
WALTZ: Leveraging Zone Append to Tighten the Tail Latency of
LSM Tree on ZNS SSD

Jongsung Lee
Seoul National University and

Samsung Electronics

Korea

leitia@snu.ac.kr

Donguk Kim
Seoul National University and

Samsung Electronics

Korea

dongukim12@snu.ac.kr

Jae W. Lee
Seoul National University

Korea

jaewlee@snu.ac.kr

ABSTRACT

We propose WALTZ, an LSM tree-based key-value store on the

emerging Zoned Namespace (ZNS) SSD. The key contribution of

WALTZ is to leverage the zone append command, which is a recent

addition to ZNS SSD specifications, to provide tight tail latency. The

long tail latency problem caused by the merging process of multiple

parallel writes, called batch-group writes, is effectively addressed by

the internal synchronization mechanism of ZNS SSD. To provide

fast failover when the active zone becomes full for a write-ahead log

(WAL) file during parallel append, WALTZ introduces a mechanism

for WAL zone replacement and reservation. Finally, lazy metadata

management allows a put query to be processed fast without re-

quiring any other synchronizations to enable lock-free execution

of individual append commands. For evaluation we use both mi-

crobenchmarks (db_bench) with varying read/write ratios and key

skewnesses, and realistic social-graph workloads (MixGraph from

Facebook). Our evaluation demonstrates geomean reduction of tail

latency by 2.19× and 2.45× for db_bench and MixGraph, respec-

tively, with a maximum reduction of 3.02× and 4.73×. As a side

effect of eliminating the overhead of batch-group writes, WALTZ

also improves the query throughput (QPS) by up to 11.7%.

PVLDB Reference Format:

Jongsung Lee, Donguk Kim, and Jae W. Lee. WALTZ: Leveraging Zone

Append to Tighten the Tail Latency of LSM Tree on ZNS SSD. PVLDB,

16(11): 2884-2896, 2023.

doi:10.14778/3611479.3611495

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/SNU-ARC/WALTZ.git.

1 INTRODUCTION

The key-value store is a widely-used storage engine for data man-

agement. LSM-tree is the de-facto standard data structure that

manages key-value pairs. It has been used as a basis for popular

key-value stores, such as RocksDB [21], LevelDB [22], BigTable [10],

Cassandra [1], and HBase [2]. LSM-tree stores key-value pairs that

are received via put requests to an in-memory structure called

MemTable for fast write performance. When MemTable reaches a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611495

specific size, it is sorted, merged, and stored in storage as a Sorted

String Table (SST) file (flush). SST files are arranged in a multi-level

structure to provide good read performance. When the space limit

for each level is reached, a victim SST file is selected and moved to

the lower level by merging with the SST files of the lower level (com-

paction). Both flush and compaction operations are performed in

the background. To overcome the slow storage speed, SST files are

written sequentially in bulk, which is favored by storage devices.

MemTable constructed with volatile memory cannot retain data

in the event of a power failure. To address this consistency issue,

a write-ahead log (WAL) is maintained in the persistent storage.

The record of a put (write) request is first stored in WAL and then

buffered in memory. WAL enables the key-value store to recover its

data even after a failure. However, with this structure, a stream of

put requests generates frequent small writes to the storage, hence

reducing write throughput to introduce a scalability bottleneck. In

a multi-threaded environment, multiple workers can be blocked by

simultaneous WAL record writes to storage media, which causes

write latency spikes due to lock contentions.

A popular solution to this problem is merging the small writes

and writing them sequentially in bulk [1, 21, 22]. In particular,

RocksDB introduces a process called batch-group writes [21], which

dynamically selects one leader thread among multiple workers

with pending put requests, collects all the remaining records, and

make the leader write them at once on behalf of the other workers.

However, this technique does not improve (or even exacerbates) the

tail latency problem. In the process of collecting and writing these

records, all records in the batch share the writing time to potentially

increase the waiting time of an individual write, especially when

the record size increases.

Recently, zoned namespace (ZNS) SSD [7] has been introduced.

The ZNS SSD divides the storage space into zones, where only se-

quential writes are allowed within a zone. This greatly simplifies

the flash translation layer (FTL), which is required to satisfy the

erase-before-write constraint of NAND flash media. A zoned struc-

ture is a proven concept in the context of SMR HDDs [23] and

already in production use [26]. As the zoned structure alleviates

the management overhead of NAND flash media, it reduces the

garbage collection overhead in the SSD.

Researchers have recently identified the potential suitability of

ZNS SSD as a backing store for the LSM tree generating a stream of

sequential writes. For example, ZenFS [7] proposes to use the ZNS

SSD as a storage media of RocksDB. ZenFS introduces a lightweight

file structure for ZNS SSD. All the files created by the background

jobs are stored in a list of extents, each of which maintains the

zone index, start location, and length. In addition, ZenFS supports a

2884

https://doi.org/10.14778/3611479.3611495
https://github.com/SNU-ARC/WALTZ.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611495
https://www.acm.org/publications/policies/artifact-review-and-badging-current


recovery mechanism for the internal metadata, such as the status of

zones and files, by persisting them into a specific area called meta

zone. However, ZenFS provides only the plugin of the zoned inter-

face, so the aforementioned batch-group write problem remains.

Existing solutions to address this problem on non-ZNS devices, such

as lock-free allocation of LBAs for parallel writes in SpanDB [12],

are difficult to apply due to the constraints from the ZNS interface.

This would require additional serialization to ensure the consistency

of the write sequence.

To provide tight tail latency on ZNS SSD-backed LSM trees,

we identify opportunities for leveraging the zone append com-

mand. This command is a recent addition to the ZNS SSD specifica-

tions [19]. The conventional NVMe interface does not guarantee

write ordering among the requests in the submission queue, and

they may not be processed in the pre-specified LBA order. To serial-

ize the writes, it is difficult to increase the queue depth greater than

one, which has negative impact on write throughput. The append

command provides an efficient mechanism to increase the queue

depth while maintaining the write order. Unlike the conventional

write command, the append command specifies the data and a des-

ignated zone (but not a specific LBA), stores it in the zone, and

returns the start location of the appended data to the host through

a field called Assigned LBA (ALBA) [5, 6]. Since the exact LBA lo-

cation is determined by the device, even if we increase the queue

depth, the synchronization is done efficiently within the ZNS SSD,

lifting the restrictions for the queue depth on the host side. This

can greatly increase the write throughput, alleviate the scalability

issue, and hence improve the tail latency.

To capitalize on these opportunities, we propose WALTZ, a

novel key-value store that improveswrite-ahead log using the zone

append for LSM trees on the ZNS SSD. We first augment RocksDB

on ZenFS [7] with Intel SPDK [14], a lightweight user-level NVMe

driver, which serves as the baseline.We evaluateWALTZ using both

db_bench microbenchmarks [20, 21] with varying read/write ra-

tios and key skewnesses, and Facebook MixGraph benchmarks [9],

which represent realistic production workloads. WALTZ reduces

the tail latency by up to 3.02× for db_bench and by up to 4.73× for

MixGraph. As a side effect of eliminating the overhead of batch-

group writes on the host, WALTZ also improves the query through-

put (QPS) by 5.9% on average and 11.7% at maximum.

Our contributions are summarized as follows:

• We identify the synchronization overhead of batched-group

writes as the primary cause of loose tail latency in a key-

value store as the number of worker threads increases.

• We are the first to propose leveraging the newly introduced

append command in the ZNS SSD specifications for the

WAL record to reduce the tail latency.

• We also introduce techniques for zone replacement, reser-

vation, and lazy metadata management to process parallel

appends efficiently.

• We prototype WALTZ on RocksDB using real ZNS SSD de-

vices as a backing store and evaluate it with both db_bench

microbenchmarks and Facebook MixGraph benchmarks.

Evaluation demonstrates the effectiveness of WALTZ for

greatly reducing the tail latency, by up to 4.73×, while

slightly improving the query throughput.

SST SST

SST SST SST

SST SST SST SST

Level 0

Level 1

Level 2

MemTable

Write-Ahead Log

Flush

Compaction

Memory

Storage

Put req

Figure 1: LSM-tree architecture

Leader 1 Batch Grouping

Follower 1 Merge

Follower 2 Merge

Memtable write

Memtable write

Memtable write

Notify

Wait for write done

Wait for write done

time

Storage write

𝑡1𝑡𝑎𝑙𝑙

Leader 2 Batch Grouping
Wait for

Grouping

Grouping done

Figure 2: Batch-group write process of RocksDB

2 BACKGROUND

2.1 Log-Structured Merge (LSM) Tree

Overall Structure. The LSM tree is at the core of a key-value

store and widely used in practice. Figure 1 illustrates the overall

structure of the LSM tree. It consists of a MemTable, an in-memory

data structure, and sorted string table (SST) files stored in persistent

storage. The MemTable buffers incoming requests until it reaches

its designated size, at which point it is marked as immutable and

materialized into an SST file stored in persistent storage. SST files

are managed in a multi-level structure, with all SST files initially

stored at Level 0 (highest) and subsequently propagated to lower

levels. SST files in all levels except Level 0 are managed in a sorted

and disjoint manner so that the keys from the SST files in the same

level do not overlap to optimize the read path.

Background Operations. To provide fast write speed, themutable

MemTable temporarily stores all key-value pairs received through

put queries. If the size of this MemTable exceeds a certain threshold,

it is marked as immutable, and later flushed into a sorted-string

table (SST) file in persistent storage. At a flush operation, duplicate

keys are removed from the MemTable, and the remaining key-value

pairs are sorted using the specified comparator. These sorted key-

value pairs are concatenated with SST file metadata such as Bloom

filter and index block and then stored to Level 0. When the size

of each level reaches a certain threshold, a compaction operation

is triggered. It selects a victim SST file at the corresponding level

2885



1
10

100
1000

10000
100000

1000000
10000000

70% 80% 90% 95% 99% 99.90% 99.99% Max Average

L
a
te

n
c
y
 (

u
s
)

Percentile

Write_1 Write_2 Write_4 Write_8 Append_1 Append_2 Append_4 Append_8

Figure 3: Write vs. Append

and then picks the files from the next lower level that contain over-

lapping keys to the victim file. The reason why compaction picks

the files with the overlapping keys is to maintain the aforemen-

tioned property of managing the keys at each level in a sorted and

disjoint manner. After reading all the input files, the compaction

operation sorts them and materializes them at the next level. In this

process, the files selected as input are deleted. Both flush and com-

paction operations trigger bulk sequential writes at the granularity

of files. In particular, compaction merges and rewrites files instead

of overwriting the existing file so that the storage receives only

sequential write requests, thereby maximizing the performance of

the background operations.

Write-Ahead Log and Batch-Group Write. Since put queries

are stored at MemTable upon arrival, which is an in-memory data

structure, all written records would be lost if there is a sudden

power failure. To recover the data from such failures, LSM tree also

utilizes a write-ahead log (WAL) in persistent storage. As illustrated

in the Figure 1, all writes are stored in the WAL and then buffered

in MemTable, which degrades put latency due to the slow speed of

storage write. To alleviate this problem, RocksDB, one of the most

popular LSM tree-based key-value stores, introduces the batch-

group write mechanism. RocksDB organizes put query internally

in the form of WriteBatch and then writes it to the WAL. When

the batches are received simultaneously from multiple threads,

RocksDB attempts to merge them into a batch-group during the

batch-group write process. Figure 2 illustrates the example flow of a

batch-group write process. When a write occurs, all writer threads

compete to become the leader thread (leader competition stage).

The winner thread becomes the leader and collects all the batches

from the other follower threads. Then the leader makes the merged

record persist on behalf of the other followers and notifies them of

the availability of the record at MemTable.

2.2 Zoned Namespace (ZNS) SSD

Overview. The conventional SSD provides a block interface with

512-byte sector-sized in-place updates. However, since NAND

flash memory does not allow overwrite, the flash translation layer

(FTL) [24] should manage the internal mapping to emulate the

operation of in-place updates. FTL maintains logical-to-physical

address mappings and performs a background job called garbage

collection, which collects live data and erases invalidated data gen-

erated by out-of-place updates. These background jobs become the

major source of unpredictable performance to users [11, 30, 31]

and extreme tail latencies [17, 25]. To eliminate this overhead of

the background jobs in FTL, efforts have been made to overcome

the limitations of the block interface, such as open channel SSD

(OC-SSD) [8] and multi-stream SSD [30]. Zoned namespace (ZNS)

SSDs [16] are a most recent addition to the list. ZNS is included

as part of the NVMe standard specifications [19], which aims to

improve user experience by bridging the semantic gap between the

block interface and NAND device-specific restrictions.

Characteristics of Zone. The entire storage space in the ZNS SSD

is managed as a collection of logical units called zones. Like the

conventional namespace (CNS) SSD, sector-sized random reads are

allowed, but writes must always be performed sequentially within

each zone. The size of the zone is typically from 96MB [3, 18, 27]

to 1GB [7, 13, 40], which is vendor specific. Each zone is in one

of four states at any given time: EMPTY, OPEN, CLOSE, or FULL.

Writing is allowed only for those in the OPEN state. When a user

tries to read, the zone’s status is not affected. When the zone is

explicitly opened for writing or writing is performed without an

OPEN process, the zone enters the OPEN state. The device performs

internal bookkeeping operations such as preparing write buffers for

OPEN zones and setting write pointers. Due to resource limitations

of the ZNS device, the number of zones that can be kept OPEN

is limited (specified by the open_zone_limit parameter). Due to

these limitations, it is impossible to use all zones in parallel, and

the zones that have performed a sufficient number of writes must

be explicitly closed to free internal resources for other zones.

Thewrite pointer of each zone can be retrieved explicitly through

a zone report command. However, different parallel contexts often

manage their own copies of this pointer separately for higher per-

formance by controlling the metadata at the user level and sending

a zone write command with the cached write pointer. However, in

the multi-threaded case, the cached write pointer can easily become

invalid by a write from another thread. If the thread sends a write

to an address that does not match the (real) write pointer within

the ZNS device, it immediately fails. Therefore, for the thread to

run the application on the ZNS SSD, all writes to the same zone

must be strictly serialized [6]. This severely limits the parallelism

of writes across multiple threads when accessing the same zone.

2886



RocksDB

FileSystem Wrapper

Extent List

Zone idx: 1

Start: 200

Length: 800

Zone idx: 2

Start: 0

Length: 1000

►

Storage Media

Zone 1 Zone 2 Zone 3 Zone 4

Active Zone

Zone idx: 3

Start: 600

wp: 800

ZoneFile

Figure 4: ZenFS file system structure

Zone Append. The zone append command [5, 6] has been recently

introduced into the NVMe ZNS protocol [19]. The key idea is that,

for the data whose physical location is not important, the user can

delegate the task of synchronizing the write pointer to the ZNS

SSD. The ZNS device is now responsible for synchronization of

the write pointer for the requested zone internally, and it should

return the actual location of the write called Assigned LBA (ALBA)

as a response to the append command. Since the responsibility of

synchronization is now moved from the worker to the ZNS SSD,

all the worker threads can send the append command without any

mutex or the like, to protect the write pointer and just send the

zone indicator, buffer address, and size of the record.

Furthermore, the append command has advantages over the

conventional write command in terms of fairness and quality-of-

service. Figure 3 shows the latency analysis with varying number

of threads writing to the same zone from 1 through 8. In the case

of the write command, LBA must be pre-determined similarly to

the block I/O interface. Since multiple requests cannot be sent

to the single zone simultaneously, we utilize a synchronization

mechanism. In this experiment, the average latency is similar for

both commands, but their tail behaviors differ very much. The

write command maintains low latency compared to the append

command until around 95th percentile, but latency increased rapidly

from a 99th percentile, and max latency increased by geomean 85×

compared to the append command. This phenomenon is attributed

to the unfairness of the lock mechanism. In contrast, the fairness

among append commands is guaranteed inside the device, which

leads to much more favorable tail behaviors with zone appends.

2.3 LSM Tree with ZNS SSD

ZenFS [7] is a plugin developed byWestern Digital so that RocksDB

can utilize the ZNS interface. ZenFS uses POSIX API-based pread

and pwrite to perform I/O on the ZNS SSD and ioctl to perform

management such as open, close, and reset of zones. As illustrated

in Figure 4, ZenFS is implemented under the FileSystem wrapper

APIs of RocksDB. To support the ZNS interface, ZenFS implements

its own FileSystem class suitable for ZNS SSD instead of using

38%

46%

15%

61%

36%

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

P
e
rc

e
n

ta
g

e

Number of Threads

Leader Election Merge Batch Group SSD Write MemTable Insert Misc

Figure 5: Scalability bottlenecks of batch-group writes

the basic FileSystem of RocksDB. The ZenFS file system manages

information such as metadata in the file system unit and each file’s

name, size, and data location. ZenFS utilizes direct I/O and uses the

mq-deadline scheduler to prevent reordering at the kernel level.

Figure 4 shows how ZenFS FileSystem places files into the zone

structure and manages this information. Data continuously stored

in a specific zone is expressed in an extent unit, which stores zone

information, starting point, and length. For files stored across mul-

tiple zones, the extent information is managed as a list in an order

within the file so that, when a read request at a specific point in

the file arrives, the data at the exact location is delivered. In the

example of Figure 4, the file read at offset 1200 will correspond to

offset 400 of Zone 2 because the length of the first extent is only

800, and the remaining offset is calculated to 400.

ZenFS reduces the write amplification factor (WAF) by utiliz-

ing the features of RocksDB [21] when allocating zones. RocksDB

provides a write lifetime hint (WLTH) based on the observation

that the lifetimes of SST files in the same level are similar. ZenFS

records the WLTH value of the data initially written at the time of

zone allocation as the lifetime of the zone, and makes best effort to

ensure that data with the same WLTH can be stored in the same

zone. However, considering the space utilization and the limita-

tions in open/active zones, ZenFS first allocates the zone from the

opened zones whose lifetime is similar to the requested write and

then searches for an empty zone only if it fails.

2.4 Overhead of Batch-Group Write

The batch-group write makes trade-offs between the overhead of

synchronization and that of storage resource management. How-

ever, the synchronization overhead becomes more significant [12]

as the storage resource management overhead is reduced with fast

storagemedia such as NVMe. In addition, synchronization overhead

further increases as the number of threads increases [38]. Finally,

in the case of tail latency, all the put queries of the grouped batch

should wait for the storage write phase, which includes the writing

time of other queries. Figure 2 also illustrates a case when the tail

latency gets worse. The write latency of Follower 1 is only 𝑡1, but

the leader groups three queries in this case so that all the group

members, including Leader and Follower 1 and 2, should wait for

𝑡𝑎𝑙𝑙 time to be done. If the record size is different across the threads,

the unfairness of the put query time becomes even more severe.

We first analyze the performance overhead of batch-group writes

on ZNS SSD. We vary the number of worker threads from 2 to 8

2887



and measure the write latency breakdown by five steps. In this

experiment, we set the key-value pair size for all threads to 4KB.

Leader election is the process in which one of the worker threads is

elected as a leader using the lock-free compare_exchange method.

The elected leader is now responsible for all records to be written

to the WAL file, and the merge batch group phase is gathering all

the records from the follower threads and merging them into the

batch-group. We poll the completion queue right after sending the

ZNS write command and measure the SSD write time between the

insertion at the submission queue and fetch from the completion

queue. MemTable insert is the time elapsed from the MemTable

insertion, and Misc is the remainder. As illustrated in Figure 5, the

portion of leader election and merge batch group process increases

as the number of worker threads increases. In the case of twoworker

threads, which would have the lowest degree of contention among

the worker threads, about 38% of time is consumed at the leader

election phase, which occurred from the batch-group write process.

Also, the synchronization overhead becomes more severe when

the number of worker threads increases, around 61% in the case of

eight worker threads. This observation shows that the current batch-

group write process limits the scalability of write performance.

3 WALTZ: DESIGN AND IMPLEMENTATION

3.1 Overview

WALTZ is an LSM-tree based key-value store using ZNS SSD as

primary storage and utilizing append commands [5, 6] for writing

the WAL. It builds on RocksDB as the baseline but bypasses its

batch grouping process, which adversely affects tail latency due to

the long leader election phase and write time. To protect the zone

write pointer of the WAL file, we use the append command instead

of a mutex or other synchronization mechanism.

Figure 6 shows the overall structure of WALTZ. It includes Re-

placement Checker and Zone Manager and two queues to commu-

nicate with each other. Replacement Checker determines when to

replace the current active zone for the WAL file and notifies the

worker thread handling the corresponding put query if the active

zone should be replaced (i.e., close the current active zone and open

a new one). To manage the replaced zone quickly, Replacement

Checker uses a dummy append, which is much faster than a zone

report command to find the exact write pointer of the current zone.

Zone Manager is responsible for reserving new empty zones to

supply if the worker thread requests a new zone for the WAL file

much more efficiently than the baseline zone allocation mechanism

of ZenFS. Also, Zone Manager takes over the zone finish and close

operation for the zone being closed. These operations take a signif-

icant amount of time in the baseline implementation to account for

a major fraction of the write tail latency of the worker thread.

3.2 Design of WALTZ

Write Path. The write path of WALTZ is simpler and lighter

than the original RocksDB. RocksDB performs leader elec-

tion by invoking JoinBatchGroup(), and the leader collects

records from the followers and makes them persist by invoking

Enter/ExitAsBatchGroupLeader(). However, WALTZ bypasses

this part. Instead, all worker threads request to append their records

to the WAL file. Once this is done, the worker thread immediately

Replace checker

Zone manager

D
o

n
e

 Q

A
llo

c
Q

Base KV Store

ZenFS plugin

User req

SPDK Library

Write 
command

Append 
Command (For WAL record)

RocksDB

Figure 6: System overview of WALTZ

starts to update MemTable, without any concerns about the status

of the other worker threads.

Replacement Checker. If a zone is FULL, a failure response will

be raised to an append command. In this case, a retry is triggered,

whose latency would increase the tail latency. Instead, we propose

to prevent a retry from occurring. Immediately after performing

an append, WALTZ calculates the remaining space based on the

returned ALBA and proactively initiates a zone replacement if the

remaining space in the active zone goes below a threshold (say, less

than 1% of the zone space). If this threshold is set too high, the zone

space is wasted so that the WAF value rises, but the possibility of

increasing tail latency will be reduced.

We integrate a low-cost protection mechanism into WALTZ

to prevent a situation where multiple worker threads attempt to

perform zone replacement simultaneously. Compared to the base-

line RocksDB in which the existing batch-group write always goes

through a costly leader election phase, the protection overhead of

WALTZ is negligible as this occurs only when the remaining space

in the active zone is below the threshold. While zone replacement is

in progress with the replacement thread, the other worker threads

can continue to append their records to the remaining space of the

current zone, hence minimizing blocking time. If the zone replace-

ment task takes a long time to not complete until the current zone

space is exhausted, a failure response by zone FULL is raised. In this

case, the append is retried after the replacement task is finished.

Once a new zone is allocated, the extent information of the re-

placed zone must be stored in the extent list of ZoneFile. However,

since other threads may have appended their records while the

replacement thread was performing zone replacement, ALBA re-

ceived by the replacement thread may not precisely match the last

position of the data written in the actual extent. To address this,

after assigning a new zone, the replacement thread throws dummy

data to the replaced zone through the append command and then

checks the status code and ALBA field of the completion entry. If

the zone full status code is returned, it means that the last sector

of the zone holds valid data of the current WAL file, so we use the

zone’s last LBA to calculate the extent’s size. If the append com-

mand succeeds, since ALBA returned by the dummy append is the

location where dummy data is stored, we can determine that the

2888



area up to the returned ALBA is valid data of the WAL file. The

extent size is calculated based on the ALBA.

Dummy Append. The reason why a dummy append is preferred

over a zone report command to retrieve the up-to-date zone write

pointer is due to its lower overhead. The average latency of the

zone report command of a single zone was measured as 6687𝜇s,

which is too long for the replacement thread to resolve while pro-

cessing put queries by other threads. However, the zone append

command showed a much faster speed, with an average of about

93𝜇s in a single-thread environment. Since this process operates

separately after the replacement thread registers the new zone as

the active zone, the other worker threads now perform the WAL

record append to the new active zone. Therefore, the replacement

thread is almost always the only one accessing the replaced zone,

making the dummy append faster. However, even assuming that

other worker threads were still appending to the remaining space

of the replaced zone, the worst performance of an append com-

mand (e.g., multi-threaded, tail-latency case) is still much faster

than the zone report command (see Figure 3). Besides, since the

background thread invalidates the remaining space with a zone

finish command, the dummy append command only invalidates

one sector in advance and does not incur additional overhead.

Zone Allocation with Zone Manager. The zone replacement

process may also increase the write tail latency of the thread in

charge of replacement (replacement thread). Let us first review

issues with the existing work and then present our approach. In the

case of ZenFS [7], when performing zone allocation, it grabs the

I/O zone mutex and iterates through all zones while performing

allocation considering the remaining space and lifetime of the zone.

Zones whose remaining space below a designated threshold are

finished while in the allocation phase. Then ZenFS attempts to

allocate the zone if the WLTH of the first file stored in this zone

is longer than the WLTH of the file requested for zone allocation.

Therefore, zone allocation may be unexpectedly delayed when

many zones need management, such as zone finish, or if the other

background threads for compaction and flush operations try to

allocate zone and hold the I/O zone mutex for creating new SST files.

Besides, due to the implementation of full iteration over I/O zones,

as the number of zones increases, the overhead of the iteration of

the zone allocation loop increases, limiting scalability. And this

problem is even more severe in the small-sized zone ZNS case,

which provides features to enable more fine-grained control of a

single device. Even on NAND Flash media with the same capacity,

it exposes small-sized zones so that the number of zones is much

more than the large-sized zone ZNS SSD, so loop iteration overhead

increases several times, and tail latency is adversely affected.

To minimize this overhead, we add Zone Manager running on a

background thread to reserve two zones to respond immediately

to the zone replacement case of the WAL file. The main reason for

reserving two zones is that during the MemTable switch process,

a situation occurs where two WAL files are temporarily available

and simultaneously written. One primary role of Zone Manager

is reserving the WAL zone mentioned above. In addition, Zone

Manager is also responsible for finishing and closing the replaced

zone. Zones replaced from the WAL file are either OPEN or FULL

state, depending on the presence or absence of remaining capacity.

When entering the FULL state, the internal resources of the ZNS

SSD have already been released, and the open_zone_limit is not

occupied. However, if there is remaining space and the zone is in

the OPEN state, open_zone_limit is occupied. Therefore, the ZNS

SSD cannot be fully utilized if there is no management of resource

starvation. Therefore, we perform not only WAL zone allocation

but also status checks for replaced zone and process the finish

and close zone in the background. Based on this, the replacement

thread receives a zone through Zone Manager while processing a

put query. After registering it into the active zone of ZoneFile, the

replacement thread passes the replaced zone into done_queue. It

can respond quickly without concerns about the post-processing

of the replaced zone, which greatly reduces the tail latency. Zone

Manager performs the remaining process for the replaced zone,

which monitors the done_queue and handles it in the background.

Lazy ZoneFile Metadata Management. There are several file

metadata that are managed in ZoneFile of ZenFS, such as active

zone, extent list, file size, write pointer, capacity, etc. Since the

active zone is where other worker threads try to append the WAL

records, active zone replacement should be executed immediately.

Also, the order of extents stored in extent list is important because

it determines the position of data stored in a ZoneFile, which makes

lazy update harder. Other metadata elements, such as file size, write

pointer of active zone, and capacity, are not critical in the write

path. Under the write case of ZenFS, synchronization is guaranteed

for each ZoneFile, so another protection for these elements is not

required. However, in our parallel append architecture, ZoneFile

can concurrently be appended by worker threads which request the

put queries, so that additional protection is necessary.We apply lazy

updates replacing the existing method of managing non-critical

ZoneFile metadata at every append, to avoid the synchronization

and support fast response to a put query. Instead, based on the

ALBA returned from a dummy append, WALTZ calculates the file

size, remaining capacity of zone, and the latest write pointer, and

updates the ZoneFile metadata at once during zone replacement.

Recovery. The vanilla RocksDB assigns a sequence number to each

key-value pair or write batch according to the database configura-

tion in the write phase. We identify the overhead of the batch-group

write process and propose a parallel append architecture to accel-

erate WAL write in concurrent put queries. However, even with

this structure, the minimum unit of WAL append is still a write

batch so it does not affect RocksDB’s sequence number structure.

ZenFS provides an interface to permanently sync files through the

Fsync() function, which is invoked at every WAL record write.

When Fsync() is called, ZenFS writes the update information to

ZenMetaLog for future recovery. Thus, WAL records are primarily

recovered by ZenFS, and RocksDB can recover write batches or

key-value pairs from individual records. However, in WALTZ, be-

cause of the lazy metadata update architecture, theWAL file records

metadata only when the active zone is replaced instead of updating

the metadata every time WAL append is performed. Therefore, at

the point of failure recovery, only the allocation of the last active

zone and the write pointer information of the starting point of

active zone remain, and the total size of the WAL data appended to

the zone is not recorded. To address this, during a recovery phase,

we use the dummy append approach to figure out the current write

pointer of the active zone, and examine the returned write pointer

as a last location of valid records stored in this WAL file. The reason

2889



Storage media

Put req

RocksDB

WAL File

Extent list
Active zone

Zone

Replace checker

Directly written

to WAL file
1

2 Appended at active zone

3
Completion

with ALBA

RocksDB

WAL File

Extent list
Active zone

Zone

Replace checker
Register new zone5

7
Record replaced zone at extent list

based on the dummy append result

4

A
llo

c
a

te
 n

e
w

 z
o

n
e

fro
m

 Z
o

n
e

 M
a

n
a

g
e

r

Zone

8 MT updateMT update4

(a) Example walk-through of Put (normal case) (b) Example walk-through of Put (zone replace)

6 Issue dummy append to replaced zone

Figure 7: Example walk-through of Put request

for this is that when a ZoneFile is allocated an active zone in ZenFS,

it provides separate protection to prevent another ZoneFile from

taking the same zone. Therefore, all data from the starting point of

the active zone is guaranteed to be originated from the recovered

WAL file. As for impact on recovery time, our design should restore

the write pointers of up to two WAL files if power loss occurs at

the time of the MemTable switch. This is the worst-case scenario.

Therefore, the recovery overhead added for WALTZ is up to two

dummy append operations. The average latency of the append com-

mand is measured to be about 93𝜇𝑠 . Since host write is disabled at

the time of recovery, there is no resource contention. Therefore, the

recovery time increase of WALTZ is about 200𝜇𝑠 at most, which is

negligible.

Implementation. We implement WALTZ on RocksDB v6.25.3

with the ZenFS v1.0.2 plugin for ZNS support. ZenFS uses the

libzbd [15] library to manage the ZNS SSD, but this library does not

support the append command. We port Intel Storage Performance

Development Kit (SPDK) [14] v22.01.2 to the ZenFS to support the

append command. WALTZ takes 1600 lines of code (LOC) in totalÐ

some 700 LOC to attach Intel SPDK to ZenFS and some 900 LOC

for the rest of the implementation.

3.3 Example Walk-through of Put Query

Figure 7(a) shows the example walk-through of a put query. When

a put request arrives, it is first written to the WAL file 1 . We find

the active zone registered in the WAL file and throw an append

command to the zone 2 . After the append is performed, we re-

trieve the ALBA from the completion entry and deliver it to the

Replacement Checker 3 . The Replacement Checker calculates the

remaining space of the active zone based on ALBA, and if enough

space remains, it goes directly to the MemTable insert phase 4 .

Figure 7(b) illustrates the zone replacement case. The replace-

ment procedure is triggered if the Replacement Checker detects a

failure of the append command or the remaining space calculated

from ALBA is less than the designated threshold. First, we retrieve

a new zone from Zone Manager 4 , and the assigned zone is regis-

tered as a new active zone for the WAL file 5 . And then, we throw

the dummy append 6 to check the valid area of the replaced zone.

If the dummy append fails, the extent size is calculated based on the

Table 1: System configurations.

CPU Intel(R) Core(TM) i9-9900K CPU 8 cores @ 3.6GHz

Memory Samsung DDR4 64GB

Storage PM1731a Samsung NVMe ZNS SSD 4TB

OS Ubuntu 18.04.6 LTS, Linux 5.16.11

RocksDB Version 6.25.3

SPDK Version 22.01.2 LTS

Table 2: Percentile latency of microbenchmarks, 20M re-

quests on 256GB database.

Uniform
Write only Mixed 7:3 Mixed 3:7

ZenFS WALTZ ZenFS WALTZ ZenFS WALTZ

50% 220.5 152.84 145.77 128.52 98.93 69.7

75% 312.71 239.15 203.16 169.54 157.99 120

Average 2547.84 2494.74 2408.66 2317.09 2237.42 2043.56

end LBA of the replaced zone, and if it is successful, the extent size

is calculated based on the ALBA returned from the dummy append

7 . Finally, the worker thread can proceed to the MemTable insert

phase 8 .

4 EVALUATION

We implement WALTZ upon the integrated system of Intel SPDK

and ZenFS. Therefore, to fair comparison, we set the SPDK inte-

grated ZenFS as our baseline.

System Configurations. We evaluate several experiments on a

single-node workstation with a PM1731a Samsung NVMe ZNS

SSD [18], which contains 40304 zones of 96MB size and a total

size of 4TB. Detailed hardware and software configurations are

described in Table 1. We use ZenFS, an open-source ZNS-based

RocksDB plugin, as a baseline. The db_bench tool [20, 21] provided

by RocksDB is used for our experiments. We configure the sync

option as enabled for strict consistency of WAL. Also, we set the

compression option as disabled and the number of background jobs

as 4 for flush and 4 for compaction. The number of worker threads,

which simultaneously issue the queries, was set to 4. For other

options, the default option of RocksDB is used.

2890



0
50000

100000
150000
200000
250000
300000

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

9
9
%

9
9

.9
%

9
9

.9
9

%

9
9

.9
9

9
%

9
9

.9
9

9
9

%

M
a

x

Write only Mixed 7:3 Mixed 3:7 Write only Mixed 7:3 Mixed 3:7
Uniform Zipfian

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

Figure 8: Percentile write latency of microbenchmarks, 20M requests on 256GB database. Lower is better.

0

2000

4000

6000

8000

10000

Write
only

Mixed
7:3

Mixed
3:7

Write
only

Mixed
7:3

Mixed
3:7

Uniform Zipfian

Q
P

S

ZenFS WALTZ

Figure 9: Throughput of microbenchmarks, 20M requests on

256GB database.

Workloads. We run the microbenchmarks and MixGraph [9]

benchmark for our evaluation using the db_bench tool. In our

experiments, we set the KV pair size as 4KB [42] and sequentially

filled the keys in the range of 64M to construct a total DB of 256GB

for the precondition. For the microbenchmarks, we conduct ex-

periments while varying the write ratio to 100%, 70%, and 30% on

the db_bench. Also, two types of key skewness are used: uniform

random and Zipfian distribution with a constant of 0.99. Finally, we

experimented with MixGraph, a synthetic workload that mimics

Facebook’s social graph workload with query composition and key

access patterns. The options of four workloads are introduced in

the paper [9]: All Random, All Dist, Prefix Random, and Prefix Dist

(AllRand, AllDist, PreRand, PreDist in short).

4.1 Microbenchmarks

Latency. Table 2 and Figure 8 show the percentile write latency

of the microbenchmark results. The overall latency distribution

shows a similar pattern. It means that although the decrease in

background jobs (flush, compaction), which is the effect of increas-

ing key skewness, actually affects the improvement of latency, both

the baseline and the WALTZ are equally affected. This shows that

WALTZ efficiently reduces synchronization overhead regardless of

key skewness.

As the ratio of write operations increases, the frequency of the

flush and compaction also increases. In ZenFS, the increasing ratio

of write operations causes conflicts between the put queries, such

as delaying the composition of batch-group writes. Also, the post-

processing of zones replaced from the active zone of the SST files

written by flush and compaction is exposed to the zone allocation,

which worsens the tail latency. WALTZ effectively hides such zone

allocation overhead to prevent deterioration in tail latency. Still,

as shown in Figure 3, synchronization overhead increases when

multi-threads simultaneously request the append command at a

single zone. Due to the characteristic of synchronization overhead,

WALTZ is affected by the conflicts between commands, so the tail

latency increases as the proportion of writes increases. However,

the degree of deterioration is relatively less than that of ZenFS, and

WALTZ achieves the max latency improvement by geomean 2.19×

and up to 3.02×.

Throughput. As shown in Figure 9, QPS is also improved up to

7.8% in a uniform random pattern and up to 11.7% in a Zipfian

pattern. The more reads are mixed, the higher the QPS because of

the fast speed of read compared to write, and the improvement over

baseline tended to be higher. As this result is an overall QPS analysis

in a multi-thread environment, the sync overhead of about 35.6%,

shown in the individual write latency breakdown at Figure 5, did

not fully appear in the total improvement. Mainly because, as can

be seen in Figure 3, the append command in the multi-thread envi-

ronment also showed an increase in average latency due to internal

synchronization overhead, which is similar to the average latency

of the write command used for comparison. Considering that the

write command is the result of including the synchronization over-

head from the host, there was a limitation in the performance of the

device to fully improve the sync overhead. Nevertheless, latency

spikes were improved as batch-group writes were eliminated, and

reads, which were limited by relatively slow writes and background

jobs, were able to achieve high performance. As a result of the

experiment, the average latency of read was also improved by up

to 7.46% even though we only the modified the WAL write path.

4.2 MixGraph Benchmarks

Latency. Figure 10 plots the percentile latency of four MixGraph

benchamrks. The baseline shows that tail latency varies greatly

depending on the workloads, but WALTZ performs put queries

with consistent tail latency. In ZenFS, it can be seen that the tail

latency performance deteriorated considerably in PreRand and Pre-

Dist, which was caused by the concentration of keys in the hot

2891



0

50000

100000

150000

200000

250000

300000

9
9
%

9
9
.9

%

9
9
.9

9
%

9
9
.9

9
9
%

9
9
.9

9
9
9
%

M
a
x

9
9
%

9
9

.9
%

9
9
.9

9
%

9
9
.9

9
9
%

9
9
.9

9
9
9
%

M
a
x

9
9
%

9
9
.9

%

9
9
.9

9
%

9
9
.9

9
9
%

9
9
.9

9
9
9
%

M
a
x

9
9
%

9
9

.9
%

9
9
.9

9
%

9
9
.9

9
9
%

9
9
.9

9
9
9
%

M
a
x

AllRand AllDist PreRand PreDist

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

Figure 10: Percentile write latency of four MixGraph benchmarks with 20M requests on 256GB database. Lower is better.

0

1000

2000

3000

4000

5000

6000

AllRand AllDist PreRand PreDist

Q
P

S

ZenFS WALTZ

Figure 11: Throughput of fourworkloads inMixGraph bench-

mark, 20M requests on 256GB database.

region. Prefix workload has the property of maintaining a higher

locality, which reduces the overhead caused by compaction. As the

compaction overhead is reduced, the frequency at which multiple

put queries are batched increases, and tail latency rather soars. As

we remove the synchronization overhead, it limits the tail latency,

and the tail latency improvement is achieved up to 4.73× and ge-

omean 2.45×. As shown in Table 3, the average latency of WALTZ

is also improved by up to 10.38% by reducing the extreme tail cases

and several optimizations such as zone reservation.

Throughput. Figure 11 shows the experimental results for through-

put. AllDist shows the highest QPS value among the four experi-

ments for both ZenFS and WALTZ, and the performance improve-

ment of WALTZ is also the highest with 2.70%. The rest of the

experiments also show slightly improved performance compared

to the baseline, and there is an improvement in 2.42% in geomean.

The reason why the improvement seems relatively smaller than the

microbenchmark is because of the scan operation. Although the

portion of scan query is only 3%, the average latency of scan queries

is measured at 14-15 ms, which is about 100 times higher than the

latency of a single get query. Overall DB stress is increased due to

these heavy-weight commands, and as a result, QPS improvement

is relatively small compared to the microbenchmark, but all cases

show an improvement compared to the baseline.

4.3 Sensitivity Study

Number of threads.We evaluate the throughput and latency of the

MixGraph PreDist workload by increasing the number of threads

from 2 to 8 to measure the effect of the number of threads. As

Table 3: Average Latency of MixGraph Benchmarks

Average Latency AllRand AllDist PreRand PreDist

ZenFS 1304.55 1158.41 1218.45 1129.41

WALTZ 1195.98 1041.66 1109.30 1012.15

Improvement 8.32% 10.08% 8.96% 10.38%

shown in Figure 12(a), QPS for both WALTZ and ZenFS improves

as the number of threads increases, and the difference widens up

to 5.35%. In Figure 12(b), we observe an increasing trend in latency

as the number of threads increases for both ZenFS and WALTZ.

ZenFS exhibits latency increase due to the synchronization over-

head associated with the batch-group write, while WALTZ, which

has effectively mitigated synchronization overhead, faces latency

increase due to the serialized processing of append commands by

the ZNS SSD. Despite the increment in average latency for both

systems, WALTZ consistently exhibits lower average latency than

ZenFS, achieving a reduction of up to 14.41%. Regardless of the num-

ber of threads, the maximum latency of WALTZ shows a geomean

4.45× improvement compared to ZenFS and by up to 5.10×.

Value size. To quantify the influence of key-value pair size, we

evaluated the performance of theMixGraph PreDist workload while

changing the key-value pair size to 0.5KB, 1KB, and 2KB. To test the

same amount as the 4KB experiment, in which 20M queries were

processed for a 256GB database, the key range and query count

were doubled by dividing the key-value pair size in half. As shown

in Figure 12(d), the decrement of key-value pair size makes the

QPS scales due to the overall decrease in traffic. Also, the average

latency decreases due to the smaller record size, hence reducing

the total amount of traffic within RocksDB. However, despite the

decreased record size, WALTZ still outperforms ZenFS due to the

existence of the batch-group write process, which can cause lock

overhead.

4.4 Write Amplification Factor (WAF) Analysis

We calculate the WAF of the entire database by dividing the amount

written to the device by the amount written by the host. Device

writes can be broadly categorized into flush, compaction, and WAL

writes. As WALTZ does not modify the LSM tree architecture, the

amount of device writes generated by flush and compaction is

comparable. The difference in WAF between ZenFS and WALTZ

2892



0

2000

4000

6000

8000

10000

2 3 4 5 6 7 8

Q
P

S

ZenFS WALTZ

0

50000

100000

150000

200000

250000

300000

2 3 4 5 6 7 8

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

0

5000

10000

15000

20000

25000

512B 1024B 2048B 4096B

Q
P

S

ZenFS WALTZ

0

50000

100000

150000

200000

250000

300000

512B 1024B 2048B 4096B

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

0

200

400

600

800

1000

1200

512B 1024B 2048B 4096B

L
a

te
n

c
y
 (

u
s
)

ZenFS WALTZ

(a) Throughput (b) Average Latency (c) Max Latency

(d) Throughput (e) Average Latency (f) Max Latency

Figure 12: Sensitivity study while varying (a-c) thread counts and (d-f) value sizes for MixGraph PreDist workload

8% 10% 13%
0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

P
e
rc

e
n

ta
g

e

Number of Threads

Follower Leader

Figure 13: Ratio of group leader and follower in PreDist work-

load on the baseline ZenFS

originates from the batch-group writes used by ZenFS. In batch-

group writes, the leader thread merges the records of followers and

writes them to the device at once. This can lead to lower WAF than

if each thread wrote its own records independently. Figure 13 shows

the ratio of leaders and followers in ZenFS as the number of threads

is changed for the MixGraph PreDist workload to analyze the WAF

difference caused by batch writes in ZenFS and WALTZ. WALTZ

treats all writes as leaders. As the number of threads increases,

there is a higher chance of overlapping write commands, so the

write portion of follower threads increases, reaching up to 13% for

8 threads. This means that ZenFS can reduce WAL writes by up

to 13%. However, the amount of compaction writes is 81.58 GB for

WALTZ and 81.4 GB for ZenFS, while the amount of WAL writes

is 10.7 GB for WALTZ and 9.3 GB for ZenFS, which indicates a

smaller proportion. As a result, although WALTZ’s WAF is slightly

increased by about 1.7% compared to ZenFS, this does not have a

significant impact compared to the serious tail latency issues and

bandwidth improvement.

4.5 Ablation Study

We propose three methods: a zone reservation feature that performs

zone allocation and replacement of WAL files in the background,

an append feature that uses the append command instead of the

0

50000

100000

150000

200000

250000

ZenFS ZenFS+R ZenFS+R+A WALTZ

L
a
te

n
c
y
 (

u
s
)

ZenFS ZenFS+R ZenFS+R+A WALTZ

Figure 14: Max latency of uniform random write-only work-

load, 5M requests on 64GB database. Lower is better.

write command to a WAL file, and parallel processing that removes

batch-group writes. We incrementally enable these features and

evaluate how each method affects the tail latency. Two more cases

are evaluated with baseline and WALTZ. ZenFS+R is the ZenFS, in

which Zone Manager is implemented and working for zone alloca-

tion and replacement. In the ZenFS+R+A, we change the recording

function of the WAL file from the write command to the append

command. Still, batch-group write is enabled in this case. We con-

figure the 64GB DB and test 20GB of writes in a uniform pattern for

evaluation, and the results are illustrated in Figure 14. ZenFS shows

the worst tail latency with 196807us, and we can find that the reser-

vation and replacement improve the tail latency with 107867us,

which is almost two times improved than ZenFS. It also means

that the current design, which iterates through all zones for zone

allocation and zone post-process of replacement, worsens the tail

latency.

The ZenFS+R+A shows the tail latency as 107396us, which is

almost the similar result of ZenFS+R. The only difference between

the two is the usage of the write command and append command.

The batch-group write is enabled for both, so the write and append

commands always work in single-threaded mode. Based on this,

it can be seen that it is challenging to improve tail latency simply

by changing the write command to the append command. Finally,

WALTZ with all features applied showed a tail latency of 58712us.

2893



0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 300 400 500 600 700

9
9

th
P

e
rc

e
n

ti
le

 L
a

te
n

c
y
 (

u
s
)

Time(s)

ZenFS WALTZ

Figure 15: 99% latency over time in uniform, write only work-

load, 5M requests on 64GB database

This result is about 1.84× improved from ZenFS+R+A, showing

how much the tail latency can be improved by skipping the batch-

group write and exposing only the write time of a single record.

Through these observations, although the zone append command

has several advantages, its advantages cannot be maximized by

simply replacing the write command with the append command.

We improved both tail latency and QPS through Zone Manager and

Replacement Checker and various optimizations in the WALTZ

design.

4.6 99th Percentile Latency over Time

Figure 15 illustrates the 99th percentile latency of ZenFS and

WALTZ by dividing the entire experiment time into 1-second units

and measuring 99% tail latency within each unit. A 64GB database is

configured for the measurement, and the latency of all put queries

is measured while giving 5M writes in a uniform pattern. In the

case of ZenFS, there are relatively few latency spikes from the 0s to

the 100s, which is the first part of the experiment. The main reason

is that a random write is started right after the DB is filled, so the

background jobs, such as flush and compaction, not yet heavily

occurs. This aspect is similar to WALTZ and shows a flat tail la-

tency without any latency spike in the first 100s section. However,

from the later section, ZenFS generates a 99th percentile latency

of about 70 ms, and the frequency of the latency spikes gradually

increases over time. As put queries are continuously applied to

the DB, compaction frequently occurs across all levels, and the

cascaded compaction caused by upper-level compaction repeatedly

occurs. Hence, the increase of fragmented zones generated from

the compaction operations makes the tail latency of the put query

even worse in ZenFS because it allocates the zone during the put

query processing. In the case of WALTZ, tail latency is no longer

maintained flat as the background operation increases, but the de-

gree of fluctuation is still much lower than that of the ZenFS. The

reason is that, in the WALTZ structure, Zone Manager reserves the

zone for the WAL file in the background so that the overhead of

zone allocation is not revealed during the put query of the worker

thread.

4.7 Effect of Batch-Group Writes

We further analyze how the batch-group write affects tail latency in

the RocksDB. Figure 16 is a graph plotted as a cumulative distribu-

tion function of write latency classified by batch count. For this, we

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4

Figure 16: Cumulative distribution function of write latency

over batch counts in PreDist workload of ZenFS

Table 4: Average write latency over batch counts

Batch 1 Batch 2 Batch 3 Batch 4

Average

write latency
625.51us 10834.81us 15785.25us 16388.01us

0

50000

100000

150000

200000

250000

300000

99% 99.90% 99.99% Max

W
ri
te

 l
a

te
n

c
y

Batch 1 Batch 2 Batch 3 Batch 4

Figure 17: Tail write latency over batch counts in PreDist

workload of ZenFS

Time

F
lu

s
h

 h
a
p

p
e
n

e
d

Thread 1 Batch Grouping Done

Thread 2 Merge Done

Thread 3 Merge Done

Thread 4 73us
Wait for

Grouping
Batch Grouping Done

Elapsed 258149us

Elapsed 241401us

Figure 18: Timeline of tail latency case of batch 1 and 3 in

PreDist workload of ZenFS

use the evaluation result of the baseline ZenFS while running the

PreDist benchmark of MixGraph. When the batch count is 1, the

write latency mainly spans the low latency section. It means that

most writes end quickly if batch-group is not performed. However,

as the number of batch-group increases, it can be seen that the pro-

portion of write latency is biased towards the high latency section.

This trend can also be seen in Table 4. We calculate the average

write latency of each batch count, and the increment tendency is

discovered while the number of grouped batches increases. In Fig-

ure 17, 99%, 99.9%, 99.99%, and max latency are plotted for in-depth

2894



analysis of tail latency, respectively. In this figure, the latency of

batch 3 soared sharply and that the maximum value for each batch

count occurred in batch 1 and 3 cases.

The reason why the batch 1 case shows extreme tail latency can

be seen again in Figure 2. Leader 2, which came in immediately

after leader 1’s batch grouping, waits for the entire storage write

time before starting batch grouping, so it is fully affected by the

latency spike of the preceding put queries. For this reason, the batch

4 case is a case in which all four threads participate in the group,

corresponding to the case where there is no preceding batch-group

in progress. The latency of the batch 4 case is only affected by the

increase in storage writing time and synchronization overhead,

without any interference between batch-group.

The detailed timeline for the max case of batch 1 and batch 3

can be found in Figure 18. Firstly, the put queries of Thread 4 is

done within 73us, and then, the flush operation is triggered in the

background. Immediately after the flush occurred, the put query of

Thread 1 became the leader, and the put queries of Threads 2 and 3

are merged. The second put query in Thread 4 is waiting for the

leader done without participating in the batch-group. Due to the

effect of the background job, Thread 1’s group write ended with a

delay, and Thread 1 terminated the group write with a write latency

of 258149us. After that, the write of thread 4 proceeded with storage

write as a group containing only a single batch and ended with a

latency of 241401us. This case is also a kind of overhead related

to the grouping of the batch-group write, and WALTZ improves

extreme tail latency by removing this overhead.

5 RELATED WORK

Zoned Namespace SSD with LSM Tree. Several studies [7, 28,

32, 36, 39, 40, 43] have been introduced to utilize the ZNS SSD.

ZoneFS [32] proposed a file system for ZNS SSDs and merged it

into the mainline of the Linux kernel. ZenFS [7] implemented the

plugin of the RocksDB for ZNS SSD and provided it as open-source.

ZoneFS and ZenFS are focused on analyzing the characteristics

of ZNS SSDs and implementing a base library to utilize them in

applications. They do not pay attention to the latency aspect of put

queries, which is the main target of WALTZ.

Write Amplification in LSM Tree over ZNS SSDs. In addition,

Lu et al. [37], CAZA [33], LL-compaction [29], and ZNSKV [41]

focused on the write amplification factor (WAF) of ZNS SSD and

proposed various methods to store the data with a similar life-

time at the same zone. Lu et al. [37] proposed a level-based zone

assignment based on the observation that upper-level files have

shorter lifetimes. This mechanism is similar to ZenFS, which uses

RocksDB’s write lifetime hint (WLTH) but provides a little more

fine-grained control than WLTH, which ties everything after level

3 to WLTH_EXTREME. Based on the fact that files are simulta-

neously deleted at the time of compaction, CAZA [33] proposed

allocating zones based on key range overlapping between adjacent

levels instead of a level-based allocation. LL-compaction [29] pro-

posed a method of splitting the SST based on the checkpoint of the

upper level at the time of compaction, minimizing the short-lived

SST of the lower level. Based on the SST splitting, LL-compaction

attempted to reduce write amplification incurred by compaction.

ZNSKV [41] also observed that the write amplification problem

by the key range overlapping at the adjacent level is more critical

in the ZNS SSD environment and introduced the adaptive weight

calculation to reduce GC overhead. These attempts suggested a way

to efficiently use ZNS SSD by reducing WAF but did not suggest a

way to reduce the tail latency.

Conventional Namespace SSD with LSM Tree. There have been

studies trying to accelerate key-value stores by utilizing the fast stor-

age media, such as NVMe. KVell [34] uses the in-memory B+ tree

to manage the index structure of KV pairs, to fully utilize the fast

random read/write speed characteristic of NVMe SSD. SpanDB [12]

and p2KVS [38] tried to solve the problem of batch-group write in

various ways. SpanDB [12] proposes a parallel mechanism that allo-

cates LBA first by lock-free fetch-and-add command and then store

the WAL record in parallel by using the allocated LBAs. p2KVS [38]

is configured to be applicable to various key-value databases by

portablely applying the request batching mechanism. Through the

batching technique of write and read requests, it is possible to

achieve outstanding performance in workloads with many small

KV items. Unfortunately, all of these methods are difficult to apply

directly to ZNS SSD.

Improving Tail Latency of LSM Tree. There is a work focused

on analyzing tail latency to improve user experience in key-value

stores. SILK [4] focuses on the fact that the user requests are af-

fected by compaction, causing latency spikes, and aims to improve

tail latency by prioritizing compaction likely to affect tail latency.

CruiseDB [35] applies a method to enhance tail latency by limiting

user requests entering the memory buffer of the LSM tree. These

existing methods attempt to improve the tail latency by controlling

the write rate or compaction priority. However, they are different

fromWALTZ because they do not address the effect of batch-group

write and targeting conventional namespace (CNS) SSDs.

6 CONCLUSION

We proposed WALTZ, a key-value store on ZNS SSD that improves

the tail latency of LSM-tree using zone append commands. In this

study, we first analyzed how the batch-group write affects the tail la-

tency and eliminated the synchronization overhead of batch-group

writes by leveraging the append command of ZNS SSD. The latency

impact was minimized by utilizing zone reservation and lazy meta-

data management techniques in handling zone-full cases that occur

during the parallel append process. In the experiment, we achieved

maximum 3.02× tail latency improvement and geomean 2.19× im-

provement compared to ZenFS for db_bench microbenchmarks

and up to 4.73× tail latency improvement for Facebook MixGraph

benchmarks. We also demonstrate that QPS is improved by up to

11.7% due to write path optimization.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments.

We also thank Meongchul Song and Sangyeun Cho from Samsung

Electronics for providing PM1731a ZNS SSDs for our evaluation.

This work was supported in part by an Institute of Information &

Communications Technology Planning & Evaluation (IITP) grant

(2021-0-00853, Developing Software Platform for PIM Program-

ming) funded by the Korea Government (MSIT). Jae W. Lee is the

corresponding author.

2895



REFERENCES
[1] Apache. [online]. Apache Cassandra. https://cassandra.apache.org. [Accessed

25-07-2023].
[2] Apache. [online]. Apache HBase. https://hbase.apache.org. [Accessed 25-07-

2023].
[3] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, andMyoungsoo Jung. 2022. What

you can’t forget: exploiting parallelism for zoned namespaces. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and File Systems. 79ś85.

[4] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar
Chandhiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes
in Log-Structured Merge Key-Value Stores. In 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19). USENIX Association, Renton, WA, 753ś766.
https://www.usenix.org/conference/atc19/presentation/balmau

[5] Matias Bjùrling. 2019. From Open-Channel SSDs to Zoned Namespaces. In Linux
Storage and File systems Conference (Vault’19).

[6] Matias Bjùrling. 2020. Zone Append: A New Way of Writing to Zoned Storage.
In Linux Storage and File systems Conference (Vault’20).

[7] Matias Bjùrling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le
Moal, Gregory R. Ganger, and George Amvrosiadis. 2021. ZNS: Avoiding the
Block Interface Tax for Flash-based SSDs. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, 689ś703. https://www.
usenix.org/conference/atc21/presentation/bjorling

[8] Matias Bjùrling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The
Linux Open-Channel SSD Subsystem. In 15th USENIX Conference on File and Stor-
age Technologies (FAST 17). USENIX Association, Santa Clara, CA, 359ś374. https:
//www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 209ś223. https://www.usenix.org/conference/
fast20/presentation/cao-zhichao

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1ś26.

[11] Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: A Content-Aware
Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid
State Drives.. In 9th USENIX Conference on File and Storage Technologies (FAST
11), Vol. 11. USENIX Association, 77ś90.

[12] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage. In 19th
USENIX Conference on File and Storage Technologies (FAST 21). USENIX Associa-
tion, 17ś32. https://www.usenix.org/conference/fast21/presentation/chen-hao

[13] Gunhee Choi, Kwanghee Lee, MyunghoonOh, Jongmoo Choi, Jhuyeong Jhin, and
Yongseok Oh. 2020. A New LSM-style Garbage Collection Scheme for ZNS SSDs.
In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
20). USENIX Association. https://www.usenix.org/conference/hotstorage20/
presentation/choi

[14] Intel Corporation. [online]. Storage Performance Development Kit (SPDK).
https://spdk.io/. [Accessed 25-07-2023].

[15] Western Digital Corporation. [online]. libzbd. https://github.com/
westerndigitalcorporation/libzbd. [Accessed 25-07-2023].

[16] Western Digital Corporation. [online]. Zoned Storage. https://zonedstorage.io/.
[Accessed 25-07-2023].

[17] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74ś80.

[18] Samsung Electronics. [online]. Samsung Introduces Its First ZNS
SSD With Maximized User Capacity and Enhanced Lifespan. https:
//news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-
maximized-user-capacity-and-enhanced-lifespan. [Accessed 25-07-2023].

[19] NVM express workgroup. [online]. NVMe Zoned Namespaces (ZNS) Com-
mand Set Specification. https://nvmexpress.org/specification/nvme-zoned-
namespaces-zns-command-set-specification/. [Accessed 25-07-2023].

[20] Facebook. [online]. Benchmarking tools. https://github.com/facebook/rocksdb/
wiki/Benchmarking-tools. [Accessed 25-07-2023].

[21] Facebook. [online]. A persistent key-value store for fast storage environments.
http://rocksdb.org. [Accessed 25-07-2023].

[22] Sanjay Ghemawat and Jeff Dean. [online]. LevelDB: A Fast Persistent Key-Value
Store. https://github.com/google/leveldb. [Accessed 25-07-2023].

[23] Simon Greaves, Yasushi Kanai, and Hiroaki Muraoka. 2009. Shingled Recording

for 2ś3 Tbit/in2 . IEEE Transactions on Magnetics 45, 10 (2009), 3823ś3829.

[24] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A Flash
Translation Layer Employing Demand-Based Selective Caching of Page-Level
Address Mappings. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Washington,
DC, USA) (ASPLOS XIV). Association for Computing Machinery, New York, NY,
USA, 229ś240. https://doi.org/10.1145/1508244.1508271

[25] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, An-
drew A. Chien, and Haryadi S. Gunawi. 2016. The Tail at Store: A Revela-
tion from Millions of Hours of Disk and SSD Deployments. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Association,
Santa Clara, CA, 263ś276. https://www.usenix.org/conference/fast16/technical-
sessions/presentation/hao

[26] HGST. 2017. Libzbc Version 5.4. 1. (2017).
[27] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. 2022. Accelerating RocksDB

for small-zone ZNS SSDs by parallel I/O mechanism. In Proceedings of the 23rd
International Middleware Conference Industrial Track. 15ś21.

[28] Peiquan Jin, Xiangyu Zhuang, Yongping Luo, and Mingchen Lu. 2021. Explor-
ing index structures for zoned namespaces SSDs. In 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 5919ś5922.

[29] Jeeyoon Jung and Dongkun Shin. 2022. Lifetime-leveling LSM-tree compaction
for ZNS SSD. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage
and File Systems. 100ś105.

[30] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The
Multi-streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 14).

[31] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO Complying
SSDs Through OPS Isolation. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). USENIX Association, Santa Clara, CA, 183ś189. https://
www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho

[32] Damien LeMoal and Ting Yao. 2020. zonefs:Mapping POSIX File System Interface
to Raw Zoned Block Device Accesses. (2020).

[33] Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim. 2022.
Compaction-aware zone allocation for LSM based key-value store on ZNS SSDs.
In Proceedings of the 14th ACMWorkshop on Hot Topics in Storage and File Systems.
93ś99.

[34] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. Kvell:
the design and implementation of a fast persistent key-value store. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. 447ś461.

[35] Junkai Liang and Yunpeng Chai. 2021. CruiseDB: An LSM-Tree Key-Value Store
with Both Better Tail Throughput and Tail Latency. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 1032ś1043.

[36] Renping Liu, Zhenhua Tan, Yan Shen, Linbo Long, and Duo Liu. 2022. Fair-ZNS:
Enhancing Fairness in ZNS SSDs through Self-balancing I/O Scheduling. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).

[37] Mingchen Lu, Chen Tang, and Peiquan Jin. 2022. Revisiting LSM-Tree-Based
Key-Value Stores for ZNS SSDs. In 2022 IEEE International Conference on Big Data
(Big Data). IEEE, 6772ś6774.

[38] Ziyi Lu, Qiang Cao, Hong Jiang, Shucheng Wang, and Yuanyuan Dong. 2022.
P2KVS: A Portable 2-Dimensional Parallelizing Framework to Improve Scal-
ability of Key-Value Stores on SSDs. In Proceedings of the Seventeenth Eu-
ropean Conference on Computer Systems (Rennes, France) (EuroSys 22). As-
sociation for Computing Machinery, New York, NY, USA, 575ś591. https:
//doi.org/10.1145/3492321.3519567

[39] Yanqi Lv, Peiquan Jin, Xiaoliang Wang, Ruicheng Liu, Liming Fang, Yuanjin Lin,
and Kuankuan Guo. 2022. ZonedStore: A Concurrent ZNS-Aware Cache System
for Cloud Data Storage. In 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1322ś1325.

[40] Hojin Shin, Myounghoon Oh, Gunhee Choi, and Jongmoo Choi. 2020. Exploring
performance characteristics of ZNS SSDs: Observation and implication. In 2020
9th Non-Volatile Memory Systems and Applications Symposium (NVMSA). IEEE,
1ś5.

[41] Denghui Wu, Biyong Liu, Wei Zhao, andWei Tong. 2022. ZNSKV: Reducing Data
Migration in LSMT-Based KV Stores on ZNS SSDs. In 2022 IEEE 40th International
Conference on Computer Design (ICCD). IEEE, 411ś414.

[42] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
17ś31. https://www.usenix.org/conference/atc20/presentation/yao

[43] Yiwen Zhang, Ting Yao, Jiguang Wan, and Changsheng Xie. 2022. Building
GC-free key-value store on HM-SMR drives with ZoneFS. ACM Transactions on
Storage (TOS) 18, 3 (2022), 1ś23.

2896

https://cassandra.apache.org
https://hbase.apache.org
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast21/presentation/chen-hao
https://www.usenix.org/conference/hotstorage20/presentation/choi
https://www.usenix.org/conference/hotstorage20/presentation/choi
https://spdk.io/
https://github.com/westerndigitalcorporation/libzbd
https://github.com/westerndigitalcorporation/libzbd
https://zonedstorage.io/
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
http://rocksdb.org
https://github.com/google/leveldb
https://doi.org/10.1145/1508244.1508271
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://www.usenix.org/conference/fast16/technical-sessions/presentation/hao
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://doi.org/10.1145/3492321.3519567
https://doi.org/10.1145/3492321.3519567
https://www.usenix.org/conference/atc20/presentation/yao

	Abstract
	1 Introduction
	2 Background
	2.1 Log-Structured Merge (LSM) Tree
	2.2 Zoned Namespace (ZNS) SSD
	2.3 LSM Tree with ZNS SSD
	2.4 Overhead of Batch-Group Write

	3 WALTZ: Design and Implementation
	3.1 Overview
	3.2 Design of WALTZ
	3.3 Example Walk-through of Put Query

	4 Evaluation
	4.1 Microbenchmarks
	4.2 MixGraph Benchmarks
	4.3 Sensitivity Study
	4.4 Write Amplification Factor (WAF) Analysis 
	4.5 Ablation Study
	4.6 99th Percentile Latency over Time
	4.7 Effect of Batch-Group Writes

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

