
�eryBooster: Improving SQL Performance Using Middleware
Services for Human-Centered �ery Rewriting

Qiushi Bai
University of California, Irvine

qbai1@uci.edu

Sadeem Alsudais
University of California, Irvine

salsudai@uci.edu

Chen Li
University of California, Irvine

chenli@ics.uci.edu

ABSTRACT

SQL query performance is critical in database applications, and
query rewriting is a technique that transforms an original query
into an equivalent query with a better performance. In a wide range
of database-supported systems, there is a unique problem where
both the application and database layer are black boxes, and the
developers need to use their knowledge about the data and domain
to rewrite queries sent from the application to the database for bet-
ter performance. Unfortunately, existing solutions do not give the
users enough freedom to express their rewriting needs. To address
this problem, we propose�eryBooster, a novel middleware-based
service architecture for human-centered query rewriting, where
users can use its expressive and easy-to-use rule language (called
VarSQL) to formulate rewriting rules based on their needs. It also
allows users to express rewriting intentions by providing exam-
ples of the original query and its rewritten query. �eryBooster

automatically generalizes them to rewriting rules and suggests
high-quality ones. We conduct a user study to show the bene�ts of
VarSQL to formulate rewriting rules. Our experiments on real and
synthetic workloads show the e�ectiveness of the rule-suggesting
framework and the signi�cant advantages of using�eryBooster

for human-centered query rewriting to improve the end-to-end
query performance.

PVLDB Reference Format:

Qiushi Bai, Sadeem Alsudais, and Chen Li. �eryBooster: Improving SQL
Performance Using Middleware Services for Human-Centered Query
Rewriting. PVLDB, 16(11): 2911 - 2924, 2023.

doi:10.14778/3611479.3611497

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/ISG-ICS/QueryBooster.

1 INTRODUCTION

System performance is critical in many database applications where
users need answers quickly to gain timely insights andmakemission-
critical decisions. In the large body of optimization literature [16, 25,
33], one family of technique is query rewriting, which transforms
a query to a new query that computes the same answers with a
higher performance.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611497

Application

(4) Result

JDBC Driver

Database (Postgres)

(2) Query Q(3) Result

(1) Query Q

Tableau

Figure 1: Query lifecy-

cle between Tableau and

Postgres.

Motivating example. Figure 1
shows a case where a user runs Tableau
on top of a Postgres database to ana-
lyze and visualize the underlying data
of social media tweets. Tableau formu-
lates and sends a SQL query to the data-
base for each frontend request through
a connector such as a JDBC driver. The
database returns the result to Tableau
to render in the frontend.

Figure 2a shows an example SQL
query& formulated by Tableau to com-
pute a choropleth map of tweets con-
taining a substring, e.g., covid, which matches covid-19, covid19,
postcovid, covidvaccine, etc. Without any index available on the
table, the database engine uses a scan-based physical plan, which
takes 34 seconds in our evaluation. To improve the performance, the
developer is tempted to create an index on the content attribute
of the table.

SELECT SUM(1) AS "cnt:tweets",

"state_name" AS "state_name"

FROM "tweets"

WHERE STRPOS(LOWER("content"),

'covid') > 0

GROUP BY 2;

(a) An original query & formu-

lated by Tableau to compute a

choropleth map of tweets con-

taining covid as a substring.

SELECT SUM(1) AS "cnt:tweets",

"state_name" AS "state_name"

FROM "tweets"

WHERE "content" ILIKE

'%covid%'

GROUP BY 2;

(b) A rewritten query & ′ equiv-

alent to & but runs 100 times

faster by using a trigram index

on the content attribute.

Figure 2: An example query pair (di�erences shown in blue).

Unfortunately, Postgres does not support an index-based physi-
cal plan for the STRPOS(LOWER("content"),B) expression in & ,
where B is an arbitrary string. Interestingly, another query & ′,
shown in Figure 2b, is equivalent to & , and uses an ILIKE predi-
cate. This expression can be answered using a trigram index on
the content attribute [37], and the corresponding physical plan
takes 0.32 seconds only. Notice that the optimizer does not produce
an index-based plan for the original STRPOS predicate using this
trigram index [41].

A natural question is whether we can let Tableau generate & ′

instead of & for the database. Tableau is a proprietary application
layer, and has its own internal logic to generate queries, which the
developer, in this example, cannot change. We may also consider
using the CREATE RULE interface provided by Postgres [35] to in-
troduce a rewriting rule inside the database, but as we will show in

2911

https://doi.org/10.14778/3611479.3611497
https://github.com/ISG-ICS/QueryBooster
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611497
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Section 2, this language has limited expressive power and does not
allow us to rewrite& to& ′. As a consequence, wemiss the rewriting
opportunity to signi�cantly improve the query performance. Note
that as shown in Section 7.5, the rewriting need is not limited to
simple predicate levels but also includes complex statement levels.

Problem Formulation. Besides the above example, as more
cases in Section 2 and our experiments using di�erent applica-
tions and databases on both synthetic and real-world datasets in
Section 7.5 show, there is a unique problem in a wide range of
database-supported systems with the following setting. (1) The
developers need to treat the application layer as a black box and can-

not modify its logic of generating SQL queries. Reasons include i)
the application is proprietary software (e.g., Tableau); and ii) the
source code of the application is too complicated or old to modify,
especially for legacy systems [24]. For example, reports [49] show
that there are many applications where parties have even lost their
original source code. (2) The developers need to treat the database
as a black box. Reasons include i) the developers do not have the
privileges to modify the database; and ii) the database is used by
many clients, and the developers want to avoid side e�ects of data-
base changes to these clients. (3) The developers want to use their
knowledge about the data and domain to rewrite queries sent from the

application to the database to signi�cantly improve their performance.

For example, they may introduce rewriting rules that are valid for
their particular database with certain properties (e.g., speci�c at-
tribute types or certain cardinality constraints), even though these
rules may not be valid for all databases. Speci�cally, the experimen-
tal results in Section 7.5 illustrate cases where a rewriting is valid
only for a particular dataset, and may not be correct in general,
thus it cannot be adopted by a database query optimizer. Thus, we
want to allow developers to be “in the driver’s seat” during the
lifecycle of a query to generate an equivalent and more e�cient
query as “human-centered query rewriting”. Note that we do not
seek to replace query optimizers inside databases but only provide
a chance for users to inject their knowledge to optimize queries
before they are sent to the database. Hence, the problem is stated
as:

Problem Statement: Given an application and a database as
black boxes, develop a middleware solution for users to easily
express their rules to rewrite application queries for a better
performance.

Solution overview. In this paper, we propose �eryBooster, a
novel middleware-based service architecture for human-centered
query rewriting. It is between an application and a database, in-
tercepts SQL queries sent from the application, and rewrites them
using human-crafted rewriting rules to improve their performance.
By providing a slightly-modi�ed JDBC/ODBC driver or a RESTful
proxy for the query interception,�eryBooster requires no code
changes to either the application or the database.�eryBooster pro-
vides an expressive and easy-to-use rule language (called VarSQL)
for users (SQL developers or DBAs) to de�ne rewriting rules (i.e.,
customizing query rewriting for their application queries). Users
can easily express their rewriting needs by providing the query
pattern and its replacement. They can also specify additional con-
straints and actions for complex rewriting details. In addition,

�eryBooster allows users to express their rewriting intentions by
providing examples. That is, users can input original queries and
the desired rewritten queries. Then �eryBooster automatically
generalizes the examples into rewriting rules and suggests high-
quality rules. The users can con�rm the rules to be saved in the
system or further modify the rules as they want.

Challenges and contributions. To develop the �eryBooster

system, we face several challenges. (C1) How to develop an expres-
sive and easy-to-use rule language for users to formulate rules?
(C2) How to generalize pairs of original and rewritten queries to
rewriting rules and measure their quality? (C3) How to search the
candidate rewriting rules to suggest high-quality ones based on the
user-given examples? In this paper, we study these challenges and
make the following contributions.

• We propose a novel middleware-based query rewriting ser-
vice to ful�ll the need of human-centered query rewriting
(Section 3).

• We study the suitability of existing rule languages in the
literature and show their limitations. We then develop a
novel rule language (VarSQL) that is expressive and easy
to use (Section 4).

• We develop transformations to generalize pairs of rewriting
queries to rules and propose using the metric of minimum
description length to measure rule quality (Section 5).

• We present a framework to search the candidate rewriting
rules e�ciently and suggest high-quality rules based on
user-given examples (Section 6).

• We conduct a thorough experimental evaluation, including
a user study, to show the bene�ts of the VarSQL rule lan-
guage, the e�ectiveness of the rule-suggesting framework,
and the advantages of human-centered query rewriting
(Section 7).

2 RELATED WORK AND LIMITATIONS

In this section, we show existing solutions and why they cannot
solve the formulated problem. Figure 3 gives an overview of various
solutions for query rewriting in the lifecycle of a query in a data-
base system [2, 6, 12, 27, 54, 56] and the position of the proposed
�eryBooster system. At a high level, these solutions can be clas-
si�ed into two categories: native writing plugins and third-party
solutions.

App SQL Parser Optimizer Engine

Learned
Rewrite

New rules WeTune

Performance
metrics

Bao/Galo Performance
metrics

QueryBooster
Built-in rulesUser rules

User

Logical
Plan

Physical
Plan

Hints

Rewriting plugin
(MySQL and

Postgres only)
Limited user rules

Database

Figure 3: Query-rewriting solutions for databases (native

solutions in brown and third-party solutions in blue).

Native rewriting plugins.Most databases such as AsterixDB [1],
IBM DB2 [21], MongoDB [28], MS SQL Server [50], MySQL [29],

2912

Oracle [31], Postgres [35], SAP HANA [45], Snow�ake [48], and
Teradata [39], do not have capabilities for users to rewrite queries
sent to the database. Notice that even though “hints” can be in-
cluded in a query to make suggestions to the database optimizer,
they are technically not used to change the query, thus, are not a
query-rewriting solution. To our best knowledge, only two database
systems, Postgres and MySQL, provide a plugin for users to de�ne
new rules to rewrite queries before sending them to the database.
However, their rule-de�nition languages have limited expressive
power, as discussed below.

Postgres. A rewriting rule in the Postgres plugin can only de�ne
a pattern matching a table name in a SELECT clause of a SQL query
and replace the table with another table or a subquery [35]. Its rule
language cannot express the rewriting in the running example in
Figure 2. In particular, it does not support a pattern that matches
a component in a SQL statement at the predicate level, e.g., the
STRPOS(LOWER("content"), _) > 0 portion in the WHERE clause
in the original query. Safety could be a major consideration behind
this rule language. For instance, the Postgres 14 documentation [36]
explained that “this restriction was required to make rules safe enough

to open them for ordinary users, and it restricts ON SELECT rules to

act like views.”
MySQL. The MySQL plugin uses the syntax of prepared state-

ments to de�ne query-rewriting rules, and a rule replaces a SQL
query matching the rule’s pattern with a new statement [29]. A rule
includes placeholders that can only match literal values in a SQL
query, such as a constant in a predicate in the WHERE clause. A main
limitation of this language is that a placeholder cannot match many
components in a query, such as table names and attribute names.
For instance, the following is a predicate from a query formulated
by Tableau to MySQL:

adddate(date_format(`created_at`, '%Y-%m-01 00:00:00'),

interval 0 second) = TIMESTAMP('2018-04-01 00:00:00')

And if we rewrite the predicate by removing the type-casting on
the right-hand constant, as shown below:

adddate(date_format('created_at', '%Y-%m-01 00:00:00'),

interval 0 second) = '2018-04-01 00:00:00'

The corresponding rewritten query is signi�cantly faster (2.68s)
than the original query (87s). Unfortunately, the MySQL plugin
does not support this rewriting because a pattern in the MySQL
plugin has to be an entire statement instead of a single predicate. In
other words, using the MySQL plugin for this rewriting requires
the enumeration of all other parts of the target SQL query.

Third-party solutions. Bao [27] and Galo [12] rewrite queries
by adding hints to help the database optimizer generate more e�-
cient physical plans based on their cost estimations and searching
methods. They take a physical plan and query performance as the
input and produce hints to the original query. WeTune [54] gener-
ates new rewriting rules automatically by searching the logical-plan
space and considering the performance of rewritten queries. Learne-
dRewrite [56] utilizes built-in rewriting rules inside the database
to optimize queries, and the users have no control over when and
which rules are applied. None of these solutions allow users to for-
mulate their own rewriting rules to ful�ll the human-centered query
rewriting need. PgCuckoo [20] opens an opportunity for users to

inject intelligent logic to manipulate query plans in Postgres. It only
works for Postgres and the proposed middleware solution works
for any databases.

Commercial systems. There are also commercial systems that
do query rewriting for applications on top of databases. For example,
Keebo [23] uses data learning and approximate query processing
(AQP) techniques to accelerate analytical queries. It runs queries
on summarized tables instead of the raw data as much as possi-
ble to reduce query time. EverSQL [15] uses AI/ML techniques to
recommend rewriting ideas for queries on MySQL and Postgres.
Other systems such as ApexSQL [4], Query Performance Insights
for Azure SQL [38], and Toad [52] help database developers analyze
query performance bottlenecks and tune database knobs. None of
these systems allow users to formulate their own rewriting rules to
ful�ll the human-centered query rewriting need.

General pattern-matching tools. These tools can be used to
rewrite any program and are not limited to SQL code. For instance,
Quasiquotation [32, 46] is a general technique to rewrite programs
using meta-programs. A main issue of the tools is that they are
not designed for SQL queries, and they do not consider the unique
semantics (tables, columns, etc.) of SQL, which is considered by the
proposed �eryBooster.

3 QUERYBOOSTER: OVERVIEW

We present a novel middleware system called �eryBooster, to
ful�ll the need for human-centered query rewriting.

Figure 4 shows the architecture of �eryBooster. It includes
two phases, an o�ine rule formulation phase and an online query
rewriting phase.

(6) Result

Connector

Database

(4) Query Q'(5) Result

(1) Query Q

Appplication Layer

 Query
Rewriter

Rule
Base

(2) Q

(3) Q'

QueryBooster

User

Rule
Specification

Rewriting
Examples

Rule
Suggestor

Rule
Language

Figure 4: Architecture of �eryBooster.

For the o�ine rule formulation phase, �eryBooster provides a
powerful interface for users to formulate rewriting rules. It allows
users to formulate rules in the following two ways. First, it provides
an expressive and easy-to-use rule language for users to de�ne
rewriting rules. Users can easily express their rewriting needs by
writing down the query pattern and its replacement. They can
also specify additional constraints and actions to express complex
rewriting details. Second, it allows users to express their rewriting
intentions by providing examples. A rewriting example is a pair
of SQL queries with the original query and the desired rewritten
query. The “Rule Suggestor” automatically suggests high-quality
rewriting rules based on the examples. The users can choose their
desired rewriting rules and further modify suggested rules as they
want. All user-con�rmed rules are stored in the “Rule Base,” and
the “Query Rewriter” will rewrite online queries based on the rules.

For the online query rewriting phase, �eryBooster provides a
customized connector that communicates with its service to rewrite

2913

application queries. In particular, the connector accepts an original
query & formulated by the application and sends & to the “Query
Rewriter” service, which applies rewriting rules stored in the “Rule
Base” to rewrite& to a new query& ′. The new query is sent back to
the connector, which forwards & ′ to the backend database to boost
the application’s performance. Note that �eryBooster focuses on
rewriting queries based on user-speci�ed rules and assumes no
access to the backend database to create indexes.

To use the �eryBooster rewriting service, users do not need
to modify any code of the applications or databases or install any
plugins. They only need to replace the existing DB connector with
a�eryBooster-customized one. The connector can be for either
an ODBC/JDBC interface or a RESTful interface. Most database
vendors provide ODBC/JDBC drivers with an open-source license.
Thus we can provide a slightly modi�ed version of the driver that
communicates with the proposed �eryBooster service to rewrite
queries for these databases. For instance, in our developed proto-
type [5], we added only 112 lines of code to the PostgreSQL JDBC
driver. For databases with redistribution restrictions on their dri-
vers (e.g., Oracle JDBC driver [30]), we can provide users a software
patch with a small amount of source codemodi�cations. For applica-
tions and databases that communicate through a RESTful interface,
we can provide a proxy web server that forwards all requests and
responses between them transparently. The proxy server in the
middle rewrites an application request by communicating with
the Query Rewriter service. We assume the RESTful API endpoint
in the application is con�gurable, i.e., we can switch the target
database endpoint to our service.

Correctness of rewriting rules. In the case where users make
mistakes when formulating rewriting rules, we can leverage exist-
ing query equivalence veri�ers (e.g., [10, 54]) to validate the rules
and guarantee their correctness.

4 VARSQL: A REWRITING-RULE LANGUAGE

The main task of�eryBooster is to provide an expressive and easy-
to-use rule language that meet the following three requirements.
(R1) Powerful expressiveness in SQL semantics. It needs to understand
SQL-speci�c semantics where users can specify pattern-matching
conditions on the elements of a SQL query, e.g., two tables have the
same name. (R2) Easy to use by SQL users. Users of�eryBooster are
application developers who are familiar with SQL.�eryBooster

should require users to have little prior knowledge other than SQL
to de�ne their rewriting rules. (R3) Independent of databases or SQL
dialects. As a general query-rewriting service, the rule language
should be independent of any speci�c database or SQL dialect.

In this section, we �rst study the suitability of existing rule
languages in the literature and then develop a novel rule language
that meets all the requirements desired by �eryBooster.

4.1 Suitability of Existing Rule Languages

Existing rule languages [2, 9, 11, 13, 16, 18, 33, 34, 47, 55] are sum-
marized in Figure 5.

General versus SQL-speci�c. The languages on the left are
more general (i.e., non-SQL-speci�c) since they have fewer SQL-
speci�c restrictions. For example, Regex [55] does not require a SQL
query as the input, while EDS [16] only accepts valid SQL query

plans. Themain advantage of SQL-speci�c languages is that they are
very powerful for users to express rewriting rules in SQL-speci�c
semantics. For instance, we do not need to specify SQL-speci�c
syntax requirements such as white spaces, and we can specify SQL-
speci�c constraints for variables that are not supported by general
languages, such as “x is a column.”

SQL String

Parser

Optimizer

Exodus, Starbusrt,
Prairie, Calcite

Logical
Plan

Physical
Plan

Parsed
Tree

CombyRegex KOLA, EDS

Declarative Languages

Imperative Languages
General (Non-SQL-specific) SQL-specific

Figure 5: Existing rule languages (shown in brown) in the

lifecycle of a SQL query.

There are also disadvantages of the more speci�c languages.
First, they can be limited to a particular SQL dialect or database.
For instance, EDS is designed for a particular extensible system
(called “EDBMS”) and its SQL dialect [16]. Second, they require the
users to deeply understand how a SQL query is translated into a
plan and how the database optimizer works.

Declarative versus Imperative. The existing rule languages
are either declarative (e.g., Regex) or imperative (e.g., Calcite). The
primary disadvantage of using an imperative language to de�ne
rules is that it requires users to have prior knowledge about the
internal structures of the rule engine and de�ne rules by writing
code. For example, in Calcite, a user has to write a Java class that
implements an interface to de�ne a new rule.

The main advantage of imperative languages is the expressive
power o�ered by the programming language (e.g., C++), such as
de�ning schema-dependent pattern-matching conditions. For exam-
ple, a rewriting rule that removes unnecessary self-joins may need
to verify the joining attribute is unique, which cannot be inferred
just from the SQL query itself. Using an imperative rule engine, we
can easily write a rule with a few lines of C code [34] that accesses
the schema data and checks the matching condition.

Table 1: Suitability of existing languages for �eryBooster.

Rule
Language

Expressive Power Indepen-
dent of
DB

Additional
Knowledge
Users Need

SQL
Semantics

SQL
Schema

Regex No No Yes
Comby No No Yes

KOLA Yes No Yes 1 2 3

EDS Yes Yes No 1 2

Exodus Yes Yes No 1 2

Starburst Yes Yes No 1 2 4 5

Prairie Yes Yes No 1 2 5

Calcite Yes Yes Yes 1 2 4 6
VarSQL Yes Yes Yes

1 Query Optimization; 2 Relational Algebra; 3 Combinator-based Algebra;

4 Internal Data Structure; 5 C++ Programming; 6 Java Programming;

To this end, we summarize how existing languages meet �ery-

Booster’s requirements on its rule language in Table 1. An observa-
tion is that no existing rule language satis�es all the requirements.
Next, we develop a novel rewriting-rule language called VarSQL.

2914

4.2 VarSQL: A Novel Rule Language

We develop a novel rewriting-rule language (called VarSQL1) for
�eryBooster that meets all the requirements. In particular, VarSQL
understands SQL-speci�c semantics and supports schema-dependent
pattern-matching conditions (R1). It is easy to use, requiring no
prior knowledge other than SQL (R2). Also, it is independent of any
speci�c database or SQL dialect (R3). Next, we present the technical
details of VarSQL.

The syntax of VarSQL to de�ne a rewriting rule is as follows:

[Rule] ::= [Pattern] / [Constraints] --> [Replacement] / [Actions].

VarSQL uses a four-component structure adopted by most rule
languages (e.g., EDS [16] and Comby [11]). The “Pattern” and “Re-
placement” components de�ne how a query is matched and rewrit-
ten into a new query. The “Constraints” component de�nes ad-
ditional conditions that cannot be speci�ed by a pattern such as
schema-dependent conditions. The “Actions” component de�nes
extra operations that the replacement cannot express, such as re-
placing a table’s references with another table’s. We �rst discuss
how a pattern and a replacement are formulated using VarSQL.

Extending SQLwith variables. The main idea of using VarSQL
to de�ne a rule’s pattern is to extend the SQL language with vari-
ables. A variable in a SQL query pattern can represent an existing
SQL element such as a table, a column, a value, an expression, a
predicate, a sub-query, etc. In this way, a user can formulate a query
pattern as easily as writing a normal SQL query. The only di�erence
is that, using VarSQL, one can use a variable to represent a spe-
ci�c SQL element so that the pattern can match a broad set of SQL
queries. We call this pattern-formulating process “variablizing” a
SQL query, and we call the formulated pattern query a “variablized”
SQL query. Similarly, a rule’s replacement is formulated by writing
the rewritten SQL query using variables introduced in the rule’s
pattern. Particularly, both the pattern and replacement in a VarSQL
rule have to be a full or partial SQL query optionally variablized.
The variables and their matching conditions are de�ned in Table 2.

Table 2: Variable de�nitions in VarSQL.

Name Syntax (regex) Description Example

Element-
Variable

<[a-zA-Z0-9_]*>

An element-variable
matches
a table,
a column,
a value,
an expression,
a predicate,
or a sub-query.

STRPOS(LOWER(<x>),

’iphone’) > 0

<x> matches any
value,
column,
expression,
or sub-query.

Set-
Variable

<<[a-zA-Z0-9_]*>>

A set-variable
matches
a set of
tables,
columns,
values,
expressions,
predicates,
or sub-queries.

SELECT <<x>>

FROM <t>

WHERE <<p>>

<<x>> matches any
set of values,
columns,
expressions,
or sub-queries.

SQL syntax tree-based pattern matching and replacement.

VarSQL does the pattern matching and replacement at the SQL

1VarSQL stands for “Variablized SQL”.

SELECT e1.name, e1.age, e2.salary
 FROM employee e1,
 employee e2
 WHERE e1.age > 17
 AND e1.id = e2.id
 AND e2.salary > 35000;

SELECT e1.name, e1.age, e1.salary
 FROM employee e1
 WHERE e1.age > 17
 AND e1.salary > 35000;

Q

select from where

and

>

17

= >

35000

R

select from where

and

=

s t1

t2
p

t1 a1 t2 a2

e1 id e2 id

employee e1

employee e2

namee1

agee1

salarye2

agee1

salarye2

R

from where

andt1

Q

select from where

and

>

17

>

35000

employee e1namee1

agee1

salarye1

agee1

salarye1

Original Query Rewritten Query

Syntax Tree of Syntax Tree of

Syntax Tree of Pattern Syntax Tree of Replacement

(2) Match (3) Replace

(1) Parse (4) Assemble

select

s

p

Rewriting Rule – Removing an Unnecesary Self-Join

SELECT <<s>>
 FROM <t1>, <t2>
 WHERE <t1>.<a1>=<t2>.<a2>
 AND <<p>>

t1=t2
AND
a1=a2
AND
UNIQUE(t1,a1)

Pattern Constraints

SELECT <<s>>
 FROM <t1>
 WHERE <<p>>

Replacement

Substitute
(s, t2, t1)
AND
Substitute
(p, t2, t1)
Actions

Parse Parse

Figure 6: The process of pattern matching and replacing of a

VarSQL rule ' on an example query& . The gray nodes in both

syntax trees of & and the '’s pattern are matched keywords.

The colored dashed boxes show the variables in '’s pattern

and their matched elements in & .

syntax tree level. Consider the rule ' shown at the bottom of Fig-
ure 6, where the pattern and replacement are also shown in their
syntax tree formats. This rule speci�es that when two tables with
the same name join on the same unique column, we can safely
remove the join and keep only one copy of the table. The remaining
of Figure 6 shows the process of pattern matching and replacement
of this rule on an example query & . We �rst obtain the syntax tree
of the query, and compare it node by node against the syntax tree
of the rule’s pattern. The keyword nodes match each other, and
the variables in the pattern match those elements in the query.
Under the node “and”, the subtree “<t1>.<a1>=<t2>.<a2>” in the
pattern matches the predicate “e1.id=e2.id” in the query, and
the set-variable “<<p>>” matches the two remaining predicates in
the query. Next, we use the rule’s replacement syntax tree as a
template to generate the rewritten query’s syntax tree by replacing
the variables with their matched elements in the pattern. Finally,
we assemble the rewritten query from the syntax tree.

Providing pre-implemented imperative procedures. Based
on SQL, VarSQL is a declarative language. One problem with declar-
ative languages is that they lack the expressive power to de�ne
complex logic in the replacement of a rule and schema-dependent
pattern-matching conditionswhere imperative programs are needed
to access the database schema. To solve this issue, VarSQL adopts

2915

the idea used in declarative languages such as EDS and Comby that
it provides pre-implemented imperative procedures for users to
de�ne complex logic in the constraint and action components of
rules. For example, the last constraint “UNIQUE(t1, a1)” de�ned
in the “Constraints” component in the rule shown in Figure 6 calls
the pre-implemented imperative procedure “UNIQUE” supported by
VarSQL, which veri�es if “a1” in table “t1” is a unique column by
referring to the database schema.

VarSQL also provides imperative procedures for users to de-
�ne complex actions in a rule. For example, the rule in Figure 6
does two actions on the replacement SQL query. The �rst action
“Substitute(s, t2, t1)” is to replace the table “t2” with table “t1”
in the scope represented by the set-variable “<<s>>”. Consider the
query & in Figure 6 that matches the rule. The set-variable “<<s>>”
matches the entire selection list “e1.name, e1.age, e2.salary”.
Since the replacement of the rule removes table “t2” from the query,
the column “e2.salary” needs to be substituted by “e1.salary”.
And, the action “Substitute(s, t2, t1)” achieves this purpose.

To make sure the pattern-matching and replacement at the syn-
tax tree level can handle SQL semantics, VarSQL understands im-
portant SQL concepts, e.g., an element-variable “<x>” in the FROM
clause can match either a table name or a table name with an alias.

5 RULE QUALITY AND TRANSFORMATIONS

In this section, we focus on providing a powerful interface for
�eryBooster that suggests high-quality rules for user-given rewrit-
ing examples. We �rst discuss how to measure the quality of rules
and formally de�ne the rewriting-rule suggestion problem. We
then propose a framework to solve the problem, which comprises
two major steps: transforming rules into more general forms and
searching for high-quality rules greedily. We discuss the �rst step
in this section and the second step in the next section.

5.1 Quality of Rewriting Rules

When the rule suggestor generates rules from the user-given exam-
ples, there can be many di�erent sets of rules that can achieve the
example rewritings. For instance, consider the �ve input examples
in Figure 7. The rule suggestor can output the original �ve rewriting
pairs as �ve rules to the user. Apparently, this suggestion is an over-
�t to the given examples since the suggested rules cannot rewrite
queries slightly di�erent from the examples. Intuitively, we want
to suggest more general rules that capture the pattern of the given
examples. At the same time, we do not want to over-generalize the
rules, which may under�t the examples. For instance, in Figure 7,
both rules A2 and A3 can achieve the rewritings for the example pairs
(&4, &

′
4) and (&5, &

′
5), which removes the ORDER BY clause from

the subquery. In this case, A2 is less general than A3 but is a better
suggestion, because lacking the context of a COUNT aggregation in
the outer query, A3 can be erroneous in many cases.

To this end, we want to avoid under�tting or over�tting the
given examples when measuring the quality of rewriting rules. An
e�ective way is through the Minimum Description Length (MDL)
principle [43], which minimizes the total length required to describe
the underlying patterns in the data. There are MDL-based metrics
for pattern extractions in domains such as data mining [17], data
cleaning [19, 40], and regex learning [7].We can adapt these existing

metrics to measure our rewriting rules’ quality or derive our own
description length functions as needed. From the rule-suggestor’s
perspective, we assume a rule-quality metric is given.

For the MDL metric, we assume no access to the target data-
base. If we are granted access, we can also consider the rewriting
rules’ e�ectiveness in improving the performance of the historical
workload as the rules’ quality. For simplicity, we �rst use MDL
as the quality function and then discuss how to extend the frame-
work to include query performance to measure the rules’ quality
in Section 6.3.

Rewriting-rule suggestion problem.Next, we formally de�ne
the problem of suggesting high-quality rules from given examples.

De�nition 5.1. (Covering) Let& be a set of query rewriting pairs
{(&1, &

′
1) , (&2, &

′
2) , . . . , (&=, &

′
=)}, and' be a set of rewriting rules

{A1 , A2 , . . . , A: }. We say ' covers & if for each pair (&8 , &
′
8) in & ,

there is at least one rule A 9 in ' such that A 9 can rewrite &8 into & ′
8 ,

and there is no rule A: in ' such that A: can rewrite&8 into a query
di�erent than & ′

8 .

De�nition 5.2. (Rewriting-rule suggestion problem) Let & be a
given set of query rewriting pairs {(&1, &

′
1) , (&2, &

′
2) , . . . , (&=, &

′
=)},

� be a given rule language, and ! be a given description length
function. The rewriting-rule suggestion problem is to compute a set
' of rewriting rules {A1 , A2 , . . . , A: } written in� such that ' covers
& and the total length of rules Σ8=1...:!(A8) is minimal.

We propose a two-step solution. First, we de�ne a set of trans-
formations that can generalize a rewriting rule into a more general
form such that the transformed rule can cover more rewriting pairs
than the original rule. By applying the transformations on the given
rewriting pairs iteratively, we identify a set of candidate rules to
consider for the �nal suggestion. Second, we adopt a greedy-search
strategy to e�ciently explore di�erent subsets of rules as candi-
dates and minimize the total description length. Next, we present
the technical details of both steps.

5.2 Transforming Rules to More General Forms

Transformations on rules. A transformation on a rewriting rule
can generalize the rule into a more general rule such that the new
rule covers more rewriting pairs than the original one. The instan-
tiation of transformations is dependent on the given rule language.
We now de�ne transformations (shown in Figure 8) on rewriting
rules formulated in the VarSQL language, namely Variablize-a-Leaf,
Variablize-a-Subtree, Merge-Variables, and Drop-a-Branch. The last
three transformations only happen if the replaced variables are not
referred to in other places in the rule’s pattern or replacement.

Variablize-a-Leaf. This transformation replaces an instantiated
element (table, column, or value) in a rule with a variable. In this
way, the transformed rule can match more queries than the original
one. As shown in the �rst example in Figure 8, the transformed rule
can match a query with any column name in the �rst argument of
the STRPOS function. In contrast, the original rule can only match
a query with the speci�c “msg” column.

Variablize-a-Subtree. This transformation replaces a complex
element (expression, predicate, or subquery) in a rule with a variable.
In this way, we can generalize the pattern of a rule by hiding the
details within an expression, predicate, or subquery. In the second

2916

Rule Suggestor

User

STRPOS(LOWER(text),'iphone') > 0 text ILIKE '%iphone%'

STRPOS(LOWER(msg),'iphone') > 0 msg ILIKE '%iphone%'

SELECT COUNT(*) FROM
 (SELECT 1 AS one
 FROM log
 WHERE group = 'admin'
 ORDER BY created_at DESC)

SELECT COUNT(*) FROM
 (SELECT 1 AS one
 FROM log
 WHERE group = 'admin')

SELECT COUNT(id) FROM
 (SELECT id
 FROM orders
 WHERE price >= 2000
 ORDER BY price DESC)

SELECT COUNT(id) FROM
 (SELECT id
 FROM orders
 WHERE price >= 2000)

Example query rewriting pairs

STRPOS(LOWER(<x>),'<y>')>0 <x> ILIKE '%<y>%'

SELECT COUNT(<x>) FROM
 (SELECT <y>
 FROM <t>
 WHERE <p>
 ORDER BY <a> DESC)

SELECT COUNT(<x>) FROM
 (SELECT <y>
 FROM <t>
 WHERE <p>)

Considered rules
. . .

STRPOS(LOWER(msg),'mac') > 0 msg ILIKE '%mac%' . . .

. . .

. . .

. . .
SELECT <y>
 FROM <t>
 WHERE <p>
 ORDER BY <a> DESC

SELECT <y>
 FROM <t>
 WHERE <p>

Figure 7: Suggesting rewriting rules from user-given examples. The rule suggestor suggests two rewriting rules (A1 and A2) that

cover all �ve query rewriting pairs provided by the user, and the total description length of A1 and A2 is minimized compared to

other suggestions.

Transformation Description Example

Variablize-a-
Leaf

Notate a leaf in a rule's
pattern AST as a variable.

A leaf has to be a table,
column or value.

STRPOS(msg,'mac')>0 msg LIKE '%mac%'

STRPOS(<x>),'mac')>0 <x> ILIK '%mac%'

Variablize-a-
Subtree

Notate a common subtree
in both a rule's pattern and
replacement ASTs as a
variable.
A subtree has to satisfy:
 (1) its height is one;
 (2) none of children are a
table, column or value;
 (3) the root is not a clause-
leading keyword such as
select, from, where, etc.

CAST(
 DATE_TRUNC(
 'day',
 CAST(<x> AS DATE))
AS DATE)

DATE_TRUNC(
'day',
CAST(<x> AS DATE)
)

CAST(
 DATE_TRUNC(
 'day',
 <y>)
AS DATE)

DATE_TRUNC(
 'day',
 <y>)

Merge-
Variables

Merge a common set of
sibling variables in both a
rule's pattern
and replacement ASTs into
one variable.

SELECT <a>,
 FROM <t1>, <t2>
 WHERE <t1>.<c> =
 <t2>.<c>

SELECT <a>,
 FROM <t1>

SELECT <<s>>
 FROM <t1>, <t2>
 WHERE <t1>.<c> =
 <t2>.<c>

SELECT <<s>>
 FROM <t1>

Drop-a-Branch
Remove a common
branch (starting from the
root) in both a rule's pattern
and replacement ASTs.

SELECT <a>
FROM <t>
WHERE
STRPOS(<x>),'<y>')>0

SELECT <a>
FROM <t>
WHERE
<x> LIKE '%<y>%'

FROM <t>
WHERE
STRPOS(<x>),'<y>')>0

FROM <t>
WHERE
<x> LIKE '%<y>%'

Figure 8: Transformations on rewriting rules formulated

in VarSQL. A transformation is applied to the pattern and

replacement ASTs of a rewriting rule to generalize it into a

more general rule.

example in Figure 8, the common expression “CAST(<x> AS DATE)”
appears without any modi�cations in both the rule’s pattern and
replacement, which means that it might be an irrelevant pattern in
the original rule. Summarizing the common expression with a new
variable makes the rule more general.

Merge-Variables.Notice that in theVarSQL language, an element-
variable can only match a single element in queries. We introduce

this transformation to generalize a set of variables to a set-variable
to suppress the quantity restriction when matching queries. As
shown in the third example in Figure 8, the original rule only
matches queries with the two columns in the SELECT clause, and the
transformed rule can match queries with any number of columns
in the selection list. This transformation is useful when we want a
more general rule where the quantity of elements does not matter
for the pattern.

Drop-a-Branch. This transformation is a complement of the
Variablize-a-Subtree transformation. Since VarSQL requires the pat-
tern of a rule to be a valid full or partial SQL query, we cannot
variablize an entire clause. For example, in the fourth example in
Figure 8, if we variablize the SELECT <a> subtree as a new vari-
able <y>, the transformed pattern “<y> FROM <t> WHERE . . . ” is
not valid SQL syntax. Thus, we introduce the Drop-a-Branch trans-
formation, which removes a common branch in a rule’s pattern
and replacement. In this way, we gradually remove the irrelevant
context of a rule’s pattern from the top to the bottom of its AST.

6 SEARCHING FOR HIGH-QUALITY RULES

To solve the rewriting-rule suggestion problem de�ned in Def-
inition 5.2, we de�ned a set of transformations in Section 5.2 to
generalize the initial rewriting pairs to more general rewriting rules.
However, the candidate sets of generalized rules that can cover the
initial rewriting examples may be large. It can be computationally
expensive to search all possible sets to compute an optimal solution.
To solve the problem, we adopt a heuristic-based strategy to expand
the candidate-rule set greedily. In this section, we �rst present the
greedy searching framework, then propose several heuristics to
further reduce the search overhead.

6.1 A Greedy Searching Framework

We develop a method to search for rules, as shown in Algorithm 1.
We start with the original rewriting pairs as a basic solution, and
treat each query pair as a rewriting rule (line 1). We iteratively
replace rules in the solution with a more general rule that reduces

2917

the total description length the most. In each iteration, we �rst
explore a set of candidate rules by applying transformations to
the rules in the current solution (line 3). We say a rule G covers

another rule ~ if G ’s pattern matches ~’s pattern and G can rewrite
~’s pattern to ~’s replacement. For each candidate rule, we compute
the reduction of the total length if we use it to replace its covered
rules in the solution (lines 4-7). We then choose the rule that has the
maximum reduction (line 8) and replace its covered rules with the
new rule (line 12). We stop the iteration if there is nomore reduction
(line 9). In this case, we return the current solution (line 10).

Algorithm 1: A greedy algorithm for suggesting rules

Input: A set of rewriting pairs
Q = {(&1, &

′
1), . . . , (&=, &

′
=)}

A set of transformations T = {)1,)2, . . . ,)<}

A description length function L on a rule
Output: A set of rewriting rules R

1 R ← Q

2 while True do

3 C ← Explore_Candidates(R,T)

4 for 2 ∈ C do

// �nd rules that can be replaced by 2

5 R2 ← {'8 ∈ R | '8 is covered by 2}

// compute the length reduction if 2 replaces R2

6 ΔL2 ←
∑
'8 ∈R2

L('8) − L(2)

7 end

// choose a candidate rule with the largest length reduction

8 2̂ ← argmax2∈C ΔL2

// stop when there is no more reduction

9 if ΔL2̂ ≤ 0 then

10 return R

11 end

// update the result set

12 R ← R − R2̂ + 2̂

13 end

The algorithm follows the hill-climbing paradigm [44], where
in each iteration, it explores a set of candidate rules to consider
as the possible next directions. The exploration of candidates is
implemented in the Explore_Candidates(R,T) procedure, and the
decision of which set of candidates to explore can a�ect how easily
the algorithm is stuck at a local optimum. Ideally, the explored
candidates should include all possible rules transformed from the
current rule set. However, the size of the transformed rules can be
large. Thus, we need to consider the trade-o� between the explo-
ration size and the probability of trapping in a local optimum. We
discuss di�erent methods in the following.

A naive candidate-exploration method. A naive method is
to parameterize the number of hops when we transform the rules
in the given rule set. Starting from a base rule, we can transform
it into di�erent child rules by applying di�erent transformations.
We call a child rule a “1-hop rule” if it is obtained from the base
rule by applying one transformation. Similarly, a rule is a “:-hop
rule” if it is obtained after applying : transformations on the base
rule one by one. The parameter : decides the exploration overhead

of the searching framework. We can increase : to allow the algo-
rithm to look ahead before settling down at a local optimum at a
higher computational cost. We call this method “:-hop-neighbor
exploration” (KHN for short).

This method has two problems. One is that it is hard to decide
the : value. A : value may be good for some input examples but can
be bad for others. The second problem is that a �xed : value for all
base rules ignores their di�erent amounts of potential to discover
a high-quality rule. To solve these two problems, we propose an
adaptive exploration method next.

6.2 Exploring Candidate Rules Adaptively

In this subsection, we discuss how to explore candidates in an
adaptive way by considering the di�erent amounts of potential of
transforming di�erent base rules to discover a high-quality general
rule. The goal is to explore more promising candidate rules �rst to
�ll a �xed size of the candidate set.

Algorithm 2:<-promising-neighbor exploration

Input: A set of rewriting rules R = {'1, '2, . . . , '=}

A set of transformations T = {)1,)2, . . . ,)<}

A function P that measures a rule’s promisingness
score
A parameter< that limits the output size

Output: A set of candidate rewriting rules C
1 C ← R

2 while |C|<< do

// choose the most promising candidate rule

3 2̂ ← argmax2∈C P(2)

// replace it with its 1-hop transformed child rules

4 for)8 ∈ T do

5)8 (2̂) ← {all possible child rules by applying)8 to 2̂}

6 C ← C ∪)8 (2̂)

7 end

8 C ← C − 2̂

9 end

10 return C

<-promising neighbors. Its main idea is that instead of explor-
ing neighbors a �xed number of hops away from the current rule
set, we explore a �xed number (denoted as<) of neighbors that
can reduce the total length of the rule set the most. The value<
directly decides the computation overhead of the rule-suggestion
algorithm. We can decide its value by considering the running time
(e.g., 2 seconds) allowed to run the algorithm and the hardware
resources we have. To �nd the< neighbors, we explore the given
base rule set iteratively. In each iteration, we choose a rule that is
most promising to be transformed into a more general rule that
reduces the total length the most. In this way, we can generate a
set of candidate rules with di�erent numbers of hops transformed
from di�erent base rules in the given rule set.

Algorithm 2 shows the pseudo-code of themethod of<-promising-
neighbor exploration (MPN for short). For a given function P that
measures a rule’s promisingness score, the algorithm starts from the
initial rule set, chooses one rule with the highest score, replaces it

2918

with all its 1-hop transformed rules in the candidate rule set, and
stops until the rule set reaches the given size<.

Measuring the promisingness score of a rule.We consider
three signals to measure a rule’s promisingness score. One is the
total length of those base rules that can be covered if we transform
a candidate rule into a more general form. Another is the number
of transformations needed to apply to a candidate rule if we want
it to cover more base rules in the rule set, which measures how far
we can reach a more general rule starting from the current rule.
The third signal is the length of a candidate rule.

Formally, given a set of base rewriting rules R = {'1, '2, . . . , '=}

and a candidate rule 2 , rule 2’s promisingness score P(2) is com-
puted as follows. For each '8 ∈ R, we compute a distance D(2, '8),
i.e., the number of transformations on rule 2 to cover rule '8 . We
will discuss how to compute this value shortly. Let L be the given
description length function. The promisingness score of rule 2 is:

P(2) =

=∑

8=1

L('8)

D(2, '8)
+

1

L(2)
.

If a rule can be generalized with fewer transformations to cover
longer base rules and its own length is shorter, it should have a
higher promisingness score. We now describe how to compute the
distance D(2, '8) of transforming rule 2 to cover the base rule '8 .
We count the number of transformations on 2 to produce a more
general form 2′ to cover rule '8 . A rule 2′ covers rule '8 if the
pattern of 2′ matches '8 ’s pattern, and we can rewrite it to '8 ’s
replacement. Therefore, we can run the pattern-matching process
of 2 on '8 similar to that of a rule on a query. The only di�erence is
that when we �nd any mismatching part, instead of immediately
returning false, we compute the number of transformations needed
for the mismatching part in 2 to match that in '8 .

6.3 Including Query Cost in Rule Quality

To this end, we use MDL as a metric for rewriting rules’ quality.
We now show how to include the e�ectiveness in improving the
performance of a historical workload W to measure the rules’
quality. For a given candidate rewriting rule set R (in Algorithm 1),
we can obtain a setWR of rewritten queries by rewritingW using
the rules in R. Suppose we know the cost of queries to the target
database.We can obtain the total cost of all rewritten queries inWR ,
denoted as C(WR). When we evaluate the bene�t of replacing a
few rules in R2 with a candidate rule 2 (line 6), we compute the
reduction of query cost when using the new rule set to rewrite W,
denoted as ΔC2 . Then, we compute a weighted sum of both the
reduction of description length and the reduction of query cost as
the total bene�t for the candidate rule 2 as

�4=4 5 8C2 ← V ×
ΔL2

LR
+ (1 − V) ×

ΔC2

C(WR)
,

where V is a parameter to tune the balance between the impor-
tance of the description length and performance improvement of
the rewriting rules. We replace the original ΔL2 with the new
�4=4 5 8C2 at lines 6, 8, and 9, and extend Algorithm 1 to include
the e�ectiveness in improving workload performance to measure
the quality of rewriting rules. Similarly, we also include the new
bene�t value when computing the promisingness score of a rule in
Algorithm 2.

7 EXPERIMENTS

We conducted experiments to evaluate �eryBooster regarding
three aspects: formulating rules using the VarSQL rule language,
suggesting rules from user-given examples, and the end-to-end
performance using �eryBooster to rewrite queries. In particular,
we want to answer the following questions: (1) How easy is it for
SQL developers to use the VarSQL language to formulate query
rewriting rules? (2)What is the expressive power ofVarSQL? (3) Are
the transformations de�ned in�eryBooster enough to generate
general rules from example pairs? (4) How do di�erent search
strategies perform in terms of running time and rule qualities? (5)
How much bene�t can �eryBooster provide on the end-to-end
query performance with the human-centered query rewritings?

7.1 Setup

Workloads. We used four workloads as shown in Table 3. Each
workload had a set of SQL rewriting pairs, and each pair consisted
of an original query and a rewritten query. Each rewritten query
was equivalent to and usually outperformed its original query. The
WeTune workload included 245 pairs of SQL queries published in
the appendix table in the paper [54]. They collected those original
queries from 20 open source applications on GitHub and generated
the rewritten queries by applying their machine-discovered rewrit-
ing rules. The Calcite workload comprised 232 rewriting pairs of
SQL queries designed for the Apache Calcite test suite [8].

Table 3: Workloads used in the experiments.

Id Workload # of query pairs

1 Calcite 232

2 WeTune 245

3 Tableau+TPC-H 20

4 Tableau+Twitter 14 (Postgres) + 6 (MySQL)

5 Superset+Twitter 5 (MySQL)

To consider the real-world use cases where business intelligence
(BI) users do interactive analysis on their data residing in a database,
we created three more workloads using Tableau [51] and Apache
Superset [3] on top of PostgreSQL and MySQL. The “Tableau +
TPC-H” workload included 20 rewriting pairs of SQL queries, which
corresponded to the top 20 queries in the TPC-H benchmark [53].
We �rst inserted a 10GB TPC-H synthesized dataset into a Post-
greSQL database (indexes were created using Dexter [14]), then
used Tableau Desktop software to connect to the PostgreSQL data-
base in its live mode. For each query in the TPC-H benchmark, we
manually built a Tableau visualization workbook that could answer
the corresponding business question, then collected the backend
SQL query generated from Tableau for the workbook. We then
analyzed the Tableau-formulated SQL query and came up with a
rewritten query with a better performance. Similarly, we gener-
ated the “Tableau + Twitter” and “Superset + Twitter” workloads
by building visualization dashboards using Tableau and Apache
Superset to analyze 30 million tweets on their textual, temporal,
and geospatial dimensions on top of both Postgres and MySQL
databases. In the workloads, 14 pairs of queries were generated on
top of PostgreSQL, and 11 pairs were generated on top of MySQL.

2919

Testbed.We implemented the�eryBooster system using Python
3.9 and used the “mo-sql-parsing” package [26] as the SQL parser.
All experiments were run on a MacBook Pro 2017 model with a
2.3GHz Intel Core i5 CPU, 8GB DDR3 RAM, and 256GB SSD. The
Tableau Desktop software version was 2021.4, and the Apache Su-
perset version was May 2023. The PostgreSQL software version
was 14, and the MySQL software version was 8.0.

Description length function. To evaluate the performance
of the rule-suggestion algorithms, we implemented a description
length function designed for rules rewritten in VarSQL. We fol-
lowed the design principles proposed in [40]. The main idea was
that each rule had a constant basic length, and the more variables
it had, the larger its description length should be. In this case,
the description length metric made sure that high-quality rules
could match as many given examples as possible, but they were
not over-generalized to match unseen queries. We computed the
description length L of a particular rule A as the following. Let
, be the constant basic length of any rule,,� be the weight of
an element-variable, and,(be the weight of a set-variable. We
used three counters in the given rule. We counted the number of
element-variables in the rule as�� and the number of set-variables
as�(. In addition, we counted the number of non-variable elements
in the rule as �$, where non-variable elements included keywords,
values, table names, column names, etc. In the end, we computed
the length L of rule A as

L(A) =, + (,� ×�� +,(×�()/�$.

7.2 A User Study to Evaluate Rule Languages

Table 4: User pro�les in the user study.

Background Faculty Sta�
Software
Engineers

Ph.D.
students

M.S.
students

% of users 4.5% 4.5% 4.5% 72.7% 13.6%

We conducted a user study to evaluate how easy it was for SQL
users to use VarSQL to formulate rewriting rules. Besides VarSQL,
we considered two other languages for comparison. Onewas regular
expression [55], and we used its C Sharp implementation provided
by regex101 [42]. The other was the internal rule language used by
WeTune [54], and we used its own implementation provided by its
demo website WeRewriter [22]. We selected three rewriting pairs
of SQL queries from two workloads on two databases. One pair was
from the WeTune workload, and the other two pairs were from the
“Tableau + Twitter” workload on both PostgreSQL and MySQL. For
each rewriting pair, we showed the original and rewritten queries
to the user, along with three rewriting rules de�ned in the three
languages that could achieve the same rewriting. We asked the
user to “select one of the three rules that you think is the easiest to

understand.” In the questions, we randomized the orders of the rule
languages and hid their names to make the comparison fair.

We invited 22 users who were familiar with SQL and with di�er-
ent backgrounds. The pro�les of users are shown in Table 4, and the
results are summarized in Table 5. Among all the rewriting pairs,
more than 80% of users selected the rule formulated in VarSQL

as the easiest to understand, and it outperformed the other two

Table 5: Results in the user study (% of users selected the rule

language as the easiest to understand).

Pair Id 1 2 3

Workload Twitter(Postgres) Twitter(MySQL) WeTune(Q91)

% of Regex 13.6% 4.5% 0%

% of WeTune 0% 13.6% 13.6%

% of VarSQL 86.4% 81.8% 86.4%

languages signi�cantly. The user study results show that VarSQL
is an easy-to-use language and was preferred by SQL users.

7.3 Comparison of Rule-Searching Strategies

We evaluated the performance of di�erent searching strategies in
the rule-suggestion searching framework. We compared the three
strategies discussed in Section 6. The �rst was “Brute-Force” (“BF”
for short), which explored all possible rules that were transformed
from the current rule set in the Explore_Candidates procedure. The
second was the “:-hop-neighbor exploration” (“KHN” for short),
where we explored the neighbors of a �xed number (:) of hops
away from the base rules for each iteration’s consideration. The
last was the adaptive exploration method, “<-promising-neighbor
exploration” (“MPN” for short), where we explored a �xed number
(<) of neighbors that were the most promising to �nally reduce
the total description length of the resulting rule set. We used the
“Tableau + Twitter” workload and varied the number of rewriting
examples as the input to the searching algorithms. For each input
set of examples, we �rst ran the BF method to get a high-quality
set of suggested rules as the benchmark. We then ran the KHN
and MPN methods and made sure they both output the same set
of suggested rules as the BF method by gradually increasing the
: and< parameters. In this way, we ensured the fairness of the
comparison between di�erent methods.

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5

R
u

n
n

in
g

 T
im

e
(s

)

Number of Rewriting Examples

Brute-Force

27.83
36.57

58.97

136.56

K-Hop Neighbors

0.79 1.76 6.52

49.32

M-Promising Neighbors

0.26 0.53 0.92 1.39

(a) Running time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5

#
 o

f
C

a
n

d
id

a
te

s
 E

x
p

lo
re

d

Number of Rewriting Examples

Brute-Force

1167 1154 1222

2587
K-Hop Neighbors

43 54 155

1018

M-Promising Neighbors

12 22 30 33

(b) Total # of candidates explored.

Figure 9: Comparison of di�erent candidate exploration

methods to suggest the same set of rules on the “Tableau

+ Twitter” workload.

As shown in Figure 9a, as the number of input examples in-
creased, the running time of the brute-force method increased sub-
exponentially. The reason was for each example added to the input
set, the number of candidate rules generated from the new example
was exponential to its number of elements in the original query.
Compared to the brute-force method, the KHN method had sig-
ni�cantly less running time since it only explored a small set of
candidate rules during the exploration phase. However, its running
time still went up to 50 seconds for 5 input examples. The reason
was that to reach the high-quality rules, the KHN method had to

2920

tune its : value to 4, and the number of explored rules increased
exponentially with the increase of the : value. In comparison, the
MPN method outperformed both other methods signi�cantly, and
the running time increased linearly as the input set size increased.
These results are consistent with those shown in Figure 9b, and
both �gures illustrate the correlation between the running time and
the number of candidates explored in the searching framework.

7.4 E�ect of< in<-promising Neighbors

We evaluated the e�ect of the< value in the<-promising-neighbor
searching strategy on theWeTune workload. We randomly chose 30
rewriting pairs within the �rst three applications in the workload
as the testing set. We then chose the top two frequent rewriting
patterns and named them as “Rule1” and “Rule2”. Among the 30
pairs, there were 5 pairs matching Rule1 and 4 pairs matching
Rule2. For each rule, we used one matching pair as the seed and
manually generated 4 rewriting examples as the input examples for
the rule-suggestion algorithm. We ran the algorithm using the<-
promising-neighbor strategy with di�erent< values. We measured
the total description length of the output rule set and the result is
shown in Figure 10a. It shows that for both rules’ input example
sets when the< value increased, the output of the rule-suggestion
algorithm converged to the optimal rule set with the minimum
description length. Referring to the corresponding running time
shown in Figure 10c, it only took about 5 to 6 seconds for the
algorithm to output the optimal rule set. Figure 10d also shows the
numbers of candidates explored for di�erent< values.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

D
e

s
c
ri
p

ti
o

n
 L

e
n

g
th

 (
%

)

M value in M-Promising Neighbors

Rule1
Rule2

(a) Description Length (% of the

raw examples).

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

P
re

c
is

io
n

 a
n

d
 R

e
c
a

ll
(%

)

M value in M-Promising Neighbors

Rule1-Recall
Rule2-Recall

(b) Precision andRecall on unseen

pairs.

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60

R
u

n
n

in
g

 T
im

e
 (

s
)

M value in M-Promising Neighbors

Rule1
Rule2

(c) Running Time (s).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

#
 o

f
C

a
n

d
id

a
te

s
 E

x
p

lo
re

d

M value in M-Promising Neighbors

Rule1
Rule2

(d) Total # of candidates explored.

Figure 10: E�ect of the< value in the<-promising-neighbor

searching strategy on the WeTune workload.

We evaluated the output rule set from the rule-suggestion al-
gorithm on the unseen 30 testing rewriting pairs in the workload.
We measured both the precision and recall computed as follows.
Suppose the rule set rewrote G unseen pairs of queries, among
which G1 pairs satis�ed the intent of the user. Then the precision
is G1

G . Suppose the user wanted ~ pairs of queries in the testing
set to be successfully rewritten, and the rule set only rewrote ~1

out of ~. Then the recall is
~1
~ . The result is shown in Figure 10b.

The precision was always 100% (omitted in the �gure) because the
design of the description length function enforced that the rules
were never over-generalized. And the recall was initially low for a
small< value because the output rules were very speci�c to the
input examples, and the output rules were not optimal yet. As the
< value increased to 50 or more, the algorithm started to output
the optimal suggested rules that could cover unseen query pairs
with similar patterns, which led to a 100% recall in the end.

7.5 End-to-End Query Time Using �eryBooster

We evaluated the end-to-end query time (the time between the
frontend sending the SQL query to and receiving the result from
the database) using�eryBooster to rewrite queries in the “Tableau
+ TPC-H” and “Tableau + Twitter” workloads on PostgreSQL and
the “Superset + Twitter” workload on MySQL. For each query in the
workload, besides the running time of the original query formulated
by Tableau or Superset on PostgreSQL or MySQL, we also collected
the running time of two rewritten queries using di�erent rewriting
rules. One rewritten query (noted as “Rewritten Query (WeTune

Rules)”) was obtained from the WeRewriter [22] system, which
used rewriting rules automatically discovered by WeTune. The
other rewritten query (noted as “Rewritten Query (Human Rules)”)
was obtained from�eryBooster using human-crafted rewriting
rules based on manual analysis of the original query and its plan.

 0.04

 0.2

 1

 5

 25

 125

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Q
u

e
ry

 T
im

e
 (

s
)

L
o

g
s
c
a

le

TPC-H Queries Formulated Using Tableau

Original Query
Rewritten Query (WeTune Rules)

Rewritten Query (Human Rules)

Figure 11: End-to-end query time using �eryBooster to

rewrite queries with WeTune-generated rules and human-

crafted rules on “Tableau + TPC-H” workload compared to

original query time in PostgreSQL.

Figure 11 shows the result for the workload of “Tableau + TPC-
H” on Postgres. Among the 20 queries, only two rewritten queries
(&2 and &18) using the WeTune-generated rules could reduce the
query time. At the same time, using human-crafted rewriting rules,
�eryBooster reduced 10 queries’ running time, which comprised
50% of all the queries. Within the 10 rewritten queries using human-
crafted rules, 70% of them reduced the original queries’ running
time signi�cantly (by more than 25%). For example,&2was reduced
by 86% (1.555s to 0.207s) and &17 was reduced by 61% (47.046s to
17.802s). Note that in the 10 queries optimized using human-crafted
rules, 7 of them used statement-level reshaping rules such as “join-
to-exists”, “remove-subquery”, etc., and 3 of them used hints such
as “force-join-order”.

Figure 12a and 12b show the results for the workloads of “Tableau
+ Twitter” and “Superset + Twitter” onMySQL. The result of “Tableau
+ Twitter” on PostgreSQL was similar to MySQL, thus not shown.
For the 5 Tableau queries on MySQL, the human-crafted rewriting
rules were mainly predicate-level removing unnecessary ADDDATE

2921

calculation, as discussed in Section 2. For the 5 Superset queries on
MySQL, the human-crafted rewriting rules were mainly translating
the textual �ltering condition from a LIKE predicate to a full-text
search predicate since MySQL does not support any index-scan for
LIKE predicate but does for full-text search. For example, in one
query, the human-crafted rule rewrote the predicate “text LIKE

’%stopasian hate%’” to “MATCH(text) AGAINST (’stopasianhate
stopasian hatecrime stopasianhatecrimes’), whichwas equiv-
alent only for this particular dataset because all substring “stopasian-
hate” matched records could be matched using the three full-text
keywords: “stopasianhate”, “stopasianhatecrime”, and “stopasian-
hatecrimes”. As shown in Figure 12b, all 5 queries were accelerated
by 100+ times (e.g., 83s to 0.8s) due to this human-crafted rewriting
rule, which shows the importance of the proposed human-centered
query rewriting approach.

 0.2

 1

 5

 25

 125

 625

Q1 Q2 Q3 Q4 Q5

Q
u

e
ry

 T
im

e
 (

s
)

L
o

g
s
c
a

le

Twitter Queries Formulated Using Tableau

Original Query
Rewritten Query (WeTune Rules)

Rewritten Query (Human Rules)

(a) “Tableau + Twitter”.

 0.2

 1

 5

 25

 125

 625

 3125

Q1 Q2 Q3 Q4 Q5

Q
u

e
ry

 T
im

e
 (

s
)

L
o

g
s
c
a

le

Twitter Queries Formulated Using Superset

Original Query
Rewritten Query (WeTune Rules)

Rewritten Query (Human Rules)

(b) “Superset + Twitter”.

Figure 12: End-to-end query time using �eryBooster to

rewrite queries with WeTune-generated rules and human-

crafted rules compared to original query time in MySQL.

7.6 Generality of Rule Transformations

To evaluate the generality (covering more rewriting examples) of
rule transformations, we used 178 rewriting pairs in the Calcite
workload. We applied the transformations de�ned in Section 5.2
to each example iteratively to generate more general rules. We
divided the transformations into 5 categories: “variablize-a-table”,
“variablize-a-column”, “variablize-a-value”, “variablize-a-subtree”,
and “merge-variables”, and gradually applied more categories to
generalize the rules. We collected the percentage of examples that
were rewritten by rules generated by other examples and named
it “sharing-rule examples (%)”. We also collected the precision and
recall of using the generalized rules to rewrite the original queries.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5R
u

le
-s

h
a

ri
n

g
 E

x
a

m
p

le
s
(%

)

Number of Transformation Categories

(a) Rule sharing percentage.

 20

 40

 60

 80

 100

 1 2 3 4 5

P
re

c
is

io
n

 a
n

d
 R

e
c
a

ll
(%

)

Number of Transformation Categories

Recall
Precision

(b) Precision and Recall.

Figure 13: The generality of rules generalized from the Cal-

cite examples using di�erent sets of transformations.

Figure 13a shows that with more transformation categories used
in generating rules, more examples shared rules, meaning the gen-
erated rules were more general. Figure 13b shows that with more
transformations used to generalize rules, the recall remained 100%

because more general rules could always match the seed exam-
ples. However, the rewriting precision went down. The reason was
that more transformations resulted in over-generalized rules that
matched examples they should notmatch. This result alsomotivated
our consideration of using MDL to prevent over-generalization.

7.7 E�ect of Di�erent Rule Quality Metrics

We also evaluated the e�ect of using di�erent importance weights
V in the bene�t value (de�ned in Section 6.3) using the “Tableau
+ Twitter” workload. We used four query pairs as input examples
for the rule-suggesting framework and another �ve queries as a
historical workload to compute the bene�t value in Algorithm 1.
We varied V from 1.0 (i.e., only considering the MDL as rule qual-
ity) to 0.0 (i.e., only considering query cost as rule quality). For
each V value, we �rst ran the rule-suggesting framework with the
“MPN” strategy to obtain the suggested rules. We then evaluated
the suggested rules based on three metrics. We used the rules to
rewrite the �ve queries in the workload and collected the query
“cost reduction” by comparing the rewritten queries’ cost and the
original queries’ cost. We treated the suggested rules with V = 1.0

as the baseline and then computed the “description length increase”
and rule-suggesting algorithm “running time increase“ for the rules
suggested by other V values.

 0

 50

 100

 150

 200

 250

 300

 350

1.0 0.75 0.5 0.25 0.0

R
e
d
u
c
ti
o
n
/I
n
c
re

a
s
e
(%

)

Beta

Time Increase

0

38

76 78 88

Description Length Increase

0

39

218 218

283
Cost Reduction

18

90 90 90 90

Figure 14: E�ect of di�erent V

values.

The results are shown in Fig-
ure 14. When V was 1.0, the sug-
gested rules only reduced the
query cost by 18%. When V de-
creased to 7.5, the suggested
rules reduced the query cost by
90%. However, the cost was both
the description length of rules
and the running time of the rule-
suggesting algorithm increased
by 40%. The cost increased when V further decreased. When V

was 0.0, which means the algorithm did not consider the descrip-
tion length at all, the total description length of suggested rules
increased by 280%.

Remarks: The user study shows that more than 80% SQL users
preferred using the VarSQL rule language to formulate rewriting
rules. �eryBooster suggested high-quality (high precision and
recall and low description length) rules from user-given examples
quickly (≤ 5s) on di�erent workloads. Compared to existing query
rewriting solutions with machine-discovered rewriting rules, using
�eryBooster with human-crafted rewriting rules improved the
performance of 50% TPC-H queries by up to 86%.

8 CONCLUSIONS

In this paper, we proposed �eryBooster, a middleware service for
human-centered query rewriting. We developed a novel expressive
rule language (VarSQL) for users to formulate rewriting rules easily.
We designed a rule-suggestion framework that automatically sug-
gests high-quality rewriting rules from user-given examples. A user
study and experiments on various workloads show the bene�t of
using VarSQL to formulate rewriting rules, the e�ectiveness of the
rule-suggestion framework, and the signi�cant advantages of using
�eryBooster to improve the end-to-end query performance.

2922

REFERENCES
[1] APACHE AsterixDB [n.d.]. http://asterixdb.apache.org. last accessed: 7-19-2023.
[2] Apache Calcite [n.d.]. https://calcite.apache.org/. last accessed: 7-19-2023.
[3] Apache Superset(incubating) - Apache Superset documentation. 2018. https:

//superset.incubator.apache.org/. last accessed: 7-19-2023.
[4] ApexSQL: SQL execution plan viewing and analysis [n.d.]. https://www.apexsql.

com/sql-tools-plan.aspx. last accessed: 7-19-2023.
[5] Qiushi Bai, Sadeem Alsudais, and Chen Li. 2022. Demo of VisBooster: Acceler-

ating Tableau Live Mode Queries Up to 100 Times Faster. In Proceedings of the
Workshops of the EDBT/ICDT 2022 Joint Conference, Edinburgh, UK, March 29,
2022 (CEUR Workshop Proceedings), Maya Ramanath and Themis Palpanas (Eds.),
Vol. 3135. CEUR-WS.org. http://ceur-ws.org/Vol-3135/bigvis_short5.pdf

[6] Qiushi Bai, Sadeem Alsudais, Chen Li, and Shuang Zhao. 2023. Maliva: Using
Machine Learning to Rewrite Visualization Queries Under Time Constraints.
In Proceedings 26th International Conference on Extending Database Technology,
EDBT 2023, Ioannina, Greece, March 28-31, 2023, Julia Stoyanovich, Jens Teubner,
Nikos Mamoulis, Evaggelia Pitoura, and Jan Mühlig (Eds.). OpenProceedings.org,
157–170. https://doi.org/10.48786/edbt.2023.13

[7] Falk Brauer, Robert Rieger, Adrian Mocan, and Wojciech M. Barczynski. 2011.
Enabling information extraction by inference of regular expressions from sample
entities. In Proceedings of the 20th ACM Conference on Information and Knowledge
Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011, Craig
Macdonald, Iadh Ounis, and Ian Ruthven (Eds.). ACM, 1285–1294. https://doi.
org/10.1145/2063576.2063763

[8] Calcite Test Suite [n.d.]. https://github.com/georgia-tech-db/spes/blob/main/
testData/calcite_tests.json. last accessed: 7-19-2023.

[9] Mitch Cherniack and Stanley B. Zdonik. 1996. Rule Languages and Internal
Algebras for Rule-Based Optimizers. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 401–412.
https://doi.org/10.1145/233269.233356

[10] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018.
Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of
SQL Queries. Proc. VLDB Endow. 11, 11 (2018), 1482–1495. https://doi.org/10.
14778/3236187.3236200

[11] Comby is a tool for searching and changing code structure [n.d.]. https://comby.
dev/. last accessed: 7-19-2023.

[12] Guilherme Damasio, Vincent Corvinelli, Parke Godfrey, Piotr Mierzejewski,
Alexandar Mihaylov, Jaroslaw Szlichta, and Calisto Zuzarte. 2019. Guided auto-
mated learning for query workload re-optimization. Proc. VLDB Endow. 12, 12
(2019), 2010–2021. https://doi.org/10.14778/3352063.3352120

[13] Dinesh Das and Don S. Batory. 1995. Praire: A Rule Speci�cation Framework
for Query Optimizers. In Proceedings of the Eleventh International Conference on
Data Engineering, March 6-10, 1995, Taipei, Taiwan, Philip S. Yu and Arbee L. P.
Chen (Eds.). IEEE Computer Society, 201–210. https://doi.org/10.1109/ICDE.
1995.380391

[14] Dexter: The automatic indexer for Postgres [n.d.]. https://github.com/ankane/
dexter. last accessed: 7-19-2023.

[15] EverSQL: Automatic SQL Query Optimization for MySQL and PostgreSQL [n.d.].
https://www.eversql.com/. last accessed: 7-19-2023.

[16] Béatrice Finance and Georges Gardarin. 1991. A Rule-Based Query Rewriter in
an Extensible DBMS. In Proceedings of the Seventh International Conference on
Data Engineering, April 8-12, 1991, Kobe, Japan. IEEE Computer Society, 248–256.
https://doi.org/10.1109/ICDE.1991.131472

[17] Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and Kyuseok
Shim. 2003. XTRACT: Learning Document Type Descriptors from XML Doc-
ument Collections. Data Min. Knowl. Discov. 7, 1 (2003), 23–56. https:
//doi.org/10.1023/A:1021560618289

[18] Goetz Graefe and David J. DeWitt. 1987. The EXODUS Optimizer Generator. In
Proceedings of the Association for Computing Machinery Special Interest Group
on Management of Data 1987 Annual Conference, San Francisco, CA, USA, May
27-29, 1987, Umeshwar Dayal and Irving L. Traiger (Eds.). ACM Press, 160–172.
https://doi.org/10.1145/38713.38734

[19] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya, and Surajit
Chaudhuri. 2018. Transform-Data-by-Example (TDE): An Extensible Search
Engine for Data Transformations. Proc. VLDB Endow. 11, 10 (2018), 1165–1177.
https://doi.org/10.14778/3231751.3231766

[20] Denis Hirn and Torsten Grust. 2019. PgCuckoo: Laying Plan Eggs in PostgreSQL’s
Nest. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,
Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska (Eds.). ACM, 1929–1932. https://doi.org/10.1145/3299869.3320211

[21] IBM DB2 11.5: Query rewriting methods and examples [n.d.]. https://www.ibm.
com/docs/en/db2/11.5?topic=process-query-rewriting-methods-examples. last
accessed: 7-19-2023.

[22] Jinyuan Zhang and Yicun Yang. 2023. https://ipads.se.sjtu.edu.cn/werewriter-
demo/home. last accessed: 7-19-2023.

[23] Keebo: Data Learning and Warehouse Optimization [n.d.]. Keebo: Data Learning
and Warehouse Optimization. https://keebo.ai/.

[24] Kapil Khurana and Jayant R. Haritsa. 2021. Shedding Light onOpaqueApplication
Queries. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava (Eds.). ACM, 912–924. https://doi.org/10.1145/3448016.3457252

[25] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data de-
pendencies for query optimization: a survey. VLDB J. 31, 1 (2022), 1–22.
https://doi.org/10.1007/s00778-021-00676-3

[26] Kyle Lahnakoski. 2023. https://github.com/klahnakoski/mo-sql-parsing. last
accessed: 7-19-2023.

[27] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1275–1288. https://doi.org/10.1145/3448016.3452838

[28] MongoDB 5.0: Query documents [n.d.]. https://www.mongodb.com/docs/
manual/tutorial/query-documents/. last accessed: 7-19-2023.

[29] MySQL 8.0: 5.6.4.2 Using the Rewriter Query Rewrite Plugin [n.d.]. https://dev.
mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html. last
accessed: 7-19-2023.

[30] Oracle Free Use Terms and Conditions [n.d.]. https://www.oracle.com/
downloads/licenses/oracle-free-license.html. last accessed: 7-19-2023.

[31] Oracle R19: 11 Basic Query Rewrite for Materialized Views [n.d.].
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-
query-rewrite-materialized-views.html. last accessed: 7-19-2023.

[32] Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. 2018.
Unifying analytic and statically-typed quasiquotes. Proc. ACM Program. Lang. 2,
POPL (2018), 13:1–13:33. https://doi.org/10.1145/3158101

[33] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
USA, June 2-5, 1992, Michael Stonebraker (Ed.). ACM Press, 39–48. https://doi.
org/10.1145/130283.130294

[34] Hamid Pirahesh, T. Y. Cli� Leung, and Waqar Hasan. 1997. A Rule Engine for
Query Transformation in Starburst and IBM DB2 C/S DBMS. In Proceedings
of the Thirteenth International Conference on Data Engineering, April 7-11, 1997,

Birmingham, UK, W. A. Gray and Per-Åke Larson (Eds.). IEEE Computer Society,
391–400. https://doi.org/10.1109/ICDE.1997.581945

[35] PostgreSQL 14: CREATE RULE — de�ne a new rewrite rule [n.d.]. https://www.
postgresql.org/docs/14/sql-createrule.html. last accessed: 7-19-2023.

[36] PostgreSQL 14 Documentation: 41.2. Views and the Rule System [n.d.]. https:
//www.postgresql.org/docs/current/rules-views.html. last accessed: 7-19-2023.

[37] PostgreSQL 14: Trigram index [n.d.]. https://www.postgresql.org/docs/current/
pgtrgm.html. last accessed: 7-19-2023.

[38] Query Performance Insight for Azure SQL Database [n.d.]. https:
//docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-
insight-use?view=azuresql. last accessed: 7-19-2023.

[39] Query Rewrite and Optimization [n.d.]. https://docs.teradata.com/r/
8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw. last accessed: 7-
19-2023.

[40] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An In-
teractive Data Cleaning System. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, Pe-
ter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ra-
mamohanarao, and Richard T. Snodgrass (Eds.). Morgan Kaufmann, 381–390.
http://www.vldb.org/conf/2001/P381.pdf

[41] Re: How to use index in strpos function [n.d.]. https://www.postgresql.org/
message-id/046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net.
last accessed: 7-19-2023.

[42] regular expressions 101 [n.d.]. https://regex101.com/. last accessed: 7-19-2023.
[43] Jorma Rissanen. 1978. Modeling by shortest data description. Autom. 14, 5 (1978),

465–471. https://doi.org/10.1016/0005-1098(78)90005-5
[44] Stuart Russell and Peter Norvig. 2020. Arti�cial Intelligence: A Modern Approach

(4th Edition). Pearson. http://aima.cs.berkeley.edu/
[45] SAP HANA Performance Guide for Developers [n.d.]. https:

//help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-
US/SAP_HANA_Performance_Developer_Guide_en.pdf. last accessed:
7-19-2023.

[46] Scala: Quasiquotes Introduction [n.d.]. https://docs.scala-lang.org/overviews/
quasiquotes/intro.html. last accessed: 7-19-2023.

[47] Edward Sciore and John Sieg Jr. 1990. A Modular Query Optimizer Generator. In
Proceedings of the Sixth International Conference on Data Engineering, February
5-9, 1990, Los Angeles, California, USA. IEEE Computer Society, 146–153. https:
//doi.org/10.1109/ICDE.1990.113464

[48] Snow�ake documentation [n.d.]. https://docs.snow�ake.com/en/index.html. last
accessed: 7-19-2023.

2923

http://asterixdb.apache.org
https://calcite.apache.org/
https://superset.incubator.apache.org/
https://superset.incubator.apache.org/
https://www.apexsql.com/sql-tools-plan.aspx
https://www.apexsql.com/sql-tools-plan.aspx
http://ceur-ws.org/Vol-3135/bigvis_short5.pdf
https://doi.org/10.48786/edbt.2023.13
https://doi.org/10.1145/2063576.2063763
https://doi.org/10.1145/2063576.2063763
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://doi.org/10.1145/233269.233356
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.14778/3236187.3236200
https://comby.dev/
https://comby.dev/
https://doi.org/10.14778/3352063.3352120
https://doi.org/10.1109/ICDE.1995.380391
https://doi.org/10.1109/ICDE.1995.380391
https://github.com/ankane/dexter
https://github.com/ankane/dexter
https://www.eversql.com/
https://doi.org/10.1109/ICDE.1991.131472
https://doi.org/10.1023/A:1021560618289
https://doi.org/10.1023/A:1021560618289
https://doi.org/10.1145/38713.38734
https://doi.org/10.14778/3231751.3231766
https://doi.org/10.1145/3299869.3320211
https://www.ibm.com/docs/en/db2/11.5?topic=process-query-rewriting-methods-examples
https://www.ibm.com/docs/en/db2/11.5?topic=process-query-rewriting-methods-examples
https://ipads.se.sjtu.edu.cn/werewriter-demo/home
https://ipads.se.sjtu.edu.cn/werewriter-demo/home
https://keebo.ai/
https://doi.org/10.1145/3448016.3457252
https://doi.org/10.1007/s00778-021-00676-3
https://github.com/klahnakoski/mo-sql-parsing
https://doi.org/10.1145/3448016.3452838
https://www.mongodb.com/docs/manual/tutorial/query-documents/
https://www.mongodb.com/docs/manual/tutorial/query-documents/
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html
https://www.oracle.com/downloads/licenses/oracle-free-license.html
https://www.oracle.com/downloads/licenses/oracle-free-license.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-query-rewrite-materialized-views.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-query-rewrite-materialized-views.html
https://doi.org/10.1145/3158101
https://doi.org/10.1145/130283.130294
https://doi.org/10.1145/130283.130294
https://doi.org/10.1109/ICDE.1997.581945
https://www.postgresql.org/docs/14/sql-createrule.html
https://www.postgresql.org/docs/14/sql-createrule.html
https://www.postgresql.org/docs/current/rules-views.html
https://www.postgresql.org/docs/current/rules-views.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.teradata.com/r/8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw
https://docs.teradata.com/r/8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw
http://www.vldb.org/conf/2001/P381.pdf
https://www.postgresql.org/message-id/046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net
https://www.postgresql.org/message-id/046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net
https://regex101.com/
https://doi.org/10.1016/0005-1098(78)90005-5
http://aima.cs.berkeley.edu/
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf
https://docs.scala-lang.org/overviews/quasiquotes/intro.html
https://docs.scala-lang.org/overviews/quasiquotes/intro.html
https://doi.org/10.1109/ICDE.1990.113464
https://doi.org/10.1109/ICDE.1990.113464
https://docs.snowflake.com/en/index.html

[49] Software is fragile [n.d.]. https://www.softwareheritage.org/mission/software-
is-fragile/. last accessed: 7-19-2023.

[50] SQL Server 2019: SQL Server technical documentation [n.d.]. https://docs.
microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15. last accessed: 7-19-
2023.

[51] Tableau [n.d.]. https://www.tableau.com/. last accessed: 7-19-2023.
[52] Toad: Develop, analyze, and administer databases with Toad [n.d.]. https://www.

toadworld.com/products. last accessed: 7-19-2023.
[53] TPC-H Website [n.d.]. http://www.tpc.org/tpch/. last accessed: 7-19-2023.
[54] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,

Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. WeTune: Automatic Discovery

and Veri�cation of Query Rewrite Rules. In SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives,
Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 94–107. https://doi.org/10.
1145/3514221.3526125

[55] Wiki: Regular expression [n.d.]. https://en.wikipedia.org/wiki/Regular_
expression. last accessed: 7-19-2023.

[56] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned
Query Rewrite System using Monte Carlo Tree Search. Proc. VLDB Endow. 15, 1
(2021), 46–58. https://doi.org/10.14778/3485450.3485456

2924

https://www.softwareheritage.org/mission/software-is-fragile/
https://www.softwareheritage.org/mission/software-is-fragile/
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
https://www.tableau.com/
https://www.toadworld.com/products
https://www.toadworld.com/products
http://www.tpc.org/tpch/
https://doi.org/10.1145/3514221.3526125
https://doi.org/10.1145/3514221.3526125
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://doi.org/10.14778/3485450.3485456

	Abstract
	1 Introduction
	2 Related Work and Limitations
	3 QueryBooster: Overview
	4 VarSQL: A Rewriting-Rule Language
	4.1 Suitability of Existing Rule Languages
	4.2 VarSQL: A Novel Rule Language

	5 Rule Quality and Transformations
	5.1 Quality of Rewriting Rules
	5.2 Transforming Rules to More General Forms

	6 Searching For High-Quality Rules
	6.1 A Greedy Searching Framework
	6.2 Exploring Candidate Rules Adaptively
	6.3 Including Query Cost in Rule Quality

	7 Experiments
	7.1 Setup
	7.2 A User Study to Evaluate Rule Languages
	7.3 Comparison of Rule-Searching Strategies
	7.4 Effect of m in m-promising Neighbors
	7.5 End-to-End Query Time Using QueryBooster
	7.6 Generality of Rule Transformations
	7.7 Effect of Different Rule Quality Metrics

	8 Conclusions
	References

