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ABSTRACT
Analysts and scientists are interested in querying streams of video,

audio, and text to extract quantitative insights. For example, an

urban planner may wish to measure congestion by querying the

live feed from a traffic camera. Prior work has used deep neural net-

works (DNNs) to answer such queries in the batch setting. However,

much of this work is not suited for the streaming setting because it

requires access to the entire dataset before a query can be submitted

or is specific to video. Thus, to the best of our knowledge, no prior

work addresses the problem of efficiently answering queries over

multiple modalities of streams.

In this work we propose InQuest, a system for accelerating ag-

gregation queries on unstructured streams of data with statistical

guarantees on query accuracy. InQuest leverages inexpensive ap-

proximation models (“proxies”) and sampling techniques to limit

the execution of an expensive high-precision model (an “oracle”) to

a subset of the stream. It then uses the oracle predictions to com-

pute an approximate query answer in real-time. We theoretically

analyzed InQuest and show that the expected error of its query

estimates converges on stationary streams at a rate inversely pro-

portional to the oracle budget. We evaluated our algorithm on six

real-world video and text datasets and show that InQuest achieves

the same root mean squared error (RMSE) as two streaming base-

lines with up to 5.0x fewer oracle invocations. We further show that

InQuest can achieve up to 1.9x lower RMSE at a fixed number of

oracle invocations than a state-of-the-art batch setting algorithm.
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Figure 1: System diagram for InQuest. The user provides an
input stream (e.g., a video stream), an aggregation query, a
proxy model, and an oracle. InQuest processes the stream
with the proxy and performs pilot sampling to compute 𝐾
initial strata. InQuest applies the oracle to samples drawn
from each strata and computes the query prediction.

1 INTRODUCTION
Unstructured streams of data, i.e., streams of data without a well-

defined schema (video, audio, and text), are increasingly prevalent.

In November 2022, the streaming platform Twitch averaged more

than 2 million hours of live video per day [44], while microblog-

ging platforms like Twitter can process 500 million tweets daily

[43]. Furthermore, streams are increasingly being used to address

real-world problems. As an example, a consortium of universities

working with the U.S. Forest Service has deployed hundreds of

cameras in the western United States to locate wildfires quickly [3].

Analysts would like to be able to query these streams of data

to extract quantitative insights at minimal cost. For example, a

social scientist may wish to quantify the sentiment of a Twitter

feed during a presidential debate. The researcher may also want to

filter for the subset of tweets mentioning a specific candidate.

Prior work has leveraged deep neural networks (DNNs) to exe-

cute queries over large datasets of unstructured data [4, 17, 20, 21,

24, 25, 30, 40, 47, 48]. For example, the social scientist might use a

BERT model [14] to execute the following query:

SELECT COUNT ( positive ( tweet )) FROM twitter
WHERE mentions_candidate ( tweet )

The DNN would determine whether the tweet satisfied the query

predicate—in this case by mentioning the candidate. It would also

compute the statistic of interest, i.e., the sentiment of the tweet.

One limitation of using DNNs for query processing is that exe-

cuting large DNNs exhaustively over most real-world datasets can

2897

https://www.acm.org/publications/policies/artifact-review-and-badging-current


be prohibitively expensive. As a result, recent work has focused

on accelerating DNN-based queries [4, 21, 24–27, 35]. One com-

mon approach involves filtering (or sub-sampling) records with

inexpensive approximation models (“proxies”) and then applying

high-precision models (“oracles”) to extract statistics of interest.

Unfortunately, many of these systems are designed to work in the

batch setting and cannot easily be adapted to answer queries over

streams. For example, NoScope [25] and Tahoma [4] would need to

buffer the entire stream in order to train and validate specialized

DNNs and model cascades before answering a query. This limits

their ability to answer queries over streams in real-time. Other

systems can operate in the streaming setting but are limited to

processing a specific modality of data such as video [32]. Thus,

to the best of our knowledge, there is currently no system for

efficiently processing aggregation queries over multiple modalities

of large unstructured streams of data.

In this work we propose and analyze InQuest, a system to accel-

erate aggregation queries over unstructured streams of data with

statistical guarantees on query accuracy. By design, InQuest uses

stratified sampling [38] to (1) compute precise query estimates with

better sample efficiency than uniform sampling and (2) provide

standard frequentist bounds for our query estimates. InQuest takes

a stream, an aggregation query, a proxy, and an oracle as input.

The user also specifies a tumbling window [16] (i.e., a “segment”

length) as well as an oracle budget per segment. As illustrated in

Figure 1, InQuest processes the stream segment-by-segment while

producing a query estimate in real-time. For each segment, InQuest

separates records in the stream into disjoint strata based on their

proxy estimates. It then runs the oracle on records sampled from

each stratum. Finally, InQuest computes an estimate of the query

answer based on the oracle’s predictions on the sampled frames.

Performing stratified sampling over streams presents InQuest

with multiple challenges. First, InQuest must determine how to

stratify the stream records. It then must decide how best to allocate

its sampling budget across these strata. Finally, in order to compute

unbiased estimates for each stratum, InQuest must draw an unbi-

ased sample from the stream without knowing ahead of time how

many records will fall in each stratum. InQuest overcomes these

challenges through the use of sampling techniques which we define

and provide intuition for in Section 3.1.

We analyze InQuest from a theoretical perspective and show

that its allocation strategy and expected error converge at quan-

titative rates. We first derive the per-segment optimal allocation

of our sampling budget assuming perfect knowledge of quanti-

ties such as the stratum standard deviations and predicate positive

rates. We then show that InQuest’s per-segment sample allocation

strategy converges to the optimal allocation at a quantitative rate

on stationary streams of data. We further show that the expected

error of InQuest’s estimator converges to zero at a rate inversely

proportional to the size of our sampling budget on such streams.

We evaluate InQuest on six real-world video and text datasets

and compare it against two streaming baselines—uniform sampling

and stratified sampling with fixed strata and fixed sample alloca-

tions. We also compare it against ABae [27], a state-of-the-art algo-

rithm for the batch setting which provides answers to aggregation

queries with valid confidence intervals. We show that InQuest can

achieve the same root mean squared error (RMSE) as the streaming

baselines with up to 5.0x fewer samples, and it can achieve up to

1.9x lower RMSE than ABae at a fixed number of oracle invocations.

We demonstrate these performance improvements on evaluation

queries with and without a predicate. We perform a lesion study

which shows that each component of InQuest is critical for it to

achieve high performance. We further demonstrate that InQuest’s

improvement over baselines is not sensitive to the setting of its

most significant free parameters. We analyze InQuest’s cost and

accuracy improvements, as well as the effect that proxy quality

has on its evaluation results. Finally, we show that InQuest is re-

silient to sudden shifts in the stream parameters: on a set of 100

synthetic datasets that we constructed in an adversarial fashion,

InQuest outperforms our streaming baselines on the RMSE metric

by 1.13x-1.42x and performs within 0.99x-1.03x of ABae.

In summary, our paper makes the following contributions:

(1) We propose an algorithm for optimizing aggregation queries

over multiple modalities of unstructured streams of data.

(2) We analyze the algorithm and show that its sample allo-

cation and expected error converge at quantitative rates

under certain assumptions.

(3) We evaluate the algorithm on a set of real-world video and

text datasets and demonstrate significant improvement over

baselines on the RMSE metric.

(4) We demonstrate that even when our theoretical assump-

tions do not hold, InQuest empirically outperforms our

streaming baselines and is competitive with a state-of-the-

art batch setting algorithm.

2 OVERVIEW AND QUERY SEMANTICS
We present an overview of the queries that InQuest optimizes. We

first describe our target problem setting and specify our query

syntax and semantics. We then provide example queries before

defining formal notation for our problem setting.

2.1 Overview
Target setting. InQuest targets streaming aggregation queries with

or without a predicate. We assume the query’s statistic of interest

and predicate (if present) can be computed directly by the oracle

or easily derived from its output(s). InQuest supports streaming

queries using the AVG, SUM, or COUNT aggregations.

Proxies. We assume the user provides a proxymodel which returns

a real number in some bounded range (e.g., [0, 1]). InQuest makes

no assumptions about proxy quality, but proxies that are more

correlated with the target statistic will generate more accurate

query results. These proxies can be orders of magnitude cheaper

to execute than the oracle (e.g., over 4,000 frames-per-second (fps)

for the proxy compared to 3 fps for the oracle [30]). Thus, we make

the standard assumption that proxies can be computed in an online

fashion over the entire stream without buffering [11, 24].

2.2 Query Syntax and Semantics
We show the query syntax for InQuest in Figure 2. We model our

syntax after the Apache Flink SQL language with some minor ex-

tensions [31]. Similar to unstructured AQP systems [24, 25, 27],

a user provides InQuest with a sampling budget, a proxy model,
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SELECT { AVG | SUM | COUNT } ({ field | EXPR( field )})
FROM streaming_dataset
[ WHERE filter_predicate ]
TUMBLE (column , interval ) ⊲ Tumbling window to define segment length
ORACLE LIMIT o ⊲ oracle invocations per segment
[ DURATION interval ] ⊲ duration for non-continuous queries
USING proxy

Figure 2: Syntax for InQuest which is based on Apache Flink
SQL syntax. Users provide a statistic to compute, a dataset,
a segment length defined by a tumbling window, an oracle
limit per segment, and a proxy model for computing proxy
scores in real-time. Users may optionally provide a predicate
and/or a query duration (for non-continuous queries).

and an oracle. The user additionally may specify a statistic (i.e., an

expression) to compute on each record and an aggregation function

(one of AVG, SUM, or COUNT). We assume that any statistic provided

by the user is cheap to compute given the output of the oracle.

InQuest also requires the user to specify a tumbling window [16],

whose interval defines the length of each segment, along with a

budget of oracle invocations per segment. The column for the tum-

bling window may be a time-based column or a column specifying

each record’s index in the stream. The interval can similarly be

a time-based range (e.g., INTERVAL ’1’ HOUR) or it can specify a

number of stream records (e.g., INTERVAL 10,000 FRAMES). Finally,
InQuest extends the Apache Flink SQL syntax by allowing users to

specify a DURATION for non-continuous queries [6].
Given these inputs, InQuest computes an approximate answer

to the query. InQuest aims to provide answers that minimize the

mean squared error (MSE) between the approximate result and the

ground-truth query result. While higher quality proxies will lead

to more accurate query answers, InQuest will produce an estimate

regardless of proxy quality. Query answers can be provided in real-

time for both continuous and non-continuous queries, although

non-continuous queries will have a final answer provided at the

end of the specified DURATION.

2.3 Examples

Traffic analysis. Consider an urban planner that would like to

monitor traffic at an intersection in real-time. The planner wishes

to know the per-frame average number of cars that pass through

an intersection. The planner could submit the following continuous

query to InQuest:

SELECT AVG( count (car )) FROM video
TUMBLE ( frame_idx , INTERVAL '108 ,000' FRAMES )
ORACLE LIMIT 1 ,000
USING proxy_count_cars ( frame )

where count(car) is computed using an objection detection DNN

and proxy_count_cars could be computed via an embedding in-

dex for unstructured data [29]. In this setting, proxy_count_cars
returns an estimate of the car count for every frame. The user spec-

ifies that each segment should span 108,000 frames (i.e., one hour

at 30 fps) and receive a budget of 1,000 oracle invocations.

Twitter Sentiment. Consider a journalist that is interested in

understanding public sentiment during a presidential debate. For

example, the journalist may wish to compute the total number of

tweets with positive sentiment that mention a specific candidate.

The journalist can submit the following query:

SELECT COUNT ( positive ( tweet )) FROM twitter
TUMBLE ( tweet_timestamp , INTERVAL '30' MINUTES )
WHERE mentions_candidate ( tweet )
ORACLE LIMIT 5 ,000
DURATION INTERVAL '4' HOURS
USING proxy_mentions_candidate_pos ( tweet )

The mentions_candidate predicate is used to filter for tweets that
mention the candidate of interest. A large NLP model such as BERT

[14] could be used to compute the predicate and the sentiment

of the tweet. The proxy could be computed using a smaller NLP

model (e.g., fasttext [8]) which would generate a probability in [0,

1] that the tweet mentions the candidate in a positive manner. Since

the presidential debate (and post-debate analysis) will only last

approximately 4 hours, the user also specifies a DURATION.

2.4 Query Formalism
Formally, let D = {𝑥𝑖 } be a streaming dataset of records and let

𝑂 (𝑥𝑖 ) be the oracle predicate. By definition, 𝑂 (𝑥𝑖 ) ∈ {0, 1} in the

predicate case and 𝑂 (𝑥𝑖 ) = 1, ∀𝑥𝑖 ∈ D in the case without a

predicate. We define D+ = {𝑥 ∈ D : 𝑂 (𝑥) = 1} to be the subset

of the stream that satisfies the query predicate. We further define

𝑋𝑖 = 𝑓 (𝑥𝑖 ) ∈ R to be the expression the query aggregates over, 𝑁

to be the per-segment sampling budget, and 𝑇 to be the number of

processed segments.

InQuest computes 𝜇 =
∑︁
𝑥∈D+ 𝑓 (𝑥)/|D+| via an approximation

𝜇̂, with its total sampling budget 𝑁𝑇 up to the current segment. We

measure query result quality by the MSE, i.e., |𝜇 − 𝜇̂ |2.

3 INQUEST DESCRIPTION AND QUERY
PROCESSING

Wedescribe InQuest for accelerating aggregation queries on streams

of unstructured data. We first provide intuition for InQuest’s de-

sign and define relevant sampling terminology. We then discuss

the challenges of the problem setting before providing an overview

of how InQuest addresses these challenges. Finally, we provide the

pseudocode for InQuest and its subroutines. Formal notation used

throughout this section is presented in Table 1.

3.1 Background and Algorithm Intuition
Our first design decision for InQuest was to leverage stratified sam-
pling [38] to compute precise query estimates with standard fre-

quentist bounds. Stratified sampling is a method in which the target

population (i.e., the stream) is divided into distinct sub-populations

(i.e., strata) which are sampled from independently. The objective is

to stratify the target population such that elements in each stratum

are similar to one another in terms of a statistic of interest. An

estimate over the entire population can then be computed with

smaller error (relative to uniform sampling) by aggregating lower

variance estimates from each stratum.

In order to perform stratified sampling over streams, we must

first determine the boundaries of our strata (in terms of proxy

scores). As illustrated in the first step of Figure 3, InQuest performs

pilot sampling [10] to accomplish this task. Pilot sampling is a

2899



(1) Pilot Sampling

p = 0.9 p = 0.7 p = 0.1

(2) Stratify Stream

[0.8, 1.0]

[0.0, 0.2)

[0.2, 0.8)

(3) Compute
Sample Allocation

[0.8, 1.0]

[0.0, 0.2)

[0.2, 0.8)

a3 = 0.3

a2 = 0.6

a1 = 0.1

(4) Reservoir Sampling(6) Real-Time
Query Results

(5) Update

Figure 3: InQuest’s high-level workflow. By design, InQuest
uses stratified sampling to reduce the variance of its query
estimates. It uses pilot sampling to compute an initial stratifi-
cation and then updates it using the history of oracle samples.
Users can extract query estimates in real-time.

technique in which a fraction of one’s sampling budget is used to

produce an initial estimate of some quantity (in our case, the ideal

strata boundaries).

Once InQuest has constructed initial strata (Figure 3, step 2) it

needs to allocate its sampling budget efficiently across the strata.

There is a known optimal allocation for stratified sampling (see

Section 4.2), but computing it requires perfect knowledge of quanti-

ties such as the strata standard deviations. In light of this, InQuest

approximates the optimal allocation using the oracle predictions

from its predicate matching pilot samples (Figure 3, step 3).

Estimating the optimal allocation using pilot samples comes with

risk, because variance in the pilot samplemay result in sampling few

(or potentially 0) predicate matching samples in one or more strata.

This outcome is considerably more likely in the stream setting,

where the number of predicate matching samples can fluctuate as

a function of time. If no predicate matching samples are drawn

in a stratum, the optimal allocation would assign 0 samples to

that stratum, thus leading to catastrophic under-allocation. InQuest

uses defensive sampling [37] to protect against this outcome. In this

context, defensive sampling is the practice of allocating a fraction of

one’s sampling budget evenly across all strata to ensure a minimum

number of samples is allocated to each stratum (Figure 3, step 3).

Once its per-stratum sampling budget is allocated, InQuest must

finally determine which samples to draw from the stream. This

is non-trivial in the stream setting, because InQuest cannot know

ahead of time which records will fall in each stratum. A naive solu-

tion to this problem would be to greedily sample records that fall in

each stratum until the sampling budget is exhausted. However, this

would produce a sample that is biased towards the beginning of the

stream. To overcome this issue, InQuest makes use of reservoir sam-
pling [1, 2]. Reservoir sampling is a technique that is guaranteed to

sample stream records uniformly in time, without prior knowledge

of the stream length. This enables InQuest to produce unbiased

samples for each stratum in the stream (Figure 3, step 4).

Stream parameters, such as the strata standard deviations, can

shift over time. Thus, InQuest processes the stream in segments and

updates its stratification and sample allocation at the end of each

Table 1: Summary of notation.

Symbol Description

D Streaming dataset of records

S Stratification, i.e., 𝑘 strata

P(𝑥) Proxy model

𝑇 Number of segments (including pilot segment)

𝑁 Per-segment user-specified sampling budget

𝑁1 Per-segment defensive sample budget

𝑁2 Per-segment dynamic sample budget

𝐾 Number of strata

O(𝑥) Oracle predicate

D𝑡𝑘 Set of dataset records in segment 𝑇 and stratum 𝑘

𝑋𝑡𝑘,𝑖 𝑖th sample from D𝑡𝑘
𝑋𝑡𝑘 Set of samples drawn from D𝑡𝑘
𝑋+
𝑡𝑘

Set of predicate matching samples drawn from D𝑡𝑘
𝑝𝑡𝑘 Predicate positive rate

𝑤𝑡𝑘 |𝐷𝑡𝑘 |𝑝𝑡𝑘 /
∑︁ |𝐷𝑡 𝑗 |𝑝𝑡 𝑗

𝜎𝑡𝑘 True std. dev. of the samples in D𝑡𝑘
𝑎∗
𝑡𝑘

Optimal fraction of 𝑁2 allocated to D𝑡𝑘
𝑓 (𝑥) Statistic function

segment (Figure 3, step 5). Finally, a user may retrieve InQuest’s

latest query estimate at any point in time (Figure 3, step 6).

3.2 InQuest Algorithm

Challenges. Our problem setting involves a number of key chal-

lenges. Similar to some prior work [27], we do not know the correla-

tion between the proxy model P(𝑥) and the ground-truth statistic

function 𝑓 (𝑥) ahead of time. We also do not have prior knowl-

edge of the quantities 𝜎𝑡𝑘 and 𝑝𝑡𝑘 . This prevents us from using

standard AQP techniques [9, 39] to leverage this information and

pre-compute an optimal allocation of our sampling budget.

The streaming nature of our problem creates additional chal-

lenges. In particular, the distributions of P(𝑥) and 𝑓 (𝑥), and the

related quantities 𝜎𝑡𝑘 and 𝑝𝑡𝑘 , are also a function of time. Thus,

even if we calibrate our sample allocation based on the history of

these distributions, we have no guarantees that these distributions

will not change in the future.

Overview. The challenges highlighted above present unique diffi-

culties for InQuest. The optimal allocation of our sampling budget

𝑁 to the strataD𝑡𝑘 depends on the per-strata standard deviations of
the ground-truth statistic and predicate positivity rates [36]. With-

out prior knowledge of 𝜎𝑡𝑘 and 𝑝𝑡𝑘 we cannot directly compute the

optimal stratified sampling allocation𝑎∗
𝑡𝑘
. Instead, wemust estimate

𝜎𝑡𝑘 , 𝑝𝑡𝑘 , and 𝑎
∗
𝑡𝑘

using previously drawn samples. Furthermore, the

standard deviations 𝜎𝑡𝑘 and predicate positive rates 𝑝𝑡𝑘 can vary

from segment-to-segment. This means that our estimates of 𝜎𝑡𝑘 ,

𝑝𝑡𝑘 , and 𝑎
∗
𝑡𝑘

are susceptible to distribution shifts in the stream of

data. Finally, in standard stratified sampling it is often beneficial

to stratify the dataset such that each stratum contains a roughly

equal number of records. Since we do not know the distribution

of proxy values ahead of time, it is difficult (without buffering the

entire stream) for us to construct our stratification S𝑡𝑘 such that

each stratum will contain an equal number of records.
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Algorithm 1 Pseudocode for InQuest. InQuest performs pilot sam-

pling to initially stratify the dataset. It then performs stratified

reservoir sampling on each segment as it iteratively updates 𝑎̂𝑡𝑘

1: function InQuestPilot(D1, 𝑁pilot
, 𝐾 )

2: 𝑋1 ← UniformSampling(𝐷1, 𝑁pilot
)

3: 𝑋+
1
← {𝑥 |𝑥 ∈ 𝑋1,O(𝑥) = 1}

4: return 𝑋1, 𝑋+
1

5:

6: function InQuest(D, O, P, 𝐾 , 𝑁1, 𝑁2)

7: 𝑋1, 𝑋
+
1
← InQuestPilot(D1, 𝑁1 + 𝑁2, 𝐾)

8: for 𝑡 ∈ [2, 3, . . . ] do
9: Ŝ𝑡 ← GetStrata(P, D𝑡−1, 𝐾 , 𝛼 , S<𝑡 )
10: 𝑎̂𝑡 ← GetAlloc(D𝑡−1, 𝐾 , 𝑁1, 𝑁2, 𝑎<𝑡 , 𝑋𝑡−1, 𝑋+𝑡−1)
11: D𝑡1, . . . ,D𝑡𝐾 ← SplitStream(D𝑡 , Ŝ𝑡 )
12: for 𝑘 ∈ [1, . . . , 𝐾] do
13: 𝑋𝑡 ← ReservoirSampling(D𝑡𝑘 , 𝑁 𝑎̂𝑡𝑘 )
14: 𝑋+𝑡 ← {𝑥 |𝑥 ∈ 𝑋𝑡 ,O(𝑥) = 1}
15: 𝜇̂ ← GetPrediction(𝑋1, . . . , 𝑋𝑇 , 𝑋

+
1
, . . . , 𝑋+

𝑇
, D)

16: return 𝜇̂

To address this, InQuest trades off learning from the history of

the stream with the need to adapt to shifts in the distribution of

proxy values, 𝜎𝑡𝑘 , and 𝑝𝑡𝑘 across segments. InQuest does this by

updating its stratification and sample allocation under a weighted

moving average. Additionally, InQuest reserves defensive samples

to increase its resilience to extreme shifts in the distributions of

P(𝑥) and 𝑓 (𝑥). On some datasets we found that InQuest could

suffer catastrophic failures without defensive sampling. Specifically,

if the sample standard deviation 𝜎̂𝑡𝑘 was close to 0 (or if no predicate

matching records were sampled in the predicate setting), InQuest

could undersample a stratum for the remainder of the query.

Formal description. Recall our notation from Table 1. In par-

ticular, note that O(𝑥) is the oracle predicate, 𝑃 (𝑥) is the proxy

predicate, and D is our streaming dataset of records. We define

D𝑡𝑘 to be the subset of records in segment 𝑡 and stratum 𝑘 . Finally,

we denote 𝑋𝑡𝑘,𝑖 and 𝑋
+
𝑡𝑘,𝑖

to be the 𝑖th sample and the 𝑖th predicate

matching sample drawn from D𝑡𝑘 , respectively.
The free parameters of InQuest include its sampling budgets (𝑁1

and 𝑁2), the number of strata (𝐾), and the smoothing parameter

for its weighted moving averages (𝛼). InQuest will also compute

several other quantities, including sample means, predicate positive

rates, and allocations (𝜇̂𝑡𝑘 , 𝑝̂𝑡𝑘 , and 𝑎̂𝑡𝑘 ).

InQuest uniformly samples 𝑁 samples from the pilot fraction of

the query. It then processes each query segment by first updating

its stratification and sample allocation before performing reservoir

sampling. We present the pseudocode for InQuest in the predicate

setting in Algorithm 1. The pseudocode for the no predicate setting

can be recovered by setting 𝑋𝑡𝑘 = 𝑋+
𝑡𝑘

and 𝑝𝑡𝑘 = 1 for all 𝑡 and 𝑘 .

InQuest computes its stratification Ŝ𝑡 in the GetStrata subrou-

tine in Algorithm 2. InQuest first stratifies the previous segment’s

samples by proxy value quantile, such that 1/𝐾 records in the

previous segment fall in each strata. It then updates Ŝ𝑡 to be the ex-
ponential weighted moving average of the history of S1, . . . , S𝑡−1.

Algorithm 2 Subroutines for InQuest.

1: function GetStrata(P, D𝑡−1, 𝐾 , 𝛼 , S<𝑡 )
2: S𝑡−1 ← StratifyByQuantile(P(D𝑡−1), 𝐾)
3: Ŝ𝑡 ← EWMA({S1, . . . ,S𝑡−1}, 𝛼)
4: return Ŝ𝑡
5:

6: function GetAlloc(D𝑡−1, 𝐾 , 𝑁1, 𝑁2, 𝑎<𝑡 , 𝑋𝑡−1, 𝑋+𝑡−1)
7: for 𝑘 ∈ [1, . . . , 𝐾] do
8: 𝑝̂𝑡−1,𝑘 ←

|𝑋 +
𝑡−1,𝑘 |
|𝑋𝑡−1,𝑘 |

9: 𝜇̂𝑡−1,𝑘 ←
∑︁
𝑥 ∈𝑋+

𝑡−1,𝑘
𝑓 (𝑥 )

|𝑋 +
𝑡−1,𝑘 |

if |𝑋+
𝑡−1,𝑘 | > 0 else 0

10: 𝜎̂2
𝑡−1,𝑘 ←

∑︁
𝑥 ∈𝑋+

𝑡−1,𝑘
(𝑓 (𝑥 )−𝜇𝑡−1,𝑘 )2

( |𝑋 +
𝑡−1,𝑘 |−1)

if |𝑋+
𝑡−1,𝑘 | > 1 else 0

11: 𝑤̂𝑡−1,𝑘 ←
√︂
𝑝̂𝑡−1,𝑘 ·

|D𝑡−1,𝑘 |
|D𝑡−1 |

12: for 𝑘 ∈ [1, . . . , 𝐾] do
13: 𝑎𝑡−1,𝑘 ←

𝑤̂𝑡−1,𝑘 𝜎̂𝑡−1,𝑘∑︁𝐾
𝑗=1 𝑤̂𝑡−1, 𝑗 𝜎̂𝑡−1, 𝑗

14: 𝑎̂𝑡 ← EWMA({𝑎1, . . . , 𝑎𝑡−1}, 𝛼)
15: for 𝑘 ∈ [1, . . . , 𝐾] do
16: 𝑎̂𝑡𝑘 ←

𝑁1/𝐾+𝑁2𝑎̂𝑡𝑘
𝑁

17: return 𝑎̂𝑡
18:

19: function GetPrediction(𝑋1, . . . , 𝑋𝑇 , 𝑋
+
1
, . . . , 𝑋+

𝑇
, D)

20: for 𝑡 ∈ [1,𝑇 ] do
21: for 𝑘 ∈ [1, 𝐾] do
22: 𝑝̂𝑡𝑘 ←

|𝑋 +
𝑡𝑘
|

|𝑋𝑡𝑘 |

23: 𝜇̂𝑡𝑘 ←
∑︁
𝑥 ∈𝑋+

𝑡𝑘
𝑓 (𝑥 )

|𝑋 +
𝑡𝑘
|

24: 𝜇̂ ← ∑︁𝑇
𝑡=1

∑︁𝐾
𝑘=1

𝜇̂𝑡𝑘 ·
𝑝̂𝑡𝑘 |D𝑡𝑘 |∑︁𝑇

𝑡=1

∑︁𝐾
𝑗=1 𝑝̂𝑡 𝑗 |D𝑡 𝑗 |

25: return 𝜇̂

The aggressiveness of the weighted moving average is controlled

by the smoothing parameter 𝛼 .

Next, InQuest computes its sample allocation 𝑎̂𝑡 in the GetAlloc
subroutine in Algorithm 2. InQuest first computes the previous

segment’s sample standard deviations 𝜎̂𝑡−1,𝑘 and predicate positive

rates 𝑝̂𝑡−1,𝑘 . It then computes the optimal allocation 𝑎𝑡−1 as a

weighted average of the stratum standard deviations. InQuest then

computes the sample allocation 𝑎̂𝑡 to be the exponential weighted

moving average of the history of 𝑎1, . . . , 𝑎𝑡−1. Finally, it adjusts 𝑎̂𝑡
to include 𝑁1/𝐾 defensive samples per stratum.

Once the stratification and sample allocation are computed,

InQuest performs reservoir sampling in each D𝑡𝑘 . InQuest repeats
this process for each segment before finally computing its pre-

diction 𝜇̂ as a weighted average of the sample means 𝜇̂𝑡𝑘 in the

GetPrediction subroutine in Algorithm 2.

Setting parameters. By default, InQuest uses the parameter set-

tings: 𝐾 = 3, 𝛼 = 0.8, and 𝑁1 = 0.1. In Section 5 we demonstrate

that these parameters achieve strong performance results on six

real-world and 100 synthetic datasets, relative to both streaming

and batch setting algorithms. Advanced users may optionally tune

these parameters to optimize performance on their own datasets.
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As a general guideline, we recommend setting 𝑁1 to be small (∼
5-10% of 𝑁 ) and setting 𝑁 and 𝐾 such that one would reasonably

expect to get at least 20-100 samples per segment and stratum.

Confidence interval. We use the bootstrap to compute CIs. One

method for showing that the bootstrap is valid is to demonstrate

its asymptotic validity. The asymptotic validity of sampling with

stochastic draws follows from the analysis in [28]. We can also use

a standard subgaussian tail bound, but they give similar results.

4 THEORETICAL ANALYSIS
We analyze InQuest from a theoretical perspective and show that

its allocation and expected error converge at quantitative rates for

stationary streams. We first show that InQuest’s sample allocation

converges to the optimal stratified sampling allocation at a rate

𝑂

(︂
1

𝑁1 (𝑡−1)

)︂
. We then show that InQuest’s expected MSE converges

to zero at a rate 𝑂

(︂
1

𝑁1

+ 𝑁1

𝑁 2

2

+ 1

𝑁2

√
𝑁1

+ 1

𝑁2

√
𝑁1𝑡

)︂
.

4.1 Notation and Preliminaries

Notation. Recall our notation in Table 1. We denote 𝑝𝑡𝑘 and 𝜎𝑡𝑘
to be the predicate positive rate and standard deviation of D𝑡𝑘
respectively. We further define 𝜇𝑡 to be the segment mean,𝑤𝑡𝑘 to

be the fraction of dataset records that fall in D𝑡𝑘 , and 𝑎𝑡𝑘 to be the

allocation of our sampling budget 𝑁 .

Assumptions. For subsections 4.3 and 4.4, we assume that our

streaming dataset follows a stationary distribution. Specifically, we

assume that:

𝜎𝑡𝑘 = 𝜎𝑟𝑘 : ∀𝑡, 𝑟 ∈ 𝑇 (1)

𝑝𝑡𝑘 = 𝑝𝑟𝑘 : ∀𝑡, 𝑟 ∈ 𝑇 (2)

𝑤𝑡𝑘 = 𝑤𝑟𝑘 : ∀𝑡, 𝑟 ∈ 𝑇 (3)

While these assumptionsmay not hold true for real-world datasets,

they are important for making our proofs tractable. In Sections 5.2

and 5.6 we present empirical evidence that InQuest performs well

relative to baselines even when these assumptions break down.

Recall that 𝑋𝑡𝑘,𝑖 is the 𝑖th predicate matching sample drawn

from D𝑡𝑘 . We assume that 𝑋𝑡𝑘,𝑖 is a sub-Gaussian random variable

with nonzero standard deviation. This enables us to upper bound

functions that sum sub-Gaussian variables (e.g., 𝜇𝑡𝑘 and 𝜎2
𝑡𝑘
) with

constants such as 𝐶𝜇𝑡𝑘 and 𝐶𝜎
2

𝑡𝑘 . We further assume that at least

one stratum has non-zero 𝑝𝑡𝑘 .

4.2 Optimal Stratified Sampling Allocation with
Perfect Information

We begin by analyzing the optimal allocation of our dynamic sample

budget 𝑁2 in segment 𝑡 . We assume perfect knowledge of 𝜎𝑡𝑘 and

𝑝𝑡𝑘 and that we deterministically draw |𝑋+
𝑡𝑘
| = 𝑝𝑡𝑘

(︁𝑁1

𝐾
+ 𝑁2𝑎𝑡𝑘

)︁
samples from each stratum. We present the analysis for the setting

with a predicate, but note that these results also hold for the no

predicate setting where 𝑝𝑡𝑘 = 𝑝𝑡 = 1.

Proposition 1. Assume that 𝜎𝑡𝑘 is known and we draw |𝑋+
𝑡𝑘
| =

𝑝𝑡𝑘
(︁𝑁1

𝐾
+𝑁2𝑎𝑡𝑘

)︁
samples per stratum in segment 𝑡 > 2 (up to round-

ing effects). Then the choice 𝑎𝑡𝑘 = 𝑎∗
𝑡𝑘

that minimizes the MSE of the

unbiased estimator 𝜇̂𝑡 =
∑︁𝐾
𝑘=1

𝑤𝑡𝑘 ·
∑︁
𝑥 ∈𝑋+

𝑡𝑘
𝑓 (𝑥 )

|𝑋 +
𝑡𝑘
| is:

𝑎∗
𝑡𝑘

=
|D𝑡𝑘 |

√
𝑝𝑡𝑘𝜎𝑡𝑘

𝑁2

𝑁

∑︁𝐾
𝑗=1 |D𝑡 𝑗 |

√
𝑝𝑡 𝑗𝜎𝑡 𝑗

− 𝑁1

𝑁2𝐾
(4)

Proposition 2. Suppose the conditions in Proposition 1 hold. Then
the expected MSE of the estimator 𝜇𝑡̂ under the allocation 𝑎∗𝑡𝑘 is

E[(𝜇̂∗𝑡 − 𝜇𝑡 )2] =
𝐾∑︂
𝑘=1

𝑤2

𝑡𝑘
𝜎2
𝑡𝑘

𝑝𝑡𝑘
(︁𝑁1

𝐾
+ 𝑁2𝑎

∗
𝑡𝑘

)︁ (5)

=
1

𝑁𝑝2
𝑎𝑙𝑙

𝐾∑︂
𝑘=1

|D𝑡𝑘 |
√
𝑝𝑡𝑘𝜎𝑡𝑘

(︄
𝐾∑︂
𝑗=1

|D𝑡 𝑗 |
√︁
𝑝𝑡 𝑗𝜎𝑡 𝑗

)︄
(6)

Where 𝑝𝑎𝑙𝑙 is defined as

𝑝𝑎𝑙𝑙 =

𝐾∑︂
𝑗=1

|D𝑡 𝑗 |𝑝𝑡 𝑗 (7)

Our expression for 𝑎∗
𝑡𝑘

shows that the optimal allocation is

weighted towards strata with larger |D𝑡𝑘 |, 𝑝𝑡𝑘 , and 𝜎𝑡𝑘 . Intuitively,
we want to spend our sampling budget on strata that are more likely

to contain predicate matching records. Furthermore, strata with

greater 𝜎𝑡𝑘 will generally require more samples to get an accurate

estimate of 𝜇𝑡𝑘 .

The expression for the expected error shows that larger strata

standard deviations will lead to an increase in the error. The ex-

pected error also increases inversely with respect to 𝑝2
𝑎𝑙𝑙

, where

𝑝𝑎𝑙𝑙 is a weighted sum of the strata predicate positive rates. Intu-

itively, as 𝑝𝑎𝑙𝑙 goes to 0 it becomes harder for InQuest to compute

accurate estimates of 𝜇𝑡𝑘 because it becomes increasingly unlikely

that InQuest will draw a sample in 𝑋𝑡𝑘 that matches the predicate.

Finally, the expected error decreases linearly with respect to our

sampling budget 𝑁 .

4.3 InQuest Sample Allocation Converges to
Optimal Stratified Sampling Allocation

We analyze InQuest’s dynamic sample allocation and prove that it

converges to the optimal allocation at a quantitative rate under the

assumptions stated in subsection 4.1. For this analysis we further

assume that 𝛼 = 0, i.e., we compute the update to the sample

allocation 𝑎̂𝑡𝑘 based on the unweighted history of the samples.

We provide the theorem statement but defer the full proof to an

extended technical report [42].

Theorem 1. Under the assumptions stated in subsection 4.1 and
with high probability over the samples drawn in segments [2, . . . , 𝑡]

E[(𝑎̂𝑡𝑘 − 𝑎∗𝑡𝑘 )
2] ≤ 𝑂

(︂
1

𝑁1 (𝑡 − 1)

)︂
(8)

Equation 8 shows that InQuest’s sample allocation converges to

the optimal allocation at a rate that decreases linearly as a function

of 𝑁1 and 𝑡 . The product 𝑁1 (𝑡 − 1) represents the total number of

defensive samples in all segments leading up to segment 𝑡 .
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4.4 InQuest Error Convergence
We analyze InQuest’s expected error and prove that it converges at

a quantitative rate under the assumptions stated in subsection 4.1.

For this analysis we further assume that 𝛼 = 0. We provide the the-

orem statement, but once again defer the full proof to an extended

technical report [42].

Theorem 2. Under the assumptions stated in subsection 4.1 and
with high probability over the samples drawn in segments [1, . . . , 𝑡]

E[(𝜇̂𝑡 − 𝜇𝑡 )2] ≤ 𝑂
(︂
1

𝑁1

+ 𝑁1

𝑁 2

2

+ 1

𝑁2

√
𝑁1

+ 1

𝑁2

√
𝑁1𝑡

)︂
(9)

Furthermore, if 𝑁1 = 𝑁2 then this simplifies to

E[(𝜇̂𝑡 − 𝜇𝑡 )2] ≤ 𝑂
(︂
1

𝑁

)︂
(10)

4.5 Understanding InQuest
We provide proof sketches for the theorems and discuss some as-

pects of the analysis of InQuest that are of broader interest.

4.3.1 Proof Sketch: InQuest Allocation Convergence.We use concen-

tration inequalities to bound our random variables, specifically

𝑝<𝑡𝑘 and 𝜎<𝑡𝑘 . We then compute an upper bound on the expected

mean squared error of the difference between 𝑎̂𝑡𝑘 and 𝑎∗
𝑡𝑘
. We sep-

arately compute the upper bound for cases where 𝑝<𝑡𝑘 is small

(i.e., less than
1

𝑁1

) and cases where 𝑝<𝑡𝑘 is large. We simplify the

expectation and conclude that our allocation error converges at a

rate of 𝑂

(︂
1

𝑁1 (𝑡−1)

)︂
.

4.4.1 Proof Sketch: InQuest Error Convergence. We use concentration

inequalities to bound our random variables, including 𝑝𝑡𝑘 and 𝜎𝑡𝑘 ,

as well as on other quantities derived from these variables. We use

these bounds to compute a high probability lower bound on the

number of predicate matching samples drawn for each stratum (i.e.,

|𝑋+
𝑡𝑘
|) for the case where 𝑝𝑡𝑘 is large (i.e., larger than

1

𝑁1

). We then

derive the upper bound on the expected error for strata where 𝑝𝑡𝑘
is large and show that the error for the remaining strata becomes

negligible. Finally, we simplify our expectation and conclude that

our error converges at a rate of 𝑂

(︂
1

𝑁

)︂
.

4.4.2 Challenges. We discuss several challenges in the analysis of

InQuest. Recent work has analyzed using stochastic draws in the

batch setting, where the dataset can be stratified perfectly and

pilot sampling can be performed with samples drawn from the

entire dataset [27]. We extend this work using stochastic draws

to the stream setting and show that InQuest can achieve optimal

performance on stationary datasets.

Estimating key quantities. Prior work in stratified sampling

assumes that features of the data distribution in each stratum, such

as 𝑝𝑡𝑘 and 𝜎𝑡𝑘 , are known [36]. It then uses this knowledge to

construct optimal sample allocations. In contrast, InQuest has no

prior knowledge of these quantities and must estimate them from

samples it draws stochastically. For values of 𝑝𝑡𝑘 that are small

relative to our sample budget 𝑁 (e.g., 𝑝𝑡𝑘 < 1

𝑁2

), InQuest may not

draw a single predicate matching sample, thus making it impossible

to accurately estimate 𝑝𝑡𝑘 and 𝜎𝑡𝑘 .

Stochastic sample sizes. In the predicate setting InQuest may

sample records that do not satisfy the predicate. As a result, the num-

ber of predicate matching samples in eachD𝑡𝑘 is stochastic. This is

in contrast to standard stratified sampling, which assumes a deter-

ministic number of draws from each stratum. In the case where both

𝑝𝑡𝑘 and |𝑋𝑡𝑘 | are large, InQuest will draw approximately 𝑝𝑡𝑘 |𝑋𝑡𝑘 |
samples which will result in estimates with similar quality to an

estimator with 𝑝𝑡𝑘 |𝑋𝑡𝑘 | deterministic samples. However, for small

𝑝𝑡𝑘 this no longer holds true.

Recursive Definitions. By design, InQuest samples the stream

and updates its allocation at discrete intervals throughout the query.

The allocation 𝑎̂𝑡𝑘 depends on the history of samples drawn in

segments [1, . . . , 𝑡 − 1]. Specifically, it’s a function of 𝑝̂𝑡𝑘 and 𝜎̂𝑡𝑘 .

In turn, 𝑝̂𝑡𝑘 and 𝜎̂𝑡𝑘 depend on the number of samples drawn from

D𝑡𝑘 . This means they are a function of the allocation 𝑎̂𝑡𝑘 . The

recursive nature of these definitions makes it challenging to apply

meaningful concentration inequalities on these random variables.

5 EVALUATION
Weevaluated our algorithm on six real-world video and text datasets.

We first describe our experimental setup and baselines. We then

show that InQuest outperforms the stream setting baselines on all

datasets we consider, achieving the same root mean squared error

(RMSE) with up to 5.0x fewer samples. We further demonstrate

that InQuest outperforms ABae [27]—a state-of-the-art algorithm

for the batch setting—by up to 1.9x on the RMSE metric at a fixed

sample budget. We then show that each of InQuest’s major com-

ponents contributes to its performance and that it is not sensitive

to the setting of its parameters. Finally, we analyze InQuest’s cost

and accuracy improvements, examine effect that proxy quality has

on its evaluation results, and demonstrate that InQuest is resilient

to rapid changes in the stream parameters.

5.1 Experimental Setup
Datasets, proxies, and oracles. We considered six real-world

video and text datasets (Table 2). The video datasets are commonly

used for video analytics evaluation [24, 25, 27, 32]. The text dataset

is publicly available on Kaggle and contains 3M+ tweets between

users and customer support Twitter accounts [23]. For each video

dataset we generated proxy scores from TASTI embeddings that

we created with a pre-trained ResNet-18 model [19, 29]. Our oracle

labels were computed using a Mask R-CNNmodel [18]. For our text

dataset we generated proxy scores using a fasttext model, while

our oracle labels were computed using a HuggingFace BERT model

trained on English language tweets [22, 33].

Evaluation queries. We evaluated the baselines and InQuest

on each dataset using two queries, one with a predicate and one

without. The queries with a predicate were all of the form:

SELECT AVG(expr( record )) FROM dataset
WHERE filter_predicate
TUMBLE ( record_idx , INTERVAL '100 ,000' RECORDS )
ORACLE LIMIT N
DURATION INTERVAL '500 ,000' RECORDS
USING proxy

For our video datasets, exprwas count_boats for the grand-canal
and rialto datasets and count_cars for the rest. The predicate
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Table 2: Summary of datasets, predicates, predicate positivity
rates 𝑝, and proxy correlation to the groundtruth statistic 𝑟
(Pearson product-moment correlation coefficient).

Dataset Predicate 𝑝 𝑟

archie At least one car 0.50 0.92

customer-support Is customer tweet 0.56 0.79

grand-canal At least one boat 0.60 0.91

night-street At least one car 0.37 0.92

rialto At least one boat 0.89 0.91

taipei At least one car 0.63 0.87

was count_boats(record) > 0 and count_cars(record) > 0,
respectively. For our text dataset expr was sentiment and the

predicate was is_customer_tweet(record). The queries without
a predicate were identical to the one shown above with the WHERE
clause removed. Each query allocated 10% of the oracle budget for

defensive sampling.

Streaming methods evaluated. We compared our algorithm

against two baselines for the stream setting: uniform sampling and

stratified sampling with fixed strata and fixed sample allocations.

For uniform sampling, we precomputed a set of 𝑁 frames (where 𝑁

is the oracle budget) to sample between the query submission time

and the end of the query’s DURATION. We then called the oracle on

these records and computed our query estimate by averaging the

per-record statistic on the sampled frames:

SELECT AVG(expr( record )) FROM uniform_sample ( dataset )
ORACLE LIMIT N
DURATION INTERVAL '500 ,000' RECORDS

For queries with a predicate, the estimate was only computed using

the statistic values from the predicate-matching samples:

SELECT AVG(expr( record )) FROM uniform_sample ( dataset )
WHERE expr( record ) > 0
ORACLE LIMIT N
DURATION INTERVAL '500 ,000' RECORDS

For the stratified sampling baseline, we executed evaluation queries

similar to the ones used for InQuest. We also performed stratified

sampling within each segment. However, each segment and stratum

pair (i.e., D𝑡𝑘 ) received a fixed oracle budget of
𝑁
𝐾

samples and

maintained a fixed stratification of 𝑘1 = [0, 0.33], 𝑘2 = [0.33, 0.67],
and 𝑘3 = [0.67, 1.0]. Due to the streaming nature of our queries, we

performed reservoir sampling within each D𝑡𝑘 to ensure that the

oracle was applied uniformly at random. We then computed our

estimate for each segment as a weighted average of the aggregation

function AGG (one of AVG, SUM, or COUNT) applied to the samples

from each D𝑡𝑘 :

𝜇̂𝑡 =

𝐾∑︂
𝑘=1

𝑤̂𝑡𝑘 · AGG
(︁
{𝑓 (𝑥) |𝑥 ∈ 𝑆𝑡𝑘 }

)︁
Where the weight 𝑤̂𝑡𝑘 is the estimate of the fraction of predicate

matching samples that fall in D𝑡𝑘 :

𝑝̂𝑡𝑘 =
|{𝑥 |𝑂 (𝑥) = 1, 𝑥 ∈ 𝑆𝑡𝑘 }|

|𝑆𝑡𝑘 |
(11)

𝑤̂𝑡𝑘 =
|D𝑡𝑘 | · 𝑝̂𝑡𝑘∑︁𝐾
𝑖=1 |D𝑡𝑖 | · 𝑝̂𝑡𝑖

(12)

For queries without a predicate 𝑝̂𝑡𝑘 = 𝑝𝑡𝑘 = 1 which meant our

estimate 𝑤̂𝑡𝑘 was computed exactly. In our baseline experiments for

stratified sampling with fixed strata we set 𝐾 = 3 and configured

our segment length such that there were 𝑇 = 5 segments.

Batch methods evaluated. In order to compare InQuest to prior

work, we also evaluated ABae [27] using near-identical evaluation

queries (minor syntax tweaks were necessary for the batch setting).

We chose ABae for the comparison because it also provides approxi-

mate answers to aggregation queries with valid confidence intervals.

To run the evaluation, we presented our streaming datasets to ABae

as if they were batch datasets. We ran ABae with sample reuse,

𝐾 = 3, and allocated 15% of its budget to pilot sampling.

ABae has the advantage of observing the proxy score distribution

over the entire dataset, which allows it to compute an optimal

stratification and sample allocation before it begins sampling. In

contrast, InQuest does not have the benefit knowing the proxy

score distribution prior to sampling. In spite of this, we find the

comparison useful for contextualizing InQuest’s results, and we

show that InQuest outperforms ABae on our key metric of interest.

Metrics. Our primary metric of interest is the RMSE between

each method’s estimate of the expression in the SELECT clause

and the oracle value. In particular, we measure the RMSE on each

segment of the query and evaluate each method by computing the

median RMSE across all query segments. We evaluated the RMSE

at different oracle budgets representing 0.1 - 1% of the total records

in each query. We additionally compared the number of samples

needed to achieve a fixed error target.

Implementation. We implemented our algorithm, baselines, and

experimental evaluation in Python. Our open-sourced code can be

found at https://github.com/stanford-futuredata/InQuest.

5.2 InQuest End-to-end Performance
We first investigated whether or not InQuest outperforms our base-

lines on the median segment RMSE metric. For each dataset we

evaluated the uniform sampling baseline, the stratified sampling

baseline, ABae, and InQuest on the evaluation queries with and

without a predicate. As shown in Table 2, our evaluation queries

in the predicate setting cover a wide range of predicate positivity

rates, with 37% to 89% of records matching the predicate. We swept

the oracle budget from 500 to 5000 in increments of 500 and ran

1000 trials for each oracle budget. We executed InQuest with its

default hyperparameters (𝐾 = 3, 𝛼 = 0.8) on all datasets.

Figure 4 shows InQuest and the baselines’ performance on the

RMSEmetric for the evaluation queries without a predicate. InQuest

outperforms streaming baselines on all sampling budgets across

all datasets. InQuest achieves as much as a 3.5x improvement on

RMSE over streaming baselines at a fixed oracle budget, and can

achieve the same RMSE with up to 5.0x fewer samples. Figure 5

shows InQuest’s results on queries with a predicate. Once again,
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Figure 4: Sampling budget vs.median segment RMSE for base-
lines and InQuest on the evaluation queries with no predi-
cate (log scale). InQuest outperforms the streaming baselines
across all sampling budgets and datasets. InQuest outper-
forms ABae on 70.0% of oracle budgets across datasets.
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Figure 5: Sampling budget vs. median segment RMSE for
baselines and InQuest on the evaluation queries with a predi-
cate (log scale). InQuest outperforms the streaming baselines
across all sampling budgets and datasets. InQuest outper-
forms ABae on 90.0% of oracle budgets across datasets.

Table 3: Summary of algorithm performance relative to
streaming baselines and ABae in the no predicate case. RMSE
errors are computed by taking the geometric mean of the
average RMSE across all datasets at the specified budget.

Algorithm 𝑁𝑇 = 500 𝑁𝑇 = 2500 𝑁𝑇 = 5000 All

𝑅𝑀𝑆𝐸
uniform

† .065 .029 .020 .030

𝑅𝑀𝑆𝐸
stratified

∗ .064 .029 .020 .030

𝑅𝑀𝑆𝐸
ABae

‡ .044 .015 .010 .016

𝑅𝑀𝑆𝐸InQuest .032 .014 .0099 .015

Improvement
†

2.05x 2.03x 1.99x 2.00x

Improvement
∗

2.01x 2.02x 1.98x 2.00x

Improvement
‡

1.40x 1.05x 1.04x 1.10x

Table 4: Summary of algorithm performance relative to
streaming baselines and ABae in predicate case. RMSE errors
are computed by taking the geometric mean of the average
RMSE across all datasets at the specified budget.

Algorithm 𝑁𝑇 = 500 𝑁𝑇 = 2500 𝑁𝑇 = 5000 All

𝑅𝑀𝑆𝐸
uniform

† .072 .032 .021 .033

𝑅𝑀𝑆𝐸
stratified

∗ .065 .029 .020 .030

𝑅𝑀𝑆𝐸
ABae

‡ .096 .027 .017 .029

𝑅𝑀𝑆𝐸InQuest .049 .020 .014 .021

Improvement
†

1.48x 1.56x 1.58x 1.54x

Improvement
∗

1.32x 1.43x 1.48x 1.42x

Improvement
‡

1.97x 1.32x 1.26x 1.37x

InQuest outperforms streaming baselines on all sampling budgets

across all datasets. We demonstrate an improvement of up to 2.5x

in RMSE at a fixed oracle budget over streaming baselines and are

able to achieve the same error with up to 4.5x fewer samples.

We also compare InQuest to ABae on the median segment RMSE

metric. By default, ABae only returns an estimate for the entire

query. We computed per-segment estimates by selecting the sub-

set of ABae’s oracle samples within each segment. We show that

InQuest outperforms ABae on 90.0% and 70.0% of oracle budgets

across all datasets for queries with and without a predicate, respec-

tively. We also compare InQuest to ABae on the RMSE metric for

the full query at the end of this subsection.

Finally, we quantified InQuest’s performance relative to our base-

lines using a single error metric aggregated across all datasets. For

each dataset and algorithm, we computed the mean of the median

segment RMSEs over all 1000 trials at the given oracle budget. We

then computed the geometric mean of these per-dataset average

RMSEs to obtain a single aggregated error metric. We present these

metrics in Table 3 and Table 4. We can see that InQuest achieves

the lowest error metrics, outperforming streaming baselines by a

factor of 1.32x-1.58x and 1.98x-2.05x across the entire range of ora-

cle budgets for queries with and without a predicate, respectively.

Furthermore, we demonstrate that InQuest outperforms ABae by a

factor of 1.04x-1.40x for queries without a predicate and by a factor

of 1.26x-1.97x for queries with a predicate.
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Figure 6: Sample budget vs. full query RMSE for InQuest and
ABae on the evaluation queries with a predicate (log scale).

Evaluating InQuest and ABae on Full Query. We now compare

InQuest and ABae using the RMSE metric over the full evaluation

query. This evaluation is useful for contextualizing InQuest’s results

relative to a state-of-the-art algorithm in the batch setting. We show

the results for the queries with a predicate in Figure 6, and defer

the figure for the queries without a predicate to an appendix [42].

When aggregating error results across all datasets we find that

InQuest outperforms ABae by a factor of 1.05x-1.41x on queries

without a predicate, and by a factor of 1.18-1.83x for queries with a

predicate. While one might expect ABae to provide an upper bound

on InQuest’s performance, InQuest can benefit from its segmenta-

tion of certain streams. Specifically, if a stream is segmented over

time such that 𝜎𝑡𝑘 < 𝜎𝑘 for enough segments 𝑡 ∈ [1,𝑇 ], InQuest
can achieve more accurate estimates than a batch algorithm. To

summarize, InQuest can exploit the tendency in many real-world

streams for proxy scores that are nearby in time to have similar

values, which results in smaller 𝜎𝑡𝑘 and ultimately smaller errors

when estimating 𝜇.

5.3 Lesion and Sensitivity Analysis

Lesion study. We investigated whether all of InQuest’s compo-

nents were necessary for high performance. We performed a lesion

study by executing (1) InQuest, (2) InQuest with dynamic strata

inference but fixed sample allocations, (3) InQuest with fixed strata

but dynamic sample allocations, and (4) stratified sampling with

a pilot segment. All experiments were run with 1000 trials on the

evaluation queries with no predicate.

As shown in Figure 7, both dynamic strata inference and dynamic

sample allocations are important for achieving high performance.
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Figure 7: Lesion study in which we remove dynamic strata
inference and dynamic sample allocation. As shown, both
pieces of the algorithm are critical for achieving better per-
formance across all datasets. All experiments were run on
queries with no predicate.

In particular, removing dynamic strata inference can severely limit

InQuest’s ability to avoid wasting samples on strata with few predi-

cate matching records. While removing dynamic sample allocation

does not significantly affect performance on some datasets (e.g.,

grand-canal), it is necessary for achieving high performance on

others (e.g., archie, rialto, and taipei).

Sensitivity analysis. We further investigated whether InQuest’s

performance was sensitive to the setting of its key parameters.

Specifically, we analyzed the sensitivity of InQuest to the smooth-

ing parameter 𝛼 and to the length of its tumbling window. We

ran InQuest with a budget of 5000 samples for 1000 trials while

varying 𝛼 and the window length. All experiments were run on the

evaluation queries with no predicate.

Figure 8 shows InQuest’s performance as a function of 𝛼 and the

window length on the archie dataset. InQuest’s performance is

relatively stable with respect to changes in𝛼 and the window length.

We varied 𝛼 ∈ [0.5, 0.9] in increments of 0.1 and we varied the

window length such that the query contained 𝑇 ∈ [4, 8] segments.

We compared InQuest to uniform sampling, which is invariant to

these parameters. InQuest outperforms uniform sampling on the

RMSE metric on all datasets and settings of the 𝛼 parameter and

the window length. We defer the plots for the other datasets to our

appendix for the sake of brevity.

5.4 Cost Savings and Accuracy Improvements
We now examine how much InQuest saves on cost—both in terms

of time and dollars—relative to baselines. For each algorithm we

measure its accuracy using the median segment RMSE.We compute
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Figure 9: Time and cost in dollars as a function of accuracy
for the archie dataset. At fixed accuracy, InQuest achieves
a speed up (and cost savings) of up to 5.8x over streaming
baselines and up to 1.6x over ABae.

the relative cost of running each algorithm as a function of its

execution of its oracle and proxy models.

We consider the case of our video datasets, where our oracle is

a Mask R-CNN model that can process 4 frames per second on an

NVIDIA T4 GPU, and our proxy is a ResNet-18 model which can

process 12.6k frames per second [30]. Using on-demand pricing

from Amazon Web Services [15], we assume the cost of running

a single NVIDIA T4 GPU on a g4dn.xlarge is $0.526 per hour.

We compute the time (and associated cost) of running inference

using our oracle and proxy models to achieve the stated accuracy.

The results for the evaluation query on archie dataset without

a predicate are presented in Figure 9. We can see that InQuest

outperforms all other algorithms on the archie dataset in terms of

accuracy at fixed cost and cost at fixed accuracy. InQuest achieves

a speed up (and cost savings) of up to 5.8x over streaming baselines

and up to 1.6x over ABae. InQuest outperforms the baselines on

the other datasets as well, achieving worst and best-case speedups

of 1.5x-8.3x over streaming baselines and 0.8x-2.0x over ABae in

the no predicate case, and of 1.0x-4.1x over streaming baselines and

0.9x-2.6x over ABae in the predicate case. We omit those plots for

the sake of brevity and defer them to the appendix.

5.5 Effect of Proxy Quality on Performance
In this subsection we examine how proxy score quality affects

InQuest’s performance on our evaluation datasets. We modified

the proxy scores for our evaluation datasets by interpolating be-

tween the groundtruth statistic (i.e., perfect proxy information) and

random noise. Specifically, for 𝛽 ∈ [0, 1] we computed:

proxy𝑖 = 𝛽 · g𝑖 + (1 − 𝛽) · U(0, 1) (13)
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Figure 10: Proxy quality’s effect on InQuest’s performance
on the rialto dataset. We plot InQuest’s performance on the
median segment RMSE metric as a function of 𝛽 .

Where g𝑖 is the groundtruth statistic for the 𝑖𝑡ℎ dataset record and

U(0, 1) is a sample drawn uniformly at random from the range [0, 1].

After computing the proxy values for each stream we normalized

them to be in the range [0, 1]. We constructed datasets in this

fashion for 𝛽 ∈ [0.0, 0.25, 0.50, 0.75, 1.0]. In figure Figure 10 we

plot InQuest’s performance on the rialto dataset as a function of

𝛽 . We chose this dataset because its proxy’s Pearson correlation

coefficient is near the median for our datasets (see Table 2).

As shown in Figure 10, proxy quality can result in an orders-of-

magnitude improvement of InQuest’s performance. However, our

current proxy scores are far from optimal, resulting in performances

comparable to those with 𝛽 ∈ [0.25, 0.75]. Thus, while we would
expect ABae’s performance to also improve with better proxies, we

can confidently state that our performance relative to our uniform

sampling baseline would greatly improve with better proxies.

5.6 Adversarial Shifts in Stream Parameters
We now investigate how one or more sudden shifts in the stream

parameters 𝑝𝑡𝑘 , 𝜎𝑡𝑘 , and 𝜇𝑡𝑘 affects InQuest’s performance.

Dataset construction. We constructed streams by randomly in-

serting 𝑛 = [1, 2, . . . , 5] sudden shifts in the stream parameters. For

each value of 𝑛 we generated 20 streams, thus creating a total of

100 synthetic datasets. To generate a stream, we began by sam-

pling 𝑛 indices uniformly at random where we would suddenly

shift the stream parameters. We then sampled our initial stream

parameters 𝑝
1𝑘 , 𝜎1𝑘 , and 𝜇1𝑘 where: 𝑝𝑡𝑘 ∈ [0, 1], 𝜎𝑡𝑘 ∈ [0, 3], and

(𝜇𝑡1, 𝜇𝑡2, 𝜇𝑡3) ∈ ([0, 3], [3, 6], [6, 9]).
For each value of 𝑘 ∈ [1, 𝐾] we generated a substream of samples

using parameters (𝑝
1𝑘 , 𝜎1𝑘 , 𝜇1𝑘 ). We then interleaved the samples

from our 𝐾 substreams into our final synthetic streaming dataset

until we reached the sample index for a sudden shift in parameters.

At every such index, we resampled 𝑝𝑡𝑘 , 𝜎𝑡𝑘 , and 𝜇𝑡𝑘 for all 𝑘 ∈
[1, 𝐾] and continued constructing the streaming dataset with the

new stream parameters in the same fashion. Finally, we computed

synthetic proxy values by interpolating the groundtruth statistic

in an identical fashion to our experiments in Section 5.5. For our

synthetic datasets, we used 𝛽 = 0.75 to construct the proxies.

While our theoretical analysis focused on InQuest’s performance

on stationary streams, by construction these synthetic datasets

stress test InQuest’s ability to adjust to sudden changes in dynamic

streams. We evaluated our streaming baselines, ABae, and InQuest
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rameters on InQuest’s performance. InQuest outperforms
streaming baselines by an average of 1.13x-1.42x on the me-
dian RMSE metric when evaluated on 100 synthetic datasets.

for 1000 trials on all 100 synthetic datasets. We computed each al-

gorithm’s average median RMSE across all datasets for fixed values

of 𝑛 and present the results in Figure 11.

Results. InQuest consistently outperforms our streaming base-

lines on these synthetic datasets, and performs comparably to ABae.

InQuest achieves 1.13x-1.42x improvement over our streaming base-

lines across the full range of 𝑛 ∈ [1, 5] distribution shifts. InQuest

also performs within 0.99x-1.03x of ABae. These results provide em-

pirical evidence that InQuest performs well even on non-stationary

streams with multiple sudden shifts in the stream parameters.

6 RELATEDWORK
We examine prior work in query processing as it relates to InQuest.

We first discuss prior methods for processing stream queries, par-

ticularly on video datasets. We then examine other AQP systems

with a focus on DNN-based queries. Finally, we discuss literature

related to proxy models and their use in query processing.

Stream queries. Prior work has focused on building systems to

answer queries over (semi-)structured streams of data. Similar to

InQuest, these systems support continuous queries for real-time

analytics, in which a user can submit a query for an indefinite period

of time to compute a statistic of interest (e.g., the number of cars

that pass over a sensor on the highway) [5, 12, 31, 34, 46]. However,

because these systems are designed to work with structured data

they do not address the use case where a DNN is needed to extract

statistics of interest from the raw data stream.

Recent work has focused on answering spatiotemporal queries

over streaming video, including aggregation queries [32], queries

related to object co-occurrences [13], and queries related to object

interactions [45]. Similar to InQuest, these systems use cascades of

filters to limit the execution of an oracle to a subset of the stream.

However, these systems bake their filters into various layers of

the oracle. This creates a tight-coupling between the design of the

filters and the oracle and limits these systems to processing queries

over video. In contrast, InQuest decouples the proxy(s) from the

oracle, thus enabling users to provide custom models which makes

it easy for InQuest to work across different modalities of data.

AQP with DNN-based queries. Recent work has focused on

accelerating DNN-based queries over large unstructured datasets

in the batch setting [4, 7, 21, 24–27, 35]. While these systems are

similar to InQuest in their use of DNNs to answer queries over

large unstructured datasets, certain features of their designs make

it difficult to adapt them to the streaming setting. For example,

NoScope [25] and Tahoma [4] rely on drawing a representative

sample from the full dataset before query submission in order to

train and validate specialized DNNs and model cascades. ABae [27]

and SUPG [26] use sampling techniques over the entire dataset to

optimize their oracle sampling strategies. ExSample [35] takes the

full dataset and splits it into chunks before query submission in

order to perform Thompson sampling [41] across these chunks.

These systems would need to be modified substantially to work in

the streaming setting, where the dataset is presented to the system

in an online fashion.

Proxies in query processing. The use of proxy models for com-

puting cheap approximations spans a variety of use cases in query

processing. In certain video analytics systems [11, 32], proxies only

compute binary predicates and they are all implemented in a single

DNN (potentially at different layers). This is in contrast to our work,

in which users provide proxies that can compute arbitrary statistics

independent from the oracle. Systems such as NoScope, ABae, and

SUPG [25–27] use proxies to estimate query predicates and thereby

limit the execution of an expensive oracle to a subset of some large

dataset. InQuest uses proxies in a similar manner for processing

queries with a predicate. For queries without a predicate InQuest

can use a proxy that computes any bounded real-valued estimate,

but it will produce better results if the proxy estimate is correlated

with the query’s statistic of interest.

7 CONCLUSION
In this work we proposed and analyzed InQuest, a system for ac-

celerating aggregation queries over unstructured streams of data

with statistical guarantees on query accuracy. We demonstrated sig-

nificant improvements over streaming and batch setting baselines

on a set of real-world video and text datasets. We further showed

that InQuest is not sensitive to its parameter settings, that its major

components are all crucial for its performance improvements, and

that it is resilient to adversarial shifts in the ground-truth stream

parameters. We performed a theoretical analysis and showed that

InQuest’s sample allocation converged to the optimal sample allo-

cation and that its expected error converged to zero at quantitative

rates. To the best of our knowledge, this is the first system designed

for processing aggregation queries over streams of multiple modali-

ties. Thus, InQuest has the potential to be applied to a wide range of

real-world problems, from processing queries over large networks

of streaming video cameras to streams of social media posts.
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