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ABSTRACT
Deep graph networks (DGNs) have demonstrated their outstand-

ing effectiveness on both heterogeneous and homogeneous graphs.

However their black-box nature does not allow human users to

understand their working mechanisms. Recently, extensive efforts

have been devoted to explainingDGNs’ prediction, yet heterogeneity-

agnostic multi-level explainability is still less explored. Since the

two types of graphs are both irreplaceable in real-life applications,

having a more general and end-to-end explainer becomes a natural

and inevitable choice. In the meantime, feature-level explanation is

often ignored by existing techniques, while topological-level expla-

nation alone can be incomplete and deceptive. Thus, we propose a

heterogeneity-agnostic multi-level explainer in this paper, named

HENCE-X, which is a causality-guided method that can capture

the non-linear dependencies of model behavior on the input using

conditional probabilities. We theoretically prove that HENCE-X is

guaranteed to find the Markov blanket of the explained prediction,

meaning that all information that the prediction is dependent on

is identified. Experiments on three real-world datasets show that

HENCE-X outperforms state-of-the-art (SOTA) methods in gener-

ating faithful factual and counterfactual explanations of DGNs.
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1 INTRODUCTION
Deep graph networks (DGNs) have emerged as the state-of-the-

art (SOTA) techniques for graph learning owing to their ability

to combine node features and graph topology. These models not

only succeed on homogeneous graphs in various tasks [14, 46, 53],

but also shine on heterogeneous graphs by incorporating node and

edge type information [8, 12, 24, 49, 58]. However, despite their

outstanding performance, DGNs still serve as back-box predictors,
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Figure 1: Illustrative example of explaining a heterogeneous DGN predict-
ing research area of a scholar, Joan F., based on her citation network. The
input graph contains three types of nodes: author, paper, and conference.
Features of author and conference nodes are bag-of-words of their research
keywords and words in the titles, respectively. Author and conference nodes
are labeled by their areas (italicized in brackets). (i) Explanation of the DGN’s
prediction “Joan is a Database scholar” includes a subgraph of the input graph
(topological-level) and a subset of node features (feature-level) that are the
most influential on themodel’s decision. (ii) A general and automatic explainer
should provide one-stop answers to all concerns of the end user. (iii) To explain
DGN’s prediction, topological-level knowledge alone may be misleading, as
the neighborhood does not contain information related to “DB”. (iv) A1 (the
target node) should be considered as having more critical features than A2
(2-hop neighbor); P1 and P2 can have different feature-level explanations as
they have different feature values.

which hinders them from becoming trustworthy tools with trans-

parent decision-making mechanisms. Nevertheless, understanding

DGNs’ behavior is of great value, as it allows end users to inter-

pret reasoning behind predictions. Moreover, explanation of DGN’s

decisions helps experts examine the model and correct possible sys-

tematic errors before real-life deployment. Specifically, explaining

a DGN’s prediction is to answer the question “which part of the
input causes the model to make such a prediction?”. For example,

consider explaining a heterogeneous DGN predicting research areas

of a target scholar, Joan F. (filled in orange), based on her citation

network
1
as shown in Figure 1. The input graph contains three

types of nodes: author, paper, and conference, which are in yellow,

blue, and green, respectively. Research keywords and words in

titles are encoded using bag-of-words as features for the author and
paper nodes, respectively. Author and conference nodes are labeled
1
DBLP dataset.
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as one of the four areas: Data Mining (DM), Database (DB), Artificial
Intelligence (AI ) and Information Retrieval (IR), which is italicized

in brackets. To explain the DGN’s prediction “Joan is a Database
scholar”, an explainer aims to identify a compact subgraph of Joan’s
citation network and a small subset of node features, i.e. the subset
of research words that are most influential to the model’s decision.

Although extensive efforts have been devoted to promoting the

interpretability of DGNs, heterogeneity-agnostic multi-level ex-

plainability is still under shallow exploration [16, 56]. Since both ho-

mogeneous and heterogeneous graphs remain irreplaceable in prac-

tical applications, having a more general and end-to-end explainer

becomes a natural and inevitable choice. A heterogeneity-agnostic

explainer is highly user-friendly to non-expert practitioners, and

can help all potential users to the greatest extent possible. Without

requiring any domain knowledge, it offers a one-stop answer to

all concerns of end users - “Which type of graph? What model?
Why this prediction?” as shown in Figure 1. In addition, a reliable

explainer should be multi-level, and include both topological- and

feature- levels, to fully explore the knowledge enclosed in the graph

data. However, feature-level explanation is ignored by most existing

methods [21, 23, 42, 54, 57], which can lead to unreasonable or even

misleading explanations. Recall the example in Figure 1, to explain

DGN’s predicted label for Joan, i.e. Database (DB), a topological-
level explainer can only investigate relational information in the

graph structure: “Joan published a paper at CIKM (IR conference);
she also collaborated with an AI researcher and had one publication
at AAAI (AI conference)”. Evidently, topological-level information

alone is incomplete and deceptive, meaning that a topology-only

explainer may cause the model to incorrectly deceptive and waste

resources. While feature-level explanation can explore the bag-of-

words features and observe that keywords of the target author

include representative ones for the DB area such as “pruning” and
“efficiently”; moreover, her published papers have largely exploited

DB techniques such as “factorization” and “pruning”.
In a nutshell, DGN explainers should be both heterogeneity-

agnostic and multi-level to ensure adaptability and reliability. Yet

existing studies fall short in maintaining both capabilities. The

majority of current explainers remain topological-level [3, 21, 23,

42, 51, 52, 57], which cannot be easily extended tomulti-level as they

are oriented towards the combinatorial nature of graph topology.

While the issue with existing multi-level methods [45, 54] is that

they assume all nodes share a uniform feature-level explanation.

Firstly, this assumption is not appropriate for heterogeneous graphs,

as nodes of different types have different feature spaces (e.g., one-
hot encoding v.s. bag-of-words). Secondly, nodes with different

structural positions or realizations of features do not share the same

explanation. In Joan’s example (Figure 1),A1may havemore critical

features than A2, as A1 is the target node itself, while A2 is a 2-hop
neighbor; P1 and P2 are both 1-hop neighbors of the target, yet

they have totally different features. Hence the four nodes should be

considered as having exclusive explanations. By and large, recent
techniques have taken one of two primary routes: metric-based

and causality-guided. The former line of works [3, 21, 23, 42, 45,

51, 52, 54, 57] adopts heuristic metrics to quantify “explainability”
for designing optimization objectives or loss functions. Although

they justify their proposed metrics according to various theories

(e.g., Mutual Information and Shapley values), there still lacks of a

comprehensive and object unified standard. The causality-guided

approach, on the other hand, can avoid computing human-defined

“explainability”; instead, causal interaction between input elements

and the model’s prediction is investigated to find the true cause

of the target prediction. Thus, Vu and Thai [47] propose PGM-

Explainer - so far the only SOTA causality-guided method. In PGM-

Explainer, a Bayesian network (BN) is adopted to model the non-

linear dependency of model’s prediction on the input. Yet, it fails

to preserve the connectivity of selected important nodes, which

violates the message passing principle of DGNs.

In this work, we aim for a heterogeneity-agnostic multi-level

explainer for general DGNs. To address the discussed shortcomings,

one needs to develop a causality-guided, i.e., BN-based explainer

that ensures the connectivity of the output subgraph for a DGN,

which can be either homogeneous or heterogeneous. Furthermore,

the explainer should be multi-level and provide feature-level expla-

nation for nodes in the topological-level explanation. The problem

is challenging for the following three reasons: first, aiming for two

levels of explanation, the learned Bayesian network should encode

the ontological subordination of features to the nodes that carry

them, yet enforcing such relations into the causal network will post

too strong assumptions on the existence of a perfect map
2
over the

distribution of input-model interaction; second, a Bayesian network

that is capable of measuring causal effects of each feature on differ-

ent nodes individually can possibly be very large and exceedingly

expensive to learn; third, the desired Bayesian network structure

does not follow the input graph topology, thus developing an effec-

tive and efficient BN learning algorithm that preserves connectivity

of the output subgraph is non-trivial.

Aiming at tackling the above issues, in this paper we propose a

HeterogenEity-agNostiCmulti-lEvel DGN explainer, namedHENCE-

X. In HENCE-X, individual features are modeled as random vari-

ables while nodes are not, such a strategy allows an arbitrary model

behavior distribution to have a perfect map as it posts no require-

ments for representing the affiliation of features to nodes; HENCE-X

then learns a surrogate Bayesian network to capture the relations

between features and nodes as well as the dependency of model’s

prediction on the input. We introduce an efficient BN structure

learning algorithm based on graph traversal to find a subset of

features that the prediction is dependent on, meanwhile, nodes

carrying the selected feature are guaranteed to be connected. In

this way, our method produces faithful and multi-level explana-

tions for DGNs in an integrated fashion. We theoretically prove

that the proposed explainer outputs a Markov blanket of the model

prediction, which means HENCE-X can always locate all variables

that determine the model’s behavior.

2 BACKGROUND AND DEFINITIONS
In this work, we target a model-agnostic explainer, which means it

does not rely on any internal information of the pretrained DGN.

The explainer is allowed to perform multiple queries to the model,

2
A Bayesian network is a perfect map of a distribution 𝑃 if it is both an I-map and a

D-map of 𝑃 ; formal definitions are provided in the Supplementary Materials [1].
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yet access to knowledge inside the black-box DGN such as pa-

rameters and gradients is forbidden. The reason being that model-

agnostic explainers enjoy wider usage since DGNs are usually black-

boxes and their internal structure is inaccessible in real-life scenar-

ios. In the following, we present preliminaries, including a descrip-

tion of DGN models, using a Bayesian network as an interpretable

model and aMarkov blanket as the criterion of explanations. Finally,

we formulate the problem studied in this work.

2.1 Explaining a Deep Graph Network
Without loss of generality, we denote the input graph of a DGN

to be explained as 𝐺 = (V, E,X, 𝜁 ,𝜓 ), whereV and E are the set

of nodes and edges in the graph. Each 𝑣 is associated with a type

𝜁 (𝑣), and each edge 𝑒 also has a type 𝜓 (𝑒). Nodes are associated
with features X = {𝑥𝑣1 , ..., 𝑥𝑣𝑖 }, 𝑥𝑣𝑖 ∈ R𝑑𝜁 (𝑣𝑖 ) , where 𝑑𝜁 ( ·) denotes
feature dimensions of a node type. If the model to be explained is

a homogeneous DGN, 𝜁 and𝜓 have only one type in their range;

otherwise the model is a heterogeneous DGN, 𝜁 and 𝜓 will map

nodes and edges to different types, such that input node features

may have different dimensions. Furthermore, we denote 𝜙 : 𝐺𝑡 ↦→
{1, ...,𝐶} as the pretrained DGN that maps a target instance 𝑡 to

one of the 𝐶 classes, where 𝐺𝑡 is the computational graph of 𝑡 .

2.2 A Bayesian Network as Interpretable Model
and Markov Blanket as Criterion

To avoid relying on the linear-independence assumption of the

input, the Bayesian network [32] is introduced to the DGN expla-

nation task by Vu and Thai [47]. The advantage is two-fold: first,

the Bayesian network as a graph-based model allows direct and

natural adaption to explaining DGNs by treating nodes in the in-

put graph as random variables; second, it is capable of encoding

complex distributions in a multi-dimensional space while provid-

ing intuitive interpretation of the dependencies using probabilistic

graphical model. Specifically, nodes in the input graph are modeled

as random variables, which take binary values to record whether

the underlying node is perturbed. The DGN prediction is also mod-

eled as a random variable that indicates whether the prediction

has changed due to the perturbation. In such matters, a model’s

behavior is encoded into a probability distribution with multiple

random variables, and we term this distribution model behavior dis-
tribution. Assume there exists a perfect map B∗ of the underlying
distribution, structure learning algorithm for a Bayesian network

can be employed to find the structure of B∗ [13, 15]. In this way,

causality between a DGN’s decision and the input can be unveiled

as dependencies of the prediction variable on the input node vari-

ables, and the learned Bayesian network precisely visualizes the

model’s decision making mechanism. For ease of illustration, we

use variable to refer to random variable when the context is clear.

As a matter of fact, understanding a DGN prediction is not nec-

essarily of concern to the entire Bayesian network over the model

behavior space; instead, only the critical parts of the input are of

interest because end-users prefer a simple and human-intelligible

explanation. In addition, learning the entire network can be redun-

dant and possibly cumbersome when the input space is large. Hence

a Markov blanket in a Bayesian network is further introduced as

the criterion of explanations [47]. The term was coined by Judea

Pearl [33] to study probabilistic reasoning and plausible inference;

the formal definition is shown in below:

Definition 2.1 (Markov blanket[33]). Consider a joint distri-
bution on a set of random variables {𝑌 }∪𝑍 , where𝑍 = {𝑋1, 𝑋2, ...𝑋𝑛}.
A Markov blanket of 𝑌 , denoted by MB(𝑌 ), is a subset of 𝑍 , con-
ditioned on which 𝑌 is independent of any other variables in 𝑍 , i.e.,

𝑌⊥⊥B𝑍\MB(𝑌 )
|︁|︁
MB(𝑌 ) .

In a Bayesian network, the Markov blanket of a variable 𝑌 in-

cludes its parents, children and spouses, such that the blanket d-
separates

3 𝑌 from all other nodes in 𝑍 . By definition, a Markov

blanket contains all dependencies of the target variable in the dis-

tribution. In our problem, under the assumption that there exists

a perfect map B∗ of the model behavior distribution, a Markov

blanket of the prediction variable, denoted by MBB∗ (Φ𝑡 ), encloses
all the statistical information that determines the prediction and

changes in the model’s decision are independent of any variable

outside the blanket. Hence, the Markov blanket serves as a duteous

criterion for precise and concise explanations.

2.3 Towards Multi-level Explanation
Despite the advantage of not being based on a linearly independent

assumption on input elements and the sophistication of employing a

Markov blanket to determine an explanation, modeling nodes in the

input graph as random variables suffers from an intrinsic drawback:

it falls short of generating feature explanations as a matter of course.

Towards heterogeneity-agnostic and multi-level explainability, we

propose using each entry of node features instead of the node as

random variables, such that the explainer can capture node-specific

feature-level importance. In this way, searching for variables in the

Markov blanket over a mapped Bayesian network changes from

finding a subset of nodes in the input graph to identifying a subset

of entries in the feature matrix. In the first place, we formally define

the model behavior distribution studied in this paper as below:

Definition 2.2 (Model behavior distribution). Given a pre-
trained DGN 𝜙 and a target node 𝑡 , denote 𝑗-th feature on node 𝑣𝑖
as 𝑓 ( 𝑗 )𝑣𝑖 for all nodes in 𝑡 ’s computational graph 𝐺𝑡 . Let each 𝑓

( 𝑗 )
𝑣𝑖 in

the input feature matrix X𝐺𝑡
be associated with a random variable

𝐹
( 𝑗 )
𝑣𝑖 to encode whether the underlying feature is perturbed, and let

the DGN’s prediction on 𝑡 also be associated with a random variable
Φ𝑡 to encode the prediction change when the perturbed input is fed
into the DGN. The model behavior distribution of 𝜙 on 𝑡 , denoted by
P𝜙 (𝑡), is defined as the probability distribution formed by perturbing
X𝐺𝑡

and the induced DGN prediction change.

For simplicity of notation, we denote the set of all variables

associated to features in the distribution asF𝜙 (𝑡). DGN prediction is

modeled as an individual random variable and the model’s behavior

does not affect the input in return, hence the prediction variable

has no child in the distribution. Model behavior distribution allows

one to explore the complex causality between input elements and

the model’s decision by revealing reasoning patterns in a Bayesian

network of their interaction. Denote 𝑑∗
𝜁 ( ·) as the maximum feature

3
Two nodes 𝑋 and 𝑌 in a Bayesian network are d-separated by a set𝑊 if all paths

between 𝑋 and 𝑌 are blocked by𝑊 ; equivalently, 𝑋 ⊥⊥ 𝑌
|︁|︁𝑊 . Formal definition of

d-separation is provided in the Supplementary Materials [1].
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dimension among all nodes types, we now formally define the

problem studied in this work as below:

Definition 2.3 (Heterogeneity-agnostic multi-level expla-

nation generation problem). Given a pretrained DGN 𝜙 and a
target node 𝑡 , assume there exists a perfect map B∗ of the model
behavior distribution P𝜙 (𝑡), the problem of generating heterogeneity-
agnostic multi-level explanation for the model’s prediction on 𝑡 is
to identify a subset of entries in the input feature matrix X𝐺𝑡

, de-
noted by E𝑓 𝑒𝑎𝑡 , such that M =

{︁
𝐹
( 𝑗 )
𝑣𝑖 : ∀𝑓 ( 𝑗 )𝑣𝑖 ∈ E𝑓 𝑒𝑎𝑡

}︁
is a

Markov blanket of Φ𝑡 in B∗ and the subgraph of 𝐺𝑡 induced by
E𝑡𝑜𝑝𝑜 =

{︁
𝑣𝑖 : ∃ 𝑗 ∈ [0..𝑑∗

𝜁 ( ·) ] s.t. 𝑓
( 𝑗 )
𝑣𝑖 ∈ E𝑓 𝑒𝑎𝑡 ,∀𝑣𝑖 in 𝐺𝑡

}︁
is a

connected component.

3 THE PROPOSED EXPLAINER
Given a pretrained DGN and a target node 𝑡 , the goal of HENCE-X

is to identify a subset of features on nodes in 𝑡 ’s computational

graph that are crucial to the model’s prediction on 𝑡 . Assume there

exists a perfect map B∗ of the model behavior distribution P𝜙 (𝑡),
the Markov blanket of the prediction variable can be learned by first

collecting a group of samples from the underlying distribution, then

the blanket is searched based on the observed data [15, 25, 40]. The

proposed HENCE-X consists of three principal components: sam-

ple generation, Markov blanket searching and network parameter

learning. Each of them are detailed in the following sections.

3.1 Sample Generation
Aiming for a group of samples drawn from the model behavior

distribution, we perturb the feature matrix of the target while the

corresponding prediction scores are queried from the pretrained

DGN. Different from the existing BN-based explainer [47], HENCE-

X perturbs every entry in the feature matrix severally instead of

conducting node-wise perturbation, such that the importance of

each feature can be measured individually but not collectively. In

particular, the realization rule of feature random variables is for-

mulated as below:

𝐹
( 𝑗 )
𝑣𝑖 =

{︄
1, if 𝑓

( 𝑗 )
𝑣𝑖 is perturbed;

0, otherwise.

(1)

The perturbation scheme must be carefully designed in order to

properly eliminate the effect of information provided by the under-

lying feature. Such action should be determined by both the nature

of features in the data and the application scenario of the DGN to

avoid constructing illegal inputs.

After perturbing the features and acquiring a varied input 𝐺 ′𝑡 ,
the corresponding DGN behavior, i.e., a new prediction score 𝜙 (𝐺 ′𝑡 ),
can be obtained by feeding 𝐺 ′𝑡 input to the model. To align with

the input variables, we introduce a realization rule for casting the

prediction score into a categorical random variable Φ𝑡 as below:

Φ𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑚𝑖𝑛, if 𝜙 (𝐺 ′𝑡 ) [𝑦̂ = 𝑦̂

0
] ≤ min

𝐺 ′′𝑡
𝜙 (𝐺 ′′𝑡 ) [𝑦̂ = 𝑦̂

0
] + 𝜎 ;

𝑚𝑎𝑥, if 𝜙 (𝐺 ′𝑡 ) [𝑦̂ = 𝑦̂
0
] ≥ max

𝐺 ′′𝑡
𝜙 (𝐺 ′′𝑡 ) [𝑦̂ = 𝑦̂

0
] − 𝜎 ;

𝑜𝑡ℎ𝑤., otherwise.

(2)

where 𝜙 (·) [𝑦̂ = 𝑦̂
0
] denotes that the score is specified for the orig-

inal predicted label 𝑦̂
0
on the target instance. 𝐺 ′𝑡 and 𝐺

′′
𝑡 are per-

turbed graph induced by the corresponding realization of feature

variables, and 𝜎 is a small constant. Here, max(·) and min(·) are
measured over all predictions produced in the sample generation

step. As a result, Φ𝑡 is a categorical random variable with domain

{𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑜𝑡ℎ𝑤.}. The realization rule is specifically designed to

capture the model’s behavior in respect of the two forms of expla-

nations, factual and counterfactual: when Φ𝑡 =𝑚𝑎𝑥 (w.r.t.𝑚𝑖𝑛), the

situation corresponds to a factual (w.r.t. counterfactual) explanation
by showing that “given current information, the DGN is most certain
that the instance belongs (w.r.t. does not belong) to class 𝑦̂

0
”.

Mathematically, a sample is one specific realization of all random

variables in the distribution P𝜙 (𝑡) according to the realization rules

Equation (1) and Equation (2), which is represented as a row of

categorical values and inserted into the sample table D𝑃𝜙 (𝑡 ) . In
such a manner, each perturbation run and model prediction query

will produce one input-output pair as one sample that describes the

model’s behavior. Upon acquisition of sufficient samples, Markov

blanket and parameters of the Bayesian network are then learned

based on the collected data as detailed in the following sections.

3.2 Markov Blanket Searching
Under the assumption that there exists a perfect map B∗ of the
model behavior distribution, the prediction variable is independent

of all other variables conditioned on the Markov blanket. Thus

the statistical information on the prediction variable embraced

in MBB∗ (Φ𝑡 ) is the same as that in B∗ [47]. Given a sufficient

number of samplesD, theMarkov blanket of a target variable can be

discovered by the Grow-Shrink (GS) algorithm [25], which retains

provable correctness. In the growing phase, the algorithm starts with

an empty blanket and scans all random variables in the Bayesian

network, if there exists one that is not independent from the target

conditioned on the current blanket, it will be added to the blanket. In

the shrinking phase, the blanket is shrunk by removing the variables

which the target is independent of conditioned on the others in the

blanket. The algorithm ensures the property of a Markov blanket is

well guarded, yet it has the exponential computational cost problem

due to the conditional independence tests involved. Unfortunately,

the statistical independence test conditioned on𝑚 binary variables

requires 2
𝑚 marginal independence tests, the overall complexity

becomes 𝑂 (2𝑚 · |D|), where |D| is the sample size.

Consider a multi-dimensional distribution over a set of random

variables 𝑍 , growing a Markov blanket requires |𝑍 | − 1 conditional
independence tests with growing conditioning set as the blanket

expands. Suppose one is interested in finding the Markov blanket of

a variable in 𝑍 which is rather small compared to |𝑍 |. In the worst

case, variables that belong to the Markov blanket are tested lastly,

and before that each variable tested is added to the current set, then

the worst-case complexity of growing the blanket is 𝑂 (∑︁ |𝑍 |
𝑚=1

2
𝑚 ·

|D|) = 𝑂 (2 |𝑍 | · |D|). On the other hand, when the variables in

the Markov blanket are tested at the initial steps, all the other

variables will not be added to the blanket, hence the conditioning

set will not grow and the best-case complexity is 𝑂 ( |𝑍 | · |D|).
However, this is not realistic because searching for the Markov

blanket given known variables in it is a paradox. Nevertheless,

there still exists opportunities for a better solution in growing a

Markov blanket: one can first screen out variables that are certainly

not in the blanket; then a superb order to conduct conditional
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independence test on the variables can be developed to lead the

algorithm to its best-case complexity; furthermore, a stop condition

is also useful, namely, knowing all the untested variables are surely

not in the blanket. With respect to these opportunities, we design

correspondingmodules in HENCE-X to search for a Markov blanket

of the prediction variable effectively and efficiently.

3.2.1 Variable Screening. In contrast to the conditional indepen-

dence test, the marginal independence test has a fair complexity of

𝑂 ( |D|), where |D| is the sample size. To borrow from this advan-

tage, we present a theorem proposed by Vu and Thai (2020) [47]

using symbols in this paper, which is equivalent to the original one.

Theorem 3.1 ([47] Theorem 2). Assume there exists a perfect
map B∗ of a distribution 𝑃 on a set of random variables 𝑍 . If a node
𝑋 ∈ 𝑍 has no child in B∗, MBB∗ ⊆ 𝑈 (𝑋 ) where 𝑈 (𝑋 ) = 𝑆 (𝑋 ) ≜
{𝑋 ′ ∈ 𝑍 : 𝑋 ′ ̸⊥⊥ B∗𝑋 }.

The theorem describes the relation between the Markov blanket

of a target random variable with no child and the set of other

variables built using marginal independence tests. According to

this theorem, we have the following lemma that serves as a guide

for screening out unimportant variables.

Proposition 3.2. Given a pretrained DGN 𝜙 and a target node 𝑡 ,
assume there exists a perfect map B∗ of the model behavior distribu-
tion P𝜙 (𝑡), let

KΦ𝑡
=
{︁
𝐹
( 𝑗 ′ )
𝑣′ ∈ F𝜙 (𝑡) : Φ𝑡 ̸⊥⊥B∗𝐹

( 𝑗 ′ )
𝑣′

}︁
. (3)

For any variable 𝐹 ( 𝑗 )𝑣𝑖 ∈ F𝜙 (𝑡), if 𝐹
( 𝑗 )
𝑣𝑖 ∉ KΦ𝑡

, then 𝐹 ( 𝑗 )𝑣𝑖 ∉ MBB∗ (Φ𝑡 ).

The proof directly follows from Theorem 3.1 as marginal inde-

pendence is commutative. We term KΦ𝑡
the blanket basket of the

prediction variable, because KΦ𝑡
plays the role of a container that

holds the blanket, and the blanket never oversteps the capacity of

KΦ𝑡
. Conversely, KΦ𝑡

can be much larger than MBB∗ (Φ𝑡 ), espe-
cially when the ancestral set of the target in the Bayesian network is

large. As a matter of fact, the existing BN-based explainer [47] sim-

ply takes the top-𝑘 marginally dependent variables in the blanket

basket as the output explanation. This is problematic as the predic-

tion may retain high marginal dependency on a variable 𝑉 ′ due to
𝑉 ′ being a significant non-parent ancestor of the prediction, but

conditioned on the direct parent(s), the prediction is independent

of 𝑉 ′. Hence taking only the top-𝑘 marginally dependent variables

may lead to an incomplete Markov blanket.

To exemplify a blanket basket, in Figure 2 shows an illustrative

instance using a snapshot of the DBLP citation network, the origi-

nal input is presented at the top. The underlying perfect map B∗
of the model behavior distribution is shown in subplot (a), where

edges are drawn in curves rather than straight lines to distinguish

between the Bayesian network and the input graph; random vari-

ables are represented by white nodes, while those not in the blanket

basket are drawn using dotted line. The paper P1“O-O, What’s Hap-
pening to DB2?” has the word “O-O” in its features, which is the

cause of the same word in the later paper P2 “O-O, What Have They
Done to DB2?”. However, “O-O” is not connected to the prediction

variable, which is then marginally independent of “O-O”, hence it
is not included in the blanket basket.

Blanket Basket Searching for Screening Variables. A cannier

approach to utilizing the blanket basket is to trim variables that
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Figure 2: Illustrative example of surrogate network building; curved edges
are used to distinguish between BN and the input graph.

are not necessary for the Markov blanket, such that unnecessary

conditional independence tests on those variables are avoided when

growing the blanket. Formally, assume there exists a perfect map

B∗ of the model behavior distribution, the variable screening step is

to search for the blanket basket of the prediction variable Φ𝑡 by con-
ducting marginal independence tests between Φ𝑡 and every feature

variable 𝐹
( 𝑗 )
𝑣𝑖 ∈ F𝜙 (𝑡), then prune all 𝐹

( 𝑗 )
𝑣𝑖 ’s that Φ𝑡 is marginally

independent of. Below we detail how to model the causal effect of

vertices in the input graph on the model’s predictions.

3.2.2 Surrogate Bayesian Network. Though aiming at multi-level

explanations, HENCE-X does not design vertex variables together

with feature variables, nor does it further enforce the association of

feature variables with vertex variables. Because it cannot be guar-

anteed that a Bayesian network with certain human-defined local

structures is indeed a perfect map of the model behavior distribu-

tion. Thus, HENCE-X introduces feature and prediction variables

only to allow an arbitrary-structured perfect map to exist. However,

such Bayesian networks ignore the fact that individual features

on the same vertex are processed by the DGN as an entirety and

transformed into neural message in union, thus they have impact

on the prediction in an integrated fashion. To bridge this gap, we

build a surrogate Bayesian network B′ based on the original per-

fect map B∗, in which synthetic nodes are added as convergent

variables for vertexes in the input graph. By dealing with vertex

variables, HENCE-X can capture the integrated causal effects of

features on the same vertex and better explore the graph topology

to discover critical message passing paths. Furthermore, guided

by the graph topology, an efficient and effective Markov blanket
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searching algorithm can be developed. In the following we describe

how to build the surrogate network and theoretically prove that the

Markov blanket of the prediction variable Φ𝑡 in the original perfect

map B∗ can be successfully acquired from one in the surrogate

network B′. To avoid ambiguity, we use vertex to refer to the node

in the input graph for the next subsection.

Step 1. Introduce variables in the blanket basket to B′. Ac-
cording to Proposition 3.2, the desired Markov blanket must be a

subset of variables in the blanket basket KΦ𝑡
. Hence we introduce

all variables in KΦ𝑡
and the prediction variable Φ𝑡 to the surrogate

network. The blanket basket is analog to the causal basin defined

for poly-trees, which contains causal flows for recovering causality

patterns from statistical data [19, 30, 31, 37, 43, 48]. Likewise, the

blanket basket also contains all causes of the model’s prediction,

thus the constructed surrogate networks must include all its vari-

ables. This step is shown in Figure 2(b), feature variables such as

“DB2” from P1, P2 and P3, in addition to “DB” and “SQL” from A1
are introduced to B′, but “O-O” from P1 and P2 is not. Dotted

lines in the subplot represent the induced substructure of B∗. As
illustrated, all the ancestors (causes) of Φ𝑡 are included in B′.
Step 2. Introduce synthetic variables 𝑉𝑖 ’s for vertexes and
network structure transfer from B∗ to B′. To model the fact

that features on the same vertex are processed by the DGN as an

entirety, we introduce a synthetic variable for each vertex with

feature(s) in the blanket basket, such that the causal effects of its

features can be captured in an integrated fashion. This is then rep-

resented by transferring structures of B∗ to B′. Denote the set of
related vertexes with respect to the blanket basket as

VK =
{︁
𝑣𝑖 : ∃ 𝑗 ∈ [0..𝑑𝜁 (𝑣𝑖 ) ] s.t. 𝐹

( 𝑗 )
𝑣𝑖 ∈ KΦ𝑡

, for all 𝑣𝑖 in 𝐺𝑡

}︁
, (4)

and the set of feature variables in the blanket basket that are on the

same vertex 𝑣𝑖 as

KΦ𝑡
(𝑣𝑖 ) =

{︁
𝐹
( 𝑗 )
𝑣′ ∈ KΦ𝑡

: 𝑣 ′ = 𝑣𝑖 , 𝑗 ∈ [0..𝑑𝜁 (𝑣𝑖 ) ]
}︁
. (5)

For each vertex 𝑣𝑖 inVK , a synthetic variable 𝑉𝑖 [29] is added to B′
to aggregate the outgoing causative impact of feature variables in

KΦ𝑡
(𝑣𝑖 ). Next, the structure of B∗ is transferred to B′ in order to

ensure the latter contains the same causal flow as the former. Specif-

ically, for each 𝑣𝑖 ∈ VK , if there exists an edge in B∗ outgoing from
a variable in KΦ𝑡

(𝑣𝑖 ) to another variable in {Φ𝑡 }
⋃︁KΦ𝑡

\︁
KΦ𝑡
(𝑣𝑖 ),

add an edge into B′ from 𝑉𝑖 to the latter variable. In this way, the

causal effects of feature variables on a vertex 𝑣𝑖 to their children

are aggregated by 𝑉𝑖 . Figure 2(c) illustrates this step, 𝑉1,𝑉2,𝑉3 and

𝑉4 are introduced for P1, P2, P3 and A1, respectively. Take P3 as

an example, impacts of the features “Hierarchies” and “DB2” on
model prediction are integrated by 𝑉3 after the structure transfer.

Synthetic variable was coined by Neil, et al. [29] for combining mul-

tiple variables in local structures of large-scale Bayesian networks,

which has been proven to be effective for reducing combinatorial

explorations in many areas such as software engineering [28] and

medical decision support [5]. We adopt synthetic variables here to

mimic the message passing scheme of DGN: each feature has an

impact on the model’s prediction to varying degrees, yet features

on the same vertex function as an entirety. Moreover, introducing

vertex representation allows us to explore the graph topology.

Step 3. Introduce contribution variable 𝜉 𝑗
𝑖
’s and realization

rule of synthetic variables. Before deciding the realization rule

of the synthetic variables, it is noteworthy that, in the Bayesian

network that encodes the non-linear dependency of model behavior

on the input, explaining a prediction does not concern how features

on the same vertex affect each other. Instead, only causal effects

of input elements on the prediction variable are of interest. Hence,

to the simplify local structure of variables associated with a vertex

and its features, in addition to determining the realization of𝑉𝑖 , we

introduce the convergent variable in causal independence [44, 59]

to capture how 𝐹
( ·)
𝑣𝑖 collectively affect 𝑉𝑖 . Specifically, for each ver-

tex 𝑣𝑖 in VK , we introduce for each variable 𝐹
( 𝑗 )
𝑣𝑖 in KΦ𝑡

(𝑣𝑖 ) a
contribution variable 𝜉 𝑗

𝑖
. Each 𝜉

𝑗
𝑖
has only one incoming edge from

𝐹
( 𝑗 )
𝑣𝑖 and only one outgoing edge to𝑉𝑖 . As a result, each piece of the

network fragments (local structures) consists of 𝑉𝑖 , 𝐹
( ·)
𝑣𝑖 and 𝜉

𝑗
𝑖
’s

corresponding to one vertex in the input graph, and the synthetic

variable is dependent on its parent contribution variables only.

By definition, for any vertex 𝑣𝑖 inVK , all variables in KΦ𝑡
(𝑣𝑖 )

are causally independent [59] with respect to 𝑉𝑖 as there exist ran-

dom variable 𝜉
𝑗
𝑖
’s such that 𝜉

𝑗 ′

𝑖
is probabilistically dependent on

𝐹
( 𝑗 ′ )
𝑣𝑖 only, and it is conditionally independent of all other variables

in KΦ𝑡
(𝑣𝑖 ) and all other 𝜉

𝑗
𝑖
’s given 𝐹

( 𝑗 ′ )
𝑣𝑖 ; and there exists some

commutative and associative binary operator ∗ such that

𝑉𝑖 = 𝜉
𝑗
𝑖
∗ 𝜉 𝑗

′

𝑖
∗ ... ∗ 𝜉 𝑗

′′

𝑖
,∀𝐹 ( 𝑗 )𝑣𝑖 ∈ KΦ𝑡

(𝑣𝑖 ) .

Put simply, individual contributions from different causes can be

considered independent and the total influence on 𝑉𝑖 is a combina-

tion of those individual ones. Naturally, we let 𝜉
𝑗
𝑖
be the presence

of the underlying feature and the realization rule is shown below:

𝜉
𝑗
𝑖
= 1 − 𝐹 ( 𝑗 )𝑣𝑖 .

Using a vector to represent all variables in KΦ𝑡
(𝑣𝑖 ) and their corre-

sponding 𝜉
𝑗
𝑖
, it can be rewritten as 𝝃𝑖 = 1 − F𝑣𝑖 .

Furthermore, Noisy-AND gate [59] is introduced to be the com-

mutative and associative binary operator ∗, namely,𝑉𝑖 is determined

by the situation 𝜉
𝑗
𝑖
and 𝜉

𝑗 ′

𝑖
present. For example, if the research

word “knowledge graph” presents in the bag-of-words features, only

when “knowledge” and “graph” present simultaneously, the infor-

mation is complete, as “knowledge” or “graph” alone will lead to a

very different meaning. Take A1 in Figure 2(d) as an example, “DB”,

“SQL” and other features associated with A1 are said to be causally
independent with respect to 𝑉4, if there exist random variables 𝜉

𝑗

4
’s

such that, every 𝜉
𝑗 ′

4
is probabilistically dependent on 𝐹

( 𝑗 ′ )
𝑣4 only and

is conditionally independent of all other variables in KΦ𝑡
(𝑣4) and

all other 𝜉
𝑗

4
’s given 𝐹

( 𝑗 ′ )
𝑣4 .

Nowwe are ready to introduce the realization rule of𝑉𝑖 . As Noisy-

AND gate is used as the binary operator, 𝝃𝑖 directly encodes the case
of AND by recording the presence of the underlying features. To

align with other variables in the distribution that are all categorical,

the random vector should be also transformed into a categorical

variable. Formally, realization rule for synthetic variables is shown

below:
𝑉𝑖 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒 (𝝃𝑖 ),

where 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒 (·) can be any one-to-one function that maps a

vector into a unique categorical value. In this paper, we simply use

a dot product function:

𝑔(𝒙) = 𝒙 · [𝑐0, 𝑐1, ..., 𝑐 |𝒙 | ],

2995



for any integer 𝑐 > 1, such that the input random vector can be

transformed into an integer-valued categorical random variable. It

can be easily verified that, as long as the one-to-one mapping is well

maintained, the transformed variable and the random vector are

equivalent by proving they have the same probability mass function.

In this way, vertexes in the computational graph are also repre-

sented by categorical random variables and statistical independence

of the prediction variable on vertexes can be computed.

3.2.3 Relation between B∗ and B′. The surrogate network B′ is
built to facilitate finding the Markov blanket MBB∗ (Φ𝑡 ) in the per-

fect map B∗, which is specially designed in a way that MBB∗ (Φ𝑡 )
can be guaranteed form a Markov blanket MBB′ (Φ𝑡 ) in B′. We

first present the relation between the perfect map and the surrogate

network. The below lemma states that one can successfully acquire

MBB∗ (Φ𝑡 ) from MBB′ (Φ𝑡 ) under a certain condition.

Lemma 3.3. LetMBB′ (Φ𝑡 ) be a Markov blanket of Φ𝑡 in the sur-
rogate network B′ that does not contain any contribution variables,
denote M as the subset of MBB′ (Φ𝑡 ), which includes all feature
variables only; mathematically,

M =
{︁
𝐹
( 𝑗 )
𝑣𝑖 : ∃ 𝑗 ∈ [0..𝑑𝜁 (𝑣𝑖 ) ] s.t. 𝐹

( 𝑗 )
𝑣𝑖 ∈ MBB′ (Φ𝑡 ), for all 𝑣𝑖 in 𝐺𝑡

}︁
,

and letV be the set of vertexes in the input graph that are associated
with variables in MBB′ (Φ𝑡 ), i.e.

V =
{︁
𝑣𝑖 : ∃𝑉𝑖 ∈ MBB′ (Φ𝑡 )

}︁
. (6)

If for all 𝑣𝑖 ∈ V , there exists a subsetM′ ⊆ M\F𝜙,𝑡 (𝑣𝑖 ) such that

Φ𝑡 ⊥⊥ B′𝐹 ( 𝑗 )𝑣𝑖

|︁|︁M′, ∀𝐹 ( 𝑗 )𝑣𝑖 ∈ KΦ𝑡
(𝑣𝑖 )\F𝜙,𝑡 (𝑣𝑖 ), (7)

where F𝜙,𝑡 (𝑣𝑖 ) =
{︁
𝐹
( 𝑗 )
𝑣′ ∈ MBB′ (Φ𝑡 ) : 𝑣 ′ = 𝑣𝑖 , 𝑗 ∈ [0..𝑑𝜁 (𝑣𝑖 ) ]

}︁
and

KΦ𝑡
(𝑣𝑖 ) is defined in Equation (5), thenM is a Markov blanket of

Φ𝑡 in B∗.

Due to space limitation, we have to present the proof of this

lemma in the Supplementary Materials [1].

3.2.4 Testing Order and Stop Condition for Blanket Growing. Be-
sides variable screening, a superb order for testing the variables

and a stop condition can also reduce the search space of the GS

algorithm. Local structures in B′ allow pruning features that are

irrelevant to the prediction by testing the underlying vertex first.

We first prove if there exists a feature on a vertex that is not inde-

pendent from the prediction conditioned on a set𝑍 of other random

variables, the corresponding synthetic variable is also not indepen-

dent from the prediction conditioned on 𝑍 ; meanwhile, it is also

true that if a vertex is associated with a synthetic variable not inde-

pendent from the prediction conditioned on 𝑍 , feature variables on

it are also not independent from the prediction conditioned 𝑍 .

Lemma 3.4. In the surrogate networkB′, for any synthetic variable
𝑉𝑖 , let 𝑍 be a set of variables that does not contain any their its
grandparent feature variable 𝐹 ( ·)𝑣𝑖 ’s or contribution variables, if there

exists some 𝐹 ( 𝑗 )𝑣𝑖 such that 𝐹 ( 𝑗 )𝑣𝑖 ̸⊥⊥ B′Φ𝑡
|︁|︁𝑍 , then 𝑉𝑖 ̸⊥⊥ B′Φ𝑡 |︁|︁𝑍 .

Proof of this lemma is also presented in the Supplementary

Materials [1]. Furthermore, we have the below lemma to show

testing a synthetic variable of a vertex can be used to prune features

variables that are certainly not in the Markov blanket.

Lemma 3.5. In the surrogate network B′, for any synthetic vari-
able 𝑉𝑖 , let 𝑍 be a set of variables that does not contain any of
their grandparent feature variable 𝐹 ( ·)𝑣𝑖 ’s or contribution variables. If
𝑉𝑖 ⊥⊥ B′Φ𝑡

|︁|︁𝑍 , then all its grandparent feature variables and parent
contribution variables are independent from the prediction variable
conditioned on 𝑍 , namely, 𝐹 ( 𝑗 )𝑣𝑖 ⊥⊥ B′Φ𝑡

|︁|︁𝑍 and 𝜉 𝑗
𝑖
⊥⊥ B′Φ𝑡

|︁|︁𝑍 for all
𝑗 ∈ [0..𝑑𝜁 (𝑣𝑖 ) ].

Please see the Supplementary Materials [1] for the proof. Lemma

3.5 allows one to avoid conducting 𝑂 (𝑑𝜁 (𝑣𝑖 ) ) tests to show that

all features on vertex 𝑣𝑖 are conditionally independent from the

prediction; instead, only one test on 𝑉𝑖 is enough.

According to Definition 2.1, the Markov blanket is not unique,

because a superset of a Markov blanket is also a Markov blanket of

the target variable, hence to capture truly important variables, the

necessary variable is defined as below:

Definition 3.1 (necessary variable). Consider a joint distribu-
tion and a target random variable, a necessary variable is a random
variable that is in every Markov blanket of the target variable.

In the settings of our problem, we further term vertexes asso-

ciated with necessary variables 𝑉𝑖 in B′ as necessary vertexes. To
explain DGNs, it is generally believed that the explanation subgraph

should be a connected component [21, 54, 57]. The reason is that the

disconnected explanation violates the message passing principle

of DGNs, as features of disconnected nodes cannot be propagated

to the target and thus cannot influence the model’s predictions.

Based on this philosophy, we assume that every necessary vertex
is connected to the target by other necessary ones. The meaning of

this assumption is that vertexes comprising critical message pass-

ing paths are all necessary in determining the model’s prediction.

Subsequently, a graph traversal strategy can be employed to prop-

erly order the variables for conditional independence tests, and an

elegant stop condition can be developed.

Testing Order of Variables. As target node 𝑡 must be included in

the explanation, iteratively picking variables for growing a blan-

ket should begin with features of the target, followed by those in

the neighborhood. To start with, feature variables in the blanket

basket on the target node will be added to an empty blanket for

initialization. Next, instead of testing the rest random variables in

an arbitrary order, synthetic variables associated with neighbors

of the current structure are tested first. This is followed by feature

variables on the vertex to be added into the growing blanket in

each iteration. As a result, features on nodes that are close to the

target will be tested before those distant from the target. Though it

cannot be theoretically proved that such ordering can ensure vari-

ables in the Markov blanket are tested foremost due to the DGNs

being complex black-box functions, it is generally believed that the

closer the nodes are to a target, the more influential they are in

the DGN’s prediction on the target. In the meantime, connectivity

of the explanation structure is certainly well-maintained in this

graph expansion strategy. Essentially, testing order is guided by

the input graph topology and surrogate network B′ alliteratively.
When adding a vertex variable, the graph topology is followed;

while adding feature variables, the local structure of B′ is followed.
Stop Condition. Recall that necessary vertexes are all connected to
the target, thus the stop condition is to end the growing procedure

when there are no variables in the neighborhood that Φ𝑡 is not

2996



vertexes with no feature variables in

(a) (d)(b) (c) (e) (f) (g)

topological-level explanation vertexes with synthetic variables invertexes with synthetic variables in vertexes not yet visitedSubplot (b) - (g):

…

Blanket basket searching Blanket growing Blanket shrinkingOriginal input

Figure 3: Flow of HENCE-X explaining a heterogeneous DGN for node classification in the DBLP dataset. The citation network is a heterogeneous graph with
three different types of nodes: author, paper and conference. Please refer to Section 3.2.5 for explanation.

Algorithm 1: HENCE-X
1 Input: the pretrained DGN model 𝜙 , a target node 𝑡 and its computational

graph𝐺𝑡 ;

2 Output: a set of selected variables;

3 Initialization: E𝑡𝑜𝑝𝑜 ← ∅,U = {𝑇 }, I ← ∅,M ← ∅;
4 Generate DP𝜙 (𝑡 ) ;
5 KΦ𝑡 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) ;
6 Build B′ based on KΦ𝑡 ;

/* Growing phase, add variables to the blanket. */
7 while |U | ≠ 0 and ∃𝑉 ∈ U s.t. Φ𝑡 ̸⊥⊥ DP𝜙 (𝑡 )𝑉

|︁|︁M do

8 𝑉̂ = argmax

𝑉 ∈U
dependency of Φ𝑡 on𝑉 conditioned onM;

9 I ← I⋃︁{︁
𝑉 ∈ U : s.t. Φ𝑡 ⊥⊥ DP𝜙 (𝑡 )𝑉

|︁|︁M}︁
;

10 Remove 𝑉̂ from U;

11 Mˆ ←
{︁
𝐹
( 𝑗 )
𝑣̂
∈ KΦ𝑡 : Φ𝑡 ̸⊥⊥ DP𝜙 (𝑡 ) 𝐹

( 𝑗 )
𝑣̂

|︁|︁M}︁
;

12 if |Mˆ | = 0, then
13 I ← I⋃︁{𝑉̂ }
14 else
15 E𝑡𝑜𝑝𝑜 ← E𝑡𝑜𝑝𝑜 ∪ { 𝑣̂};
16 E 𝑣̂

𝑓 𝑒𝑎𝑡
←

{︁
𝑓
( 𝑗 )
𝑣̂

: 𝐹
( 𝑗 )
𝑣̂
∈ Mˆ

}︁
;

17 M ← M⋃︁Mˆ ;

18 U ← U⋃︁{︁
𝑉 ′ : 𝑣′ ∈ 𝐴𝑑 𝑗 [ 𝑣̂ ] and 𝑣′ ∉ E𝑡𝑜𝑝𝑜

}︁
;

19 U ← U\I;
/* Shrinking phase, remove unnecessary variable(s). */

20 for 𝑣 ∈ E𝑡𝑜𝑝𝑜 do
21 if Φ𝑡 ⊥⊥ DP𝜙 (𝑡 )𝑉

|︁|︁{︁𝐹 ( 𝑗 )
𝑣′ : 𝑓

( 𝑗 )
𝑣′ ∈

⋃︁
𝑣′′ ∈E𝑡𝑜𝑝𝑜 \{𝑣} E

𝑣′′
𝑓 𝑒𝑎𝑡

}︁
then

22 E𝑡𝑜𝑝𝑜 ← E𝑡𝑜𝑝𝑜\{𝑣};
23 return E𝑡𝑜𝑝𝑜 , E𝑣𝑓 𝑒𝑎𝑡 ’s for all 𝑣 ∈ E𝑡𝑜𝑝𝑜 .

independent of conditioned on the current blanket. When done this

way, no more conditional independence test on other variables will

be conducted. Below lemma states such a stop condition guarantees

that the untested variables are not in a Markov blanket of Φ𝑡 .

Lemma 3.6. Given a pretrained DGN 𝜙 and a target node 𝑡 , assume
there exists a perfect mapB∗ of the model behavior distributionP𝜙 (𝑡)
and every necessary vertex in 𝐺𝑡 is connected to the target node
through other necessary vertex(es). Let E′ be a set of vertexes, whose
induced subgraph of 𝐺𝑡 is a connected component that contains the
target 𝑡 . Denote its neighborhood as 𝑵𝒆(E′) = ⋃︁

𝑣∈E′ 𝐴𝑑 𝑗 [𝑣]
\︁
E′,

where𝐴𝑑 𝑗 [𝑣] is the set of all adjacent neighbor(s) of the vertex 𝑣 ; and
denote the set of synthetic variables and feature variables induced by
E′ as

Z(E′) =
{︁
𝑉𝑖 : 𝑣𝑖 ∈ E′ ∪ 𝑵𝒆(E′)

}︁⋃︂ {︁
𝐹
( 𝑗 )
𝑣′ ∈ KΦ𝑡

(𝑣 ′) : 𝑣 ′ ∈ E′ ∪ 𝑵𝒆(E′)
}︁
.

(8)

If for all𝑉 ′ ∈ {𝑉 ′ : 𝑣 ′ ∈ 𝑵𝒆(E′)}, there exists a subsetM′ ⊆ Z(E′)
such that Φ𝑡 ⊥⊥ B′𝑉 ′

|︁|︁M′, or Φ𝑡 ⊥⊥ B′𝐹 ( 𝑗 )𝑣𝑖

|︁|︁M′ for all grandparent
feature variables of 𝑉 ′, then a Markov blanket of Φ𝑡 can be found as
a subset ofZ(E′).

Proof is given in the Supplementary Materials [1].

3.2.5 Algorithm. The pseudo code for HENCE-X is shown in Algo-

rithm 1. The algorithm consists of two phases: the growing phase

and the shrinking phase. In the former, the proposed explainer

starts from the target node, then visits the neighborhood step by

step. In each iteration, HENCE-X picks the most promising vertex

and inserts it into the topological-level explanation, then HENCE-X

proceeds to find feature-level explanation for the vertex. However,

in the growing phase there may be some variables added by the al-

gorithm, but they are actually not necessary for the blanket. These

variables are independent from the prediction conditioned on a

grown blanket in a later iteration [25]. Thus the shrinking phase is

designed to eliminate such effect while preserving the completeness

of the Markov blanket, which will be proved in the next subsection.

An example of how HENCE-X explains a heterogeneous DGN

for node classification in DBLP dataset is illustrated in Figure 3.

The citation network is a heterogeneous graph with three different

types of nodes: author , paper and conference. In Subplot (a) shows
the original input of the target. The blanket basket searching is

shown in Step (b), features that remain colored are included in

the blanket basket, the others are in gray. The growing phase is

illustrated from Step (c) to Step (f). In Step (c), HENCE-X starts

from the target and identifies its feature-level explanationMˆ , then

conducts conditional independence tests on synthetic variables in

U, which are associated with vertexes (striped in the figure) in the

neighborhood. In Step (d), the explainer chooses a 1-hop neighbor,

i.e., a paper to add to E𝑡𝑜𝑝𝑜 and finds its feature-level explanation;

accordingly, the neighborhood and U are expanded. In Step (e),
another paper is added to E𝑡𝑜𝑝𝑜 , while the non-target common

author (in light gray) of the two papers is tested conditionally

independent and added to I. The growing phase continues until all
neighboring synthetic variables are conditionally independent from

the prediction, i.e., |U| = 0, as shown in Step (f). The shrinking
phase is then carried out in Step (g), where one unnecessary paper
is removed and HENCE-X reaches a Markov blanket.

3.2.6 Theoretical Guarantee of the Algorithm. We claim that that

Algorithm 1 can produce aMarkov blanket of the prediction variable

in the original perfect map B∗ of the model behavior distribution

proved by the below theorem.

Theorem 3.7. Given a pretrained DGN 𝜙 and a target node 𝑡 , as-
sume there exists a perfect map B∗ of the model behavior distribution
P𝜙 (𝑡) and every necessary vertex in𝐺𝑡 is connected to the target node
through other necessary vertex(es). Running Algorithm 1 to solve the
heterogeneity-agnostic multi-level explanation generation problem
defined in Definition 2.3 outputs the topological-level explanation
E𝑡𝑜𝑝𝑜 and the feature-level explanation E𝑣

𝑓 𝑒𝑎𝑡
’s for each vertex 𝑣 in
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E𝑡𝑜𝑝𝑜 . LetM∗ =
{︁
𝐹
( 𝑗 )
𝑣𝑖 : 𝑓

( 𝑗 )
𝑣𝑖 ∈ ⋃︁

𝑣′∈E𝑡𝑜𝑝𝑜 E
𝑣′

𝑓 𝑒𝑎𝑡

}︁
, thenM∗ is a

Markov blanket of Φ𝑡 in B∗.
Please refer to the Supplementary Materials [1] for the proof.

3.3 Factual and Counterfactual Explanation
By modeling the DGN’s behavior using a Bayesian network, one

can easily analyze the two different cases where the prediction con-

fidence is maximized or minimized. When Φ𝑡 = max, the values of
feature variables correspond to a factual explanation [23, 54], which
can maximize the model’s belief in its decision by presenting only
the critical parts. When Φ𝑡 = min, the realization of features can

be considered a counterfactual explanation [21, 22], which can min-

imize the model’s confidence by removing important information.

The two kinds of explanation can be found using the parameters

in the Bayesian network. The surrogate network B′ allows us to
prove Algorithm 1 can find all the direct parents of the prediction

variable in B′. This fact is proved by the below theorem.

Theorem 3.8. Given a pretrained DGN 𝜙 and a target node 𝑡 , as-
sume there exists a perfect map B∗ of the model behavior distribution
P𝜙 (𝑡) and every necessary vertex in𝐺𝑡 is connected to the target node
through other necessary vertex(es). Running Algorithm 1 to solve the
heterogeneity-agnostic multi-level explanation generation problem
defined in Definition 2.3 outputs the topological-level explanation
E𝑡𝑜𝑝𝑜 . Let R = {𝑉𝑖 : ∃𝑣𝑖 ∈ E𝑡𝑜𝑝𝑜 }, then R is the set of all the direct
parents of Φ𝑡 in B′, i.e. R = 𝑷𝒂(Φ𝑡 ).

Proof of this theorem can be found in the Supplementary Ma-

terials [1]. According to Theorem 3.8, the maximum likelihood

estimation (MLE) can be used to learn parameters of the parent syn-

thetic variables of the prediction variable in B′. Recall that as long
as the one-to-one mapping from the parent contribution variables

to the realization of a synthetic variable is well-maintained, find-

ing the maximal parameters of synthetic variables in the Bayesian

network also tells us the underlying realization of feature variables.

Mathematically, the parameters of different realization of Φ𝑡 ’s par-
ents can be estimated by 𝜃 = 𝑃𝑟 (Φ𝑡 |𝑷𝒂(Φ𝑡 )) using MLE. Given the

Markov blanket, the realization of variables in R with the highest

parameters for the prediction being maximized or minimized are

considered to be a factual or a counterfactual explanation. Formally,

𝐹E = categorize−1 (argmax

R
𝑃𝑟 (Φ𝑡 = max|𝑷𝒂(Φ𝑡 ))),

𝐶𝐹E = categorize−1 (argmax

R
𝑃𝑟 (Φ𝑡 = min|𝑷𝒂(Φ𝑡 ))) .

4 EXPERIMENTAL EVALUATION
We evaluate our proposed HENCE-X on three real-world datasets

from different domains against SOTA baselines, including both

heterogeneous and homogeneous graphs.

4.1 Evaluation Metrics
To measure the effectiveness of factual and counterfactual expla-

nations respectively, we introduce two corresponding metrics. Let

E𝑡𝑜𝑝𝑜 be the topological-level explanation and E𝑓 𝑒𝑎𝑡 =
⋃︁

𝑣∈E𝑡𝑜𝑝𝑜 E
𝑣
𝑓 𝑒𝑎𝑡

be the corresponding feature-level explanation. The factual effect is
defined to evaluate the factual explanation and calculated as below:

Feffect (𝜙, 𝑡, E𝑡𝑜𝑝𝑜 , E𝑓 𝑒𝑎𝑡 ) = 𝜙
(︁
𝐺𝑡 ,X+E𝑓 𝑒𝑎𝑡

)︁
,

Table 1: Statistics of datasets and details of the DGN models. CG is short for
computational graph of instance.

Dataset-DGN Node Edge Labels
DBLP-HGT

Node classification
Train. acc. 1.0
Test. acc. 0.7872

# author (A): 4,057

# paper (P): 14,328

# venue (V): 20

avg. in CG: 9.31

# A-P: 19,645

# P-V: 14,328

Database

Data Mining

Artificial Intelligence

Information Retrieval

IMDB-HAN
Node classification
Train. acc. 0.990
Test. acc. 0.4902

# movie (M): 4,278

# director (D): 2,081

# actor (A): 5,257

avg. in CG: 22.81

# M-D: 4,278

# M-A: 12,828

Action

Comedy

Drama

MUTAG-GCN
Graph classification

Train. 0.8412.
Test. acc. 0.9444

avg. 17.93 avg. 19.79 Mutagenic

(Non-mutagenic*)

where X+E𝑓 𝑒𝑎𝑡 stands for perturbed node features that only keep

those in E𝑓 𝑒𝑎𝑡 while the others are occluded. Feffect is designed to

evaluate the explanation by answering “how confidence is the DGN
when given only the critical part of the information?”. Notice that
here we do not modify the adjacency matrix in the input, because

structural change commonly results in a disastrous DGN confidence

drop, thus we follow Yuan, et al. [57] to use zero-padding for occlud-
ing important nodes, i.e. set features in the explanation to be zero

to eliminate their contribution. Meanwhile, the counterfactual effect
is designed to evaluate the counterfactual explanation as below:

CFeffect (𝜙, 𝑡, E𝑡𝑜𝑝𝑜 , E𝑓 𝑒𝑎𝑡 ) = 𝜙 (𝐺𝑡 ,X) − 𝜙 (𝐺𝑡 ,X−E𝑓 𝑒𝑎𝑡 ),

where X−E𝑓 𝑒𝑎𝑡 represents node features obtained from zero-padding

out features in E𝑓 𝑒𝑎𝑡 . CFeffect is introduced to answer “how much
does the DGN’s confidence drop without the critical part of the infor-
mation?”. For both metrics, the higher the better.

Besides, a supreme explanation should also be concise and pre-

cise. Consider taking almost the entire original input as explanation,

Feffect and CFeffect are both expected to be high as the explana-

tion contains almost all the information, yet such an explanation is

meaningless. Thus one needs to measure the size of explanations

as well. We define density of topological-level explanation as below:

TDens. (𝑡, E𝑡𝑜𝑝𝑜 ) =
∥E𝑡𝑜𝑝𝑜 ∥
∥V∥ .

Similarly, density of feature-level explanation is evaluated as below:

FDens. (𝑡, E𝑡𝑜𝑝𝑜 , E𝑓 𝑒𝑎𝑡 ) =

∑︁
𝑣∈E𝑡𝑜𝑝𝑜 ∥E

𝑣
𝑓 𝑒𝑎𝑡
∥/𝑑𝜁 (𝑣)

∥E𝑡𝑜𝑝𝑜 ∥
,

which is the average portion of features selected as explanation

among all nodes in the topological-level explanation. Furthermore,

we measure the overall density of the multi-level explanation by

calculating the weighted sum using the below metric:

ODens. (𝑡, E𝑡𝑜𝑝𝑜 , E𝑓 𝑒𝑎𝑡 ) =

∑︁
𝑣∈E𝑡𝑜𝑝𝑜 ∥E

𝑣
𝑓 𝑒𝑎𝑡
∥/𝑑𝜁 (𝑣)

∥V∥ .

For density metrics, the lower the better.

4.2 Datasets and DGNs to Be Explained
Three widely-used datasets are used in the experiment: DBLP and

IMDB datasets are adopted for the node classification and the MU-

TAG dataset is used for the graph classification. We train three

different DGNs on the three datasets. Statistics of the datasets and

details of DGN models are summarized in Table 1.
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Table 2: Quantitative evaluation results. HENCE-X outperforms the competitors regarding effectiveness. Though HENCE-X is not the most efficient explainer, the
running time is reasonable. Please see Section 4.4 for discussion on the results.

DBLP IMDB MUTAG

Method Feffect CFeffect ODens. TDens. FDens. Timeavg Feffect CFeffect ODens. TDens. FDens. Timeavg Feffect CFeffect ODens. TDens. FDens. Timeavg
F
HENCE-Xk=10 0.9888 - 0.1829 0.2963 0.6060 18.72s 0.8501 - 0.0763 0.1343 0.5728 18.89s 0.6676 - 0.0629 0.4406 0.1429 20.90s

F
HENCE-Xk=15 0.9909 - 0.1452 0.2570 0.5540 22.62s 0.8503 - 0.0770 0.1344 0.5732 24.59s 0.6621 - 0.0605 0.4236 0.1429 18.99s

F
HENCE-Xk=20 0.9881 - 0.1778 0.3017 0.5735 28.15s 0.8506 - 0.0771 0.1341 0.5771 33.66s 0.6608 - 0.0622 0.4352 0.1429 18.67s

F
HENCE-Xk=25 0.9886 - 0.1771 0.3029 0.5744 36.05s 0.8507 - 0.0770 0.1342 0.5782 43.11s 0.6700 - 0.0628 0.4393 0.1429 20.83s

F
HENCE-Xk=30 0.9894 - 0.1803 0.3055 0.5777 42.29s 0.8507 - 0.0770 0.1344 0.5764 51.69s 0.6659 - 0.0655 0.4588 0.1429 15.34s

F
HENCE-Xavg 0.9892 - 0.1727 0.2927 0.5771 29.57s 0.8504 - 0.0769 0.1343 0.5749 34.39s 0.6653 - 0.0628 0.4395 0.1429 18.95s

CF
HENCE-Xk=10 - 0.8757 0.1725 0.2887 0.5785 18.72s - 0.5827 0.0869 0.1347 0.6350 18.89s - 0.1607 0.0337 0.2360 0.1429 20.90s

CF
HENCE-Xk=15 - 0.8853 0.1544 0.2527 0.5969 22.62s - 0.5835 0.0870 0.1349 0.6350 24.59s - 0.1647 0.0328 0.2297 0.1429 18.99s

CF
HENCE-Xk=20 - 0.8776 0.1805 0.2946 0.5960 28.15s - 0.5836 0.0873 0.1350 0.6362 33.66s - 0.1661 0.0339 0.2373 0.1429 18.67s

CF
HENCE-Xk=25 - 0.8807 0.1808 0.2958 0.5973 36.05s - 0.5839 0.0864 0.1352 0.6339 43.11s - 0.1601 0.0334 0.2335 0.1429 20.83s

CF
HENCE-Xk=30 - 0.8794 0.1815 0.2982 0.5952 42.29s - 0.5838 0.0873 0.1352 0.6345 51.69s - 0.1589 0.0331 0.2319 0.1429 15.34s

CF
HENCE-Xavg - 0.8797 0.1740 0.2860 0.5928 29.57s - 0.5835 0.0870 0.1350 0.6349 34.39s - 0.1621 0.0334 0.2337 0.1429 18.95s

GNNExplainer 0.9644 0.6646 0.3977 0.4889 0.6941 1.71s 0.8369 0.5664 0.1974 0.3512 0.5991 1.06s 0.0771 0.0233 0.1465 0.3417 0.4286 0.56s

CF
2

0.9008 0.7049 0.4437 0.5803 0.6010 1.84s 0.8395 0.4919 0.2325 0.3668 0.5836 1.13s 0.0631 0.0304 0.1196 0.2792 0.4286 0.51s

GCN-LRP - - - - - - - - - - - - 0.1086 0.0418 0.1439 0.3358 0.4286 1.27s

PGM-Explainer 0.7836 0.6955 - 0.5431 - 21.64s 0.4202 0.3425 - 0.3896 - 23.11s 0.1674 0.1333 - 0.3529 - 14.20s

PGExplainer 0.8495 0.7198 - 0.5763 - 0.02s 0.7896 0.5219 - 0.2999 - 0.007s 0.5596 0.1013 - 0.6887 - 0.001s
SubgraphX 0.7867 0.1679 - 0.6602 - 1317s 0.7727 0.0001 - 0.8849 - 525.45s 0.4321 0.1088 - 0.3305 - 96.01s

Gem 0.8601 0.6299 - 0.5603 - 2.34s 0.7871 0.5073 - 0.6380 - 1.73s 0.6310 0.1304 - 0.2792 - 0.49s

RG-Explainer 0.8917 0.7369 - 0.5893 - 17.29s 0.8004 0.5359 - 0.5830 - 12.94s 0.5725 0.1274 - 0.4118 - 7.80s

4.2.1 Datasets. Below we introduce the details of the datasets.

DBLP dataset (heterogeneous graph). DBLP4 is a bibliography web-

site in the area of computer science. We employ a subset of the

DBLP dataset used by related heterogeneous DGNs [8, 49]. There

are 4,057 authors, 14,328 papers and 20 conferences (venues) in the

citation network. The authors are labeled by one of the four areas:

Database (DB), Data Mining (DM), Artificial Intelligence (AI), and

Information Retrieval (IR). Bag-of-words representation is used for

author node and paper node to encode their research keywords and

words in the title, respectively. For conference nodes, a uniform

1-dimension feature with value 1 is used as their initial feature.

IMDB dataset (heterogeneous graph). IMDB
5
is a website about

movies and television shows, which contains information about

cast, production crew, plot summaries, and the like. We adopt the

IMDB dataset used by Wang et al. [49] and Fu et al. [8] for het-
erogeneous DGNs. The dataset includes 4,278 movies and 2,081

directors in addition to 5,257 actors. Movies are classified by their

genres: Action, Comedy, or Drama. Movie nodes use bag-of-words

representation of their plot keywords as the initial features.

MUTAG dataset (homogeneous graph). The dataset contains the
molecular structure of chemical compounds classified by their mu-

tagenic effect on a bacterium [6]. In each piece of graph, nodes rep-

resent different atoms and edges stand for chemical bonds. There

are a total of 7 chemical elements: Carbon, Nitrogen, Oxygen, Flu-

orine, Iodine, Chlorine and Bromine. One-hot encoding of atoms’

chemical elements is used as node features.

4.2.2 DGN models. We train three DGNs to be explained, all mod-

els are trained to a training accuracy that ensures they have learned

the knowledge in the training set (see Table 1).

4
https://dblp.org

5
https://www.imdb.com

HGT [12]. Heterogeneous graph transformer (HGT) is a transformer-

based DGN equipped with subgraph sampling, which has demon-

strated outstanding performances on web-scale graphs. The model

is based on triplet-level attention mechanism. We build a model

with one linear transformation layer followed by two HGT layers

and one more linear layer for node classification task. The number

of attention heads is 2 and the hidden dimension is set to 64.

HAN [49]. Heterogeneous graph attention network (HAN) is a

meta-path-based DGN that utilizes a hierarchical attention mech-

anism: semantic- and node- level. We build a HAN model with

one linear layer as the final predictor for the node classification

task. The number of attention heads and the dimension of hidden

channel are set to 8 and 128, accordingly.

GCN [14]. Graph Convolution Network extends convolution tech-

niques in image data to the graph setting, which is a stacking-style

homogeneous DGN. The model used in the experiment aims for the

graph classification task, which consists of 3 GCN layers followed

by a global pooling layer and 2 fully connected layers as the final

predictor. ReLU is applied on the output of the first two GCN layers.

4.3 Competitors and Algorithm Settings
Multi-level Competitors.We first compare HENCE-X to three

existing multi-level explainers.

• GNNExplainer [54] learns an edge mask and a node feature mask

that maximizes Mutual Information between model’s predictions

on the original input and predictions of the masked input.

• CF
2
[45] uses the same masking strategy as GNNExplainer’s with

an objective that considers factual and counterfactual reasoning.

• GCN-LRP [11] is an explainer specifically developed for GCN

[14] only based on layer-wise relevance propagation (LRP) [2].
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Table 3: Results of HENCE-X variants. VS- (w.r.t. TS-) denotes HENCE-X
without the variable screening (w.r.t. variable test ordering and stop condition)
module; * denotes HENCE-X using the entire population as sample set.

dblp (avg. #FeatRV: 14.5, avg. #Nodes in CG: 3.875)

Variant Feffect CFeffect ODens. TDens. FDens. Timeavg
F
HENCE-X

k=10
0.9977 - 0.2838 0.4646 0.6333 9.37s

F
HENCE-X* 0.9971 - 0.5273 0.7791 0.6798 1158s

F
HENCE-XVS

- 0.9976 - 0.4095 0.6417 0.6507 20.49s

F
HENCE-XTS

- 0.9967 - 0.3123 0.5375 0.5708 12.89s

CF
HENCE-X

k=10
- 0.9373 0.4433 0.6762 0.6817 9.37s

CF
HENCE-X* - 0.9176 0.4502 0.6920 0.6443 1158s

CF
HENCE-XVS

- - 0.8427 0.3501 0.5688 0.6087 20.49s

CF
HENCE-XTS

- - 0.7887 0.3137 0.5062 0.5917 12.89s

mutag (avg. #FeatRV: 15.5, avg. # Nodes in CG: 14.5)

Variant Feffect CFeffect ODens. TDens. FDens. Timeavg
F
HENCE-X

k=10
0.8366 - 0.0676 0.4735 0.1428 6.23s

F
HENCE-X* 0.8308 - 0.1020 0.7139 0.1429 1839s

F
HENCE-XVS

- 0.8350 - 0.0412 0.2885 0.1429 14.67s

F
HENCE-XTS

- 0.8350 - 0.0412 0.2882 0.1431 7.73s

CF
HENCE-X

k=10
- 0.0722 0.0288 0.2019 0.1428 6.23s

CF
HENCE-X* - 0.0717 0.0333 0.2332 0.1429 1839s

CF
HENCE-XVS

- - 0.0363 0.0189 0.1322 0.1429 14.67s

CF
HENCE-XTS

- - 0.0417 0.1093 0.5162 0. 0235 7.73s

The first two methods are designed for homogeneous graphs only.

Thus, for the MUTAG dataset, we evaluate them using the original

method. For the other two heterogeneous graphs, we implement

a modified version of them to allow several masks for different

types of nodes, such that each feature space corresponds to one

specific mask, whose shapes are different due to mismatched feature

dimensions. However, GCN-LRP is designed for GCN only, hence

we test the technique on the MUTAG dataset but not the other two.

Topological-level Competitors.We further compare our method

to five topological-level methods.

• PGM-Explainer [47] is a Bayesian-network-based method that

treats vertexes in the input graph as random variables.

• PGExplainer [23] is an inductive explainer, which can be directly

used on new instances after training on a group of data.

• SubgraphX [57] adopts the Shapley value [17] as the importance

measurement and explores subgraphs to find explanations.

• Gem [21] trains an encoder-decoder network to generate adja-

cency matrices as explanations based on supervised learning.

• RG-Explainer [42] utilizes a reinforcement learning framework

with three learned modules, i.e., seed locator, graph generator

and stopping criteria, to generate explanations.

Variants of HENCE-X.We conduct ablation studies for the vari-
able screening (VS) module in Section 3.2.1 and testing order and stop
condition (TS) module in Section 3.2.4. Note that blanket shrinking

can not be skipped as Theorem 3.8 requires the output synthetic

variables to be the direct parents of the prediction variable. We also

evaluate HENCE-X using the entire sample space as the sample set,

i.e., the set of all possible outcomes from perturbing the input.

• HENCE-XVS
- is a variant of HENCE-X whose blanket basket

searching step (VS module) is removed.

• HENCE-XTS
- is a variant of HENCE-X whose TS module is re-

moved. Note that if removing the TS module, HENCE-X no longer

requires the output explanation to be a connected components.

• HENCE-X* is the original HENCE-X that exhaustively enumerate

all possible perturbing situations to generate samples.

Due to these variants being very time-consuming, we employ a

subset of the DBLP dataset, named dblp, consisting of instances

with small numbers of random variables, such that explaining each

single instance can be finished in one hour. The same scheme is

used to construct a subset of the MUTAG dataset, named mutag.

Statistics of the two small datasets are presented in Table 3.

Algorithm settings. Grid Search is applied for parameter search-

ing in the experiments. For HENCE-X, there are two parameters to

search, i.e., the probability of perturbing features for sample gener-

ation and 𝜎 in Equation (2), the starting places for them are 0.5 and

0.01, respectively. G-test [26] is employed to conduct conditional

independence tests for all datasets, the statistical significance is

set to a conventional criteria 0.05. The sample size is the critical

parameter that affects the performance of independence-test-based

methods. We follow the rule of thumb to set the sample size for

multivariate distribution: the number of samples should be several

times as large as the number of variables, preferably ten times or

more [38, 41]. Let 𝑘 be the multiple in determining the sample num-

ber, we evaluate HENCE-X using 𝑘 from 10 to 30 using a step of

5, i.e. 𝑘 ∈ {10, 15, 20, 25, 30} for comparison. If the sample size is

smaller than 1,000, we increase it to 1,000 suggested by McDonald

(2014) [27]. See the Supplementary Materials [1] for sample size

and the average number of feature variables (per instance).

4.4 Experimental Result
Quantitative evaluation The quantitative evaluation results are

reported in Table 2. Regarding effectiveness, HENCE-X outper-

forms all the competitors. Note that on the MUTAG dataset, the

factual results of HENCE-X have higher topological densities than

topological-level explainers; yet, these explainer takes all features

on the nodes as the explanation, hence if weight 𝑇𝐷𝑒𝑛𝑠 by 1 as

their overall density, HENCE-X is less dense. As for running time,

PGExplainer is the one with shortest testing time. However, as an

inductive explainer, it requires 38,480.20s and 4,376.92s training

time on the DBLP and IMDB datasets, respectively (see the Sup-

plementary Materials [1]). As explaining DGNs at instance level

is not efficiency-demanding because it serves individual instances,

and human understanding of the output is involved, we believe the

running time for HENCE-X is reasonable.

Evaluation on variants of HENCE-X is reported in Table 3. HENCE-

Xk=10 outperforms HENCE-X* in all metrics by limited margins,

while taking a much shorter time. The two settings lead to dif-

ferent results because the sample size affects the sampled DGN

score range, which further affects the realization of the prediction

variables using Equation (2). Based on the experimental results,

we believe using 𝑘 · 𝑁RV with 𝑘 no less than 10 for HENCE-X can

achieve premier outputs. Nonetheless, we suggest to use a 𝑘 ≥ 15.

In the ablation study (see Table 3), HENCE-X outperforms the

two variants regarding Feffect, CFeffect and running time. Because,

without the two modules, more feature variables can be added to

the Markov blanket in the growing phase yet they are not as impor-

tant, while the shrinking phase only removes variables at the vertex

level, those feature variables then remain in the output blanket.

HENCE-X is obviously slower without the pruning module. The

advantage is not very prominent as instances in the two datasets
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P2

C2

A2

A1

P1

C1
AAAI (AI)

CIKM (IR)

Devika S. (AI)

Joan F. (DB)

Bag-of-words node features:
A1: “pruning”, “efficiently”, “experiment”…
A2: “recursive”, “space”, “optimal”, “efficiently”…
P1: Factorization in Experiment Generation
P2: Finding Highly Correlated Pairs Efficiently

with Powerful Pruning

A Author P Paper C Conference A Target author

q FHENCE-X: A1 - “generation”, “experiment”, “efficiently”, “pruning”
q CFHENCE-X: A1 - “generation”, “experiment”, “efficiently”, “pruning”
q GNNExplainer: A1 - “finding”, “generation”, “experiment”, “efficiently”, 

“pruning”, P2 - “efficiently”, “finding”, “pair”, “pruning”, P1 - “experiment”, 
“factorization”, “generation”, C1 – AAAI

q CF2: A1 - “finding”, “generation”, “experiment”, “efficiently”, “pruning”, P2 -
“efficiently”, “finding”, “pair”, “pruning”, P1 - “experiment”, “factorization”, 
“generation”, C1 – AAAI

v PGM-Explainer:A1, P1, C2
v PGExplainer: A1, P1, P2, C2
v SubgraphX: A1, P1, P2, C1

v Gem: A1, P2, C2
v RG-Explainer: A1, P2, C1

Figure 4: Qualitative result on the DBLP dataset. Box-shape (w.r.t. diamond-
shape) bullet represents multi-level (w.r.t. topological-level) explainers.

M3

M1

M2

M5M4

The Avengers: 
Infinity War

(Action)

Avengers: 
Age of Ultron

(Action)

The Avengers (Action)

Thor (Action)

Lost in 
Translation

(Drama)

M Movie M Target movie

Bag-of-words node features:
M1: “assassin”, “battle”, “invasion”…
M2: “soldier”, “man”, “invasion”…
M3: “battle”, “universe”, “thor”…
M4: “america”, “comic”, “universe”…
M5: “man”, “fish”, “relationship”…

q FHENCE-X: M1 - “assassin”, “battle”, “invasion”, “iron”, “man”, “soldier”
q CFHENCE-X: M1 - “assassin”, “battle”, “invasion”, “iron”, “soldier”
q GNNExplainer: M1 - “alien”, “assassin”, “battle”, “invasion”, “man”, “soldier”,

M2 - “alien”, “assassin”, “battle”, “invasion”, “man”, “soldier”
q CF2: M1-“alien”, “assassin”, “battle”, “invasion”, “man”, “soldier”, M3 - “battle”,

M4 - “comic”
v PGM-Explainer: M1, M2
v PGExplainer: M1, M2 
v SubgraphX: M1

v Gem: M1, M2, M5
v RG-Explainer: M1, M2

Figure 5: Qualitative result on the IMDB dataset. Box-shape (w.r.t. diamond-
shape) bullet represents multi-level (w.r.t. topological-level) explainers.
have rather small numbers of random variables, thus we measure

the average ratio of pruned feature random variables among all

instances in each dataset. The screening module prunes 62.35%,

89.17% and 48.63% feature variables on the DBLP, IMDB and MU-

TAG datasets, respectively. The variable screening is shown to be

very effective. See the Supplementary Materials [1] for discussion

on HENCE-X in different tasks (node v.s. graph classification).

Qualitative evaluation. Visualization of results on the DBLP,

IMDB and MUTAG datasets are shown in Figures 4, 5 and 6, re-

spectively. On the DBLP dataset, we use the same example as in

Section 1. HENCE-X ignores the misleading structural information

and only focuses on critical features, other explainers fail to do so.

HENCE-X also gives precise and concise explanations for instances

in IMDB. On the MUTAG dataset, HENCE-X finds the distinct sub-

structure of the input: the Chlorine atom and the nitrogen dioxide

structure; moreover, it identities the correct atom types as the node-

specific feature explanations, while the other multi-level explainers

only find frequent atoms (Carbon, Nitrogen and Oxygen) as a uni-

form feature explanation for all nodes in the output; they also miss

the distinct Chlorine atom. The topological-level explainers fail to

capture the two distinct chemical structures simultaneously.

5 RELATEDWORK
Deep Graph Networks incorporate graph topology and node fea-

tures by aggregating neuralmessages from the neighbors. Renowned

homogeneous GNNs include graph convolution networks (GCNs)

[14], graph attention networks (GATs) [46], and graph isomorphism

FHENCE-X GCN-LRP

RG-ExplainerPGM-Explainer

CFHENCE-X GNNExplainer CF2

PG-Explainer SubgraphX Gem

Original input

c

c

c

c
FE: C N O FE: C N O FE: C N O

Figure 6: Qualitative results on the MUTAG dataset. FE is short for feature-
level explanation. Note that FE of HENCE-X is node-specific.

networks (GINs) [53]. HGNNs can be grouped into meta-path-based

methods and stacking-fashion models according to their way of

entangling edge and node types into the network. The former relies

on meta-paths to transform the input graph into a heterogeneity-

aware computational graph, which includes HAN [49], MAGNN

[8], GTN [58], and so on. The stacking-fashion HGNNs adopt ar-

chitectures consisting of stacking layers with the same structure,

which is analog to homogeneous GNNs. Examples of these models

include HGT [12], Simple-HGN [24], and the like.

Understanding Black-box Models. Though there exist many

techniques for understanding black-box models [2, 4, 7, 9, 10, 18,

20, 39], the explainability of DGNs has recently received much

attention. The pioneering research of explaining DGNs include

GNNExplainer [54] and heat-map-based methods for GCNs [35],

since then intensive research efforts have been devoted to explain

homogeneous GNNs [11, 21, 23, 42, 47, 50, 54, 55, 57]. On the other

hand, as an emerging line of works, there has not been any model-
agnostic explainer for HGNNs to the best of our knowledge. Though
an explainable fraud transaction detectionmodel was proposed [36],

which contains an initial attempt to study explainability on hetero-

geneous graphs, as it is fully based on a variant of GNNExplainer,

we do not consider it an model-agnostic explainer for HGNNs.

More related works discussed in Supplementary Materials [1].

6 CONCLUSION
Deep graph networks have been widely applied because of their out-

standing performance. However human users cannot understand

their decision making mechanism. Thus, explanation techniques

for DGNs have been intensively desired. In this paper, we propose

a heterogeneity-agnostic multi-level explainer named HENCE-X.

HENCE-X is a causality-guided method that employs a Bayesian

network to model the DGN’s behavior, so that the Markov blanket

of the prediction can be discovered as the explanation. Experiments

on three real-world datasets demonstrate the outstanding effective-

ness of HENCE-X over the SOTA methods.
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