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ABSTRACT
Extracting roads from multi-source data, such as aerial images and
vehicle trajectories, is an important way to maintain road networks
in the �led of urban computing. In this paper, we revisit the problem
of road extraction and aim to boost its accuracy by solving three
signi�cant issues: the insu�cient complementarity among multiple
sources, rough edges of extracted roads, and many false positives
caused by confusing pixels. In particular, we design an end-to-end
neural network model to achieve this goal. At �rst, this model
leverages two encoding networks to extract relative information
from the inputs of two sources respectively, and then applies the
attention mechanism to fuse them for su�ciently capturing the
complementary correlation. Next, we introduce an auxiliary task,
predicting road edges based on fused representations, to make the
extracted roads smooth and continuous. At last, to reduce false
positives relative to confusing pixels, we propose a pixel-aware
contrastive-learning module to distinguish positive (roads) and
negative (objects similar to roads) pixels. In addition, to improve
the model’s learning e�ectiveness, we propose a model-agnostic
transfer learning method, which �rst builds auxiliary tasks to pre-
train the whole model, and then �ne-tunes the model’s parameters
for the main task. Extensive experiments on real datasets verify the
superiority of our method as well as the importance of solving the
three issues outlined above.

PVLDB Reference Format:
Haitao Yuan, Sai Wang, Zhifeng Bao, Shangguang Wang. Automatic Road
Extraction with Multi-Source Data Revisited: Completeness, Smoothness
and Discrimination. PVLDB, 16(11): 3004 - 3017, 2023.
doi:10.14778/3611479.3611504

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/BubbleSai/DICN.

1 INTRODUCTION
As the core of urban computing, road network plays an important
role in its sub-�elds such as map navigation and road status recogni-
tion [22, 35, 45, 48, 56–60]. However, due to the change/construction
of some old/new roads, road networks would be out of date, which
could lead to serious tra�c hazards, such as tra�c congestion and
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Figure 1: Three Challenges Faced by Existing Multi-source
Fusion Methods.

navigation error. Therefore, automatically extracting roads from
aerial images [19, 34, 37, 54, 55] becomes a signi�cant way to ad-
dress this issue. There are two typical learning-based paradigms
of solving the road extraction problem: traditional [20, 46, 49] and
end-to-end [4, 23, 25]. In particular, the traditional learning-based
methods �rst manually design road-related features to identify
coarse road regions in aerial images, and then apply traditional
machine learning methods, such as Support Vector Machine and
Markov Random Field, to extract �ne-grained roads. Di�erently, the
end-to-end methods regard the problem as an object segmentation
problem, and exploit the powerful representation ability of neural
networks to segment roads in aerial images.

Due to deviated photographic angles and extreme weather such
as snow and fog, aerial images may have low quality, which would
greatly a�ect the above methods’ performance. In addition, im-
ages captured at di�erent time periods also cause great �uctua-
tions [41]. Instead of purely using the single-source data, some
studies [28, 41, 52] try to introduce the data from other sources
such as vehicles’ GPS trajectories. In particular, the regions with a
large number of trajectories can be considered as potential roads.
To this end, we can take the complementary correlation between
di�erent sources into consideration for the road extraction problem.
For example, the areas occluded by trees in aerial images can be
recovered by GPS information, and the missing road sections with
few vehicles in GPS trajectories can be predicted with the help of
aerial images. To better leverage multi-source data, existing meth-
ods focus on designing e�ective modules to fuse them. For example,
LCGD [41] directly aggregates multi-source inputs, which cannot
fully capture the complex correlation between di�erent sources.
Hence, DeepDualMapper [52] feeds inputs of two sources into
two di�erent deep networks, and then fuses two encoding results
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through a gated module. However, the fusion strategy is too pale to
make the generalization performance poor. To address these issues,
CMMPNet [28] proposes a dual enhancement module, including a
message passing mechanism, to fuse and re�ne intermediate feature
maps of di�erent sources.

However, three open challenges still remain unsolved by existing
multi-source fusion methods.
(1) Insu�cient complementarity. Existing methods leverage
the concatenating operation or the weighted summation to fuse
multi-source features. However, if the road region is occluded and
there are also few GPS trajectories, these fusion approaches would
not make full use of the complementary correlation. For example,
the regions marked with ¨ in Figure 1 point out the incomplete
extraction results of existing methods.
(2) Rough edges. Actually, the edge of a road is usually smooth
and consistent, but existing methods have no speci�c optimization
based on this constraint, which could easily lead to rough and
discontinuous edges of the extracted roads. In particular, we mark
these roads with ≠ in Figure 1.
(3)Confusing pixels. In aerial imagery, certain municipal facilities,
such as railways and bridges, bear similar attributes to roads in
terms of shape and color. While trajectory data can facilitate the
di�erentiation between roads and these facilities, complications
arise primarily when such structures are in proximity to roads.
Existing methodologies do not adequately address this scenario,
resulting in di�culties distinguishing these potentially confusing
pixels. As shown in Figure 1, there are a large number of false
positives, which are marked with Æ.

To this end, we propose a novel fusion model, termed Dual
Information Crossing Network (DICN), to address the above chal-
lenges. Speci�cally, DICN is built on a dual-stream architecture,
where we �rst leverage two encoding modules to respectively en-
code the input features of two sources, and then propose a fusion
module to fuse them. AS compared to existing studies, our work in-
troduces a �ne-grained fusion module, ingeniously inspired by the
attention mechanism [44]. This module is unique in its application
of a self-attention operator on the concatenated representation of
dual-source features, generating a global encoding that captures
comprehensive information from both sources. Following this, we
employ a cross-attention operator to extract complementary infor-
mation from the global encoding for each source. This approach
allows for a thorough capture of complementary correlation by
the fusion module, e�ectively addressing the �rst challenge.
Furthermore, we introduce an independent sub-task focused on
predicting road edges. This sub-task utilizes the semantic features
extracted from aerial images and is designed to maintain the con-
sistency and smoothness of road edges. This explicit consideration
of smooth and continuous edges in our DICN model is a �rst of its
kind in the �eld, a feature not found in existing methods [28, 41, 52],
thereby solving the second challenge. To tackle the confusion
between road pixels and surrounding background pixels, we pro-
pose a pixel-aware contrastive learning module. This module is
designed to distinguish the confusing encoding representations of
pixels by marking positive and negative with respect to the ground
truth. This approach allows pixels with similar shape and color to
be classi�ed into two distinct classes, thereby addressing the last
challenge. Furthermore, we introduce a model-agnostic transfer

learning method to enhance the learning of DICN. This method �rst
constructs external tasks to pre-train the entire model, followed by
�ne-tuning it in the main task.

In summary, we make the following technical contributions:
• Wedesign a comprehensive neural networkmodel,DICN, that

can fully exploit multi-source features to achieve an accurate
road extraction. (Sec. 3)

• We leverage the attention mechanism to fuse multi-source
features, which can make full use of the complementary cor-
relation between two sources, and also propose an auxiliary
task, edges prediction, to explicitly capture the smoothness of
road edges. (Sec. 4)

• Wedesign a pixel-aware contrastive learningmodule to achieve
the model’s discrimination ability for confusing pixels, and ap-
ply a transfer learning method to improve the model learning.
(Sec. 5)

• We conduct a comprehensive evaluation on two real-world
datasets and �nd DICN signi�cantly outperforms state-of-
the-art in terms of accuracy and robustness. (Sec. 6)

2 PRELIMINARY
In this section, we �rst describe the data source from two modalities
(i.e., aerial image and GPS trajectory), and then present how to
convert the GPS data into trajectory map, which is a single-channel
image. At last, we formally de�ne the road extraction problem,
which takes a pair of aerial image and trajectory map as input.

2.1 Data Source
The data source consists of two modalities: aerial images from satel-
lite cameras and GPS trajectories from vehicles. Given a region of a
city, we take a corresponding aerial image and all GPS trajectories
passing through this region into account. On the one hand, the
aerial image � can be regarded as a tensor with the shape R�⇥, ⇥⇠ ,
where �⇥, represents the spatial resolution and ⇠ denotes the
channel information. In particular, the spatial resolution, depending
on satellite imaging equipments (usually between 102< ⇥ 102< and
1002<⇥ 1002< per pixel), determines the size of the actual area rep-
resented by each pixel block. The lower the resolution is, the bigger
the area is. On the other hand, all GPS trajectories are collected
from in-vehicle devices, which record vehicles’ actual positions on
the road network. Speci�cally, each GPS trajectory can be regarded
as a series of GPS points. To extract the road network, we consider
the spatial coordinates (i.e., the longitude ;>= and the latitude ;0C )
for each GPS point, which is denotes as ⌧2>>A = (;>=, ;0C). Hence,
we have the set of points {⌧2>>A } from all GPS trajectories for the
given region.

2.2 Trajectory Map Generation
Considering the gap between the discrete GPS data {⌧2>>A } and
the continuous road network, we follow the existing work [28, 41]
to convert {⌧2>>A } into a single-channel image) 2 R�⇥, , namely
trajectory map. This process consists of the following four steps: 1.
Data Filtering: At �rst, we extract valid GPS points from {⌧2>>A }
according to the coordinate ranges for the given region or aerial
image. 2. Creating Initial Map: Next, we initiate a single-channel
image ) 2 R�⇥, with zero values, and then project valid GPS
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Figure 2: The Architecture of Dual Information Crossing Network

points into the image for getting non-zero values. More speci�cally,
we normalize each point into the range of�⇥, , and then count the
number of located points at each pixel. Hence, the pixel with denser
GPS points corresponds to a larger non-zero value. 3. Improving
Map Continuity: However, the GPS data is inherently sparse due
to the sampling interval, so only some pixels in the trajectory map
) contain non-zero values. In order to maintain the continuity, we
employ a morphological operations to process the trajectory map,
where we expand the range of data points through dilation oper-
ations, and connect trajectory segments that are closer together.
4. Smoothing the Map: Finally, we leverage Kernel Density Esti-
mation [7] and Gaussian kernel Filter to make the trajectory map
more smooth.
Discussion. (1) Trajectory map generation is indeed a common pre-
process for the road extraction task, and thus is orthogonal to the
main focus of our current study. To maintain a fair comparison, we
employed the same method as that of the baseline approach. This
ensures that any observed di�erences in the results are attributable
to our proposed solution rather than variances in pre-processing.
(2) Although the sequence information (i.e., the order and timing
of individual GPS points) is lost in the process of creating the
trajectory map, the collective patterns of all trajectories, such as
congestion areas, and frequently traveled paths, are preserved. Such
collective information provides valuable insights for tasks such as
road extraction. (3) In the context of our research problem, we are
provided with temporally aligned multi-source data. Therefore, the
temporal alignment between trajectories and aerial images is not
the primary focus of this paper. (4) To detect road closures, users
can compare di�erent road extraction results by our model from
trajectories recorded on di�erent days.

2.3 Problem De�nition
Given an aerial image � 2 R�⇥, ⇥⇠ and its corresponding trajec-
tory map ) 2 R�⇥, , our objective is to learn a mapping function
F to generate the road extraction result " 2 R�⇥, , which can
be regarded as a binary classi�cation problem for each pixel. In
other words, each element"8 9 would be set as 1 if the relative pixel
is passed by a road; otherwise, it would be set as 0. Formally, the

problem can be formulated as follows:" = F ([� , ) ] |\ ), where \
represents all learnable weights of the function.

3 MODEL OVERVIEW
In this section, we outline the architecture of our proposed DICN,
and explain how it incorporates the desired components. As shown
in Figure 2, the whole framework consists of three tasks: one main
task (i.e., generating the road extraction result"B46) and two auxil-
iary tasks (i.e., the edge prediction task and the pixel-aware con-
trastive learning task). Hence, we introduce di�erent modules of
DICN and describe the pipeline according to these three tasks
respectively.

The aim of the main task is to learn a function to generate the
road extraction result "B46 based on the given inputs (i.e., a tra-
jectory map ) and an aerial image � ). Generally, this procedure
includes two phases: encoding input features and inferring out-
puts based on encoded results. In the �rst phase, to fully extract
the information speci�c to di�erent sources, we �rst design two
source-speci�c feature encoding networks, denoted by ⇢� and ⇢) ,
to generate hidden representations for the two inputs (i.e., an aerial
image � and a trajectory ) ) respectively. In particular, both ⇢� and
⇢) adopt the UNet structure [39], which is empirically proven to be
useful for the object extraction problem [66]. More speci�cally, the
UNet structure consists of four encoder blocks and four decoder
blocks, which are connected by a serial way, and each decoder block
additionally has a skip connection with the corresponding encoder
block. The encoder blocks are designed to progressively downsam-
ple the input and extract higher-level semantic features. Conversely,
the decoder blocks gradually upsample the features back to the
original scale and re�ne the detailed information. Adding more
encoder-decoder blocks could potentially extract deeper or more
complex features. However, this also increases the risk of over�t-
ting, especially when training data are limited. Consequently, we
have chosen to employ four encoder and decoder blocks in our
experimental design, and this has been shown to be optimal for
our data in [28]. Formally, given the aerial image � 2 R�⇥, ⇥⇠

and trajectory maps ) 2 R�⇥, as input, the feature encoders ⇢�
and ⇢) extract di�erent features corresponding to di�erent modal
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information as follows:�
418 , 4

2
8 , ..., 4

8
8

 
= ⇢� (� )�

41C , 4
2
C , ..., 4

8
C

 
= ⇢) () )

(1)

Next, to capture the correlation between di�erent sources, we de-
sign the module �%��" to fuse

�
418 , 4

2
8 , ..., 4

8
8

 
and

�
41C , 4

2
C , ..., 4

8
C

 
.

Instead of directly concatenating or aggregating them, which can-
not complete the deep crossover of features between the two modal-
ities, we leverage the attention mechanism to achieve the goal. The
reason is that the complementary correlation between two modali-
ties is dynamic in di�erent encoding stages, which can be captured
by the adaptive weight in the attention mechanism. Formally, the
fused process is formulated as follows:

4̂=8 , 4̂
=
C = �%��" (4=8 , 4=C ), = 2 {1, 2, · · · , 8}
4=8 = 4=8 + 4̂=8 , = 2 {1, 2, · · · , 8}
4=C = 4=C + 4̂=C , = 2 {1, 2, · · · , 8}

(2)

where 4̂=8 , 4̂
=
C represents the corresponding attention representa-

tions for two modalities, and we respectively add them to original
representations for getting �nal fused results. In the second phase,
we apply the segmentation head module �B46 to convert the last en-
coding results 488 , 4

8
C into the road extraction result"B46 2 R�⇥, ,

which is formulate as follows:

"B46 = ⌫8= (�B46 (488 � 48C ), ` ) (3)

Here, � represents the concatenation operation; �B46 consists of
convolutional layers and activation functions, which are used to
reduce the dimension of features and generate a predicted proba-
bility map; ⌫8= represents the binarization functiona and ` is set to
0.5, which can convert the value larger than the threshold ` into 1,
otherwise 0.

To alleviate rough edge segmentation results, we introduce the
edge prediction task to assist in learning feature encoding networks
(e.g., ⇢) , ⇢� , �%��" ). In particular, we �rst generate the ground
truth"6C_4364 based on the ground truth of the main task"6C , and
then design the module edge prediction branch, �4364 , to convert
three selected feature encodings 428 , 4

3
8 , 4

4
8 into the predicted result

"4364 . We compute the loss L4364 between"4364 and"6C_4364 to
jointly optimize related neural networks with losses in the main
task. Notably, the reason of taking as input 428 , 4

3
8 , 4

4
8 is two-fold.

On the one hand, the trajectory map ) is built on discrete GPS
points, and has rough road edges, which would deteriorate the edge
prediction performance, so we avoid directly leverage all encoding
outputs of ) . On the other hand, the process of edge prediction is
to distill the edge information from the aerial image, so the shallow
blocks containing more detailed information are more helpful. To
leverage the information of texture and shape, we select the �rst
three encoding blocks’ outputs 428 , 4

3
8 , 4

4
8 as the input of this auxiliary

task.
In addition, we design a pixel-aware contrastive learning task to

explicit regularize foreground and background pixels to promote
the discriminative ability of DICN. At �rst, we sample some pixels
from the ground truth"6C to build pixel labels for the task, and then
extract pixel embeddings from the feature map in the segmentation
head module �B46 as the inputs. At last, we compute the contrastive
loss [36, 47] L#⇠⇢ based on these pixel embeddings and labels.

4 MODEL STRUCTURE
In this section, we will describe di�erent components of the model
in detail. In Section 4.1, we propose the source-speci�c feature en-
coding networks (i.e., ⇢) and ⇢� ) to individually facilitate feature
extraction of two modalities (i.e., ) and � ). In Section 4.2, we de-
scribe the pixel-attention fusion module �%��" to achieve feature
crossover between two modalities, and explain how to concatenate
⇢) , ⇢� and �%��" to generate informative encoding results. In Sec-
tion 4.3, we describe the edge prediction branch �4364 to assist in
predicting road edges.

4.1 Source-speci�c Feature Encoding Network
As illustrated in Figure 2, we leverage two source-speci�c feature en-
coding networks, constructing a classical dual-stream architecture,
to extract hidden representations from the trajectory map ) and
the aerial image � respectively. Compared with existing studies [41]
of aggregating/concatenating multi-source features as a joint in-
put, our dual-stream architecture can better extract the individual
information from di�erent sources and avoid mutual interference.
In particular, the network is designed based on UNet, which is a
universally useful framework for the object segmentation problem
in the �led of computer vision.

In particular, each encoder aims to capture the shallow texture
and location information of images. To achieve this goal, we im-
plement each encoder with a convolution neural network layer
(denoted as ⇠>==8 and ⇠>==C for ⇢� and ⇢) respectively, where
= 2 {1, 2, 3, 4}), which would down-sample raw images into low-
dimensional feature maps. In contrast, each decoder aims to cap-
ture deep semantic information of images. In addition, we need
to recover the shape of feature maps from low dimensions, so we
implement each decoder with a transposed convolution [14] neu-
ral network layer (denoted as )⇠>==8 and )⇠>==C for ⇢� and ⇢)
respectively, where = 2 {5, 6, 7, 8}), which would up-sample low-
dimensional feature maps. To fuse shallow location information
and deep semantic information, we take a skip connection to merge
each encoder layer with a decoder layer, where the two layers’
outputs have the same shape. In summary, the above procedure
(i.e., Formula 4) can be elaborated as follows:

4=8 , 4
=
C = ⇠>==8 (4=�18 ),⇠>==C (4=�1C ), = 2 {1, 2, 3, 4}
4=8 = )⇠>==8 (4=�18 ) + 49�=8 , = 2 {5, 6, 7, 8}
4=C = )⇠>==C (4=�1C ) + 49�=C , = 2 {5, 6, 7, 8}

(4)

where 408 and 40C represent � and ) respectively.

4.2 Pixel-Attention Fusion Module
There is a complementary correlation between the aerial image �
and the trajectory map ) . For example, roads may be occluded by
trees in the aerial image while there may exist a lack of trajectories
in sparsely populated regions, which leads to sparse roads in the
trajectory map. Hence, it is signi�cant to fuse multi-source data
by making full use of the relationship, which would reduce the
inherent defect of single source. However, it remains insu�cient
to simply aggregate multi-source features by concatenating them,
which cannot capture �ne-grained and dynamic complementarity
of features. Therefore, we propose the pixel-attention fusionmodule
�%��" , which uses the attention-based mechanism [27, 38, 44] to
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Figure 3: Elaboration of the Module �%��" .

cross multi-source features. In particular, each feature point in a
source can interact with all feature points in another source, and
the interaction intensity is represented by the learned attention
weight, hence making it �ne-grained and dynamic to fuse these
features. In addition, given a feature in the current source, the fused
features can be regarded as the supplement of other sources to the
feature.

In this paper, we leverage 8 �%��" modules to fuse 8 pairs of
4=8 and 4=C (= 2 {1, 2, · · · , 8}) respectively, which are generated by
8 layers in the source-speci�c feature encoding networks ⇢� and
⇢) . Details are illustrated in Figure 3. At �rst, we assume that the
feature maps generated by the 9th layer are 4 98 2 R⌘ 9⇥F9⇥2 9 and
4 9C 2 R⌘ 9⇥F9⇥2 9 in ⇢� and ⇢) respectively, where ⌘ 9 , F 9 , and 2 9
respectively represent the height, width and number of channels of
the feature maps. Next, due to the constraint of the attention struc-
ture, by only taking a sequence (e.g., 4 2 R#⇥3 ) as input, where #
is the number of tokens in the sequence and 3 is the embedding
dimension, we reshape 4 98 and 4 9C into sequences 4̂ 98 2 R⌘ 9 ⇤F9⇥2 9

and 4̂ 9C 2 R⌘ 9 ⇤F9⇥2 9 to meet the input requirement. Afterwards, we
concatenate the reshaped features of di�erent sources to form a
unit feature sequence. In addition, in order to model each token’s
position in the sequence, we additionally learn the positional en-
coding for each order 9 , which is denoted as %>B ( 9). Hence, the
feature sequence 4 92>= is computed as follows:

4 92>= = 2>=20C (4̂ 98 , 4̂
9
C ) + %>B ( 9 ) (5)

In particular, we design two attention stages to capture the comple-
mentary correlation between two sources. In the �rst stage, we aim
to generate a global encoding by merging multi-source information
with the self-attention mechanism, and in the second stage, we aim
to extract the supplementary information from the global encoding
for each source with the cross-attention mechanism. Next, we will
describe the two stages in details. For clarity of notations, we omit
the superscript 9 in the following discussion.
Stage 1: The self-attention module is implemented with a multi-
head attention framework, where the number of head is # . In
each head<, we �rst perform linear transformation on 42>= by the
learnable weight matrices,@< , ,:< , ,E< to obtain the desired

&<,  <, +< 2 R2⇤⌘⇤F⇥3< :
&<, <,+< = ,@< · 42>=,,:< · 42>=,,E< · 42>= (6)

Next, we leverage the query &< and the key  < to calculate the
attention score with the Softmax function as follows:

�< = (> 5 C<0G (&< )
<p

3<
) (7)

where �< 2 R2⇤⌘⇤F⇥2⇤⌘⇤F denotes the attention weight matrix.
Next, the attention matrix �< is multiplied by +< to obtain the
output /< of the<-th head:

/< = �< · +< (8)

The outputs of all heads are concatenated together and multiplied
by the output weight matrix,> to obtain the �nal output / :

/ = 2>=20C (/1, ...,/# ) ·,> (9)

At last, we perform Add&Norm operations, connect the input and
output using residual connection, and perform a layer normaliza-
tion [3] to get the �rst stage’s output /> :

/> = !# (!# (42>= + / ) +"!% (/ ) ) (10)

where each feature in /> fully interacts with other features and
contains global semantic information.
Stage 2: The cross-attention module also includes # heads, and it
aims to �nd the supplementary information from /> according to
the given query (i.e., the initial embedding of each modal feature).
Therefore, in each head<, we adopt /> and 42>= as the inputs to
obtain the corresponding & 0

< ,  0
< and + 0

< :
& 0
<, 0

<,+ 0
< = , 0

@< · 42>=,, 0
:<

· /> ,,
0
E< · /> (11)

The remaining is similar to the self-attention stage, including the
attention matrix �0

< , the output / 0
< , the concatenated output / 0,

and the �nal output / 0
> , which are calucated as follows:

�0
< = (> 5 C<0G (&

0
< 0

<
)p

3 0
<

)

/ 0
8 = �0

8 · + 0
8

/ 0 = 2>=20C (/ 0
1, ...,/

0
# ) ·, 0

>

/ 0
> = !# (!# (/> + / 0 ) +"!% (/ 0 ) )

(12)

At last, the output / 0
> 2 R2⇤⌘⇤F⇥2 would be split into two parts

/ 0
> [1] 2 R⌘⇤F⇥2 and / 0

> [2] 2 R⌘⇤F⇥2 , which respectively repre-
sent the supplementary information for two sources. Hence, we
reshape and add them to corresponding feature maps 48 and 4C .
That is, according to Formula 4, we can recalculate {418 , 428 , · · · , 488 }
and {41C , 42C , · · · , 48C } as follows:

4=8 = ⇠>==8 (4=�18 ) + AB⌘ (/ 0
>
= [1] ), = 2 {1, · · · , 4}

4=C = ⇠>==C (4=�1C ) + AB⌘ (/ 0
>
= [2] ), = 2 {1, · · · , 4}

4=8 = )⇠>==8 (4=�18 ) + 49�=8 + AB⌘ (/ 0
>
= [1] ), = 2 {5, · · · , 8}

4=C = )⇠>==C (4=�1C ) + 49�=C + AB⌘ (/ 0
>
= [2] ), = 2 {5, · · · , 8}

(13)

where AB⌘(·) denotes the reshape operator.

4.3 Edge Prediction Branch
In order to strengthen the segmentation performance of our model
on road edges, we design the sub-task of road edge prediction
inspired by [24] to maintain consistency and smoothness on seg-
mentation results. Speci�cally, we propose an edge segmentation
module �4364 to handle the task, where �4364 takes as input shallow
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feature maps 428 , 4
3
8 , 4

4
8 in ⇢� . The reason of using 428 , 4

3
8 , 4

4
8 has been

described in Sec 3, so we do not repeat it here. In addition, consider-
ing that these feature maps have di�erent shapes, we respectively
apply three convolution blocks ˆ⇠>=(·) to align their shapes, which
can be formulated as follows:

408
= = ˆ⇠>=

=
8 (4=8 ), = 2 {2, 3, 4} (14)

where 408
= 2 R⌘

0⇥F0⇥20= represents the corresponding aligned
output of 4=8 . Afterwards, we concatenate three aligned outputs and
leverage an transpose convolution block ˆ)⇠>=(·) to generate the
predicted result, which is formulated as follows:

"4364 = ˆ)⇠>= (2>=20C (408 2, 408 3, 408 4 ) ) (15)

where"4364 2 R�⇥, represents the predicted result. Notably, we
obtain the ground truth"6C_4364 by directly processing the ground
truth"6C in the main task. Speci�cally, we �rst perform morpho-
logical operations, such as erosion, on"6C to obtain a thinned road
mask, and then generate "6C_4364 by subtracting the mask from
"6C , which is formulated as follows:

"6C_4364 = "6C � ⇢A ("6C ) (16)

where ⇢A (·) represents the erosion operator.

5 MODEL LEARNING
In this section, we �rst discuss the pixel-aware contrastive learning
to enhance segmentation results in Section 5.1, then introduce all
training losses in Section 5.2, and �nally propose a transfer learning
framework to better train DICN in Section 5.3.

5.1 Pixel-Aware Contrastive Learning
In some aerial images, we observe that some background pixels
(e.g., gray roof) are similar to road pixels. Although we add con-
straints to the road edge using edge prediction branch, the model
still su�ers from ambiguity around the road edge area. In addition,
each pixel’s classi�cation (i.e., road or not) is conducted separately
in the module �B46 , which may lead to the lack of integrity and
consistency in the prediction result (i.e., the extracted road is inter-
rupted). Therefore, we propose a pixel-aware contrastive learning
to discriminate foreground/positive and background/negative, and
hence we can implicitly model the correlation between pixel labels
to enhance the extraction performance. In particular, this procedure
includes two steps: building positive/negative and computing the
contrastive loss.
Building positive/negative samples. Given an image, we de�ne
all road pixels as positive samples, and others as negative samples.
However, the number of pixel samples is too large, and there exist
uneven distribution between positive and negative. Hence, it is
unrealistic to directly use all samples for contrastive learning. To
address this issue, we design a sampling approach to guide model
training, which samples representative hard samples. Therefore, we
take the road and background pixels adjacent to road edges as hard
positive and negative samples respectively, which can be done by
morphological operations on "6C . In particular, the former lever-
ages the erosion operator and the latter uses the dilation operator,
which can be formulated as follows:

%>B = [ ("6C � ⇢A ("6C ) ) > 0] (17)
#46 = [ (⇡8 ("6C ) � "6C ) > 0] (18)

where ⇢A (·) and ⇡8 (·) represent erosion and dilation respectively;
[2>=38C8>=] helps extract pixels satis�ed the given 2>=38C8>=.
Computing loss.As shown in Figure 2, we extract pixel embedding
8 2 R⇡ from the feature map 5 2 R�⇥, ⇥⇡ in the segmentation
head �B46 . Later, we take InfoNCE [36] [47] as the loss function to
improve intra-class compactness and inter-class separation, which
makes semantically similar features as close as possible, and pushes
di�erent features farther away. To this end, given any road pixel
embedding 8 , the contrastive loss can be formulated as follows:

L#⇠⇢ = �
’
8+

;>6
4G? ( 8 ·8+g )

4G? ( 8 ·8+g ) +Õ
8� 4G? ( 8 ·8�g )

(19)

where 8+ and 8� represent the pixel embedding from the positive
sample set %>B and the negative sample set #46, respectively. g is
the temperature parameter. Through our pixel-aware contrastive
learning method, we can e�ectively alleviate the confusion of pos-
itive and negative samples, and suppress a large number of false
positives generated by visually similar areas.

5.2 Overall Learning Objective
The overall learning objective is composed of the cross-entropy
loss L24 , the dice loss L3824 , the edge prediction loss L4364 and
the contrastive loss L#⇠⇢ as follows:

L = L24 + L3824 + _1L4364 + _2L#⇠⇢ (20)

where _1 and _2 are hyper-parameters to control the weights of
these losses. At �rst, L24 and L3824 represent cross-entropy loss
and dice loss [33], which are used to optimize the classi�cation
ability of the model and focus on the mining of foreground regions.
Speci�cally, given the predicted result"B46 and the target"6C , L24
and L3824 are de�ned as follows:

L24 =
’

~2"B46,~̄2"6C

~̄;>6 (~) + (1 � ~̄);>6 (1 � ~) (21)

L3824 = 1 �
2 |"B46 \"6C |
|"B46 | + |"6C |

(22)

Afterwards, L4364 also leverages the cross entropy loss to measure
the di�erence between the edge prediction result "4364 and the
ground truth"6C_4364 , which is denoted as follows.

L4364 =
’

~2"4364 ,~̄2"6C_4364

~̄;>6 (~) + (1 � ~̄);>6 (1 � ~) (23)

Notably, since foreground and background pixels are severely
unbalanced in the road extraction scene, in order to reduce the
domination of the loss by the background region, we weight L24
and L4364 according to the pixel ratio. At last, we jointly train the
model by minimizing L in an end-to-end fashion.

5.3 Transfer Learning
Most existing studies [26, 28] initialize model parameters by

pre-training on ImageNet. However, due to the di�erence between
natural images in ImageNet and our used aerial images, such pre-
training methods cannot generate optimal initial parameters. To
address this issue, we propose a simple yet e�ective transfer learn-
ing method, which �rst extends the sample space by fusing data
in the original space, then builds new tasks and pre-trains model
parameters in extended sample spaces.
Extending sample spaces. As shown in Figure 4, given an input
pair (� ,) ) in the original space, we fuse them into new images �)
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Figure 4: Transfer Learning for DICN

Algorithm 1 Transfer Learning for DICN
Input: initial parameter weight \0, original training inputs - = (� ,⌧ ) ,

original training labels . , transfer learning epochs (1, �ne-tuning
epochs (2, learning rate U

Output: optimal parameter weight \̂
1: initialize \̂ with \0
2: generate extended tasks % (g ) using - and .
3: for all 8  1 · · · (1 do
4: random sample a task g8 = (-g8 ,.g8 ) ⇠ % (g )
5: generate the gradient 5\ with L on the task g8
6: update \̂ = \̂ � U ⇤ 5\
7: end for
8: for all 8  1 · · · (2 do
9: generate the gradient 5\ with L on the task (- ,. )
10: update \̂ = \̂ � U ⇤ 5\
11: end for
12: return \̂

and) � so as to explicitly capture the information crossover between
di�erent sources. Speci�cally, we divide � and ) into two # ⇥ #
grids, and then exchange them with each other at a �xed interval

to generate fused images. For example, if we have � =

1 2
3 4

�
,) =

5 6
7 8

�
and the interval is set to 1, the fused results would be

denoted as �) =

1 6
7 4

�
and ) � =


5 2
3 8

�
. Actually, the explicitly

fused data can be regarded as coming from new sources, so pre-
training on them can drive DICN to learn how to better extract
features from multi-sources. At this point, we can construct new
sample space by combining sample pairs from the set {� ,) , �) ,) � },
where the combination number is 10 (i.e., (� , � ), (� ,) ), (� , �) ), (� ,) � ),
() ,) ), () , �) ), (�) ,) ), (�) , �) ), (�) ,) � ), () � ,) � )). Notably, the pair
(� ,) ) belongs to the original space, so the number of new extended
spaces is 9. Accordingly, we can build 9 new road extraction tasks
to provide data to pre-train DICN.
Pre-training & Fine-tuning. As shown in Algorithm 1, the whole
learning process includes two steps: pre-training (lines 1-7) and
�ne-tuning (lines 8-11). In particular, the �rst step is to generate
initial weight for the model parameter \̂ based on extended tasks,
and the second step is to train the model with the initial parameter
for the main task.
Discussion. Our proposed transfer learning method is fundamen-
tally di�erent from the process of meta learning [15]. On the one

hand, meta learning is to learn an initialization weight more suit-
able for new task from the perspective of task optimization; in
contrast, we are to �nd the weight more suitable for the objective
task from the perspective of searching sample spaces. On the other
hand, meta learning cannot guarantee that the weight generated by
the training task is optimal before completing the test task training;
instead, it can only guarantee the relative optimization through
gradient propagation. Our validation set is the same as the test task,
so it provides a strong prior knowledge to ensure that the weight
generated by the training task is currently optimal.

6 EXPERIMENTS
In this section, we perform a comprehensive comparison of our
DICN with existing state-of-the-art approaches to the road extrac-
tion problem, and conduct ablation studies to evaluate each part’s
contribution in DICN.

6.1 Experimental Settings
Datasets. We evaluate our proposed DICN on two public multi-
source (i.e., aerial image and GPS trajectory) road datasets, which
are respectively called BJRoad [1] and Porto [2].
(1) BJRoad represents the road dataset on Beijing, containing 350
aerial images and 50 million GPS trajectory points. In particular,
the image resolution is 502< per pixel and each image includes
1, 024⇥1, 024 pixels, so each image covers a total area of over 100:<2.
In addition, we transform all GPS points into 350 trajectory maps
according to Sec. 2.2. At last, we treat the pairing of an image and its
corresponding trajectories as a singular sample, and then partition
these samples into training, validation, and test sets, maintaining a
ratio of 70%:10%:20% respectively.
(2) Porto represents the road dataset on Porto, and contains 6,048
aerial images and 1.71 million trajectories generated by 442 taxis
spanning from 2013 to 2014. In particular, each image has a shape
of 512⇥512. Similar to [28], we use the mean and standard variance
of the �ve-fold experiment as the �nal result, and do not explicitly
split the validation set.
Evaluation Metrics. To be consistent with existing work [28, 41],
we adopt Intersection of Union (IoU) as the evaluation metric. IoU,
de�ned as the ratio of intersection and union, is mainly used to
measure the overlap between ground truth and segmentation re-
sult. For our road extraction task, it is used to evaluate how well
the extracted road area �ts the real road area. In particular, IoU
includes two forms of Average IoU (AIoU) and Global IoU (GIoU).
The former calculates IoU separately for each image and then takes
an average of all IoUs, and the latter splices all images into one
big image, and then calculates the IoU. Assuming that there are
�>*1 = �=C1

*=81
, · · · , �>*< = �=C<

*=8<
, we have ��>* =

Õ
�>*8
< and

⌧�>* =
Õ
�=C8Õ
*=88

, where �=C and*=8 respectively means the interac-
tion and the union. It is worth mentioning that the AIoU calculation
method reported in previous work [41] (i.e. computing the AIoU
for each batch and then taking an average of all batches) is not
strictly correct, so we use our duplication results following the
default setting of [28, 41, 52] for a fair comparison.
Baseline Methods.We compare our models with six methods:
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• DeepLab [11]: This method adopts the Atrous Spatial Pyramid
Pooling structure and the dilated convolution operator for
extracting semantic features.

• UNet [39]: This method adopts an encoder-decoder structure,
and fuses detailed features and semantic features through skip
connections.

• D-LinkNet [65]: This method leverages the model Linknet [9]
as the backbone, and additionally adds dilated convolution
layers in the center part.

• LCGD [41]: This method considers both trajectory data and
aerial image data, and uses 1D transpose convolution to further
enrich feature extraction.

• DeepDualMapper [52]: This method designs a gated mod-
ule to fuse multi-source features, where the gated module is
implemented by the weighted adding operator.

• CMMPNet [28]: This method uses the feature extractor to
extract the features of di�erent modalities, and re�nes the fea-
tures through the fusionmodule to achieve feature propagation
across modalities.

Notably, DeepLab, UNet, D-LinkNet and LCGD belong to the
single-stream network, which cannot seperately take as input )
and � . To make the comparison fair, we directly concatenate ) and
� into a unit feature for these methods.
Implementation Details. We choose ResNet-34 [16] as the back-
bone of source-speci�c feature encoding network unless other-
wise speci�ed. In order to ensure the training quality of the fusion
module �%��" , we leverage some data augmentation techniques,
including horizontal and vertical �ipping, rotation scaling and ran-
dom erasing under a certain probability. We use the AdamW op-
timizer [29] to learn parameters, and set the weight decay as 0.01.
The initial learning rate is set as 24�4 and obeys the cosine schedule
decay. For the joint loss function, according to the experimental
results, we set the optimal weight of each term as _1 = 0.5 and
_2 = 0.01. Similarly, for the number of transfer learning epochs (1,
we set it with the optimal value 25.

6.2 Settings of Important Hyper-parameters
We consider the following hyper-parameters: (1) two loss weights
_1 and _2, which respectively correspond to the in�uence of two
auxiliary tasks on the mask task; (2) the number of transfer learning
epochs (1.
(1) Loss Weights of Auxiliary Tasks.We performed systematic
experiments to optimize two hyper-parameters, _1 and _2, which
correspond to the loss weights of two auxiliary tasks. Speci�cally,
we divided the range from 0 to 1 into �xed intervals, choosing �ve
values (0, 0.01, 0.1, 0.5, and 1) to span the entire range of possible
weights. As depicted in Figure 5, the optimal values for _1 and _2
were found to be 0.5 and 0.01, respectively.
(2) Transfer Learning Epochs. The e�ectiveness of transfer learn-
ing is further demonstrated through a series of experiments as
shown in Figure 6. As the number of training iterations increases,
the model performance typically exhibits an upward trend, which
signi�es the consistent enhancement brought by transfer learning.
Notably, upon reaching a special number of training rounds (e.g.,
(1 = 25 for BJRoad), the model attains its best performance. Further

(a) BJRoad (b) Porto

Figure 5: E�ect of _1 and _2 on BJRoad and Porto.

(a) BJRoad (b) Porto

Figure 6: E�ect of Transfer learning Epochs.

Table 1: Accuracy comparison with baseline methods.

BJRoad Porto

Method
AIoU
(%)

GIoU
(%)

AIoU
(%)

GIoU
(%)

DeepLab 59.83 62.87 64.42 ± 0.55 68.90 ± 0.32
UNet 58.27 61.77 68.39 ± 0.30 72.73 ± 0.28
D-LinkNet 59.51 62.51 67.53 ± 0.31 71.70 ± 0.14
LCGD 59.70 62.74 67.48 ± 0.29 71.74 ± 0.14
DeepDualMapper 59.55 62.91 65.41 ± 0.48 69.85 ± 0.15
CMMPNet 60.19 63.59 68.01 ± 0.31 72.32 ± 0.22

DICN
62.51

(+2.32%)
65.06

(+1.47%)
72.47 ± 0.87
(+4.46%)

80.66 ± 0.57
(+8.34%)

DICN + TTA
62.84

(+2.65%)
65.26

(+1.67%)
74.29 ± 0.79
(+6.28%)

82.41 ± 0.46
(+10.09%)

training beyond this point, however, leads to a minor decrease in
accuracy due to over�tting in the expanded sample space.

6.3 Accuracy Comparison
In this section, we compare DICN with six baseline methods by
evaluating the metrics on BJRoad and Porto. In addition, we apply
the TTA (Test Time Augmentation) strategy to improve the per-
formance. Speci�cally, given a test sample, we �rst generate new
samples with some augmentation operators, such as �ipping or ro-
tating, and then use the trained model to infer segmentation results
for new samples. Afterwards, we leverage the voting strategy to
fuse these segmentation results as the �nal result. Table 1 reports
the evaluation results of all methods, and we have the following
observations:
(1) These methods with the dual-stream architecture, including our
method, outperform others on the dataset BJRoad. For example,
the worst method is the single-stream method UNet, which corre-
sponds to 58.27% AIoU and 61.77% GIoU. The reason is that these
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Table 2: E�ects of core modules on Test set of BJRoad.

Group ⇢� , ⇢) �%��" �4364
AIoU
(%)

GIoU
(%)

A
p

60.27 63.30
B

p
ConvFuse 60.90 63.74

C
p p

62.06 64.71
D

p
ConvFuse

p
62.08 64.62

E
p p p

62.32 65.01

single-stream methods have no speci�c fusion approaches to ef-
fectively capture the complementary correlation between di�erent
sources.
(2) Existing dual-stream methods except our method have no ob-
vious advantages on Porto when comparing with single-stream
methods. Particularly, DeepDualMapper has the worst perfor-
mance. The reason is two-fold: the data quality in Porto is better
than BJRoad, and thereby single-stream methods can get some pass-
able results; the fusion modules in previous dual-stream methods
cannot capture the correlation between di�erent sources, and are
ine�ective to solve the road extraction problem.
(3) The performance of all method on Porto is better than that on
BJRoad. That is because BJRoad contains a large number of noise
signals and Porto has higher annotation quality and a larger amount
of data.
(4) Our method DICN outperforms all existing methods on both
BJRoad and Porto, whereDICN surpasses all previous methods with
solid margins. For example, the best existing method is CMMPNet,
whose AIoU and GIoU are 60.19% and 63.59% on BJRoad, but DICN
obtains the highest AIoU of 62.51% and GIoU of 65.06%. By further
using the simple TTA strategy, we can achieve up to 2.65% of AIoU
and 1.67% of GIoU improvement over CMMPNet, setting a new
state-of-the-art.
(5) Our method DICN has greater improvement on Porto than
BJRoad, demonstrating that DICN is more robust than others. In
addition, the TTA strategy plays a signi�cant role in promoting the
performance of DICN.
(6) The value of GIoU is greater than that of AIoU for all methods on
both BJRoad and Porto. Hence, we have the inequality

Õ
�=C8Õ
*=88

>=Õ
�>*8
< according to the de�nitions of GIoU and AIoU, and then infer

that
*=81Õ
�=C8 /< +···+ *=8<Õ

�=C8 /<
< <= <

1
*=81/�=C1 +···+

1
*=8</�=C<

<=
*=81
�=C1

+···+*=8<
�=C<

<

based on the inequality of arithmetic and geometric means, which
means the average of *=88Õ

�=C8/< is smaller than the average of *=88
�=C8

.

6.4 Ablation Studies
We conduct extensive ablation studies on BJRoad to evaluate the
e�ectiveness of key designs in DICN.
6.4.1 E�ect of core modules. As illustrated in Figure 2, the core
modules of DICN include the source-speci�c feature encoding net-
works (⇢� , ⇢) ), the edge prediction branch �4364 , and the fusion
module �%��" . In particular, we replaceDICNwith �ve variations,
namely Group ABCDE, to evaluate the e�ectiveness of di�erent
modules in DICN. As shown in Table 2, we only use ⇢) and ⇢� to
individually extract features from di�erent sources, and fuse these
features by averaging last features maps in group A. As a result, A

obtains 60.27% AIoU and 63.30% GIoU, which surpass the best base-
line CMMPNet by 0.08% in AIoU, fully demonstrating the excellent
performance of ⇢� and ⇢) . In groups B and C, we respectively ap-
ply the convolution network and the attention mechanism to fuse
multi-source feature maps in the module �%��" . The result shows
that 60.9% of AIoU and 63.74% of GIoU for B, and 62.06% of AIoU
and 64.71% of GIoU for C, indicating that the attention mechanism
is signi�cant for better fusing multi-source feature maps. In addi-
tion, comparing A and C, it’s proved that �%��" , improving AIoU
by 1.79% and GIoU by 1.41%, can e�ectively complete the feature
crossover between di�erent sources. At last, groupsD and E append
the module �4364 based on B and C, respectively. By comparing
B and D, or C and E, we can conclude that the edge prediction
branch can stably improve the model’s e�ect, up to 62.32% AIOU
and 65.01% GIOU.

Moreover, to further verify the fusion e�ect of themodule �%��" ,
we present the feature maps of CMMPNet andDICN in Figure 7. It
can be seen from (b)-(c) and (g)-(h) that DICN pays more attention
to the feature extraction of speci�c modalities than CMMPNet,
fully excavating the unique information of each modal and the
information of the other required. (d) and (i) represent the feature
maps generated by the �nal fusion of image features and trajectory
features. It can be found that (i) uses the information of the two
modalities to outline the features of the road area more accurately
and comprehensively, and is not a�ected by other noise disturbance.
The red boxes in (e) and (j) represent railways, which CMMPNet
cannot distinguish e�ectively, while DICN successfully suppresses
false positives. Although DICN still predicts the road in the area
of the yellow box in (j), we �nd that the area does have a road by
observing (a), and the trajectory map (f) also contains GPS infor-
mation here, so we think this road segment is omitted from ground
truth, which indicates that DICN has strong generalization ability.

6.4.2 E�ect of Trajectory Map Generation. To assess the map gen-
eration task, we compare the performance across various models
when given trajectory maps of di�ering qualities. Intuitively, with
more trajectories available, the quality of the generated trajectory
map improves. To substantiate this, we adjust the ratio of trajec-
tories used for trajectory map generation for each aerial image.
As shown in Figure 8, the left and right �gures plot the change of
AIoU and GIoU with the percentage of used trajectory informa-
tion, where 0% means that no trajectory information is used in the
training process, and 100% means that all trajectory information is
utilized. In particular, we have the following observations:
(1) The more trajectory information used, the better all methods’
performance. Therefore, we can conclude that the trajectory infor-
mation is signi�cant for all methods.
(2) DICN achieves 60.07% AIoU and 63.27% GIoU without applying
any trajectory information, which is much higher than other meth-
ods, so DICN is more robust than others.
(3) DeepDualMapper and LCGD have similar performance, and
they cannot su�ciently leverage the trajectory information. When
the percentage is greater than 25%, the performance lift of both
��>* and⌧�>* is very marginal, because their fusion methods are
too simple to be e�ective.
(4) The e�ect of CMMPNet gradually increases with the introduc-
tion of trajectory information, indicating that CMMPNet relies
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Visualization of Feature Maps for CMMPNet and DICN. Firstly, (a) is the aerial image with ground truth and (f)
is its corresponding trajectory map. Secondly, (b)-(d), (g)-(i) are the fused feature maps generated by CMMPNet and DICN,
respectively. Thirdly, (e) and (j) are the prediction results of CMMPNet and DICN, respectively.

(a) Evaluating AIoU (%) (b) Evaluating GIoU (%)

Figure 8: E�ect of Trajectory Information on BJRoad
Table 3: E�ects of Learning strategies for DICN on BJRoad.

L24 L3824 L4364 L#⇠⇢ Transfer Learning AIoU GIoU
p

61.92 64.59
p p

62.06 64.71
p p p

62.32 65.01
p p p p

62.43 64.96
p p p p

62.39 65.03
p p p p p

62.51 65.06

more on trajectory information in its decision, and its performance
is greatly impacted when there is insu�cient trajectory data.

6.4.3 E�ect of Di�erent Learning Strategies. To explore how the
learning strategies a�ect the performance, we conduct ablation
studies on various learning method in Table 3. We employ the
cross-entropy loss L24 as basic loss function, and add the dice loss
L3824 , edge prediction loss L4364 and contrastive loss L#⇠⇢ to it.
Only using the basic loss functions L24 and dice loss L3824 can
obtain 62.06% AIoU and 64.71% GIoU, and further equipping the
edge prediction loss L4364 can increase AIoU by 0.26% and GIoU by
0.3% respectively. The Pixel-Aware Contrastive Learning method
L#⇠⇢ strengthens the ability of model to distinguish foreground
and background pixels, which increases AIoU from 62.32% to 62.43%,
with a slight drop in GIoU. We argue that the decline of GIoU is
mainly due to the noise contained in the ground truth of BJRoad,
and its overall discriminative ability is still improved steadily, as
shown in Figure 7. After applying the Transfer Learning method,

(a) LCGD (b) DeepDualMapper

(c) CMMPNet (d) DICN

Figure 9: Visualization of t-SNE Embeddings learned with
Di�erent Approaches on Porto.
we can get consistent improvement in AIoU and GIoU, indicating
that the Transfer Learning method can better initialize parameters,
which is more suitable for current multi-task training. By adopting
in both Pixel-Aware Contrastive Learning and Transfer Learning
strategies, we obtain a noticeable improvement, and our DICN
can reach up to 62.51% AIoU and 65.06% GIoU respectively. In
conclusion, integrating the above learning strategies can e�ectively
facilitate model learning on multi-tasks.
6.5 Evaluating the Discrimination Ability
To analyze the discriminative e�ect of di�erent methods on fore-
ground and background pixels, we use t-SNE [43] to visualize the
embeddings’ distribution of prediction results on Porto. As shown
in Figure 9, the red and green points respectively denote embed-
dings of foreground and background pixels, where foreground pix-
els means the pixels on roads. Speci�cally, we extract the fused
feature maps from the last layer as the embeddings for di�erent
dual-stream methods, and use t-SNE to reduce their dimensions

62 I ····• 65 -A -···········.... 

_ 
-
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(a) Evaluating AIoU (%) (b) Evaluating GIoU (%)

Figure 10: E�ect of Scalability on BJRoad.

to a two-dimensional space. Notably, we explicitly keep the same
number of positive and negative samples. To be discriminative,
the embeddings in the same class should be close to each other,
and there should be a clear boundary between di�erent classes.
According to Figure 9, we have the following observations:
(1) ForDeepDualMapper, the embeddings of foreground and back-
ground pixels overlap heavily, and there is no clear boundary. Hence,
the discriminative ability of DeepDualMapper is weak, which
makes it easy to confuse foreground and background pixels.
(2) LCGD is better thanDeepDualMapper, and there is a relatively
clear boundary that can isolate the embeddings in two classes.
However, a large number of background pixels are still misjudged
as foreground (i.e., green points appearing around red points). The
reason is due to the fact that LCGD directly concatenates the inputs
of di�erent sources, resulting in themodel not making full use of the
auxiliary information between sources to suppress false positives.
(3) Although the foreground pixels of CMMPNet are relatively
compact and form a clear classi�cation cluster, the inter-class co-
hesion of background pixels is still poor. In particular, the overall
embedding distribution of background pixels is scattered.
(4) DICN makes a very obvious decision boundary for pixel em-
beddings in di�erent classes. In addition, either foreground pixels
or background pixels form a close cluster. These demonstrates that
DICN can generate discriminative features and thus yield competi-
tive results.

6.6 Scalability Comparison
We evaluate the scalability of all methods by varying the size of
training data. In particular, we sample 20%, 40%, 60% and 80% of the
data from training set, and collect the associated AIoU and GIoU
over the test data. As shown in Figure 10, we have the following
observations:
(1) All methods perform better if more training data is used. The rea-
son is that more data indicates more situations, making the model
learn better.
(2) When the amount of data is scarce (e.g., using 20% training data),
DeepDualMapper and LCGD have worse performance than oth-
ers. The reason is that fusion modules in both DeepDualMapper
and LCGD are direct, which cannot capture su�cient correlations
among di�erent features.
(3) With the sampling rate of training data increased, the gap be-
tween our DICN and other methods becomes larger. Hence, our
DICN is more scalable than others, indicating that DICN can make
full use of training data.

Table 4: E�ciency of Di�erent Models.
LCGD DeepDualMapper CMMPNet DICN

Parameters(MByte) 31.22 11.20 84.99 57.11
FPS(image/s) 91.97 55.01 26.94 27.69

Training Cost(s/iteration) 1.04 1.30 1.44 1.53

6.7 E�ciency Comparison
We use parameters, frame per second (FPS) and training cost for
e�ciency evaluation. In particular, parameters represent the size
of di�erent models, and it is used to evaluate memory e�ciency.
FPS is used to evaluate computing e�ciency, which indicates the
number of images that the model can process per second, and its
value is positively correlated with inference speed. The training
cost represents the time spent on training each iteration. The results
are reported in Table 4. We observe the following:
(1) The FPS of LCGD is much higher than other methods, which
shows that the inference speed of single-stream architecture is
signi�cantly better than that of dual-stream architecture. The speed
bottleneck of the latter lies in the need to use di�erent sub-networks
to extract the information of the corresponding modality, but it can
achieve more su�cient feature interaction.
(2) AlthoughDeepDualMapper has the least amount of parameters
among all methods, its inference speed is still slower than LCGD
due to its dual-stream architecture.
(3) DICN is similar to CMMPNet in terms of the FPS and the
training cost, but with fewer parameters, it has achieved a better
trade-o� between accuracy and computational e�ciency.

6.8 Case Study
To further evaluate the e�ectiveness of our proposed DICN, we
sample some cases from BJRoad and Porto, and illustrate di�erent
approaches’ extraction results in Figure 11. On the one hand, due
to the lack of e�ective fusion for multi-source data, LCGN is easily
a�ected by biased image information such as tree occlusion. In
particular, there are a large number of vacancies on the extracted
road, which demonstrate that the trajectory information is not
fully utilized. On the other hand, although DeepDualMapper and
CMMPNet design some fusion modules to capture the comple-
mentary correlation between the aerial image and the trajectory
information, there are a large number of isolated fragments and
false positives in their prediction results, which lack the overall
consistency and integrity. At the same time, road edges in these
extraction results are rough and easily disturbed by the background.
In contrast, our methodDICN obtains more accurate results, where
the complementary correlation between di�erent sources is cap-
tured by the attention mechanism, and the edge prediction sub-task
makes the predicted road edge smooth and consistent. Moreover,
compared with BJRoad, samples in Porto have better annotation
quality. Therefore, even if the road network of Porto is more com-
plex, the visualization e�ect is better for all methods. To this end,
we use the red box to highlight some visually indistinguishable
regions, where existing methods generate false positives in their
extraction results, but DICN has a strong ability to distinguish
between foreground and background pixels. Speci�cally, DICN can
e�ectively recognize background regions similar to roads while
maintaining a high recall.
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(a) Image & Ground Truth (b) LCGD (c) DeepDualMapper (d) CMMPNet (e) DICN

Figure 11: The Qualitative Results of Di�erent Methods for Some Samples in BJRoad (top row) and Porto (bottom row).

7 RELATEDWORK
7.1 Aerial Image-based Road Extraction
Numerous studies are based on aerial images for road extraction
and we only introduce the methods with higher accuracy of neural
networks instead of traditional methods [12, 31, 61], which use
hand-crafted features to feed into shallow models with relatively
limited performance. Methods using aerial images can be broadly
divided into segmentation-based methods [8, 50, 63] and graph-
based methods [5, 18, 21, 42]. Segmentation-based methods model
road extraction as a semantic segmentation problem, and predict
through pixel-wise classi�cation. Their main disadvantage is that
they are susceptible to interfere from image content and quality
such as object occlusion, weather conditions, etc. Graph-based
methods treat roads as a collection of edges and points, and directly
extract the road network by predicting the relationship between
vertices and edges. Although this type of method has high accuracy,
its pipeline is relatively complex and relies on structured labeled
data.

7.2 Trajectory-based Road Extraction
Many studies [51, 64] are based on GPS trajectories for road ex-
traction, because trajectories intuitively re�ect the driving path
of vehicles. The work using trajectory data is mainly divided into
point clustering-based methods [10, 17, 53] and Kernel Density Es-
timation (KDE)-based methods [6, 13, 53]. These clustering-based
methods �rst use some clustering algorithms, such as k-means, to
cluster discrete GPS points, and then further extract road segments
through cluster centers to generate road networks. The unavoidable
large amount of noise in GPS data is the main bottleneck, which
would lead to wrong road segments and a�ect the overall perfor-
mance. The authors in [40] propose DeepMG to extract features
from trajectories in both spatial view and transition view, and use
neural network to infer road centerlines. The KDE-based methods
apply KDE to transform data points into density maps, which are
further processed into road segments. Although the latter is more
robust to noise, it is still less e�ective. Similar to the image modality,
only using the trajectory modality will cause a lot of information

loss, and there is not su�cient content in sparsely populated places
to generate a complete trajectory map.

7.3 Multi-Source-based Road Extraction
Using only trajectory data or image data has limitations and draw-
backs, so integrating features from multiple sources is optimal for
road extraction. The mainstream approach is usually to use image
data combined with other modal data [26, 30, 32, 38, 62], such as
Lidar, SAR, and trajectory, to achieve modal fusion through the in-
teraction between features. One idea is to concatenate the features
of di�erent modalities in the input stage through early fusion, so
that the network can automatically adapt to the combined input,
but it will cause interference related to the learning process of dif-
ferent features. The other is the late fusion method, which uses
di�erent feature extractors for di�erent modalities and fuses in the
middle or at the end of the network. Since the e�ect of late fusion
is better, we also refer to this practice.

8 CONCLUSION
In this paper, we presented an e�ective approach, namely Dual
Information Crossing Network (DICN) to solve the road extraction
problem, which utilizes both aerial images and trajectories infor-
mation. DICN seamlessly incorporates the source-speci�c feature
encoding network, the pixel-attention fusion module and the edge
prediction branch module for the feature interaction between di�er-
ent modalities. We further boost its performance by introducing the
pixel-aware contrastive learning and the transfer learning method.
Extensive experiments on two public datasets have demonstrated
the superiority of our approach. At last, we �nd that noises in the
ground truth can signi�cantly a�ect the model’s performance, and
we would like to study how to improve the model’s robustness
under noisy labels in the future work.
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