ2, which our system parses
as 21 operators, Umbra spent more than 20% of the optimization
time in naïve implementations answering data flow questions. In-
dexed Algebra helps to significantly improve this, while helping
even more for complex queries.

The rest of this paper is structured as follows: We first discuss
the algebraic representation of queries and common operations
on the algebra in Section 2. We then introduce the idea of index-
ing paths through the algebra in Section 3, and how to efficiently
support dynamic updates to that index. Then, we propose several
optimizations using Indexed Algebra in Section 4. Furthermore, we
discuss other techniques like property caching in Section 5. The
benefits of these techniques are demonstrated in Section 6, and
related work is discussed in Section 7.

2 QUERY REPRESENTATION
In this section, we introduce an algebraic representation that repre-
sents a query execution plan. We first discuss the general compo-
nents of this algebra, before we show how we navigate and reason
about this algebra.

2.1 Algebra: Operators, Expressions, and IUs
Operators. Like most relational systems, we represent a query in
some form of extended relational algebra. Operators like joins ,
selections 𝜎 , group by Γ, or table scans, make up the base structure
of the algebra. The operators process a multiset of tuples from
one or several inputs that have a clear parent-child relationship,
where data conceptually flows from children inputs to the parent
outputs. For now, we assume that an operator outputs its tuples to
a single output operator, so that the query forms a tree of operators.

A B

Γ

σ

C

A.y=C.y

A.x=B.x C.y;SUM(C.v)

A.z=C.z

IUs {x,y,z} IUs {x}

IUs {y,z,v}
Operator Connections
Source Operator
IU Consumers

Figure 2: Our algebra representation interlinks operators,
expressions, and IUs to allow efficient navigation.

We generalize this operator tree to a DAG in Section 5.3, and first
concentrate on simpler tree structured queries.
Expressions.Attached to the operators are expressions that process
scalar values instead of tuples, e.g., individual columns. Like opera-
tors, expressions are tree structured and can be arbitrary nested,
however, the expression tree in anchored at exactly one operator. In
contrast to relational operators, expressions are wide spread in gen-
eral purpose programming languages, that also deal with reasoning
and optimization of expressions. In Section 5.1, we detail relational
algebra specific implementations that deal with expressions.
IUs. While our expressions consist of e.g., comparisons, arithmetic
or constants, a relational algebra expression can also reference
columns of data in relations. This way, an operator can execute, e.g.,
𝑥 > 42 as a filter, or 𝑥 = 𝑦 as a join predicate. In our algebra, we
generalize the notion of a column to an information unit (IU) [20].
IUs describe scalar values that can be referenced multiple times,
e.g., as a cached expression for common subexpression elimination
to avoid repeated computation.

IUs represent the data flow through a query. An IU has a single
source operator, typically a table scan, that produces the values.
Other operators then pass IUs through the algebra until they reach
the consuming expressions. This makes IUs a key part of logical
query planning, where we initially do not consider physical imple-
mentation details, like if an IU is pipelined and passed through a
register or materialized in a hash table. Query optimization then
brings the data flow of IUs in a form that is efficient to execute.

2.2 Efficiently Navigating Algebra
The relational algebra uses these components of operators, expres-
sions, and IUs. While this is already enough to model and execute
queries, optimizing this algebra is more complex. Simple analyses
can be operator-local, e.g., to reorder predicates or to fold constant
expressions. However, most optimizations require a structural anal-
ysis of the data flow through the relational algebra. For example, to
drop unused IUs, we need to know which expressions, if any, use
them. Likewise, to move around select 𝜎 or map 𝜒 operators, we
need to consider the source of any consumed IU.

For these analyses, we set up explicit links between the compo-
nents of our algebra that allow to navigate it efficiently. In Figure 2,
we visualize these links as dotted arrows between the components
in the example algebra tree of the introduction. Operators are con-
nected via their parent-child relationships, which allow traversing
the algebra tree. Expressions also have hierarchical links and are

3019

σA.c=42

A
∈ lef

t?
A ∈

right?

(a) Operator-centric

σA.c=42

A
(b) Path-centric

Figure 3: Traditional predicate pushdown traverses the query
tree operator by operator. Path-centric optimization can take
a shortcut to the IU’s source, but still needs to check if the
path is sound, or if it contains e.g., an outer join.

additionally connected to their using operator, e.g., the top most
comparison A.y = C.y is linked to its join , which transitively
applies to the IU references in the expression. Similarly, IUs are
linked to their source operator and are additionally connected to
all references of that IU throughout the algebra.

With this setup of links, we can now traverse the tree to build
reasoning grounds for optimizations. However, traversing this tree
for each analysis, each optimization, each transformation, and each
operator seems costly. Therefore, we want to build data structures
that allow us to avoid duplicate traversal.

2.3 Reasoning about Column Sets
A traditional technique to reason about the query structure are
column sets. For this method, we say that an operator produces a
set of IUs, and an expression consumes a set of IUs for evaluation.
This way, we can implement all kinds of optimizations, e.g., pushing
predicates down a join, where we need to determine, which of the
joins inputs produces the required IUs of the predicate.

Computing the required IUs of an operator also requires travers-
ing the query tree. We can limit the algebra traversals by caching
the produced IUs per operator, which allows us to calculate all
sets in a single pass over the algebra. Unfortunately, we now use
dynamic memory per operator to cache the column sets. For an
algebra tree of 𝑛 operators, we also need to cache 𝑛 column sets.
For most queries, the size of the set of produced IUs also grows,
since regular joins produce the union of their input columns, which
makes the size of these sets in𝑂 (𝑛). Consequently, our cache stores
𝑛 ·𝑂 (𝑛) = 𝑂 (𝑛2) produced IUs.

While reasoning about column sets is quite efficient, building the
column sets is already expensive. This caching cost is additionally
amplified by wide tables containing dozens of IUs. Also, column sets
lead to complex code since transformations of the algebra might
need to invalidate the cached column sets, potentially triggering a
quadratic recalculation. As we will see in the evaluation in Section 6,
the maintenance of these sets is too expensive to be worthwhile.

2.4 Reasoning by Path Traversal
We argue that instead of reasoning about column sets, we should
reason about the paths that IUs take through the algebra. Another
way to look at these optimizations is if we argue locally for each
operator (i.e., with column sets), or if we argue about the whole
algebra tree. Figure 3 contrasts these two approaches for predicate
push down. In the operator-centric approach, we reason from the

perspective of a join, where we can either push the predicate to its
left or right inputs. On the other side, in path-centric reasoning, we
use the link between IU reference and the producing operator to
directly get to the IU source. Then, we traverse the algebra bottom-
up to get the push down path and to detect operators like outer
joins, through which we cannot directly push predicates.

For path-centric reasoning, we identify two common basic op-
erations: Finding the root of an operator tree and intersecting data
flows by finding the lowest common ancestor. We can find the root
of an operator tree by traversing tree bottom up, which allows, e.g.,
to find the (sub)tree that contains the source of an IU. The lowest
common ancestor of two operators is the place where the two paths
from these operators to the root intersect, and is useful, e.g., as the
earliest possible place to evaluate an expression consuming data
from two IU sources. Based on these operations, one can implement
many optimizations, which we discuss in Section 4.

The main advantage of this path-centric reasoning is that it
requires no dynamic per operator state. Avoiding this state entirely
avoids the quadratic space requirements, and additionally simplifies
the transformation logic, since it no longer needs to invalidate
the column set caches. Still, deep query trees are a problem. The
tree traversal for each analysis still can lead to quadratic runtime.
Nevertheless, we found that it is still more efficient than building
column sets.

While better than column sets, walking the raw algebra tree is
still quite naïve. In the following, we propose Indexed Algebra to
make path-centric queries efficient. Our index structure maintains a
balanced path structure to make traversal fast, while amortizing the
balancing of the index during algebra transformations. In effect, we
get the simplicity of path traversal with the analysis performance
of set operations.

3 INDEXING THE ALGEBRA
To make query optimization analysis with path traversal efficient,
Indexed Algebra uses an embedded index structure that makes di-
rect traversal unnecessary. To build this index, we first start with
the simpler problem of indexing static algebra trees in this sec-
tion, before we generalize our Indexed Algebra to support dynamic
updates with link/cut trees.

3.1 Simple Tree Indexes
For the path queries that we want to support efficiently, simple path
traversals are only suitable for basic optimization. Consider, for
example, again predicate push down. Placing predicates that use a
single IU requires only traversing a single path through the algebra.
However, if the predicate uses multiple IUs, i.e., it is actually a
join condition, finding the appropriate place in the tree is more
challenging. For this case, we need to determine the operator where
all paths from IU sources converge, i.e., we need to find the lowest
common ancestor (LCA) of the involved IUs.

To answer such queries efficiently, Indexed Algebra builds bal-
anced binary search trees for paths through the relational algebra.
These auxiliary search trees are keyed by the distance to the root
of the algebra tree. The balance significantly shortens the 𝑂 (𝑛)
path from a base relation to the root. Figure 4 shows an example
of such an algebra tree with the distance to the root annotated as

3020

σ0

χ1

2

3 3

A4 σ4

Γ5

B6

C4 Γ4

D5

(a) Represented algebra plan

3

χ1

σ02

Γ5

σ4B6

up
down

(b) Balanced binary index of
the path from B6 to the root

3

χ1

σ02

Γ4

D5

(c) Index from D5 to the root

Figure 4: A binary search tree keyed on the distance to the
root (annotated in superscript) allows efficient path queries
on static algebra trees.

superscript. Consider the 𝑂 (𝑛) path from 𝜎0 to B6, marked on the
left side of Figure 4a. Figure 4b shows the 𝑂 (log𝑛) balanced index
that allows to take a shortcut to traverse the path.

As an example analysis, assume that the predicate 𝜎0 references
a column of B and a column of D. To place this predicate, the query
optimizer now needs to answer the path-query to find the LCA of B
and D. We can find this join by traversing the search trees of both B
and D upwards until we reach a common operator. In our example
in Figure 4b and 4c, we traverse to parent nodes until we reach the
root node of the auxiliary tree, then follow right up child pointers
until we find the subtree of common ancestors rooted at 𝜒1. Since
this subtree contains multiple nodes, but we want to find the lowest
common ancestor, we still need to find the lowest operator in this
subtree. By following the left down child pointers of 𝜒1, we find 2

as the LCA of A and D.
With the help of these indexes, we can now reason efficiently

without explicitly traversing the algebra plan, and also answer more
complex path queries. Since we only traverse balanced auxiliary
plans, the complexity of these improves from linear to logarithmic,
and we can find the LCA in 𝑂 (log𝑛) [12]. Still, building these
indexes is potentially expensive. Since we build an index from each
leaf operator to the root, we again end up with quadratic complexity.

3.2 Path Labeling
Another well known technique to index hierarchical data are la-
beling schemes, e.g., pre/post encoding [11] or OrdPath [29]. In
OrdPath, we label each node with its path from the root, with a spe-
cial labeling algorithm that allows insertions without the need to
relabel other nodes. Using these path labels, queries are efficient, i.e.,
we can answer most queries in 𝑂 (1), and LCA queries in 𝑂 (log𝑛).

However, the OrdPath scheme was originally developed for XML
queries, which need to preserve document order. For relational
algebra, we can relax this and label nodes not with ordinals, but
with pointers, which makes accessing nodes referenced in the path
more efficient. The fundamental downside of this approach is that
relocating awhole subtree requires a relabeling of thewhole subtree.
As an example, when we push down a predicate from the root of
the tree to a table scan, we need to update the OrdPath labels of all
operators on this path to remove the predicate. Unfortunately, this
means that the complexity for algebra transformations is 𝑂 (𝑛).

Table 1: Complexity of operations on relational algebra.

Rel. Algebra Transformation Traversal
w/o index O(1) O(𝑛)
static index O(𝑛) O(log𝑛)
path labeling O(𝑛) O(1)
Indexed Algebra O(log𝑛) O(log𝑛)

σ0

χ1

2

3 3

A4 σ4

Γ5

B6

C4 Γ4

D5

parent

Figure 5: Partial path indexes of Figure 4. Link/cut trees build
dynamically balanced splay trees over paths through the
algebra and connect subtrees via path-parent pointers.

3.3 Link/Cut Trees
Static algebra indexes have the problem of efficient updates of the in-
dexed algebra. While they allow efficient traversal over the algebra
for queries, transforming and building the tree is now significantly
more costly than in the raw algebra without an index. We now
improve the transformation by using the amortization technique
of link/cut trees proposed by Sleator and Tarjan [35, 36]. Table 1
summarizes the complexity of these different approaches to rea-
son about relational algebra. While not indexing allows efficient
transformations, traversing the algebra is expensive. Static indexes
improve the traversal, but make updates costly. With Indexed Alge-
bra, we achieve both logarithmic updates and traversal.

On a high level, link/cut trees do not maintain balanced indexes
for all paths from leafs to the algebra root, but build them dynam-
ically when needed. They do this by maintaining splay trees for
(partial) paths, which are connected by path-parent pointers. We
show an example in Figure 5, where only the path from B6 has
a complete splay index to the root. When we want to operate on
another path, e.g., from D5, we first need to transform the path-
parent parent edge to a balanced edge.

Implementing a link/cut tree is relatively little effort, e.g., a public
implementation of Sleator fits in about 100 lines of code [34]. In this
implementation, efficient link operations connect two trees, and
cut operations split a subtree from its parent. During all operations,
the link/cut tree keeps the accessed path roughly balanced. The
operation that enables the simple implementation of the other
function is expose. Exposing a node brings its path to the root in
a form that is suitable for queries, and keeps the nodes balanced
enough for amortized logarithmic behavior by organizing them in
a self-balancing splay tree [36].

3.4 Efficient Operations using the Link/Cut Tree
Operations on the link/cut tree work similar as with static index
trees, except for the additional expose operations. In the following,

3021

we describe the core path traversal operations that we use for
algebra optimization.
Find Root: Finding the root of an algebra tree is useful to detect if
two operators are in the same tree, or if they are separated, e.g., by
a common table expression. Additionally, we also use it during join
ordering to detect if subtrees are already connected via a transitive
join edge. Finding the root requires a path index to the root, i.e.,
exposing that node. With an exposed operator, its path index is
fully connected to the root and roughly balanced. Finding the root
of the algebra tree now means following upwards index pointers.
Since these are organized via a balanced index, this operation is
efficient and reaching the root takes 𝑂 (log𝑛) steps.
Lowest Common Ancestor: Finding the lowest common ances-
tor lca(A, B) in the link cut tree differs from static indexes. We
first expose A, which connects its path to the root. This path now
necessarily also contains the LCA. Then, we also expose B, now
connecting B’s path to the root. The lowest intersection of these
paths then mark the LCA.
Path Aggregates: Finally, one advanced technique allows to ef-
ficiently answer queries about the paths between operators in a
tree [15]. The idea here is to maintain the answers for calculations
over a path in the index as path aggregates, where we calculate the
aggregate from left and right index tree aggregates. This adds a
constant maintenance overhead to the balancing during expose,
but amortizes path queries over expose operations, which allows
answering queries about a path of length 𝑛 in O(log𝑛) time.

One example of a useful path aggregate is determining if a path
between two operators contains an outer join . Since outer joins
make IUs nullable, it depends on if the data flow to a consumer
crosses an outer join, if the column is actually nullable or not.
Figure 6a shows the already familiar indexing example, where the
left join 3 now has left outer semantics. This outer join 3 now
marks its right, potentially nullable, child 𝜎4, indicating that IUs
passing both, the child and the join, can be null due to a missing join
partner. In the balanced path index in Figure 6b, we propagate this
marker, marking a node when either of its children has a marker.
Transitively, the marker at the root of the path index then indicates
an outer join somewhere on the path from B6 to 𝜎0. With a slight
tweak, i.e., storing pointers instead of markers, we can also quickly
determine the causing outer join. Similarly, we can also determine
the lowest or highest outer join when we preferably propagate the
outer join pointer from either the upwards or downwards direction.

With these three base operations, we can implement a plethora of
useful optimizations. Since these operations take only logarithmic
amortized time, these optimizations are also very effective. In the
following, we describe how we apply these operations for query
optimization, and how this makes the optimizations effective.

4 APPLICATIONS IN QUERY OPTIMIZATION
Indexed algebra not only enables efficient operations on relational
algebra, but also allows elegant formulations of many query opti-
mization techniques. Since our indexes ensure amortized 𝑂 (log𝑛)
operations, we can formulate many optimizations that consider
each operator individually without risking quadratic runtime. In
the following, we discuss some query optimization problems, and
how Indexed Algebra helps to efficiently apply them. This ties

σ0

χ1

2

3 3

A4 σ4

Γ5

B6

C4 Γ4

D5

✓

nullable

(a) Outer joinsmark their children
as nullable.

3

χ1

σ02

Γ5

σ4B6 ✓

✓

✓

propagate

(b) Path indexes propagate nul-
lable markers.

Figure 6: Algebra indexes efficiently determine if a path con-
tains an outer join by propagating a marker through the
balanced auxiliary tree.

together the connections between operators and expressions of
Section 2 with the indexing approach of Section 3. We start with
simple, yet effective optimization techniques using path traversals
and LCA queries, before we demonstrate the versatility of path
aggregates.

4.1 Determining Join Graph Edges
Join ordering algorithms to find the optimal execution order of joins
usually operate on a join graph [28]. To construct this graph, we
collect all subtrees (e.g., nested operators like group-by Γ, or base
relations) that are connected via joins as graph nodes. In addition,
we also collect all join conditions from join nodes or selections 𝜎 .
To determine the edges of this join graph, we need match to match
the consumed IUs in the conditions to nodes in the graph. The
difficulty here is that IUs in the join condition might have their
source arbitrary deep in a nested operator of the graph’s leaf nodes.

To avoid building explicit column sets for each node of the join
graph, we use the efficient findRoot operation of our Indexed Al-
gebra. Algorithm 1 formulates the base construction of this join
graph. Note, that the following algorithms rely on the connections
between expressions, IUs, and their source and consuming opera-
tors, as introduced in Section 2.2.

Algorithm 1: Determining join graph edges with Indexed
Algebra.
nodes ≔ The joined subtrees
for R ∈ nodes do

// Split up the join edges between subtrees
cut(R)

end
// Collect the join edges
edges = ∅
for (IUref(a), IUref(b)) ∈ conditions do

edges += (findRoot(a.source), findRoot(b.source))
end
. . .
// After join ordering, rebuild tree with link()

In this algorithm, we first cut the joined subtrees from the overall
algebra tree. This effectively makes each leaf node of the join graph
a separate tree with a distinct root node. When we now consider

3022

each condition, we identify each consumed IU of that expression.
From these IUs, we can determine its source operator, which needs
to be in one of the subtrees that make up the nodes of our join
graph. The findRoot() operation now finds precisely these nodes.
Subsequently, for each pair of referenced IUs within the conditions,
we can add a join edge between the nodes we find this way.

During this join graph construction, the Indexed Algebra is im-
plicitly maintained by link, cut, and findRoot operations. This
allows us to efficiently constructs the join graph, even for complex
input subtrees.

4.2 Detecting Dependent Joins
As already discussed in Section 1, detecting and eliminating depen-
dent joins is one of the most important query optimization steps.
Our algorithm to efficiently construct the join graph also relied
on the absence of dependent join attributes. However, recognizing
dependent joins is not trivial and needs some data flow analysis.

To recognize dependent IU references, we need to detect the
situation where a consumed IU’s source is not in the input relations
of the operator containing that reference (e.g., the A.z in Figure 1). A
possible implementation to detect these IUs would be to temporarily
cut each operator consuming an IU and determine, if the root of the
subtree containing the IU source is the consuming operator. This
gives us a binary check if that reference is dependent, but we still
do not know, which join to transform to eliminate the dependency.

Algorithm 2: Recognizing dependent joins.
for IUref(a) ∈ query do

lca← findLCA(IUref.operator, a.source)
if lca ≠ IUref.operator then

mark lca as dependent join
end

To simultaneously recognize the dependent join, we implement
our dependency detection slightly differently. Algorithm 2 shows
our implementation using Indexed Algebra and LCA operations.
We again check all IU references, but now find the LCA of the IU’s
source operator and the reference’s containing operator. For regular
references, the reference is in an ancestor operator of the source,
and thus equal to the LCA. Otherwise, the reference is dependent.
Here, not only detects the dependent reference, but also directly
determine the dependent join.

To efficiently process the query and make subsequent optimiza-
tions simpler, we eliminate all correlations as one of the first opti-
mizations. To unnest this query, we use the transformation rules
presented in earlier work [27], eliminating the need for expensive
nested loop joins. In this optimization, Indexed Algebra again helps
to skip large unrelated parts of the query that are in between IU
source and its references.

4.3 Tracking IU Nullability
For query optimizers, null columns are especially unpleasant to deal
with [23]. In our system, we therefore try to eliminate null values
already in base table scans, where we can filter many tuples all at
once [16]. When we can prove that an IU is not null, subsequent

χ

A σ
B

coalesce(B.x, 42)

B.x ≥ 42

B.x is nullable

B.x is not null

Figure 7: The nullability of IUs can depend on outer joins
and their position in the algebra.

operations (e.g., a join condition) can efficiently compare values and
ignore null bits. However, outer joins complicate this optimization
significantly, since they can conditionally produce null values.

Figure 7 shows an example of a query with an outer join
between base relations A and B, where B can become null after the
join. Below the join, we have a predicate 𝜎 that filters on a condition
of B.x, which allows us to filter null values already at the scan of
B. Subsequently, we can skip the null check for the predicate and
any subsequent reference of that IU, and also optimize expressions
based on the assumption that the IU is not null. Unfortunately, a
naïve application would incorrectly transform the upper coalesce
expression. Instead, we need to analyze the query further and prove
the absence of outer joins.

Algorithm 3: Determine if the path between B and 𝜒 con-
tains an outer join that makes B’s columns nullable.
// Temporarly cut to limit the path B →∗ 𝜒

cut(𝜒)
// Calculate the aggregate for B
expose(B)
result← B.nullable marker
// Restore the full path index
link(𝜒 , 𝜒 .parent)

To analyze this situation, we use Indexed Algebra’s efficient path
aggregates (cf. Figure 6), as shown in Algorithm 3. One catch here is,
that aggregates by default propagate through the whole preferred-
path. This means that aggregates for non-root algebra nodes do not
directly contain the analysis result we are interested in, i.e., if the
path from B to 𝜒 contains an outer join. Instead, we temporarily
cut the 𝜒 subtree from the overall algebra tree, so that the operator
of the reference becomes a temporary root node. Afterwards, we
expose the source operator B to propagate our aggregate through
that path and get the answer. Since all three operations, cut, expose,
and linking the temporary cut again, are𝑂 (log𝑛), these operations
are surprisingly efficient.

4.4 Predicate Pushdown
Predicate pushdown is a ubiquitous optimization that needs data
flow analysis. In a simple form, we push a predicate 𝜎 on the path
towards the source of its referenced IUs. In a more complex op-
timization, we also want to capture transitive predicates that are
conjunctive. So, when we encounter a join, we want to infer new
predicates, e.g., 𝜎𝑥=42 (𝑥<𝑦) =⇒ 𝜎42<𝑦 .

A problem with the operator-by-operator detection of transitive
edges is that views or common table expressions can also introduce

3023

predicates in arbitrary deep subtrees. To infer predicates from all
join edges, even above the initial predicate, the optimizer would
need to first bubble predicates up, then push them down again.
Transitively, this can transform join edges (𝑥 < 𝑦) to predicates that
can be pushed further down (42 < 𝑦). To infer all transitive edges,
we need to iteratively bubble up and push down all predicates until
we find no new transitive predicates. Since transitive chains can be
arbitrary long, traversing tree operator-by-operator for each step
is inefficient. Indexed Algebra instead uses two distinct techniques
to propagate transitive predicates:

• Predicate push down without considering transitivity
• Upward constant propagation generating new predicates

For the push down, we use the path-centric logic from Figure 3
that skips intermediary operators. With Indexed Algebra, we can
avoid directly traversing the algebra by finding the LCA of the ref-
erenced IUs in the predicate. Certain operators, e.g., outer joins ,
require more logic, so we need a way to recognize these in the
path. To detect these operators, we, again, use path aggregates that
signal the presence of these operators on paths through the algebra.
With these aggregates, we can effectively skip unrelated operators
and push any predicate in𝑂 (log𝑛) to the next interesting operator.
With these pushed down predicates, we can now infer additional
constants that we can propagate upwards.

4.5 Propagating Constants
Our predicate push down ensured that IUs are filtered as early
as possible, ideally at base relations. After evaluating this predi-
cate, we know that it holds in any downstream operator, which
allows propagating it transitively. For some predicates like <, we
can infer additional bounds for other comparisons, but for equality
comparisons, we directly replace the IU references with constants.

Figure 8: SQL query with nested constants. We propagate
and fold constants from inner queries to all uses to enable
transitive pushdown.

with years_orders as
(select * from orders where o_year = 2022)

select * from deliveries d, years_orders o
where d.order_id = o.id and d.d_year <= o.o_year + 1

For example, consider the SQL query shown in Figure 8. This
query shows a factored subquery with the nested equality predicate
𝜎year=2022. Constant propagation would now replace all references
of the year, i.e., the produced IU of both the orders subquery and
the complete query, with the constant value. Then, we fold the
resulting expression, which results in a simple predicate that we
can push down to the deliveries table. Note that this is not limited
to just constants, but this can be generalized to arbitrary predicates.
For our example, the inferred bounds of o_year can be propagated
again using the same technique, and we can deduce that any other
comparisons must also maintain similar bounds.

A core assumption we have for constant propagation is that IUs
have the same value during execution. As in the last sections, outer
joins are the exception to this rule.When there is an outer join on

Γn nationkey

σr name
= ’europe’

region

nation

customer

31k

5 150k

1

5

25

Minimum cardi-
nality on path

Figure 9: The cardinality of the top aggregation Γ depends on
the distinct values reaching it from the base table. Indexed
Algebra maintains a path aggregate to efficiently maintain
this information.

the path between IU and its reference, we cannot directly propagate
a constant to that reference. Constant propagation uses the familiar
path aggregates that track tuple nullability from Section 4.3 to
detect this case any only propagate predicates when no outer join
can introduce nulls.

In combination with predicate pushdown, the constant propa-
gation transitively introduces predicates through the whole query.
Again, Indexed Algebra ensures that the path traversals are cheap,
and we can efficiently reach all relevant IUs.

4.6 Bounding Distinct Values Estimates
So far, we mainly discussed query optimization rules that are almost
always beneficial. For cost based optimizations, e.g., join ordering, it
is essential to have good cardinality estimations [6, 17]. By making
cardinality estimations path sensitive with Indexed Algebra, we
can improve the estimation bounds.

Cardinality estimation often uses distinct value counts, e.g., to es-
timate the size of aggregations that eliminate duplicates from keys.
Usually, base table estimates derive these counts by calculating
statistics, e.g., in the form of HyperLogLog sketches [7]. However,
when we leave base tables and process predicates or joins, changes
in cardinality do not translate easily to changes in distinct val-
ues. Due to these limitations, many systems just use base table
estimates, which gives suboptimal estimates compared to a more
precise tracking of distinct values through the algebra.

Figure 9 shows a simplified query on the TPC-H schema, where
we can get better estimates by considering the path from source
to root. Consider the marked path from nation to the group by Γ
where we first have a filtering join with region, then a growing join
with customers. If we just consider the distinct values at the base
table (25), we loose the information about the filtering intermediate
join. Inspecting the whole path between the operators to find the
minimum path cardinality (5) captures a more precise upper bound
for the distinct values.

To calculate this minimum path cardinality efficiently, we again
use path aggregates. The path aggregates maintain the minimum
cardinality of the path to the root by selecting the minimum ag-
gregate from lcUp and lcDown. To estimate the minimum path
cardinality to an arbitrary operator, we cut its subtree and expose
the source operator. In our example, we cut the parent of the ag-
gregate Γ to make it the root, and expose the nation table scan
to ensure its path to the root is preferred. Then, we get the min

3024

Γsum(price - discount - cost · quantity)

lineitem partsupp

orders
1

2

1

2

Figure 10: Materialization points allow evaluating expres-
sions that reduce the size of the materialized data. We use
Indexed Algebra’s LCA and path operations to efficiently find
suitable materializations points.

cardinality of 5, which gives us a precise estimate without the need
to traverse the operator tree.

4.7 Placing Expression Evaluation
We also optimize the amount of data that we store in intermediary
operators that need to materialize. These pipeline breakers are costly,
since they break the data centric execution and allocate memory to
store tuples that are read later. The most common pipeline breaker
is the build side of a hash join that stores tuples in a hash table.
Reducing the size of the tuples stored in this materialized state is
advantageous, since it also increases cache locality.

For this optimization, we evaluate expressions at materialization
points when this leads to a smaller materialized state. In this state,
we need to store any produced IUs of the input that might be con-
sumed by subsequent expressions. By evaluating expressions before
this materialization, we can reduce the state, which reduces the
memory consumption, and the overall cost of the query execution.
While evaluating expression might incur some overhead, a smaller
materialized state is usually more beneficial.

As an example, consider the algebra tree shown in Figure 10
that approximately follows the TPC-H schema. We explicitly an-
notate the pipeline breaking build side of the joins with ⊤, which
gives us two locations to evaluate expressions. We can evaluate the
first subexpression price - discount at the lower build side 1 ,
which allows us to materialize the single result value instead of the
two partial values. At the second hash table build 2 , we have all
required IUs to evaluate the whole expression. Thus, we can avoid
materializing its four referenced IUs, and instead only store the
single result value.

To reorder the evaluation of an expression, we need to consider
its constraints in the algebra tree. We can only evaluate it when all
its referenced IUs are available, which we can find by computing the
LCA of the producing operators. Then, we can place it anywhere
between the LCA position and its actual usage, at a suitable pipeline
breaker. To also efficiently find pipeline breakers, we implement an
aggregated property of Indexed Algebra, similar to the markers of
Section 4.4. This way, we can efficiently find a suitable evaluation
place for each subexpression of a complex expression that reduces
the overall materialized state.

In summary, we presented several optimizations that benefit
from Indexed Algebra. By using path-centric optimization tech-
niques, we obtain concise and efficient algorithms.

5 BEYOND INDEXED ALGEBRA
Indexed Algebra allows to efficiently answer data flow questions
that arise during query optimization. In the following, we discuss
further implementation techniques that are less related to data flow.

5.1 Complex Expressions
Expressions in the relational algebra are often a significant chal-
lenge, and many systems optimize them, e.g., by compiling them
to efficient machine code [30]. In practice, expressions can be very
large, which makes optimizing and compiling them non-trivial. For
example, we observed queries with a predicate of several thousand
disjunctions. A naïve approach to such queries can result in large
optimization states that exceed machine limits.

One problem with such large expressions is that recursive al-
gorithms analyzing it reach stack-size limitations [25]. As with
relational operators, we organize expressions in a tree structure
that unfortunately is not balanced. This means that its depth can
scale linearly with the size of the input expression. However, the
stack space for recursive calls is limited and usually not very large.

We implement a technique to avoid the stack limits by recog-
nizing large stack depths before an actual overflow. To recognize
this situation, we can inspect the stack pointer, i.e., rbp on x86,
and abort the query. This way, we avoid crashing the DBMS, but
we degrade its usefulness, since now users need to work around
the system’s limitations. When we exceed the stack size in Umbra,
we instead switch to a different stack, which allows processing
such queries, albeit with some overhead during optimization. Note
that since Umbra compiles queries, this is a one-time instead of a
per-tuple overhead.

We also address the underlying issue of the large, deeply nested
structure of expressions. One problem we identify is the represen-
tation of such predicates as binary boolean expressions. Instead,
we increase the fan-out of our boolean expressions by representing
they as Nary expressions, which, e.g., results in a single disjunc-
tive expression with arbitrary many boolean inputs. In practice,
this means that we get shallow expression trees, where optimizing
scales nicely even for large input predicates. Note that this does
not avoid any deeply nested expression, but we found that this
significantly improves the common case.

Having such large expressions in mind, we also eagerly fold
constants. Folding constants early not only reduces the size of
the expression trees, but also reduces the load of subsequent code
generation. In certain cases, compilers like LLVM use super-linear
algorithms to compile code [24], which becomes painful when
dealing with large generated expressions.

5.2 Lazy Property Evaluation
For individual operators, some properties are especially expensive
to evaluate. For these properties, we only want to calculate them
once we need them, and when they are unlikely to change again. In
our implementation, we identified the most expensive properties:

• The estimated cardinality
• The functional dependencies

For cardinality estimation, loading data structures for statistics
and evaluating predicates on samples of a base table is relatively
expensive. Ideally, we only want to estimate base table cardinalities

3025

once, when we pushed down all predicates that we can evaluate on
that table. If we push down additional predicates after this cardinal-
ity estimation, we would need to invalidate previous estimations,
which would cause duplicate work. Thus, we should lazily estimate
cardinalities on demand after predicate push down.

However, we potentially access the cardinality multiple times
during join ordering, where we treat filtered base tables as leaf
nodes of the join graph. To estimate the cardinality only once, we
additionally cache it for each operator. This unfortunately has the
downside that we need cache invalidation logic when we alter
operators in a way that affects the cardinality.

Similarly, calculating and maintaining functional dependencies
between IUs can enable query optimizations, such as minimiz-
ing group-by keys. However, computing functional dependencies
and equivalent IUs is relatively expensive, when only a handful of
optimizations actually require functional dependencies. This lazy
evaluation is mainly useful with complex expressions. For example
in TPC-H, we see an overall improvement of 6%. However, the im-
pact is larger for queries with complex predicates, e.g., TPC-H Q19,
where we get a 23% improvement by avoiding unnecessary work.

5.3 DAG Structured Algebra
So far, we only looked at tree structured algebra plans, where each
operator has a single parent. However, relational algebra can also
have multiple outputs in the form of common table expressions
(CTEs, i.e., WITH clauses or views in SQL). Additionally, we also want
to be able to share intermediate results for push-based execution.
Therefore, we introduce non-tree edges, which makes our algebra
DAG structured in the general case.

For regular queries, we expect DAG edges to be significantly
fewer than the tree edges of our regular algebra. To minimize the
DAG edges, we inline shared table scans to avoid unnecessary
intermediate materialization, which makes them part of the algebra
tree. CTEs can also be read multiple times, but a simple inlining
transformation can similarly transform these DAG edges. Inlining
is not always advisable, but helps to transform DAG to tree edges
if a CTE is only read once.

To support DAG edges, it first seems that analyzing data flows
crossing DAG edges complicates the reasoning over dependencies.
When an IU crosses such a DAG edge, its data now takes two paths
through the execution plan. However, to avoid ambiguity in the
subsequent query, we also need to have distinct names for these IUs.
Renaming is also a pragmatic solution for the data flow analysis.
Within an algebra tree, we can use Indexed Algebra for efficient
reasoning, but when the data flow crosses a DAG edge, we also
switch the IU we reason about.

In our implementation, we use a special operator to cross DAG
edges that share an input node. This parent operator of a shared
node creates new IUs that are distinct from the input IUs. We call
this operator a PipelineBreakerScan (PBS) that maintains the shared
input in a referenced-counted state and explicitly maps from IUs in
its input to IUs in its output. The PBS also generalizes over its input,
which can be an arbitrary operator that can be scanned multiple
times, which are usually pipeline breakers.

Figure 11 shows an example query plan that contains DAG edges.
The scanned input in Figure 11a joins two base relations A and

Temp T

A B
IUs {a} IUs {b}

(a) Shared input

Γ
Scan T

Scan T

IUs {a′, b′}

IUs {a′′, b′′}

(b) Scanning output

Figure 11: A DAG structured query plan. Operators can be
referenced multiple times, but need to rename their IUs to
avoid ambiguity.

B, and materializes them in a Temp operator. Crossing the DAG
edges, Figure 11b has two PBSs that rename all inputs to two sets
of distinct IUs. The scanned output still references the IUs 𝑎 and 𝑏,
but we take special care to consider them part of the scanned Temp
operator and not part of the disconnected output. This way, data
flow questions reasoning about 𝑎 are contained in one tree, while
𝑎′ refers to the same data across the DAG edge.

As a result, we generalize our algebra to DAG structured queries
with the simple renaming abstraction. The resulting overall algebra
now has DAG edges between algebra trees. Within these trees, we
use Indexed Algebra that allows efficient reasoning. Thus, we can
lift all techniques discussed before from trees to DAGs.

6 EVALUATION
We now evaluate the impact of our work on the performance of the
query optimization engine in our research RDBMS Umbra. We com-
pare our implementation of Indexed Algebra to our implementation
using path traversal, and additionally evaluate an approach using
column sets. We start with an evaluation that shows the asymptotic
improvements for large queries, before we show the impact on
popular benchmarks.

Our query optimizer produces state-of-the-art query plans that
do not differ between any of the presented analysis approaches.
To show the quality of our produced plans, we provide an online
interactive query plan viewer for the evaluated benchmarks∗.
Setup of PerformanceMeasurements:We run all measurements
on a system with an Intel Xeon W-2145 CPU with 8 cores, 2×
hyper-threads, and 32GB RAM. Since we measure the relatively
small amount of optimization time in the benchmarks, we ensure
consistent results by repeating every measurement 1000 times and
reporting the average time. Compared to query execution, the small
optimization time seem negligible, but as in most systems, query
planning in Umbra is single threaded and every millisecond in
query planning blocks potentially hundreds of cores for parallel
query execution.

As benchmarks, we use TPC-H [4], TPC-DS [21], and the Join
Order Benchmark (JOB) [17]. The complexity of the queries varies
significantly between the benchmarks, with TPC-H having the least
complex queries. In our implementation, the TPC-H queries involve
on average 9 and a maximum of 20 operators, where JOB has an
average of 18 and a maximum of 36, while TPC-DS is the most
complex with an average of 20 and a maximum of 71 operators.

∗https://umbra-db.com/interface/

3026

https://umbra-db.com/interface/

Table 2: Impact of Indexed Algebra on TPC-DS optimization.

Avg. Time [µs]

Optimization Pass Column Sets Indexed Algebra Speedup

Simplify Expressions 10.5 11.0 0.95
Unnesting 78.8 10.9 7.26
Predicate Pushdown 66.9 58.8 1.18
Cardinality Estimation 96.9 97.4 1.00
Join Ordering 63.5 65.7 0.97
Physical Planning 20.7 23.1 0.91
Total 339.9 269.5 1.28

Reports from industry, however, feature orders of magnitude
more complex queries. SAP [5, 19] for example reports that their
core data services contain over 100 views that reference more than
100 tables, with the largest view referencing over 4000 tables. Simi-
larly, we hear reports from Tableau [39] and VMware [37] about
auto generated queries that are dozens of pages of SQL.

To test the asymptotic optimization runtime for such large queries,
we cannot compare queries with a fixed amount of operators. In-
stead, we use a synthetic workload, where we gradually increase
the involved operators. In the following, we use a synthetic join
workload that is inspired by a SQLite’s sqllogictest†. In this work-
load, we gradually increase the number of involved base relations,
which allows simulating large algebra trees.

In addition, query optimization has many parts that are unaf-
fected by the size of the algebra. Table 2 shows a break-down of
the average optimization times over Umbra’s optimization passes
in TPC-DS. For most passes, Indexed Algebra has no significant
benefit, since these passes do not reason about the algebra itself,
but use mostly operator local information, e.g., for constant folding
during expression simplification. For these passes, Indexed Algebra
adds some overhead to maintain the indexes, which only become
relevant for the algebra centric optimizations. For these optimiza-
tions, unnesting and predicate pushdown, Indexed Algebra has
the biggest impact. In the following, we concentrate on unnesting,
since that is the optimization that sees the biggest improvement of
using an index, and, since we need to check each IU reference if it
is correlated, also scales with the size of the algebra tree.

6.1 Efficiency on Query Complexity
In a first experiment, we evaluate the impact of query complexity
on optimization runtime. However, the implementation of the tra-
ditional operator-centric optimizations using column sets differs
significantly from our proposed path-centric optimization (cf. Fig-
ure 3). For this evaluation, we implement all optimizations with the
path-centric optimizations, and only calculate column sets once for
the unnesting logic of Section 4.2. For path-centric optimization,
we compare a naïve path traversal with Indexed Algebra.

For this experiment, we expect Indexed Algebra to have an ad-
vantage growing with the query complexity. Path traversal and
column sets both have quadratic behavior, while Indexed Algebra
runs in 𝑂 (𝑛 log𝑛). Between column sets and path traversal, we
expect no dramatic difference.

†https://www.sqlite.org/sqllogictest/

0

2

4

6

8

10

12

0 100 200 300

Number of Joins

U
n
n
es
ti
n
g
T
im

e
[m

s]

Implementation
Indexed Algebra

Path Traversal

Column Sets

Figure 12: Query optimization time of synthetic join querys
with many relations. Indexed Algebra has asymptotically
better runtime for large queries.

Figure 12 shows the results measuring the time to optimize
queries of increasing complexity. As a first micro benchmark, we
only consider the time to execute the optimization to decorrelate
any nested expressions. On the x-axis, the figure shows the increas-
ing number of joins between 10 and 300 relations. As expected,
the two traditional implementation approaches, path traversal and
column sets, scale badly with them taking several milliseconds to
perform the single optimization pass.

With increasing query complexity, the two traditional approaches
show clear super linear execution time. For ten relations, path tra-
versal takes 20 µs, while Indexed algebra is 4× faster and only takes
5 µs. With 300 relations, path traversal takes over 12 ms, where
Indexed Algebra only takes 0.14 ms, over 85× faster. This means
that using Indexing algebra, we can cope with very large queries.
We tested even larger join sizes with 1k and 10k joins, where Umbra
takes 0.16 and 13 seconds to optimize the query. For such large joins,
join reordering becomes a bottleneck, where, e.g., join linearization
shows quadratic runtime [28].

This shows the advantage of Indexed Algebra over the traditional
approaches for complex queries. While this is not as pronounced
for smaller queries, it is still a significant advantage there.

6.2 Benchmarks
While we saw a definitive improvement for synthetic joins, as a
workload, it is rather simplistic. The synthetic workload only has
base relations and join operators, where the benchmark queries of
TPC-H, TPC-DS and JOB better capture the real world applications
that also contain business logic in aggregates and more complex
expressions. For this experiment, we continue to measure unnesting
time, which applies to all operators and expressions since the SQL
standard allows correlated attributes at almost any point of a query.

In this experiment, we expect fewer gains than with the complex
synthetic queries. Since the queries in this experiment contain
significantly fewer operators on average, the quadratic behavior is
not as dramatic. However, as we already saw in the last benchmark,
Indexed algebra should still be several times faster.

Figure 13 shows a box plot of the results, which roughly follow
our expectations. In TPC-H and JOB, Indexed Algebra is more than
4× faster than using column sets, while it is on average 7× faster
in TPC-DS. In addition, Indexed Algebra significantly improves
the situation for the outliers: Unnesting TPC-DS Q64 takes over
350 µs with column sets, while Indexed Algebra only takes about

3027

https://www.sqlite.org/sqllogictest/

JOB Synthetic Joins

TPC-H TPC-DS

Indexed Algebra

Path Traversal

Column Sets
OrdPath

Indexed Algebra

Path Traversal

Column Sets
OrdPath

0.0

0.1

0.2

0.3

0.4

0.0
2.5
5.0
7.5

10.0
12.5

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

U
n
n
es
ti
n
g
T
im

e
[m

s]

Figure 13: Query optimization time of various benchmarks.

TPC-H Synthetic Joins

Indexed Algebra

Path Traversal

Column Sets
OrdPath

Indexed Algebra

Path Traversal

Column Sets
OrdPath

0

5

10

15

20

0.00

0.05

0.10

0.15

0.20

O
p
ti
m
iz
at
io
n
T
im

e
[m

s]

Figure 14: Comparison of total optimization times.

23 µs. Similarly, TPC-H Q8 takes over 80 µs with column sets, where
Indexed Algebra takes 8.5 µs.

In comparison to the synthetic queries, the performance of path
traversal and column sets is unexpected. On average, path traversal
is faster for this workload of real queries. We suspect that this
might be caused by memory allocation: The relations in real-world
queries have many more columns than in the synthetic workload,
which results in large dynamically allocated sets. Since these sets
also scale quadratic with the query size, the ballooning memory
results in poor cache locality, which path traversal avoids.

In contrast, OrdPath seems to be the best implementation, when
just considering unnesting. However, unnesting mostly reads the
query tree and favors optimization strategies that allow cheap path
queries. When we also consider the total optimization time that
includes transformations, this picture changes: Figure 14 shows
the total optimization time, including query transformations. For
the small queries in TPC-H, OrdPath is competitive with Indexed
Algebra, but for larger synthetic join queries the asymptotically
worse updates to OrdPath’s path labels become costly.

To summarize, Index Algebra not only has sizable improvements
for huge queries, but also significantly improves optimization of
relatively small real world queries. In the following, we investigate
how well the improvements of this specific task translate to the
complete query optimization process.

6.3 Interactive Workloads
Benchmarks capture a narrow use-case with mostly static queries.
Query optimization is more challenging for workbooks, which are
popular tools for complex, interactive data analytics [40]. The data
these workbooks run on is typically relatively small, but the queries

0.0

0.1

0.2

0.3

0.4

0.5

Indexed Algebra Column Sets

O
p
ti
m
iz
at
io
n
T
im

e
[m

s]

(a) Optimization time for over
1 000 queries from Tableau Pub-
lic workbooks.

0.5

1.0

1.5

Indexed Algebra Column Sets

T
ot
al

T
im

e
[m

s]

(b) Total end-to-end time for a
comparably sized TPC-H work-
load.

Figure 15: Evaluation of interactive workloads.

can be quite complex. For the following evaluation, we use real-
world queries from Tableau Public, which we convert to standard
SQL and CSV files‡.

For our evaluation of interactive workloads in Figure 15a, we
consider over 1 000 queries from nine complex Tableau Public work-
books. The data queried in these workbooks is relatively small, and
consequently, the median execution time for these queries is rela-
tively short with 230 µs. In contrast, themedian optimization time of
these queries with Umbra’s traditional column set implementation
105 µs. Using Indexed Algebra brings the median total optimization
time down to 89 µs, which is an 18% speedup on real world queries.

As an additional data point on small data, we use TPC-H on a
small scale factor 0.01. The small scale factor captures the optimiza-
tion challenges of the interactive nature of such workbooks, and
still captures the data size of the 75th percentile of Tableau Public
workbooks [39]. In this configuration, the TPC-H queries have a
median execution time of 369 µs. The median total processing time
for column sets is 856 µs, using Indexed Algebra reduces this to
790 µs. Figure 15b shows this as a box plot. In total, Indexed Algebra
can reduce the end-to-end latency of this workload by 8%.

6.4 Overall Results
Query optimization comprisesmany optimizations, where the unnest-
ing is only one partial optimization. Many other analyses in other
optimization passes can be similarly costly, but are not as dependent
on the query structure as unnesting, which diminishes the improve-
ment of Indexed Algebra. As discussed in Section 5.2, cardinality
estimation using sample evaluation is expensive, and unaffected
by Indexed Algebra. To quantify the overall improvement, we mea-
sure the speedup of using Indexed Algebra over the total query
optimization time.

Over all optimizations, we expect less speedup than we saw for
query unnesting in the last sections. Still, many optimizations be-
sides unnesting also depend on the query structure, so we should
still measurable a significant improvement with Indexed Algebra.
Especially for complex queries, where the quadratic scaling of tradi-
tional methods has the most impact, we expect good improvements.

Figure 16 shows the aggregated speedup of query optimization
time over the measured benchmarks. As expected, the speedup is
less than for the specific optimization of the last measurements, but

‡https://github.com/tum-db/tableaupublic

3028

https://github.com/tum-db/tableaupublic

1.0

1.2

1.4

1.6

1.8

TPC-H TPC-DS JOB Synthetic Joins

S
p
ee
d
u
p

Figure 16: Improvements of total query optimization time.
We compare the time to optimize queries using Indexed Al-
gebra in contrast to column sets. The average improvements
are: 12% for TPC-H, 29% for TPC-DS, and 10% for JOB.

DuckDB

HyperMariaDB

PostgreSQL

SQLite

Umbra

Umbra Execution Only
better1 ms

10 ms

100 ms

1 s

10 s

10 100 1000

Number of Joins [log]

T
o
ta
l
T
im

e
[l
og

]

Figure 17: Total time spent processing synthetic join querys
with many relations. Umbra uses Indexed Algebra to effi-
ciently optimize large queries.

we still see some significant speedups for outliers, e.g., TPC-H Q8
and TPC-DS Q64, which improve by over 50%.

We conclude with a systems comparison of the total processing
time for synthetic join queries in Figure 17. This experiment shows
MariaDB 10.9.4, DuckDB 0.6.1, PostgreSQL 14.6, Hyper 0.0.16377,
and SQLite 3.40.1 over an average of three runs for join sizes of
up to 1000 joins. As workload, we adapted the synthetic joins that
we already used in the last experiments, but with base tables and a
result of 1000 tuples so that the query execution is not trivial. We
measure all systems with an increasing number of joins, until we hit
the limits of the systems, e.g., a parse error for SQLite, or excessive
processing time. While the excessive runtime could have multiple
causes, inefficient planning or execution, Umbra still achieves sub-
second processing times even for more than a thousand joins using
Indexed Algebra.

7 RELATEDWORK
After the classical approach in System R [31], Goetz Graefe pio-
neered the implementation of optimizations on relational algebra
with the EXODUS [10], Volcano [8], and Cascades [9] systems.
Modern optimizers like Calcite [3] or Orca [37] still use the same
concepts. These systems all rely on operator centric optimizations
that transform the plan with predefined rules. Indexed Algebra
works on path-centric algorithms instead, which allows more effi-
cient plan transformations.

A newer development is the development of advanced query
compilers. Query compilers nowadays build upon data centric code
generation [22, 32], which translates query plans into an intermedi-
ate language that a compiler like LLVM can optimize and transform
to machine code. Subsequent work in this area advanced the used
intermediate representations (IR) to fit the needs of query process-
ing systems [13, 14, 33, 38]. Indexed Algebra optimizes the logical
plan from a high level, where IRs focus on the lowering to machine
code for the physical query plan. This also allows powerful inter-
operator optimizations such as operator fusion. However, a series
of operators forming a pipeline become a function or loop that is
a boundary where imperative compilers cannot easily optimize.
In contrast, Indexed Algebra specializes for data flow questions
inherent to query languages, where we can introduce optimizations
across pipelines. In summary, we see these approaches as comple-
mentary: IRs allow powerful low-level optimizations on individual
expressions, while Indexed Algebra optimizes the high-level plan.

Another related work is TreeToaster [2], which builds efficient
pattern matching based on the incremental view maintenance en-
gine DBToaster [1]. TreeToaster recognizes that pattern matching is
a bottleneck, and makes pattern matching on dynamic algebra trees
efficient. In contrast, our work reengineers the pattern matching to
operate on paths instead of individual operators.

8 CONCLUSION
In this paper we introduced Indexed Algebra as an efficient solu-
tion to optimize relational algebra. Traditional techniques to query
optimization did not scale for complex queries, often showing qua-
dratic runtime with increasing operators. While complex queries
previously took a long time to optimize, our technique helps to
reduce the average optimization time and makes processing the
most complex queries viable.

Indexed Algebra tames the quadratic complexity of query op-
timization by building an index structure of the data flow paths
though the query. In combination with our proposed path-centric
query optimization, this reduces the time spent optimizing. With
Indexed Algebra, the runtime of both queries and transformations
of the algebra is logarithmic in the number of operators. In total,
this query optimization can implement optimizations looking at all
operators in 𝑂 (𝑛 log𝑛).

Furthermore, we have shown that path-centric query optimiza-
tion not only allows efficient, but also expressive implementation
of query optimization. For path-centric optimization, especially
the least common ancestor operation is a convenient way to di-
rectly find interesting points where the data flow intersects. This
approach also does not require additional data structures that we
would need to maintain and update, which significantly reduces
the implementation effort. In effect, this allows Indexed Algebra to
offer the best of both worlds, efficiency and ease of use.

Even for moderately complex queries as we find in TPC-H, In-
dexed Algebra improves the total optimization time by up to 1.8×.
Due to the asymptotically better runtime, complex queries show
an even larger improvement. For such complex queries, Indexed
Algebra allows to efficiently optimize queries that previously were
considered impossible to optimize.

3029

REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
Proc. VLDB Endow. 5, 10 (2012), 968–979.

[2] Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, and Lukasz Ziarek. 2021.
TreeToaster: Towards an IVM-Optimized Compiler. In SIGMOD Conference. ACM,
155–167.

[3] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In SIGMOD. ACM, 221–
230.

[4] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC
(Lecture Notes in Computer Science), Vol. 8391. Springer, 61–76.

[5] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, François Llirbat, and Eric
Simon. 2009. 1,000 Tables Under the From. Proc. VLDB Endow. 2, 2 (2009),
1450–1461.

[6] Philipp Fent, Altan Birler, and Thomas Neumann. 2022. Practical planning and
execution of groupjoin and nested aggregates. VLDB J. (2022).

[7] Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts: Combin-
ing Sketches and Sampling for Accurate Group-By Result Estimates. In CIDR.
www.cidrdb.org.

[8] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. 6, 1 (1994), 120–135.

[9] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull. 18, 3 (1995), 19–29.

[10] Goetz Graefe and David J. DeWitt. 1987. The EXODUS Optimizer Generator. In
SIGMOD. ACM Press, 160–172.

[11] Torsten Grust. 2002. Accelerating XPath location steps. In SIGMOD Conference.
ACM, 109–120.

[12] Dov Harel and Robert Endre Tarjan. 1984. Fast Algorithms for Finding Nearest
Common Ancestors. SIAM J. Comput. 13, 2 (1984), 338–355.

[13] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing an Open
Framework for Query Optimization and Compilation. Proc. VLDB Endow. 15, 11
(2022), 2389–2401.

[14] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. VLDB
J. 30, 5 (2021), 883–905.

[15] Philip N. Klein and Shay Mozes. 2021. Optimization Algorithms for Planar
Graphs. https://planarity.org.

[16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation. In SIGMOD.
ACM, 311–326.

[17] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[18] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen
Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,
Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for
Transactional and Analytical Workloads. In SIGMOD. ACM, 2530–2542.

[19] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA - The
Evolution of an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads. In BTW (LNI), Vol. P-265. GI, 545–563.

[20] Guido Moerkotte. 2020. Building Query Compilers. http://pi3.informatik.uni-
mannheim.de/~moer/querycompiler.pdf.

[21] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In VLDB. ACM, 1049–1058.

[22] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[23] Thomas Neumann. 2018. Reasoning in the Presence of NULLs. In ICDE. IEEE
Computer Society, 1682–1683.

[24] Thomas Neumann. 2020. Linear Time Liveness Analysis. https://
databasearchitects.blogspot.com/2020/04/linear-time-liveness-analysis.html.

[25] Thomas Neumann. 2020. Taming Deep Recursion. https://databasearchitects.
blogspot.com/2020/11/taming-deep-recursion.html.

[26] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[27] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary Queries. In
BTW (LNI), Vol. P-241. GI, 383–402.

[28] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very
Large Join Queries. In SIGMOD. ACM, 677–692.

[29] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. 2004. ORDPATHs: Insert-Friendly XML Node Labels. In
SIGMOD Conference. ACM, 903–908.

[30] Ravindra Pindikura. 2018. Gandiva Initiative: Improving SQL Performance by
70x. https://www.dremio.com/gandiva-performance-improvements-production-
query/.

[31] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In SIGMOD Conference. ACM, 23–34.

[32] Hesam Shahrokhi and Amir Shaikhha. 2023. Building a Compiled Query Engine
in Python. In CC. ACM, 180–190.

[33] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
SIGMOD. ACM, 1907–1922.

[34] Daniel Dominic Sleator. 2011. Submission #860934 - Codeforces. https:
//codeforces.com/contest/117/submission/860934.

[35] Daniel Dominic Sleator and Robert Endre Tarjan. 1983. A Data Structure for
Dynamic Trees. J. Comput. Syst. Sci. 26, 3 (1983), 362–391.

[36] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary
Search Trees. J. ACM 32, 3 (1985), 652–686.

[37] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,
Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-Alvarado, Foyzur
Rahman, Michalis Petropoulos, Florian Waas, Sivaramakrishnan Narayanan,
Konstantinos Krikellas, and Rhonda Baldwin. 2014. Orca: a modular query
optimizer architecture for big data. In SIGMOD. ACM, 337–348.

[38] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In SIGMOD Conference. ACM, 307–322.

[39] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD. ACM,
1:1–1:6.

[40] Adrian Vogelsgesang, Tobias Mühlbauer, Viktor Leis, Thomas Neumann, and
Alfons Kemper. 2019. Domain Query Optimization: Adapting the General-
Purpose Database SystemHyper for TableauWorkloads. In BTW (LNI), Vol. P-289.
Gesellschaft für Informatik, Bonn, 313–333.

3030

https://planarity.org
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://databasearchitects.blogspot.com/2020/04/linear-time-liveness-analysis.html
https://databasearchitects.blogspot.com/2020/04/linear-time-liveness-analysis.html
https://databasearchitects.blogspot.com/2020/11/taming-deep-recursion.html
https://databasearchitects.blogspot.com/2020/11/taming-deep-recursion.html
https://www.dremio.com/gandiva-performance-improvements-production-query/
https://www.dremio.com/gandiva-performance-improvements-production-query/
https://codeforces.com/contest/117/submission/860934
https://codeforces.com/contest/117/submission/860934

	Abstract
	1 Introduction
	2 Query Representation
	2.1 Algebra: Operators, Expressions, and IUs
	2.2 Efficiently Navigating Algebra
	2.3 Reasoning about Column Sets
	2.4 Reasoning by Path Traversal

	3 Indexing the Algebra
	3.1 Simple Tree Indexes
	3.2 Path Labeling
	3.3 Link/Cut Trees
	3.4 Efficient Operations using the Link/Cut Tree

	4 Applications in Query Optimization
	4.1 Determining Join Graph Edges
	4.2 Detecting Dependent Joins
	4.3 Tracking IU Nullability
	4.4 Predicate Pushdown
	4.5 Propagating Constants
	4.6 Bounding Distinct Values Estimates
	4.7 Placing Expression Evaluation

	5 Beyond Indexed Algebra
	5.1 Complex Expressions
	5.2 Lazy Property Evaluation
	5.3 DAG Structured Algebra

	6 Evaluation
	6.1 Efficiency on Query Complexity
	6.2 Benchmarks
	6.3 Interactive Workloads
	6.4 Overall Results

	7 Related Work
	8 Conclusion
	References

