
SUREL+: Moving from Walks to Sets for Scalable Subgraph-based
Graph Representation Learning

Haoteng Yin
Purdue University
yinht@purdue.edu

Muhan Zhang
Peking University
muhan@pku.edu.cn

Jianguo Wang
Purdue University

csjgwang@purdue.edu

Pan Li
Georgia Tech

panli@gatech.edu

ABSTRACT
Subgraph-based graph representation learning (SGRL) has recently
emerged as a powerful tool in many prediction tasks on graphs
due to its advantages in model expressiveness and generalization
ability. Most previous SGRL models face computational issues re-
lated to the high cost of extracting subgraphs for each training or
testing query. Recently, SUREL was proposed to accelerate SGRL,
which samples random walks offline and joins these walks online
as a proxy of subgraphs for prediction. Thanks to the reusability of
sampled walks across different queries, SUREL achieves state-of-
the-art performance in terms of scalability and prediction accuracy.
However, SUREL still suffers from high computational overhead
caused by node redundancy in sampled walks. In this work, we
propose a novel framework SUREL+ that upgrades SUREL by using
node sets instead of walks to represent subgraphs. By definition,
such set-based representations avoid repeated nodes, but node sets
can be irregular in size. To solve this issue, we design a dedicated
sparse data structure to efficiently store and access node sets, and
provide a specialized operator to join them in parallel batches.
SUREL+ is modularized to support multiple types of set samplers,
structural features, and neural encoders to complement the loss
of structural information after the reduction from walks to sets.
Extensive experiments have been performed to verify the effec-
tiveness of SUREL+ in the prediction tasks of links, relation types,
and higher-order patterns. SUREL+ achieves 3-11× speedups of
SUREL while maintaining comparable or even better prediction
performance; compared to other SGRL baselines, SUREL+ achieves
∼20× speedups and significantly improves the prediction accuracy.

PVLDB Reference Format:
Haoteng Yin, Muhan Zhang, Jianguo Wang, and Pan Li. SUREL+: Moving
from Walks to Sets for Scalable Subgraph-based Graph Representation
Learning. PVLDB, 16(11): 2939 - 2948, 2023.
doi:10.14778/3611479.3611499

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Graph-COM/SUREL_Plus.

1 INTRODUCTION
Graphs are widely used to model interactions in natural sciences
and relationships in social life [20, 23]. Graph-structured data in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611499

the real world are highly irregular and often large-scale. To solve
inference tasks on graphs, graph representation learning (GRL)
that studies quantitative representations of graph-structured data
has attracted much attention [15, 16, 45]. Recently, subgraph-based
GRL (SGRL) has become an important research direction for re-
searchers studying GRL algorithms and systems, as it achieves
far better prediction performance than other approaches in many
GRL tasks, especially those involving a set of nodes. Given a set of
nodes of interest, namely a queried node set, SGRL models such
as SEAL [50, 52], GraIL [39], and SubGNN [1] first extract a sub-
graph around the queried node set (called query-induced subgraph),
and then use neural networks to encode extracted subgraphs for
prediction. Extensive work shows that SGRL models are more ro-
bust [48] and more expressive [5, 12]; while canonical graph neural
networks (GNNs) including GCN [22] and GraphSAGE [14] usually
fail to make accurate predictions, due to their limited expressive
power [9, 13, 52], incapability of capturing intra-node distance infor-
mation [27, 37], and improper entanglement between receptive field
size and model depth [18, 47, 48]. An example in Fig. 1 illustrates
how SGRL works for link prediction and demonstrates its advan-
tages over GNNs. Here, canonical GNNs generate and aggregate
node representations to predict links, which would map structurally
symmetric nodes into the same representation and lead to the am-
biguity issue [46, 52]. So far, the advantages of SGRL methods have
been proved in many applications, such as link and relation predic-
tion [39, 50, 52], higher-order pattern prediction [29, 32], temporal
network modeling [44], recommender systems [51], anomaly detec-
tion [1, 6], graph meta-learning [18], subgraph matching [28, 30],
and molecular/protein research in life sciences [36, 43].

Albeit with multiple benefits of its algorithm, SGRL methods
currently face two major computational challenges: (1) Query De-
pendency. A subgraph must be extracted for each queried node
set, which is not reusable across different queries, and cannot be
preprocessed if the query is unknown; (2) Irregularity. The ex-
tracted subgraphs are irregularly sized, resulting in poor batch
processing and load-balancing performance. As shown in Fig. 3 (a),
subgraph extraction in SEAL [50, 52] is prohibitively slow to be
deployed in practice. This inspired recent work on dedicated hard-
ware acceleration for subgraph extraction [10, 34]. However, how
to fundamentally improve the scalability and efficiency of SGRL
methods remains largely unexplored.

SUREL [47] is the state-of-the-art (SOTA) framework that applies
algorithm and system co-design to implement SGRL. It employs
the join of node-level sampled walks to represent query-specific
subgraphs. Specifically, SUREL treats each node as a seed and runs
multiple random walks from the seed on the graph offline. Given
a queried node set, SUREL online joins and encodes the sampled
walks for all queried nodes for prediction. The join operation builds

2939

https://doi.org/10.14778/3611479.3611499
https://github.com/Graph-COM/SUREL_Plus
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611499
https://www.acm.org/publications/policies/artifact-review-and-badging-current

2940

as multi-linear perception + mean pooling, set attention [40] and
LSTM [14] that ensure sufficient expressive power and consistent
performance across various types of SGRL tasks.

Overall, our contributions can be summarized as follows:
• Algorithm: SUREL+ is a novel SGRL framework (open source),

that utilizes reusable node sets and associates them with vari-
ous types of structural features to represent query-induced sub-
graphs through their online joining. Adopting sets in SUREL+
greatly saves memory and computation but without degrading
prediction performance compared with the SOTA baselines.

• System: SUREL+ designs a dedicated sparse data structure SpG
and a sparse join operator SpJoin to support efficient storage and
processing of node sets, which achieves much better efficiency
and scalability than previous SGRL methods.

• We conduct extensive experiments on 9 real-world graphs, with
millions/billions of nodes/edges, and demonstrate the advantages
of SUREL+ in link/relation-type/motif prediction tasks. SUREL+
is 3-11× faster than the current SOTA SGRL method SUREL
while maintaining comparable or even better prediction accuracy.
SUREL+ also achieves ∼20× speedup with substantial prediction
accuracy improvements over other SGRL baselines.

2 PRELIMINARIES
2.1 Notations and Relevant Definitions in SGRL
LetG(V, E, 𝑋) be an attributed graphwith node setV = {1, 2, ..., 𝑛}
and edge set E, where 𝑋 ∈ R𝑛×𝑑 denotes node attributes with 𝑑-
dimension. A query 𝑄 ⊂ V is a node set of interest for a certain
type of task. We denote the subgraph induced by query 𝑄 as G𝑄
and the node-induced subgraph as G𝑢 , where induced subgraphs
are typically within a small number of hops.

Definition 2.1 (Subgraph-based Graph Representation Learning
(SGRL)). Given a query 𝑄 of node set over graph G, SGRL aims to
learn a representation of the query-induced subgraph G𝑄 to make
prediction 𝑓 (G𝑄). (·) is usually a neural network. SGRL tasks come
with some labeled queries {(𝑄𝑖 , 𝑦𝑖)}𝐿𝑖=1 for supervision (positive
samples) and other unlabeled queries {𝑄𝑖 }𝐿+𝑁𝑖=𝐿+1 for inference.

Examples of SGRL Tasks Link prediction seeks to estimate the
likelihood of a link between two endpoints in a given graph, where
a query 𝑄 corresponds to a node pair. It can be further generalized
to predict links with types over heterogeneous graphs [39] or to pre-
dict vascular access [33] and chemical bond [20] in domain-specific
graphs. Tasks beyond pairwise relations are named higher-order
pattern prediction, where a query𝑄 consists of three or more nodes.
In this work, we consider that given partially observed pairwise
relations among queried nodes in 𝑄 , whether these queried nodes
will establish certain full higher-order relation of interest [29, 38].

Review of SGRLMethods The current SGRL pipeline has three
main parts, as shown in theAlgorithmDesign section of Fig. 2: prepa-
ration of subgraphs, construction of structural features, and neural
encoder to obtain subgraph embeddings. Classical SGRL models
often group query-dependent parts together, e.g., SEAL [50, 52] cou-
ples subgraph extraction and labeling trick [52], and then applies
GNNs to encode extracted subgraphs attached with structural labels
for prediction. However, such coupling is expensive and makes the
computed intermediate results not reusable across queries, which

motivates recent SGRL methods to decouple them. SUREL [47]
substitutes explicit subgraph extraction with the online joining of
multiple node-level walks presampled offline, with relative position
encoding defined on sampled walks as structural features. Sampled
walks and associated positional encoding can be shared to assem-
ble subgraphs for multiple queries, which improves the reusability
and scalability. Lastly, neural networks are applied to encode and
aggregate the embedding of these walks for prediction.

2.2 Related Works
Scalable SGRL Design. Recent works on SGRL models have pri-
marily focused on efficient subgraph extraction. Various techniques
have been proposed, including PPR-based [4, 48] and random walk-
based [47] subgraph samplers, and node neighborhood sampling
through CUDA kernel (DGL, [10]) and tensor operations (PyG, [34]).
Some frameworks have customized data structures to better sup-
port subgraph operations and gain higher throughput, such as
associative arrays in SUREL [47], temporal-CSR in TGL [53], and
GPU-orientated dictionary in NAT [31]. To achieve scalable mod-
eling design, GDGNN [24] utilizes node representations along the
geodesic path between queried nodes for prediction, partially de-
coupling structural feature construction from subgraph extraction.
BUDDY [7] employs subgraph sketches to avoid explicitly extract-
ing subgraphs for link prediction. However, theseworks either focus
on specific aspects of SGRL’s scalability issues, i.e., bottlenecks of
extraction and storage or feature construction, or they are limited
to specific tasks like link prediction. In contrast, SUREL+ provides
a comprehensive co-design approach in scalable sampling, efficient
storage, and expressivemodeling, offering a general subgraph-based
framework for scalable SGRL.

3 THE FRAMEWORK OF SUREL+
This section introduces SUREL+, whose key concept is to offline
sample node sets around seed nodes in the graph, which can be
joined online as a proxy of query-induced subgraphs for represen-
tation learning. This approach keeps only distinct nodes in the
sampled set for reuse in different queries, effectively addressing
memory and computation concerns of node duplication in existing
walk-based representations adopted by SUREL [47]. SUREL+ fea-
tures a modular design, supports various set samplers and structure
encoders, and can flexibly select different set neural encoders to
pair with diverse structural features to compensate for the structure
information loss after reducing subgraphs to node sets. Further-
more, SUREL+ introduces a dedicated sparse data structure SpG and
an arithmetic operator SpJoin to store node sets and perform their
online joins efficiently. Fig. 2 compares SUREL+ and current SGRL
models. The following subsections describe these modules in detail.

3.1 Set Samplers and Structure Encoders
SUREL+ uses set samplers to sample a set of nodes from the neigh-
borhood of each seed node in the graph and calls structure encoders
to construct structural features. Both of these operations are exe-
cuted offline. The former is primarily for computational benefits,
while the latter is performed to offset the loss of structural informa-
tion due to the reduction from subgraphs (adopted by SEAL [50, 52])
or walks (adopted by SUREL [47]) to sets. Conceptually, SUREL+
represents the node-induced subgraph G𝑢 via a combination of (1)

2941

indptr

indices

SFptr

<latexit sha1_base64="rtnsxdSr8q6K38e/u67p81+KjOs=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJu3SzSbuToRS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNkmmObR4IhPdDZgBKRS0UKCEbqqBxYGETjC+nfudJ9BGJOoBJyn4MRsqEQnO0ErdfggS2SAblCtu1V2ArhMvJxWSozkof/XDhGcxKOSSGdPz3BT9KdMouIRZqZ8ZSBkfsyH0LFUsBuNPF/fO6IVVQhol2pZCulB/T0xZbMwkDmxnzHBkVr25+J/XyzC68adCpRmC4stFUSYpJnT+PA2FBo5yYgnjWthbKR8xzTjaiEo2BG/15XXSrlW9q2r9vl5p1PI4iuSMnJNL4pFr0iB3pElahBNJnskreXMenRfn3flYthacfOaU/IHz+QMgIY/9</latexit>

δu
<latexit sha1_base64="UsfJQ4UEPgrbsRBhKFY1M71Catw=">AAAB83icbVDLSsNAFL2pr1pfVZduBosgCCUpRV0W3LisYB/QhDKZTNqhk0mYh1BCf8ONC0Xc+jPu/BunbRbaeuDC4Zx7ufeeMONMadf9dkobm1vbO+Xdyt7+weFR9fikq1IjCe2QlKeyH2JFORO0o5nmtJ9JipOQ0144uZv7vScqFUvFo55mNEjwSLCYEayt5PsR5RoPc3PlzYbVmlt3F0DrxCtIDQq0h9UvP0qJSajQhGOlBp6b6SDHUjPC6aziG0UzTCZ4RAeWCpxQFeSLm2fowioRilNpS2i0UH9P5DhRapqEtjPBeqxWvbn4nzcwOr4NciYyo6kgy0Wx4UinaB4AipikRPOpJZhIZm9FZIwlJtrGVLEheKsvr5Nuo+5d15sPzVqrUcRRhjM4h0vw4AZacA9t6ACBDJ7hFd4c47w4787HsrXkFDOn8AfO5w/GSZF5</latexit>

δu+1

<latexit sha1_base64="BbuOORZM/dsowOnDPWUnx+i0Qko=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUpINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AwXuM3g==</latexit>a <latexit sha1_base64="E3zCA7LSt9earYzmAkysABDaYeI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUZINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AxIOM4A==</latexit>c <latexit sha1_base64="YT1MzKt2K7PhNCd3mL3vdNT2Re0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUxEGp7FbcBcg68XJShhyNQemrP4xZGqE0TFCte56bGD+jynAmcFbspxoTyiZ0hD1LJY1Q+9ni0Bm5tMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rtSatXK9msdRgHO4gCvw4AbqcA8NaAEDhGd4hTfn0Xlx3p2PZeuGk8+cwR84nz/Hi4zi</latexit>e <latexit sha1_base64="TOakcU0S+nmLsBJqNb/8T9MDpAw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A38uM8g==</latexit>u

structural
features

<latexit sha1_base64="8IeOpsZBlktdHVfcwQrSNfuT58Q=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRjwYvHCvYD2qVk02wbms0uyaxQlv4ILx4U8erv8ea/MW33oK0vBB7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek7u533ni2ohYPeI04X5ER0qEglG0UqfnXtnnD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1usOyMXVhmSMNb2KyQL9XdHRiNjplFgKyOKY7PqzcX/vF6K4a2fCZWkyBVbDgpTSTAm89vJUGjOUE4toUwLuythY6opQ5tQyYbgrZ68Ttq1qnddrT/UK41aHkcRzuAcLsGDG2jAPTShBQwm8Ayv8OYkzovz7nwsSwtO3nMKf+B8/gCHdI5Z</latexit>

[0, 0, 0]
<latexit sha1_base64="EYNHVMB2PYEB7ZNIVep/emKywpQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjf3O09cGxGrR5wm3I/oSIlQMIpW6vTcilfx/EGp7FbdBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLc2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJFW0I3urL66Rdq3rX1fpDvdyo5XEU4Bwu4Ao8uIEG3EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx+KgI5b</latexit>

[0, 1, 1]
<latexit sha1_base64="dNyXJfEkLWc4EaumTG6k8SXViXk=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjf3O09cGxGrR5wm3I/oSIlQMIpW6vTcilvx/EGp7FbdBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLc2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJFW0I3urL66Rdq3rX1fpDvdyo5XEU4Bwu4Ao8uIEG3EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx+I+Y5a</latexit>

[0, 0, 1]
<latexit sha1_base64="C4Qe2IzcK6nIgl9dRbat8Z8afTU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz329nY3Nre2S3sFfcPDo+OSyenbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8NNME/YiOJA85o8ZKnZ5bqVVcf1Aqu1V3AbJOvJyUIUdzUPrqD2OWRigNE1Trnucmxs+oMpwJnBX7qcaEsgkdYc9SSSPUfrY4d0YurTIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/9jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtoQvNWX10m7VvWuq/WHerlRy+MowDlcwBV4cAMNuIcmtIDBBJ7hFd6cxHlx3p2PZeuGk8+cwR84nz+Kgo5b</latexit>

[0, 2, 0]
<latexit sha1_base64="Q42ODxDLZeI+r9ZDowEQXwPv4yo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7tajHghePFewHbJeSTbNtaJJdkqxQlv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL0w408Z1v53CxubW9k5xt7S3f3B4VD4+6eg4VYS2Scxj1QuxppxJ2jbMcNpLFMUi5LQbTu7mfveJKs1i+WimCQ0EHkkWMYKNlbr+VdWtusGgXHFr7gJonXg5qUCO1qD81R/GJBVUGsKx1r7nJibIsDKMcDor9VNNE0wmeER9SyUWVAfZ4twZurDKEEWxsiUNWqi/JzIstJ6K0HYKbMZ61ZuL/3l+aqLbIGMySQ2VZLkoSjkyMZr/joZMUWL41BJMFLO3IjLGChNjEyrZELzVl9dJp17zrmuNh0alWc/jKMIZnMMleHADTbiHFrSBwASe4RXenMR5cd6dj2VrwclnTuEPnM8fjA+OXA==</latexit>

[3, 0, 0] <latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .<latexit sha1_base64="Qs6n4RwB+CFBK1oj4Hdm9LR2mqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AdzeMrQ==</latexit>0
<latexit sha1_base64="pZVftJAb8scZJUH5cRivyOrxM3o=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIsgCCUpRT0WvHisYD+gCWWzmbRLN5uwuxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgpQzpR3n2yptbG5t75R3K3v7B4dH1eOTrkoySbFDE57IfkAUciawo5nm2E8lkjjg2Asmd3O/94RSsUQ86mmKfkxGgkWMEm0kzwuRazLMxZU7G1ZrTt1ZwF4nbkFqUKA9rH55YUKzGIWmnCg1cJ1U+zmRmlGOs4qXKUwJnZARDgwVJEbl54ubZ/aFUUI7SqQpoe2F+nsiJ7FS0zgwnTHRY7XqzcX/vEGmo1s/ZyLNNAq6XBRl3NaJPQ/ADplEqvnUEEIlM7fadEwkodrEVDEhuKsvr5Nuo+5e15sPzVqrUcRRhjM4h0tw4QZacA9t6ACFFJ7hFd6szHqx3q2PZWvJKmZO4Q+szx+7mJFy</latexit>

δn+1

<latexit sha1_base64="UTTW8TwmJMvMM1ae8fIjYtRUlgU=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVJJS1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPTQGFaqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3TqNf+61qg260UYZTiHC7gCH26gCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxLti4c=</latexit>

4

<latexit sha1_base64="/O1naij1nKurRkivzO7VVgMfYqc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb+d+54lrIxL1gJOU+zEdKhEJRtFK7X7IJdJBueJW3QXIOvFyUoEczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7lioac+NPF9fOyIVVQhIl2pZCslB/T0xpbMwkDmxnTHFkVr25+J/XyzC68adCpRlyxZaLokwSTMj8dRIKzRnKiSWUaWFvJWxENWVoAyrZELzVl9dJu1b1rqr1+3qlUcvjKMIZnMMleHANDbiDJrSAwSM8wyu8OYnz4rw7H8vWgpPPnMIfOJ8/j6qPFQ==</latexit>

δ

<latexit sha1_base64="ZTWl+TRA+3dt5STjLwjRKQISDe4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DevCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjbt+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatytVEt1SpZHHk4g3O4BA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZWHjME=</latexit>

D

a

v

c e

u
<latexit sha1_base64="Ml+ZlczZd3N8OPIUSRJ5RFH3XRs=">AAACAnicbVBNS8NAEN34WetX1JN4CVbBU0mkqMeCFy9CBfuBTQib7aZdutmE3YlYQvDiX/HiQRGv/gpv/hs3bQ/a+mDg8d4MM/OChDMFtv1tLCwuLa+sltbK6xubW9vmzm5LxakktEliHstOgBXlTNAmMOC0k0iKo4DTdjC8LPz2PZWKxeIWRgn1ItwXLGQEg5Z8c9+NMAwI5tld7mcu0AfIrplSee6bFbtqj2HNE2dKKmiKhm9+ub2YpBEVQDhWquvYCXgZlsAIp3nZTRVNMBniPu1qKnBElZeNX8itY630rDCWugRYY/X3RIYjpUZRoDuLg9WsV4j/ed0UwgsvYyJJgQoyWRSm3ILYKvKwekxSAnykCSaS6VstMsASE9CplXUIzuzL86R1WnXOqrWbWqV+NI2jhA7QITpBDjpHdXSFGqiJCHpEz+gVvRlPxovxbnxMWheM6cwe+gPj8wegB5gk</latexit>ZMiss

<latexit sha1_base64="Gz6v//K4FSmaPIbHkZwPcu8dhYg=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBE8laQU9VhQxGNF+wFtKJvtpl262cTdSbGE/A4vHhTx6o/x5r9x+3HQ1gcDj/dmmJnnx4JrdJxva2V1bX1jM7eV397Z3dsvHBw2dJQoyuo0EpFq+UQzwSWrI0fBWrFiJPQFa/rDq4nfHDGleSQfcBwzLyR9yQNOCRrJu+6mHWRPmN7fZFm3UHRKzhT2MnHnpAhz1LqFr04voknIJFJBtG67ToxeShRyKliW7ySaxYQOSZ+1DZUkZNpLp0dn9qlRenYQKVMS7an6eyIlodbj0DedIcGBXvQm4n9eO8Hg0ku5jBNkks4WBYmwMbInCdg9rhhFMTaEUMXNrTYdEEUompzyJgR38eVl0iiX3PNS5a5SrJbnceTgGE7gDFy4gCrcQg3qQOERnuEV3qyR9WK9Wx+z1hVrPnMEf2B9/gARqZJC</latexit>

DSF

<latexit sha1_base64="SLzAJYJLRKrlI2YvaH7SMJOjsUw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7QPaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU1FGiGDZYJCLVDqhGwSU2DDcC27FCGgYCW8H4NvNbE1SaR/LRTGP0QzqUfMAZNVbyuyE1I0ZF+jDrJb1yxa26c5BV4uWkAjnqvfJXtx+xJERpmKBadzw3Nn5KleFM4KzUTTTGlI3pEDuWShqi9tN56Bk5s0qfDCJlnzRkrv7eSGmo9TQM7GQWUi97mfif10nM4MZPuYwTg5ItDg0SQUxEsgZInytkRkwtoUxxm5WwEVWUGdtTyZbgLX95lTQvqt5V9fL+slJz8zqKcAKncA4eXEMN7qAODWDwBM/wCm/OxHlx3p2PxWjByXeO4Q+czx8d7ZJI</latexit>Su

subgraph
<latexit sha1_base64="O4dxOTTP1SgpOqNWeZDSVACMxog=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRIRdVlwocsK9gFNCDfTSTt0MgkzEyGE+CtuXCji1g9x5984abPQ1gMDh3Pu5Z45QcKoVLb9bdTW1jc2t+rbjZ3dvf0D8/CoL+NUYNLDMYvFMABJGOWkp6hiZJgIAlHAyCCY3ZT+4JEISWP+oLKEeBFMOA0pBqUl32y6EagpBpa7U1D5bVH4qW+27LY9h7VKnIq0UIWub3654xinEeEKM5By5NiJ8nIQimJGioabSpIAnsGEjDTlEBHp5fPwhXWqlbEVxkI/rqy5+nsjh0jKLAr0ZBlVLnul+J83SlV47eWUJ6kiHC8OhSmzVGyVTVhjKghWLNMEsKA6q4WnIAAr3VdDl+Asf3mV9M/bzmX74v6i1bGrOuroGJ2gM+SgK9RBd6iLegijDD2jV/RmPBkvxrvxsRitGdVOE/2B8fkDbAWVOg==</latexit>

Ĝu

<latexit sha1_base64="SbJ76jeInR7ON2th4Q+Q8uv/7ew=">AAACDXicbVDLSsNAFL2pr1pfUZduBlvBRSmJFHVZcOOygn1gG8JkOm2HTh7MTAol5Afc+CtuXCji1r07/8ZJm4W2HrhwOOde7r3HiziTyrK+jcLa+sbmVnG7tLO7t39gHh61ZRgLQlsk5KHoelhSzgLaUkxx2o0Exb7Haceb3GR+Z0qFZGFwr2YRdXw8CtiQEay05JqVvo/VmGCePKRuEldxWkVL0jR1zbJVs+ZAq8TOSRlyNF3zqz8ISezTQBGOpezZVqScBAvFCKdpqR9LGmEywSPa0zTAPpVOMv8mRWdaGaBhKHQFCs3V3xMJ9qWc+Z7uzA6Vy14m/uf1YjW8dhIWRLGiAVksGsYcqRBl0aABE5QoPtMEE8H0rYiMscBE6QBLOgR7+eVV0r6o2Ze1+l293KjkcRThBE7hHGy4ggbcQhNaQOARnuEV3own48V4Nz4WrQUjnzmGPzA+fwAZUZwh</latexit>Zu,a,Zu,v

<latexit sha1_base64="6ega4HfYFPMyNgvLbteCf8ud4Uc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXvSWgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjft+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatytVEt1SpZHHk4g3O4BA+uoQZ3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZ0bjMY=</latexit>

I <latexit sha1_base64="gMqDM02K31sN9iRxh23E7TRnJDg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4m9wu/PUWleSQfzSxGP6QjyYecUWOlxrRfLLlldwmySbyMlCBDvV/86g0iloQoDRNU667nxsZPqTKcCZwXeonGmLIJHWHXUklD1H66PHROrqwyIMNI2ZKGLNXfEykNtZ6Fge0MqRnrdW8h/ud1EzO881Mu48SgZKtFw0QQE5HF12TAFTIjZpZQpri9lbAxVZQZm03BhuCtv7xJWpWyd1OuNqqlWiWLIw8XcAnX4MEt1OAB6tAEBgjP8ApvzpPz4rw7H6vWnJPNnMMfOJ8/4U+M8w==</latexit>v

<latexit sha1_base64="vE/iYxHLbdiJOoPF/qCGrkfIPuY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU9AalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AeLuMrg==</latexit>

1
<latexit sha1_base64="D63aOGGp/QltT+BNNBGTvxhbqfE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS46pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCpl77pcbVRLtUoWRx7O4BwuwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHvDjLA=</latexit>

3
<latexit sha1_base64="8ChveHcb/5BrQ0oyJF6BwmkzLdU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXr1TyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBej+Mrw==</latexit>

2

0 02
0 11

0 00
0 10

3 00

<latexit sha1_base64="XXwUHdAaFqgv/G8SLBMcMwX+hGM=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDFbBhZREirosuHFZwT6wDWEynbRDJw9mJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cL+ZMKsv6Nkorq2vrG+XNytb2zu6eWd3vyCgRhLZJxCPR87CknIW0rZjitBcLigOP0643uc797gMVkkXhnZrG1AnwKGQ+I1hpyTWrgwCrMcE8vc/cNDkjmWvWrLo1A1omdkFqUKDlml+DYUSSgIaKcCxl37Zi5aRYKEY4zSqDRNIYkwke0b6mIQ6odNJZ9AydaGWI/EjoFyo0U39vpDiQchp4ejIPKhe9XPzP6yfKv3JSFsaJoiGZH/ITjlSE8h7QkAlKFJ9qgolgOisiYywwUbqtii7BXvzyMumc1+2LeuO2UWseF3WU4RCO4BRsuIQm3EAL2kDgEZ7hFd6MJ+PFeDc+5qMlo9g5gD8wPn8AmVyUIw==</latexit>Zu,c
<latexit sha1_base64="d2eyife7keUZ3DQqGIyVYNgT+Ck=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDFbBhZREirosuHFZwT6wDWEynbRDJw9mJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cL+ZMKsv6Nkorq2vrG+XNytb2zu6eWd3vyCgRhLZJxCPR87CknIW0rZjitBcLigOP0643uc797gMVkkXhnZrG1AnwKGQ+I1hpyTWrgwCrMcE8vc/cNDmjmWvWrLo1A1omdkFqUKDlml+DYUSSgIaKcCxl37Zi5aRYKEY4zSqDRNIYkwke0b6mIQ6odNJZ9AydaGWI/EjoFyo0U39vpDiQchp4ejIPKhe9XPzP6yfKv3JSFsaJoiGZH/ITjlSE8h7QkAlKFJ9qgolgOisiYywwUbqtii7BXvzyMumc1+2LeuO2UWseF3WU4RCO4BRsuIQm3EAL2kDgEZ7hFd6MJ+PFeDc+5qMlo9g5gD8wPn8AnGaUJQ==</latexit>Zu,e
<latexit sha1_base64="JtYh6qJmw23A+TaApOY72t6Xu9w=">AAAB+nicbVDLSsNAFJ3UV62vVJduBqvgQkoiRV0W3LisYB/YhjCZTtqhk0mYh1JiPsWNC0Xc+iXu/BsnbRbaemDgcM693DMnSBiVynG+rdLK6tr6RnmzsrW9s7tnV/c7MtYCkzaOWSx6AZKEUU7aiipGeokgKAoY6QaT69zvPhAhaczv1DQhXoRGnIYUI2Uk364OIqTGGLH0PvNTfaYz3645dWcGuEzcgtRAgZZvfw2GMdYR4QozJGXfdRLlpUgoihnJKgMtSYLwBI1I31COIiK9dBY9gydGGcIwFuZxBWfq740URVJOo8BM5kHlopeL/3l9rcIrL6U80YpwPD8UagZVDPMe4JAKghWbGoKwoCYrxGMkEFamrYopwV388jLpnNfdi3rjtlFrHhd1lMEhOAKnwAWXoAluQAu0AQaP4Bm8gjfryXqx3q2P+WjJKnYOwB9Ynz+0tpQ1</latexit>Zu,u

<latexit sha1_base64="Wq90H+h6oMgpTQJ0OfYrY8cn1/0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APboWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU1FGiGDZYJCLVDqhGwSU2DDcC27FCGgYCW8H4NvNbE1SaR/LBTGP0QzqUfMAZNVbyuyE1I0ZF+jjrJb1yxa26c5BV4uWkAjnqvfJXtx+xJERpmKBadzw3Nn5KleFM4KzUTTTGlI3pEDuWShqi9tN56Bk5s0qfDCJlnzRkrv7eSGmo9TQM7GQWUi97mfif10nM4MZPuYwTg5ItDg0SQUxEsgZInytkRkwtoUxxm5WwEVWUGdtTyZbgLX95lTQvqt5V9fL+slJz8zqKcAKncA4eXEMN7qAODWDwBM/wCm/OxHlx3p2PxWjByXeO4Q+czx8onpJP</latexit>Zu

<latexit sha1_base64="vE/iYxHLbdiJOoPF/qCGrkfIPuY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU9AalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AeLuMrg==</latexit>

1

Figure 4: Node set S𝑢 and its associated structural features Z𝑢

stored in SpG. Here, 𝐷SF shows the landing counts of nodes at differ-
ent steps in sampled walks as an example, which can be normalized
later to landing probabilities as structural features.

a node set S𝑢 comprising unique nodes sampled from the neigh-
borhood of node 𝑢 and (2) the associated structural features Z𝑢
that reflects the position in G𝑢 of each sampled node in S𝑢 .

Set Samplers Two types of set samplers are adopted. The first
type, namedWalk-based Sampler, is to sample short-step random
walks and eliminate repeated nodes during sampling. The second
type, named Metric-based Sampler, is based on more principled
graph metrics that measure the proximity between neighboring
nodes and the seed node, such as personalized PageRank (PPR)
scores [19] or short path distances. Specifically, the walk-based
sampler runs 𝑀-many𝑚-step random walks, starting from each
seed 𝑢 in parallel on the graph G, and then puts only distinct nodes
in these walks into the set S𝑢 . The metric-based sampler, taking
PPR-based [4] as an example, first runs the push-flow algorithm [2]
to obtain an approximation of the PPR vector for each seed 𝑢, and
then selects the top-𝐾 nodes with the highest PPR scores into the set
S𝑢 . Mathematically, PPR scores are convergent landing probabilities
of seeded random walks that reach infinite steps. Therefore, these
two samplers complement each other by leveraging either more
local or global graph structures. We use hyper-parameters 𝑀 ,𝑚
to control random walks, and 𝐾 to control metric-based sampler,
which are all set as some constants in practice. The complexity of
the above offline sampling procedures is 𝑂 (|V|).

Structure Encoders The structure encoder is to construct struc-
tural featuresZ𝑢,𝑥 ∈ R𝑘 for each node 𝑥 in the sampled node set
S𝑢 . These features are crucial for inference tasks involving mul-
tiple nodes [52], and can be conceptually understood as defining
the position of a node 𝑥 relative to a seed node 𝑢 within its neigh-
borhood. One possible choice is landing probabilities of random
walk [26, 27, 47]: each element Z𝑢,𝑥 [𝑖] stores the counts of node
𝑥 landed at step 𝑖 of all walks sampled by the walk-based sampler
starting at the seed 𝑢 divided by the total number of walks. By
definition, landing probabilities (LPs) can be obtained together with
walk sampling. Another option is the shortest path distance (SPD)
between 𝑥 and 𝑢 [27, 50, 52], which records their relative position
in terms of quantitative reachability. PPR scores [19] is also a useful
structural feature and can be computed along the running of a PPR-
based sampler. Later, we denote the group of structural features for
all nodes in S𝑢 as Z𝑢 = {Z𝑢,𝑥 |𝑥 ∈ S𝑢 }.

3.2 Set-based Storage - SpG
Node-set-based representations have advantages in terms of reusabil-
ity and eliminating redundant nodes. However, the uneven sizes of
sampled node sets pose great challenges to their storage and fast

Table 1: Complexity comparison of GRL models. Suppose using
𝑂 (| E |)-many queries, SGRLs use partial edges (𝑞 ≪ |E |) for train-
ing. 𝑆 and 𝐾 denote the average size of extracted subgraphs and
sampled node sets, respectively. 𝐿 is the number of layers. 𝑑 and 𝑘
are respective dimensions of node and structural features. Assume
𝑑 is fixed for all layers. Both SUREL and SUREL+ use the walk-based
sampler for𝑀-many𝑚-step walks. 𝑐 is the number of distinct 𝑘-dim
structural features. 𝛿𝑛+1 is the size sum of all sampled node sets.

Methods GNN [22] SEAL [50, 52] SUREL [47] SUREL+
Structure 𝑂 (|V| + |E|) 𝑂 (𝑆 |E |) 𝑂 (𝑚𝑀 |V|) 𝑂 (𝛿𝑛+1)
Feature 𝑂 (𝑑 |V|) 𝑂 (𝑘𝑆 |E |) 𝑂 (𝑘𝑚𝑀 |V|) 𝑂 (𝛿𝑛+1 + 𝑐 ∗ 𝑘)
Time 𝑂 (|E |𝐿𝑑 + |E|𝐿𝑑2) 𝑂 (𝑞𝑆𝐿𝑑2) 𝑂 (𝑞𝑚𝑀𝑑2) 𝑂 (𝑞𝐾𝑑2)

access. Note that these node sets must be frequently visited in sub-
sequent online phases for inference. To overcome these obstacles,
SUREL+ devises a specialized compressed sparse row (CSR) format
called SpG, which reorganizes the storage of node sets and their
structural features in a memory-efficient manner, as depicted in
Fig. 4. Specifically, the node set S𝑢 and its structural featuresZ𝑢
are stored as a row of SpG, denoted as SpG[𝑢, :]. Multiple node sets
and their associated structural features are consolidated into three
contiguous arrays:

• indptr 𝛿 ∈ Z𝑛+1, an integer array tracks the starting index of
each stored node set (row). It records the cumulative sum of
the sizes of all node sets S𝑢 , ∀𝑢 ∈ V , e.g., 𝛿𝑢+1 = 𝛿𝑢 + |S𝑢 |,
where |S𝑢 | represents the size of the set S𝑢 . The total number
of sampled nodes stored in SpG is 𝛿𝑛+1;

• indices 𝐼 ∈ Z𝛿𝑛+1 , a coalesce array of all node sets S𝑢 , ∀𝑢 ∈ V .
The segment 𝐼 [𝛿𝑢 : 𝛿𝑢+1] corresponds to the indices of sampled
nodes of S𝑢 stored in sorted order. This ordering is particularly
useful for speeding up the join operation discussed in Sec. 3.3.

• SFptr 𝐷 ∈ R𝛿𝑛+1 , a pointer array contains the indices of the
structural featuresZ𝑢 stored in the array 𝐷SF. The purpose of
𝐷SF is to eliminate duplicate structural features, typically reside
in GPU memory. This secondary index can further compress
memory needs, especially when using LPs/SPDs that are likely
to have many repeated values, but it is not necessary when using
PPR scores since they tend to have distinct values.

Regarding the cost of SpG, indptr array is of size |V| + 1, and
the size of both indices and SFptr arrays is 𝛿𝑛+1. The compressed
encoding array 𝐷SF, has a size of 𝑐 ∗ 𝑘 , where 𝑐 is the number of
distinct structural features and 𝑘 denotes feature dimension. The
overall complexity of this data structure is 𝑂 (|V| + 𝛿𝑛+1 + 𝑐 ∗ 𝑘).

Comparison with Other Methods Table 1 summarizes the
space and time complexity comparison of GRL methods. By adopt-
ing the walk-based sampler (sampling𝑀-many𝑚-step walks), 𝛿𝑛+1
amounts to approximately one-fifth of 𝑚𝑀 |V| used by SUREL,
while the metric-based sampler (sampling top-𝐾 PPR scores) results
in 𝛿𝑛+1 = 𝐾 |V| and 𝐾 < 𝑚𝑀 in general. Both values are substan-
tially lower than 𝑂 (𝑆 |E |) used by SEAL, where 𝑆 is the average
size of sampled subgraphs. For hosting structural features, SUREL+
employs the secondary index SFptr 𝐷 and retains only distinct
structural features in 𝐷SF to further reduce the memory footprint.
Since 𝑐 typically remains independent of |V| in practice, SUREL+
equipped with SpG is highly suitable for handling large graphs.

2942

2943

Algorithm 1: The mini-batch training pipeline of SUREL+
Input: Given a graph G(V, E, 𝑋), a group of queries

{(𝑄,𝑦𝑄)} for training, batch size 𝐵, a set SAMPLER, a
structure ENCODER, and a set AGGR

Output: A neural network for encoding subgraphs 𝑒𝑛𝑐 (·)
1 Preprocessing: SAMPLER and ENCODER → (S𝑢 ,Z𝑢) for all

𝑢 ∈ V; convert and save (S𝑢 ,Z𝑢)’s as SpG objects.
2 for each mini-batch Q𝐵 = {..., 𝑄, ...} do
3 Generate negative training queries (if not given) {𝑄𝑖 } by

random sampling and put them into Q𝐵 ;
4 Call SpJoin operator to perform joining on SpG objects

{(S𝑢 ,Z𝑢) |𝑢 ∈ 𝑄} for all queries 𝑄 ∈ Q𝐵 in parallel;
5 Encode the joined results (S𝑄 ,Z𝑄) as proxy of

subgraphs via Eq. (2) with specified AGGR and get the
prediction 𝑦𝑄 from readout ℎ𝑄 by multithreads;

6 Backward propagation based on the loss L(𝑦𝑄 , 𝑦𝑄).
7 end

4.4 demonstrates empirically that the choice of AGGR has non-trivial
effects on prediction performance. Lastly, a fully-connected layer
takes the readoutℎ𝑄 as input to make the final prediction𝑦𝑄 . In our
experiments, all SGRL tasks are formulated as binary classification,
and thus Binary Cross Entropy is used as the loss function L.

4 EVALUATION
In this section, we aim to evaluate the following questions:
• Regarding space and time complexity, how much improvement

can SUREL+ achieve by adopting sets instead of walks compared
to the SOTA SGRL framework SUREL?

• Can SUREL+ provide prediction performance comparable to all
baselines using or not using SGRL methods?

• How sensitive is SUREL+ to different choices of set samplers,
structure encoders, and set neural encoders?

• How do sparse storage SpG and parallelism in SpJoin operator
benefit the runtime and scaling performance of SUREL+?

4.1 Experiment Setup
Extensive experiments have been performed to evaluate SUREL+ us-
ing homogeneous, heterogeneous, and higher-order homogeneous
graphs on three types of tasks: link prediction, relation type predic-
tion, and higher-order pattern prediction. A homogeneous graph
is a graph that does not include node/link types, while a heteroge-
neous graph includes various node/link types. Higher-order graphs
are hypergraphs in our setting that contain hyperedges connecting
two or more nodes.

Datasets Table 2 summarizes the statistics of the datasets used to
benchmark SGRLmethods. Five datasets are selected from the Open
Graph Benchmark (OGB, [17]) for link and relation type prediction,
including social networks of citation - citation2 and collaboration
- collab; biological network of protein interaction - ppa and vascu-
lar - vessel; and one heterogeneous academic network ogb-mag,
which contains node types of paper (P), author (A) and their re-
lations extracted from MAG [42]. The vessel dataset has unique
significance as a very recent large (>3M nodes), sparse, biological
graph extracted from mouse brains [33] for examining GRL in sci-
entific discovery. Two hypergraph datasets collected by [3] are used

Table 2: Summary Statistics for Evaluation Datasets.
Dataset Type #Nodes #Edges Split(%)

criteo-click Homo./Bipartite Campaign: 675
User: 6,142,256 16,468,027 97/1.5/1.5

twitter Homo./Social. 41,652,230 1,468,364,884 99.98/0.01/0.01
citation2 Homo./Social. 2,927,963 30,561,187 98/1/1
collab Homo./Social. 235,868 1,285,465 92/4/4
ppa Homo./Bio. 576,289 30,326,273 70/20/10
vessel Homo./Bio. 3,538,495 5,345,897 80/10/10

ogb-mag Hetero. (P): 736,389
(A): 1,134,649

P-A: 7,145,660
P-P: 5,416,271 99/0.5/0.5

tags-math Higher. 1,629 projected: 91,685
hyperedges: 822,059 60/20/20

DBLP-
coauthor

Higher. 1,924,991 projected: 7,904,336
hyperedges: 3,700,067 60/20/20

for higher-order pattern prediction: DBLP-coauthor is a temporal
hypergraph, where each hyperedge denotes a time-stamped paper
connecting all its authors. tags-math contains sets of tags applied
to questions on the website math.stackexchange.com, represented
as hyperedges. For higher-order pattern prediction tasks, the num-
ber of hyperedges is the main computation bottleneck, in which
one may connect more than two nodes. Two industrial graphs,
criteo-click [11] with 16.5M records of online banner ads click-
ing and twitter [25] with 1.5B following relations of users are
used to examine the model scalability for real-world applications.

Settings For link prediction, OGB’s standard data split is used
to isolate validation and test links (queries) from the input graph.
For prediction tasks of relation type and higher-order pattern, the
same procedure to prepare graph data is adopted as in SUREL [47]:
the relations of paper-author (P-A, "written by") and paper-paper
(P-P, "cited by") are selected; higher-order queries in hypergraph
datasets are node triplets, where the goal is to predict whether it
will foster in a hyperedge given two of them have observed pairwise
connections; to learn the representation on hypergraphs, we project
hyperedges into cliques and treat the projection results as ordinary
graphs. All experiments are run 10 times independently, and we
report the mean performance and standard deviation.

BaselinesWe consider two classes of baselines. Canonical GNNs:
GCN [22], GraphSAGE [14], GraphSAINT [49], and their variants
with the prefix ‘H*’ that are directly applied for heterogeneous
graphs with node types and for hypergraphs through clique expan-
sion. R-GCN [35] performs relational message passing on hetero-
geneous graphs; SGRL models: SEAL [50, 52], GDGNN [24], and
SUREL [47]. SEAL adopts online subgraph sampling due to huge
memory demands for offline subgraph extraction. Fig. 3 (a) com-
pares the time cost for subgraph sampling across different SGRL
methods. We adopt the official implementations of all baselines
with tuned parameters that match their reported results.

Hyperparameters By default, SUREL+ uses the walk-based
sampler, the structural encoder LP and the better set neural encoder
tuned between mean pooling and attention. SUREL+ adopts a 2-
layer MLP as 𝑒𝑛𝑐 (·) in Eq. (2) followed by a 2-layer classifier to
map set-aggregated representations for final predictions. Default
training hyperparameters are: learning rate lr=1e-3 with the early
stopping of 5 epochs, dropout p=0.1, Adam [21] as the optimizer.
Analysis of parameters𝑀 and𝑚 to control the walk-based sampler
and𝐾 to control the metric-based sampler and selection of structure
encoders and set neural encoders are studied in Sec. 4.4.

Evaluation Metrics The evaluation metrics include Hits@P,
Mean Reciprocal Rank (MRR), and Area Under Curve (ROC-AUC).

2944

Table 3: Prediction Performance for Links, Relation Types and Higher-Order Patterns: the best (bold) and the second best (underlined).

Models citation2 click twitter collab ppa vessel Models MAG(P-A) MAG(P-P) tags-math DBLP-coauthor
MRR (%) Hits@50 (%) Hits@100 (%) ROC-AUC MRR (%)

GCN 84.74±0.21 5.31±0.17 OOM 44.75±1.07 18.67±1.32 43.53±9.61 H*GCN 39.43±0.29 57.43±0.30 51.64±0.27 37.95±2.59
GraphSAINT 79.85±0.40 2.86±0.63 4.12±0.73 53.12±0.52 3.83±1.33 47.14±6.83 H*SAGE 25.35±1.49 60.54±1.60 54.68±2.03 22.91±0.94
GDGNN 86.96±0.28 13.30±0.45 49.86±0.39 54.74±0.48 45.92±2.14 75.84±0.08 R-GCN 37.10±1.05 56.82±4.71 - -
SEAL 87.67±0.32 OOM OOM 63.64±0.71 48.80±3.16 80.50±0.21 SUREL 45.33±2.94 82.47±0.26 71.86±2.15 97.66±2.89
SUREL 89.74±0.18 40.39±0.61 OOM 63.34±0.52 53.23±1.03 86.16±0.39 SUREL+ 58.81±0.42 80.45±0.13 77.73±0.16 99.83±0.02
SUREL+ 88.90±0.06 60.87±0.15 55.67±0.67 64.10±1.06 54.32±0.44 85.73±0.88 / / / / /

Table 4: Breakdown of Runtime, Memory Consumption for Different Models on criteo-click, twitter, citation2 and ppa. The column Train
records the runtime per 10K queries.

Models Runtime (s) Memory (GB) Runtime (s) Memory (GB) Runtime (s) Memory (GB) Runtime (s) Memory (GB)

Prep. Train Inf. RAM SDRAM Prep. Train Inf. RAM SDRAM Prep. Train Inf. RAM SDRAM Prep. Train Inf. RAM SDRAM
Dataset criteo-click twitter citation2 ppa

GCN 3 0.085 8 3.1 62.74 - - - - OOM 17 21.74 105 9.3 36.84 2 0.026 1.2 4.6 11.35
GraphSAINT 1 0.012 20 13.1 8.79 111 0.009 920 253 76.60 151 1.79 107 9.6 9.78 10 0.003 1.5 4.9 23.06
GDGNN 215 1.43 2,928 16.2 23.77 1204 1.84 9,744 188 79.34 338 2.26 5,460 40.6 16.96 127 1.77 902 21.1 10.27
SEAL - - - OOM - - - - OOM - 46 3.52 24,626 35.4 5.71 46 10.57 3,988 9.5 12.13
SUREL 2 1.59 2,307 11.7 16.25 - - - OOM - 151 4.14 6,081 25.1 9.68 31 2.68 1,429 13.6 31.01
SUREL+ 22 0.23 502 10.4 11.93 327 0.26 3,779 210 49.44 130 0.35 1,389 16.7 4.75 69 0.72 201 9.8 19.02

Hit@P counts the ratio of positive samples ranked at the top-P
place against negative ones. MRR first computes the inverse of the
rank of the first correct prediction and then takes the average of
obtained reciprocal ranks for a sample of queries. For all datasets
adopting MRR, each positive query is paired with 1000 randomly
sampled negative test queries, except tags-math using 100 and
crieo-click using 650. ROC-AUC follows the standard definition
to measure the model’s performance in binary classification.

Environment We use a server with two Intel Xeon Gold 6248R
CPUs, 512 GB DRAM, and NVIDIA A100 (80GB) GPU. SUREL+ is
built on PyTorch 1.12 and PyG 2.2. Set samplers are implemented
in C, OpenMP, NumPy, Numba, and uhash, integrated into Python
scripts; SpG is customized based on the CSR format of Scipy.

4.2 Prediction Accuracy Comparison
Table 3 shows the prediction performance of different methods.
SGRL models significantly outperform canonical GNNs on these six
link prediction benchmarks, especially on two challenging biologi-
cal datasets ppa and vessel. Link prediction in biological datasets
relies on richer structural information that canonical GNNs have
limited expressive power to capture. Within SGRL models, SUREL+
achieves comparable performance to SUREL and outperforms SEAL,
which validates the effectiveness of our proposed set-based repre-
sentations. For predictions of relation type and higher-order pattern,
we observe additional performance gains (+2∼13%) from SUREL+
compared to SUREL on three of the four datasets. A large per-
formance gap exists between canonical GNNs and SGRL models,
particularly in the higher-order case. This demonstrates the inher-
ent limitations of canonical GNNs to make predictions of complex
relations involving multiple nodes.

4.3 Efficiency and Scalability Analysis
Improved Efficiency in Training and Inference. Table 4 com-
pares model runtime and memory usage on the four largest bench-
marks. SUREL+ offers a reasonable training time compared with
canonical GNNs. It shows clear improvement in inference compared
to the current SOTA framework SUREL (3-11× speedups across
all datasets) and its predecessor SEAL (∼20× speedups). SUREL+

achieves comparable and even lower RAM usage than canonical
GNNs. Compared to other SGRL models, it can save up to half of
RAM with lower usage of GPU DRAM, since set-based subgraphs
eliminate node duplicates and their associated structural features.
Tables 1 and 4 analytically and empirically show that the key factor
of SUREL+ scaling up to billion-size graphs is its set-based represen-
tation with the sparse design, while GCN (full adjacency matrix),
SEAL (complex subgraph extraction) and SUREL (dense walks with
duplicate nodes) are all out of memory (OOM) on twitter.

Profiling Different Strategies for Offline Processing Fig. 6a
reports the time cost of different samplers with multithreading on
citation2. Fig. 6b shows memory consumption to store different
types of sampled data (walks in SUREL [47] or sets in SUREL+) and
their associated structural features (LPs, SPDs, PPR scores). Com-
pared to SUREL sampler[47], the walk-based sampler in SUREL+
is more scalable and only adds an extra minute for encoding and
converting data in SpG format (slash/dash marked in Fig. 6a), while
achieving 6.94×, 3.63× and 4.12× memory savings on three OGB
datasets respectively to store sampled sets and their structural fea-
tures. Those memory savings are more crucial for overall scalability
as they reduce the workload of data transfer from CPU to GPU and
save many GPU operations to encode the data, which dominates the
time cost of the online stage. This leads to the efficiency improve-
ment of SUREL+ in Table 4. In addition, the metric-based sampler
that adopts PPR scores has better scaling performance when using
more threads. When adopting PPR scores or SPDs as structural
features, SUREL+ further reduces the memory cost, though they
often harm prediction performance slightly.

Note that in the above comparison of memory cost, compressed
structural features are adopted both in SUREL (locally) and SUREL+
(globally), i.e., the secondary index based on SFptr 𝐷 and 𝐷SF,
which achieve compression of 493×, 11318×, 19527× on three datasets
listed in Fig. 6b, when one adopts LPs as structural features.

Scaling Analysis for SpJoin Fig. 7 shows the speedups and
throughput of the sparse join operator SpJoin via multithread-
ing, where the join operation in SUREL to construct query-level
structural features for nodes on walks [47] is used as a comparison.

2945

2946

REFERENCES
[1] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. 2020. Sub-

graph neural networks. Advances in Neural Information Processing Systems 33
(2020), 8017–8029.

[2] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning
using pagerank vectors. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06). IEEE, 475–486.

[3] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221–E11230.

[4] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling graph neural networks with approximate pagerank. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2464–2473.

[5] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein.
2022. Improving graph neural network expressivity via subgraph isomorphism
counting. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[6] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li, and
Haifeng Chen. 2021. Structural temporal graph neural networks for anom-
aly detection in dynamic graphs. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 3747–3756.

[7] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,
Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire.
2022. Graph Neural Networks for Link Prediction with Subgraph Sketching.
arXiv preprint arXiv:2209.15486 (2022).

[8] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[9] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph
neural networks count substructures? Advances in Neural Information Processing
Systems 33 (2020), 10383–10395.

[10] DGL. 2022. 6.7 Using GPU for Neighborhood Sampling — DGL 0.9.1post1 docu-
mentation. https://docs.dgl.ai/guide/minibatch-gpu-sampling.html

[11] Diemert Eustache, Meynet Julien, Pierre Galland, and Damien Lefortier. 2017.
Attribution Modeling Increases Efficiency of Bidding in Display Advertising. In
Proceedings of the AdKDD and TargetAd Workshop, KDD, Halifax, NS, Canada,
August, 14, 2017. ACM, To appear.

[12] Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron.
2022. Understanding and Extending Subgraph GNNs by Rethinking Their Sym-
metries. Advances in Neural Information Processing Systems 35 (2022).

[13] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. 2020. Generalization and
representational limits of graph neural networks. In International Conference on
Machine Learning. PMLR, 3419–3430.

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in Neural Information Processing Systems 30
(2017), 1025–1035.

[15] William L Hamilton. 2020. Graph representation learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning 14, 3 (2020), 1–159.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in Neural Information Processing Systems
33 (2020), 22118–22133.

[18] Kexin Huang and Marinka Zitnik. 2020. Graph meta learning via local subgraphs.
Advances in Neural Information Processing Systems 33 (2020), 5862–5874.

[19] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proceed-
ings of the 12th International Conference on World Wide Web. 271–279.

[20] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate protein structure prediction with Al-
phaFold. Nature 596, 7873 (2021), 583–589.

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations.

[22] Thomas N Kipf andMaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations.

[23] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum,
Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al.
2007. Introduction to statistical relational learning. MIT press.

[24] Lecheng Kong, Yixin Chen, and Muhan Zhang. 2022. Geodesic Graph Neu-
ral Network for Efficient Graph Representation Learning. Advances in Neural
Information Processing Systems 35 (2022).

[25] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th international
conference on World wide web. 591–600.

[26] Pan Li, I Chien, and Olgica Milenkovic. 2019. Optimizing generalized pager-
ank methods for seed-expansion community detection. Advances in Neural
Information Processing Systems 32 (2019), 11710–11721.

[27] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance
Encoding: Design Provably More Powerful Neural Networks for Graph Repre-
sentation Learning. Advances in Neural Information Processing Systems 33 (2020),
4465–4478.

[28] Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. 2020.
Neural subgraph isomorphism counting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1959–1969.

[29] Yunyu Liu, Jianzhu Ma, and Pan Li. 2022. Neural Predicting Higher-Order
Patterns in Temporal Networks. In Proceedings of the Web Conference 2022. ACM,
1340–1351.

[30] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec,
et al. 2020. Neural Subgraph Matching. arXiv preprint arXiv:2007.03092 (2020).

[31] Yuhong Luo and Pan Li. 2022. Neighborhood-aware Scalable Temporal Network
Representation Learning. Learning on Graphs Conference (2022).

[32] Changping Meng, S Chandra Mouli, Bruno Ribeiro, and Jennifer Neville. 2018.
Subgraph pattern neural networks for high-order graph evolution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[33] Johannes C Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl,
Chinmay Prabhakar, Anjany Sekuboyina, Mihail Todorov, Georgios Kaissis, Ali
Ertürk, et al. 2021. Whole Brain Vessel Graphs: A Dataset and Benchmark for
Graph Learning and Neuroscience. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track.

[34] PyG. 2022. Accelerating PyG on NVIDIA GPUs. https://www.pyg.org//ns-
newsarticle-accelerating-pyg-on-nvidia-gpus

[35] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[36] Yili Shen, Jiaxu Yan, Cheng-Wei Ju, Jun Yi, Zhou Lin, and Hui Guan. 2022. Im-
proving Subgraph Representation Learning via Multi-View Augmentation. arXiv
preprint arXiv:2205.13038 (2022).

[37] Balasubramaniam Srinivasan and Bruno Ribeiro. 2020. On the equivalence
between positional node embeddings and structural graph representations. In
International Conference on Learning Representations.

[38] Balasubramaniam Srinivasan, Da Zheng, and George Karypis. 2021. Learning
over Families of Sets-Hypergraph Representation Learning for Higher Order
Tasks. In Proceedings of the 2021 SIAM International Conference on Data Mining
(SDM). SIAM, 756–764.

[39] Komal Teru, Etienne Denis, and Will Hamilton. 2020. Inductive relation predic-
tion by subgraph reasoning. In International Conference on Machine Learning.
PMLR, 9448–9457.

[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Con-
ference on Learning Representations.

[41] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods 17 (2020),
261–272.

[42] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[43] Xiyuan Wang and Muhan Zhang. 2021. GLASS: GNN with Labeling Tricks
for Subgraph Representation Learning. In International Conference on Learning
Representations.

[44] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In International Conference on Learning Representations.

[45] Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. 2022. Graph neural
networks: foundation, frontiers and applications. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4840–4841.

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[47] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. 2022.
Algorithm and System Co-design for Efficient Subgraph-based Graph Represen-
tation Learning. Proceedings of the VLDB Endowment 15, 11 (2022), 2788–2796.

[48] Hanqing Zeng,Muhan Zhang, YinglongXia, Ajitesh Srivastava, AndreyMalevich,
Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling
the depth and scope of graph neural networks. Advances in Neural Information

2947

https://docs.dgl.ai/guide/minibatch-gpu-sampling.html
https://www.pyg.org//ns-newsarticle-accelerating-pyg-on-nvidia-gpus
https://www.pyg.org//ns-newsarticle-accelerating-pyg-on-nvidia-gpus

Processing Systems 34 (2021), 19665–19679.
[49] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. Graphsaint: Graph sampling based inductive learning method.
In International Conference on Learning Representations.

[50] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in Neural Information Processing Systems 31 (2018), 5165–
5175.

[51] Muhan Zhang and Yixin Chen. 2020. Inductive Matrix Completion Based on
Graph Neural Networks. In International Conference on Learning Representations.

[52] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling
Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation
Learning. Advances in Neural Information Processing Systems 34 (2021), 9061–
9073.

[53] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. 2022. TGL: A General Framework for Temporal GNN Training
on Billion-Scale Graphs. Proceedings of the VLDB Endowment 15, 8 (2022), 1572–
1580.

2948

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Relevant Definitions in SGRL
	2.2 Related Works

	3 The framework of SUREL+
	3.1 Set Samplers and Structure Encoders
	3.2 Set-based Storage - SpG
	3.3 Joining Node Sets via Sparse Operations
	3.4 Set Neural Encoders

	4 Evaluation
	4.1 Experiment Setup
	4.2 Prediction Accuracy Comparison
	4.3 Efficiency and Scalability Analysis
	4.4 Comparison between Different Set Samplers, Structural Features and Set Neural Encoders

	5 Conclusion
	Acknowledgments
	References

