
Fast Search-By-Classification for Large-Scale Databases Using
Index-Aware Decision Trees and Random Forests

Christian Lülf

University of Münster

Münster, Germany

christian.luelf@uni-muenster.de

Denis Mayr Lima Martins

University of Münster

Münster, Germany

denis.martins@uni-muenster.de

Marcos Antonio Vaz Salles
∗

Independent Researcher

Portugal

msalles@acm.org

Yongluan Zhou

University of Copenhagen

Copenhagen, Denmark

zhou@di.ku.dk

Fabian Gieseke

University of Münster

Münster, Germany

fabian.gieseke@uni-muenster.de

ABSTRACT

The vast amounts of data collected in various domains pose great

challenges to modern data exploration and analysis. To find “inter-

esting” objects in large databases, users typically define a query

using positive and negative example objects and train a classifi-

cation model to identify the objects of interest in the entire data

catalog. However, this approach requires a scan of all the data to

apply the classification model to each instance in the data catalog,

making this method prohibitively expensive to be employed in

large-scale databases serving many users and queries interactively.

In this work, we propose a novel framework for such search-by-

classification scenarios that allows users to interactively search for

target objects by specifying queries through a small set of positive

and negative examples. Unlike previous approaches, our frame-

work can rapidly answer such queries at low cost without scanning

the entire database. Our framework is based on an index-aware

construction scheme for decision trees and random forests that

transforms the inference phase of these classification models into a

set of range queries, which in turn can be efficiently executed by

leveraging multidimensional indexing structures. Our experiments

show that queries over large data catalogs with hundreds of millions

of objects can be processed in a few seconds using a single server,

compared to hours needed by classical scanning-based approaches.

PVLDB Reference Format:

Christian Lülf, Denis Mayr Lima Martins, Marcos Antonio Vaz Salles,

Yongluan Zhou, and Fabian Gieseke. Fast Search-By-Classification for

Large-Scale Databases Using Index-Aware Decision Trees and Random

Forests. PVLDB, 16(11): 2845 - 2857, 2023.

doi:10.14778/3611479.3611492

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/decisionbranches/decisionbranches.

∗
Work was primarily performed while the author was at the University of Copenhagen.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611492

1 INTRODUCTION

The data volumes produced and processed in many domains are

massive. In remote sensing and astronomy, for instance, the amount

of data is currently rising to a new level due to technical advance-

ments in satellites and telescopes [9, 30, 44]. In particular, the un-

precedented pace of increase in spatial and temporal resolutions

is leading to the assembly of large-scale surveys consisting of ex-

abytes of valuable data, as it is the case for the data catalogs associ-

ated with the Sentinel missions operated by the European Space

Agency (ESA) [13] or the Large Synoptic Survey Telescope [22]. A

common task in these and other domains is the search for “inter-

esting” objects [3, 33, 43] in such massive databases, i.e., objects

of particular value for a specific application. For example, an as-

tronomer might be interested in a special type of galaxy, while

a data analyst in the energy sector might be interested in wind

turbines visible in satellite imagery.

There are two prominent methodologies to address such search

tasks from a technical perspective. The first one is based on nearest

neighbor search, where a user query is specified via a query ob-

ject, and objects similar to the query object are returned as query

result [26]. These query scenarios are known under the guise of

content-based (image) retrieval [40] and have led to popular search

engines such as Google’s reverse image search or geospatial search

engines [26]. In general, the corresponding user queries can be

answered efficiently using index structures or approximation tech-

niques [4, 27]. However, the restriction of nearest neighbor queries

to a single search item per query may lead to incomplete and inac-

curate query results, as it is challenging to model the user’s intent

based on a single query instance. This restriction is particularly

problematic when it is necessary to identify all instances of an inter-
esting object in a given database, such as finding all wind turbines

in satellite imagery to estimate their quantity. In such scenarios,

the use of nearest neighbor search methods may prove insufficient.

The second methodology is based on the application of ma-

chine learning models, in particular classification models such as

decision trees. Such a search-by-classification approach involves

using a (small) labeled data set containing both positive and neg-

ative instances. Based on this data set—which can be seen as a

“user query”—a classification model is trained. During the inference

phase, the entire database is scanned, and the trained model is ap-

plied to classify each object. Only the objects classified as belonging

to the target class (e.g., class “special galaxy”) will be returned as

2845

https://doi.org/10.14778/3611479.3611492
https://github.com/decisionbranches/decisionbranches
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611492
https://www.acm.org/publications/policies/artifact-review-and-badging-current

User Query 2

Database

User Query 1

Training
Inference

(Scanning)

Inference

(Scanning)

Training

positive (query)

negative (query)

classif. model

positive (DB)

negative (DB)

Figure 1: Traditional search-by-classification trains models for each query set, causing latency or high costs when scanning

the entire database. Our framework leverages a co-design of indexes and models for efficient retrieval of positive instances,

significantly reducing search time.

the search result. As users can specify both types of objects—the

ones the search should return and those it should not return—search-
by-classification approaches can capture the user’s query intent

more precisely and, hence, generally produce search results with

higher quality compared to single-object queries [7, 9, 42]. However,

despite its superiority, search engines serving many users cannot

employ this approach since scanning the entire database per user

query is too time-consuming and induces a high latency.

Figure 1 illustrates the concept of search-by-classification on a

database of satellite imagery over which many user queries have

to be executed. Here, a data analyst can specify both “interesting”

objects, such as different wind turbines, as well as “non-interesting”

examples, such as ships or chimneys, via a binary classification

data set (left: red and black borders indicate positive and negative

examples, respectively). A classification model (middle: yellow re-

gions) is then trained using suitable features extracted from the

data (for the sake of illustration, a two-dimensional feature space is

shown; typically, more features are considered). The classification

model is then applied to the entire database and the objects classi-

fied as “interesting” are returned to the user (right: yellow dashed

border; false positives/negatives are possible). Note that each user

query requires a new training and a new scan of the entire database

(e.g., “User Query 2” induces a new model and different results).

Although the training phase might not take much time for small

query data sets (e.g., training a decision tree might take a tenth of

a second or less), the inference phase generally requires scanning

all the data for each incoming user query, which can become very

time-consuming for large data catalogs, with each query taking

hours or even more to complete. Hence, the search-by-classification

strategy either implies high latency—i.e., a long time necessary to

scan the entire database—or high costs—i.e., the costs caused by the

parallelization of scans over a massively parallel infrastructure to

reduce the latency. Note that a typical user query aims at finding a

relatively small subset of “interesting” objects in the database, i.e.,

the answers sets are often very small compared with the totality of

the objects (e.g., in a database of satellite imagery, only one out of

one million image patches might show a wind turbine). Thus, we

would ideally wish to devise a method with per-query costs that

do not grow in proportion to the input database size.

Feature

Extractor

Index Builder

User Query
Feature

Extractor

Index-Aware

Classifier

Inference via

Range Queries

Target

Objects

Offline Preprocessing

Query Processing

. . .

indexes

idx1 idx𝑘

Features

Features

Data

Figure 2: Fast search-by-classification with an index-aware

classifier and pre-built indexes. The classifier uses range

queries on indexes for efficient inference and obtains tar-

get objects quickly via spatial lookups, bypassing data scans.

Contributions: In this work, we introduce a novel search-by-

classification framework that allows us to return an answer set

efficiently with low latency and at low cost by exploiting pre-built

index structures, see Figure 2. More precisely, we propose a co-

design of machine learning models and indexes for fast search-by-

classification. As detailed in Section 3, a set of multidimensional

index structures is built in an offline phase, where each index corre-

sponds to a random subset of features (which are extracted from the

data). These multidimensional indexes are constructed only once for
the entire database and are independent of a particular user query.
Afterwards, in the query processing phase, a new classification

model is trained for each new user query, where the construction

of this model is “index-aware”, i.e., during the construction, infor-

mation about the indexes built in the offline phase is taken into

account. Instead of scanning the entire data catalog, the instances

being classified as positive (“Target Objects”) can then be efficiently

retrieved via range queries, i.e., the inference phase is supported by

means of fast lookups over the pre-built index structures. Hence, for

a typical user query with a small answer set, one can quickly return

all the desired instances with minimal computing resources, which

is essential for interactive search engines. Of note, this paper pri-

marily focuses on databases with infrequent changes. In summary,

our main contributions are as follows:

2846

(i) We propose a novel search-by-classification framework, which

resorts to a co-design of index structures and machine learn-

ing models. Users can formulate queries with positive and

negative examples and the retrieval of target objects in large

databases can be done in a few seconds instead of the hours

that scanning-based approaches would typically need.

(ii) To realize this framework, we propose an “index-aware” con-

struction scheme for decision trees and random forests.
1
Our

central idea involves the construction of decision-tree-like

models based on low-dimensional feature subsets that match

multidimensional index structures. More precisely, we build

fragments of the trees following a novel bottom-up construc-

tion instead of the well-known and commonly applied top-

down construction scheme. The resulting models exhibit two

important properties: (a) the classification quality of the mod-

els created bottom-up is close to that of their original top-

down counterparts, and (b) the set of database instances as-

signed to the positive class in the inference phase can be

efficiently retrieved via range queries.

(iii) We provide a prototype of our search-by-classification frame-

work,
2
implemented in Python with Cython optimizations.

We also implemented a graphical search engine on top of the

prototype (accessible at https://web.rapid.earth).

(iv) We conduct an extensive experimental evaluation of our pro-

totype, which includes a case study in the geospatial domain

with more than a billion image patches, a detailed analysis of

the involved parameters, and an extensive comparison with

competing search strategies. The results show that our search-

by-classification framework yields accuracy comparable with

traditional search-by-classification schemes that repeatedly

scan the entire database while returning the results in a frac-

tion of the time needed by those methods.

2 BACKGROUND

We consider search tasks with user queries consisting of positive

and negative examples, see again “User Query 1” and “User Query 2”

in Figure 1. That is, each user query gives rise to a binary classi-

fication task and a user query is provided in the form of a data

set 𝑇 = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} ⊂ R𝑑 × Y with Y = {0, 1}, where
a (x𝑖 , 𝑦𝑖) with 𝑦𝑖 = 1 corresponds to a positive example (target

class) and 𝑦𝑖 = 0 to a negative example. Here, 𝑑 corresponds to the

number of features that are either given or that are extracted per

instance. For instance, in the case of image data, a feature extractor

can be applied to extract meaningful features, see again Figure 2.

2.1 Decision Trees and Tree Ensembles

Decision trees are simple yet powerful models and remain among

the most popular methods in machine learning [8, 20]. Typically,

decision trees are built recursively in a top-down manner, see Al-

gorithm 1. The root of the tree to be built corresponds to a subset

𝑆 ⊆ 𝑇 of the available data instances (e.g., a subset of the data

1
Leveraging multidimensional indexes in the framework requires classifiers that are

efficient to construct and can be represented as range predicates. These requirements

are naturally fulfilled by decision trees and random forests, which belong to the most

powerful classification models in machine learning [14]. Incorporating other models,

such as deep neural networks or boosted trees, is subject of future research.

2
https://github.com/decisionbranches/decisionbranches

Algorithm 1 TopDownConstruct(𝑆 , 𝜇)

Require: Set 𝑆 ⊂ R𝑑 × Y and 𝜇 ∈ {1, . . . , 𝑑 }.
Ensure: Decision tree T built for 𝑆

1: if 𝑆 is pure (or some other criterion fulfilled) then

2: return leaf node

3: end if

4: (𝑖∗, 𝜃 ∗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈{𝑖1,...,𝑖𝜇 }⊆{1,...,𝑑},𝜃𝐺𝑖,𝜃 (𝑆)
5: T𝑙 = TopDownConstruct(𝐿𝑖,𝜃)

6: T𝑟 = TopDownConstruct(𝑅𝑖,𝜃)

7: Generate node storing the pair (𝑖∗, 𝜃 ∗) and pointers to its subtrees T𝑙
and T𝑟 . Let T denote the resulting tree.

8: return T

sampled uniformly at random with replacement). During the re-

cursive construction, the data are typically split into two subsets

at each node, which form the basis for the recursive construction

of two subtrees that are the children of that node. The recursion

stops as soon as an associated subset is pure, which means that all

the instances belong to the same class, or as soon as some other

stopping criterion is fulfilled. Each internal node corresponds to

a subset 𝑆 ⊆ 𝑇 of instances, which is split via a splitting dimen-

sion 𝑖 ∈ {𝑖1, . . . , 𝑖𝜇 } and an appropriately chosen threshold 𝜃 ∈ R,
where 𝜇 ≤ 𝑑 is a user-defined parameter that determines the num-

ber of random features that are considered per split. Typically, one

aims at maximizing the so-called information gain, defined as:

𝐺𝑖,𝜃 (𝑆) = 𝑄 (𝑆) −
|𝐿𝑖,𝜃 |
|𝑆 | 𝑄 (𝐿𝑖,𝜃) −

|𝑅𝑖,𝜃 |
|𝑆 | 𝑄 (𝑅𝑖,𝜃) (1)

Here, 𝐿𝑖,𝜃 = {(x, 𝑦) ∈ 𝑆 | 𝑥𝑖 ≤ 𝜃 } is the subset of 𝑆 containing

the elements whose 𝑖-th feature is less or equal to the threshold 𝜃

and 𝑅𝑖,𝜃 = {(x, 𝑦) ∈ 𝑆 | 𝑥𝑖 > 𝜃 } the subset of 𝑆 containing the

remaining instances. Maximizing the information gain corresponds

to minimizing the (weighted) “impurities” of the two subsets above,

which is typically quantified by an impurity measure 𝑄 [8, 20]. For

binary classification scenarios—on which we focus in this work—

one typically resorts to the Gini index, which is defined as

𝑄 (𝑆) =
1∑︁

𝑐=0

𝑝𝑐𝑆 (1 − 𝑝
𝑐
𝑆), (2)

where 𝑝𝑐
𝑆
corresponds to the fraction of points in 𝑆 belonging to

class 𝑐 ∈ {0, 1}. Given a decision tree, the predicted class for a new

data point x ∈ R𝑑 is obtained by traversing the tree from top to

bottom and by resorting to the information stored in that particular

leaf (e.g., dominant class of the training instances assigned to that

leaf). To avoid overfitting, fully-grown decision trees are often

pruned in a post-processing phase.

While decision trees often exhibit a good performance in prac-

tice, their quality can be typically improved by considering en-

sembles. Random forests are a prominent example of this class of

techniques [8]. A random forest consists of a user-defined num-

ber𝑀 of decision trees T1, . . . ,T𝑀 , which are built independently

from each other. To obtain different individual models, one can

consider so-called bootstrap samples that are drawn uniformly

at random (with replacement) from the data 𝑇 , different subsets

{𝑖1, . . . , 𝑖𝜇 } of features for each node split, and different (random)

splitting thresholds. A prediction ℎ(x) for a new point x ∈ R𝑑 is

2847

https://web.rapid.earth
https://github.com/decisionbranches/decisionbranches

then obtained by combining the individual predictions, that is

ℎ(x) = C (ℎ1 (x), . . . , ℎ𝑀 (x)) , (3)

where C : R𝑀 → R depends on the learning scenario. For classifi-

cation scenarios, a common choice is the majority vote [8, 20], i.e.,

C (ℎ1 (x), . . . , ℎ𝑀 (x)) = argmax𝑐∈Y |{𝑖 | ℎ𝑖 (x) = 𝑐}|. For standard
random forests [8], the optimal splitting threshold is computed as in

Line 4 of Algorithm 1. A well-known alternative choice is to instead

select a random threshold between the minimum and the maxi-

mum feature value, which yields so-called extremely randomized

trees [18]. It is worth stressing that such potentially “suboptimal”

thresholds often yield competitive if not superior tree ensembles.

2.2 Multidimensional Indexes

Our novel index-aware classifier transforms the inference phase of

decision trees and random forests to a set of range queries in low-

dimensional spaces. Such queries are efficiently supported by spatial

index structures, such as k-d trees [4], which are commonly used in

the context of, e.g., database systems or nearest neighbor search [16].

We therefore briefly summarize a few important concepts behind

these index structures that are necessary for this work.

For multidimensional data, a k-d tree is a popular choice to

speed up range queries and nearest neighbor search [4]. A k-d
tree is a balanced binary search tree that recursively partitions the

search space into two half-spaces at each node. Given 𝑁 points

in the 𝑑-dimensional Euclidean space, such a tree can be built in

O(𝑁 log𝑁) time using linear-time median finding and occupies

O(𝑁) additional space [4]. The time complexity of orthogonal

range queries with multidimensional axis-parallel boxes defining

the regions of interest over a k-d tree can be upper-bounded, in

the worst case, by O(𝑑𝑁 1−1/𝑑 +𝑞), where 𝑞 is the number of points

returned [29]. Hence, sublinear time is needed to answer such

queries. In practice, a k-d tree exhibits good performance for small𝑑 ,

e.g.,𝑑 = 3, and can be constructed as to store data objects in external

memorywhile the tree is kept inmainmemory [5]. Another popular

index structure for multidimensional data is the so-called range

tree, which, along with fractional cascading, enables queries to

be answered in O(log𝑑−1 𝑁 + 𝑞) time at the cost of an increased

construction time and space consumption of O(𝑁 log
𝑑−1 𝑁) [10].

Care must be exercised when employing index structures over

high-dimensional data. In particular, the difference in distances of

a point to its nearest and farthest points drops dramatically as 𝑑

is increased, making indexing less and less effective [6]. At dimen-

sionality as low as 𝑑 = 5, this effect is already highly pronounced,

while indexes are expected to be outperformed by a full scan of the

data at 𝑑 values as low as 10 [6].

2.3 Decision Trees and Range Queries

During the inference phase of a standard decision tree built for a

classification data set, a new instance is classified as positive in

case the tree traversal ends up in a leaf containing only or mostly

positive instances (e.g., if the decision is based on majority vote).

A simple yet crucial observation is that orthogonal range queries

can be employed—namely, one range query per leaf of the tree

that corresponds to the positive class—to obtain all instances in the

database that would be classified as positive. Figure 3 illustrates

0 1 2 3 4 5 6

0

1

2

3

4

5

6

𝐵1

𝐵2

𝑥1

𝑥
2

positive negative 𝑥2≤ 3.1

𝑥2≤ 2.4

𝑥1≤ 3.4

negative 𝑥2≤ 2.1

positive negative

positive

negative

Figure 3: A decision tree partitions instances for two features.

Inference phase classifies all instances in the yellow boxes as

"positive." Retrieving positive instances from a large database

is achieved through two orthogonal range queries.

this observation for 𝑑 = 2 features. Without any optimization,

these range queries would necessitate a full scan of the database

to determine if instances fall within the bounds of a positive leaf.

Instead, given a corresponding index structure pre-built for the

database, this would allow to rapidly return the desired instances

per user query without the need of a full scan in case one is given a

low-dimensional feature space (e.g., 𝑑 ≤ 4).

However, in practice, more than two features are typically needed

in order to achieve a satisfactory classification performance, i.e.,

decision trees are usually based on splits in many dimensions (e.g.,

𝑑 = 100). There are two simple but suboptimal ways to conduct the

range queries for such high-dimensional feature spaces:

(i) Complete feature space: A naive approach would be to build

a single 𝑑-dimensional index and to conduct a range query

for each positive leaf. However, as discussed in Section 2.2,

conducting such range queries would generally not be effi-

cient, i.e., the increase in dimensionality, in general, negates

the benefits of index structures.

(ii) Restricted feature space: An alternative approach would be

to consider only a small subset of the features (e.g., only 4

features) when constructing a decision tree, so that the un-

derlying feature space can efficiently be indexed. However,

as shown in our experiments, this variant leads to models

exhibiting a worse classification quality, especially given clas-

sification tasks that require many features to be taken into

account. Also, considering multiple such low-dimensional

feature spaces and picking the one that leads to the best clas-

sification performance generally leads to significantly worse

results compared to a construction based on all 𝑑 features.

Next, we show how to efficiently implement the search for target

objects without sacrificing classification quality.

3 EFFICIENT SEARCH-BY-CLASSIFICATION

We start by outlining the overall search-by-classification framework,

prior to providing the details of the algorithmic building blocks.

3.1 Overall Framework

The framework is based on two phases, (1) an offline preprocessing

phase and (2) a query processing phase, see again Figure 2.

(i) Offline preprocessing: The offline preprocessing phase is only

conducted once for the entire database to pre-build a set of in-

dex structures. First, the data are processed via a feature extrac-

tor that outputs a 𝑑-dimensional feature vector per instance.

2848

The features should capture general characteristics of the data

and are not tailored to any specific query.
3
Afterwards,𝑘 index

structures idx1, . . . , idx𝑘 are built via an index builder. More

precisely, 𝑘 random feature subsets 𝐹1, . . . , 𝐹𝑘 ⊂ {1, . . . , 𝑑}
with |𝐹𝑖 | = 𝐷 for 𝑖 = 1, . . . , 𝑘 are considered, where 1 ≤ 𝐷 ≤ 𝑑
is some small constant (e.g., 𝐷 = 4). For each of these subsets

𝐹𝑖 , a corresponding multidimensional index idx𝑖 is built. For

instance, given 𝑑 = 100 features and 𝐷 = 4, idx1 could be an

index for the feature subset 𝐹1 = {17, 51, 60, 80}, idx2 an index

for 𝐹2 = {11, 45, 49, 99}, and so on.

(ii) Query processing: In the query processing phase, each user

query is formulated via a binary classification data set. First,

the feature extractor used in the offline preprocessing phase

is also used to extract a feature vector for each instance of the

data set. Next, an adapted version of a decision tree/random

forest is built for the given data set. As detailed below, infor-

mation about the indexes built in the offline preprocessing

phase are considered during the construction of these classi-

fiers (dashed lines in Figure 2) such that the database instances

being classified as “positive” can be efficiently retrieved via

orthogonal range queries, supported by a corresponding index

structure (solid lines).

Note that, since 𝐷 is small, the index structures built in the of-

fline preprocessing phase will support efficient range queries in

the spaces defined by the feature subsets. Typically, quite many

index structures have to be built for our approach (e.g., 𝑘 = 100 or

more).
4
Next, in Section 3.2, we provide the details of our novel

construction scheme for decision trees and random forests used

in the query processing phase. In a nutshell, we build fragments

of the decision trees following a new bottom-up approach instead

of the well-known and commonly applied top-down construction

scheme. These decision branches allow for efficient retrieval of the

desired instances from the database, as we will show in Section 3.3.

3.2 Decision Branches

Our approach is based on an alternative construction scheme for

decision trees, which essentially (only) yields the bottom parts of

decision trees, which we call decision branches. Each of the decision

branches is associated with a 𝑑-dimensional box 𝐵, similar to a leaf

of a decision tree. We define 𝐵 as 𝐵 = (𝑙1, 𝑟1] × · · · × (𝑙𝑑 , 𝑟𝑑] ⊂ R
𝑑

with R = R ∪ {−∞, +∞}. If the dimension 𝑖 of a box 𝐵 is left- and

right-bounded (i.e., 𝑙𝑖 > −∞ and 𝑟𝑖 < +∞), we call it bounded w.r.t.

dimension 𝑖 , whereas if it is left- or right-bounded (i.e., 𝑙𝑖 > −∞
or 𝑟𝑖 < +∞), we call it half-bounded w.r.t. dimension 𝑖; otherwise,

we call it unbounded w.r.t. dimension 𝑖 .5 Furthermore, we denote

the number of half-bounded and bounded dimensions of a box 𝐵

by 𝑛𝑏 (𝐵) and the number of unbounded dimensions by 𝑛𝑢 (𝐵), re-
spectively. For instance, in Figure 3, the first box 𝐵1 is bounded w.r.t.

the second dimension and unbounded w.r.t. the first dimension (i.e.,

3
For images, these features could be based on information on color, shape, edges,

and orientation. Such features can be extracted in an automatic manner via, e.g., pre-

trained or unsupervised deep neural networks, see Section 4. In case features are

already available, no feature extractor has to be applied.

4
While sufficiently many feature subsets need to be available, large values for 𝑘 also

lead to an increased space consumption. This trade-off will be discussed in Section 4.

5
Note that, if a feature 𝑖 ∈ {1, . . . , 𝑑 } is not used in any of the nodes from the root to

a leaf of a classical decision tree, then the dimension 𝑖 of the box associated with that

leaf is unbounded, i.e., 𝑙𝑖 = −∞ and 𝑟𝑖 = +∞.

Algorithm 2 DecisionBranches(𝑇 , 𝐹1, . . . , 𝐹𝑘 , 𝑝 , 𝜇)

Require: Data 𝑇 = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} ⊂ R𝑑 × {0, 1},
𝐹1, . . . , 𝐹𝑘 ⊂ {1, . . . , 𝑑} with |𝐹𝑖 | = 𝐷 , 𝑖 = 1, . . . , 𝑘 , for some

1 ≤ 𝐷 ≤ 𝑑 , 1 ≤ 𝑝 ≤ 𝑘 , and 𝜇 ∈ {1, . . . , 𝑑}.
Ensure: Set T = {(𝐵1,B1) , . . . , (𝐵𝑙 ,B𝑙)} of 𝑑-dimensional boxes

𝐵1, . . . , 𝐵𝑙 with 𝑛𝑏 (𝐵𝑖) ≤ 𝐷 for 𝑖 = 1, . . . , 𝑙 along with associ-

ated decision branches B1, . . . ,B𝑙 .
1: 𝑇0 ← {(x, 𝑦) ∈ 𝑇 |𝑦 = 0}; 𝑇1 ← {(x, 𝑦) ∈ 𝑇 |𝑦 = 1}
2: T ← {}
3: repeat

4: Let (x′, 𝑦′) by any positive instance in 𝑇1
5: 𝑔𝑜𝑝𝑡 ← 0; 𝐵𝑜𝑝𝑡 ← 𝑁𝑜𝑛𝑒

6: F = {𝐹𝑖1 , . . . , 𝐹𝑖𝑝 } ⊆ {𝐹1, . . . , 𝐹𝑘 }
7: for each 𝐹 ∈ F do

8: 𝐵,𝑔← GreedyMaxGainBox(𝑇0 ∪𝑇1, x′, 𝐹)
9: if 𝑔 > 𝑔𝑜𝑝𝑡 then

10: 𝑔𝑜𝑝𝑡 ← 𝑔; 𝐵𝑜𝑝𝑡 ← 𝐵

11: end if

12: end for

13: 𝑇1, 𝑅1 ← RemoveInstances(𝑇1, 𝐵𝑜𝑝𝑡)
14: 𝑇0, 𝑅0 ← RemoveInstances(𝑇0, 𝐵𝑜𝑝𝑡)
15: B ← TopDownConstruct(𝑅0 ∪ 𝑅1, 𝜇)
16: T ← T ∪

(
𝐵𝑜𝑝𝑡 ,B

)
17: until 𝑇1 is empty

18: return T

𝑛𝑏 (𝐵1) = 1 and 𝑛𝑢 (𝐵1) = 1), whereas the second box 𝐵2 is half-

bounded w.r.t. both dimensions (i.e., 𝑛𝑏 (𝐵2) = 2 and 𝑛𝑢 (𝐵2) = 0).

A crucial aspect of our approach is that each box 𝐵 associated

with a decision branch will be bounded in a few dimensions only

(e.g., 𝑛𝑏 (𝐵) ≤ 4) and that it will contain “mostly” positive instances.

Also, the union of all these boxes will cover all the positive in-

stances of a given query data set. Finally, the construction of the

branches and the boxes will be conducted in such a way that, for

each box 𝐵, the bounded dimensions will correspond to one of the

index structures that were built for the entire database in the offline

preprocessing phase. This will allow to efficiently retrieve all the

database instances belonging to the boxes.

The construction scheme detailed next is, hence, “index-aware”

in the sense that the generation of the decision branches and asso-

ciated boxes takes the index structures into account that were built

in the offline preprocessing phase, see again Figure 2.

3.2.1 Constructing Decision Branches. Our construction scheme

for decision branches is implemented via the function Decision-

Branches shown in Algorithm 2. Its input is composed of a training

set 𝑇 (corresponding to a single user query), the 𝑘 feature subsets

𝐹1, . . . , 𝐹𝑘 ⊂ {1, . . . , 𝑑} mentioned above with |𝐹𝑖 | = 𝐷 ≤ 𝑑 for

𝑖 = 1, . . . , 𝑘 and 1 ≤ 𝐷 ≤ 𝑑 , a number 1 ≤ 𝑝 ≤ 𝑘 of feature subsets

to be tested per iteration, and a constant 𝜇 ∈ {1, . . . , 𝑑}.6
After initializing the two sets 𝑇0 = {(x, 𝑦) ∈ 𝑇 |𝑦 = 0} and

𝑇1 = {(x, 𝑦) ∈ 𝑇 |𝑦 = 1}, the algorithm incrementally removes

positive instances from 𝑇1. For each such positive instance (x′, 1),
a 𝑑-dimensional box is found containing x′ and potentially more

6
The parameters 𝜇 and 𝑝 denote the number of features/feature subsets tested per

iteration of the top-down and bottom-up construction, respectively.

2849

Algorithm 3 GreedyMaxGainBox(𝑆 , x′, 𝐹)

Require: 𝑆 = {(x1, 𝑦1), . . . , (x𝑚, 𝑦𝑚)} ⊂ R𝑑 × {0, 1}, x′ ∈ R𝑑 , and
𝐹 ⊂ {1, . . . , 𝑑} with |𝐹 | = 𝐷 for some 1 ≤ 𝐷 ≤ 𝑑 .

Ensure: Box 𝐵 ⊂ R𝑑 with 𝑛𝑏 (𝐵) ≤ 𝐷 and gain 𝑔 ∈ R.
1: 𝐹𝑠 = (𝑖1, . . . , 𝑖𝐷) ← RandomSeqence(𝐹)
2: 𝐵 ← InitialEmptyBox(x′, 𝑆 , 𝐹𝑠)
3: for 𝑗 = 1, . . . , 𝐷 do

4: 𝐵 ← ExpandBox(x′, 𝑆, 𝐵, 𝑖 𝑗)
5: end for

6: 𝑔← Gain(𝑆, 𝐵)
7: return 𝐵,𝑔

data points. This is achieved by considering a random subset F =

{𝐹𝑖1 , . . . , 𝐹𝑖𝑝 } ⊆ {𝐹1, . . . , 𝐹𝑘 } of the given feature subsets 𝐹1, . . . , 𝐹𝑘

and by selecting the box 𝐵𝑜𝑝𝑡 ⊂ R
𝑑
that maximizes an information

gain computed via the function GreedyMaxGainBox (see below).

Given the box 𝐵𝑜𝑝𝑡 , the function RemoveInstances removes all in-

stances from𝑇0 and𝑇1 whose data points are contained in 𝐵𝑜𝑝𝑡 (see

Algorithm 4). The instances removed from 𝑇0 and 𝑇1 are collected

in the sets 𝑅0 and 𝑅1, respectively, and are subsequently used as

input for the function TopDownConstruct, which simply builds

a classical decision tree for this subset in a top-down manner, yield-

ing the decision branch B (which consists of a single node in case

𝑅0 ∪ 𝑅1 is pure). Both the box 𝐵𝑜𝑝𝑡 and the decision branch B are

added to the set T , which forms the output of DecisionBranches

after all iterations are done.

Each call of DecisionBranches returns a set of decision branches

alongwith the associated boxes. In this context, 𝐵 is a𝑑-dimensional

box (with atmost𝐷 bounded dimensions) resulting from the bottom-

up construction phase (Lines 4–14 in Algorithm 2), while B is a

decision branch that corresponds to a small decision (sub-)tree

(constructed in a top-down manner), which separates the subset

𝑅0 ∪ 𝑅1 of the training points contained in 𝐵 (Line 15 of Algorithm

2). Overall, the set of all decision branches corresponds to a stan-

dard decision tree built in a top-down manner for all data points.

Note, however, that we do not build this complete decision tree, but

only the decision branches. Some examples of decision branches

are provided in Figure 5. Each decision branch B (lower part of a

decision tree) in the figure corresponds to a feature space 𝐹 ∈ F
and can be seen as a branch of an overall decision tree (outlined in

gray; not built). The bounding box 𝐵 associated with a given B is

visualized as a dashed black rectangle. The leaves of the branches

corresponding to the positive class are highlighted in yellow.

3.2.2 Maximum Gain Boxes. The function GreedyMaxGainBox,

shown in Algorithm 3, computes, for a given point x′ ∈ R𝑑 , a
subset 𝑆 ⊆ 𝑇 of the training instances, and a feature subset 𝐹 ⊂
{1, . . . , 𝑑}, a 𝑑-dimensional box 𝐵 with 𝑛𝑏 (𝐵) ≤ 𝐷 along with an

associated gain 𝑔 ∈ R. In a first step, a fixed yet random feature

index sequence 𝐹𝑠 is defined based on 𝐹 . In a second step, the

function InitialEmptyBox computes an initial box 𝐵 that only

contains the point x′ (and possibly duplicates of x′) and heuristically
covers as much empty space as possible in the dimensions specified

by 𝐹𝑠 (see Section 3.4 for the implementation details).

Next, this box is expanded according to an information gain

criterion defined below by iterating over the same feature index

Algorithm 4 RemoveInstances(𝑇, 𝐵)

Require: Data set 𝑇 = {(x1, 𝑦1), . . . , (x𝑚, 𝑦𝑚)} ⊂ R𝑑 × {0, 1} and
𝑑-dimensional box 𝐵 ⊂ R𝑑

Ensure: Data sets 𝑇 ⊂ R𝑑 × {0, 1} and 𝑅 ⊂ R𝑑 × {0, 1}
1: 𝑅 ← {(x, 𝑦) ∈ 𝑇 | x ∈ 𝐵}
2: 𝑇 ← {(x, 𝑦) ∈ 𝑇 | x ∉ 𝐵}
3: return 𝑇, 𝑅

(a) Initial Box (b) 𝑖1 (c) 𝑖2 (d) Final Box

Figure 4: ExpandBox: The red points depict positive and the

black points negative instances, respectively. The initially

covered point corresponds to the positive instance x.

sequence 𝐹𝑠 and by applying the function ExpandBox, see Figure 4.

More precisely, for each dimension 𝑖 𝑗 in Line 4, both the left and

right boundary of the current box𝐵 are expandedw.r.t. dimension 𝑖 𝑗 .

This is done by only considering the points of 𝑆 ⊂ 𝑆 that are

contained in a box 𝐵, which is the same box as 𝐵 except that the left

and right boundary in dimension 𝑖 𝑗 are set−∞ and +∞, respectively.
To expand the left boundary in dimension 𝑖 𝑗 , the points x ∈ 𝑆 with

𝑥𝑖 𝑗 < 𝑥
′
𝑖 𝑗
are sorted in increasing order w.r.t. their distance |𝑥𝑖 𝑗 −𝑥 ′𝑖 𝑗 |

to the point x′ in dimension 𝑖 𝑗 . Starting with 𝐼 = {x′}, the sorted
points are then processed incrementally and added to the set 𝐼 . Let

𝑂 = 𝑆\𝐼 be the set of remaining “outer” points. To decide if the left

boundary should be expanded, we compute the gain 𝐺 (𝑆) via:

𝐺 (𝑆) = 𝑄 (𝑆) − |𝐼 ||𝑆 |𝑄 (𝐼) −
|𝑂 |
|𝑆 | 𝑄 (𝑂) (4)

As for decision trees, 𝑄 is a classification impurity measure such as

the Gini index. After all or a pre-defined number 𝑝𝑚 of points (e.g.,

𝑝𝑚 = 20) have been processed, the new left boundary 𝑙𝑖 𝑗 of 𝐵 in

dimension 𝑖 𝑗 is set to the value so that the gain 𝐺 (𝑆) is maximized.

The right boundary 𝑟𝑖 𝑗 of 𝐵 is computed similarly. The expansion

is repeated for 𝑗 = 1, . . . , 𝐷 . In Figure 4, the overall process is

visualized for the case of 𝐷 = 2.

Overall, the goal of ExpandBox is to expand the initial box in

such a way that information gain is maximized (similarly to top-

down construction of decision trees). At the end of Algorithm 3,

the function Gain is used to compute the final gain induced by the

“split” of 𝑆 into 𝐼 = 𝑆 ∩ 𝐵 and 𝑂 = 𝑆\𝐼 . Both the final box 𝐵 as well

as the final gain 𝑔 are returned by GreedyMaxGainBox.

3.2.3 Comparison with Decision Trees. Our construction scheme

is hypothesized to produce fragments of standard decision trees,

as they share common characteristics such as orthogonal splits,

splits respecting infinity, and training based on an impurity crite-

rion. In principle, these models could be generated via a top-down

approach, which suggests that they belong to the same model space

and are expected to achieve comparable generalization (confirmed

empirically in Section 4.3.2). Yet, each box along with its associated

2850

D
e
c
i
s
i
o
n
B
r
a
n
c
h
e
s

User Query 1

User Query 2

Training

Indexed Database

𝑥1

𝑥2 𝑥28

𝑥1

𝑥10

𝑥9 𝑥5

𝑥7 𝑥10

𝑥9

id𝑥4 (𝑥9 , 𝑥10) id𝑥𝑘 (𝑥3 , 𝑥5)id𝑥3 (𝑥1 , 𝑥2)id𝑥1 (𝑥1 , 𝑥28) id𝑥2 (𝑥5 , 𝑥7)

positive (query)

negative (query)

classif. model

positive (DB)

negative (DB)

Figure 5: Answering user queries via decision branches and

index structures pre-built for large databases.

decision branch only resort to a few features, which will enable fast

spatial look-ups in the database. Also note that, for each positive

instance, a large set of 𝑘 feature subsets is considered to identify

an appropriate box containing mostly positive instances, which

is motivated by the observation that, when constructing normal

decision trees, care must (only) be taken when constructing the

lower parts of the trees (i.e., essentially, arbitrary splits can be made

in the top parts of trees, whereas discriminative feature splits are

needed for the lower parts) [19].

3.2.4 Decision Branch Ensembles. The bottom-up construction

scheme for the decision branches is driven by introducing ran-

domness in various phases. For instance, a random sequence 𝐹𝑠
is defined based on 𝐹 in GreedyMaxGainBox. While this use of

randomness is not strictly needed for single calls to Decision-

Branches, it is crucial when generating ensembles of decision

branches, as is the case for standard tree ensembles such as random

forests and extremely randomized trees. Based on this observation,

deriving an ensemble consisting of decision branch models is then

straightforward and can be done by simply combining the sets

T1, . . . ,T𝑀 obtained by𝑀 calls of DecisionBranches, where only

the instances of the database are returned that are classified as

positive by the majority of the models.

3.3 Fast Query Processing

The remaining task is efficient inferencing via range queries (Fig-

ure 2). Overall, we aim at processing many user queries with small

latencies given a large database. In addition, we assume limited

computational resources; in particular, our approach does not rely

on the use of many servers. As mentioned above, we begin by pre-

building a large number of index structures 𝑖𝑑𝑥1, . . . , 𝑖𝑑𝑥𝑘 in the

offline preprocessing phase. Note again that these indexes have to

be built only once beforehand and are independent of a particular

user query. The processing of a new user query, i.e., for a new data

set 𝑇 = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} ⊂ R𝑑 × {0, 1} consisting of a few

positive and many negative instances, then proceeds as follows:

(1) In the first step, a set of decision branches (corresponding to a

decision tree) is built via the function DecisionBranches.

(2) In the second step, we conduct, for each decision branch B with

associated box 𝐵 and feature subset 𝐹 , an orthogonal range

query using the index structure built beforehand for 𝐹 to re-

trieve all instances of the database contained in 𝐵.

(3) Finally, in the third step, these instances are classified into

positive or negative by the corresponding decision branches,

where only positive instances are returned to the user.

Note that a crucial ingredient for the efficiency of our query pro-

cessing is that each resulting box 𝐵 ⊂ R𝑑 associated with a decision

branch is only (half-)bounded in a few dimensions, i.e., 𝑛𝑏 (𝐵) ≤ 𝐷 ,
where 𝐷 is a small constant (e.g., 𝐷 = 4). This property stems from

the fact that such boxes are constrained using only the features pro-

vided by a set 𝐹 ⊂ {1, . . . , 𝑑} with |𝐹 | = 𝐷 , see again Algorithm 3.

Thus, the index that is available for that feature subset 𝐹 can be

used to efficiently conduct the corresponding range query.

The workflow is illustrated in Figure 5. To sum up, for each user

query given as a classification data set, a set of decision branches

is constructed. Each decision branch corresponds to a box (black

dashed rectangles), and the database instances being contained

in one of the boxes can quickly be retrieved using the associated

index. The resulting (small) answer sets are then filtered for positive

instances via the corresponding decision branch for each box.

3.4 Implementation Details

Here we provide some details related to InitialEmptyBox and

TopDownConstruct used inAlgorithm 2, as well as to thememory

layout and space consumption of the index structures.

3.4.1 Initial Box. For the sake of completeness, we provide details

related to the function InitialEmptyBox. For a given point x′ ∈ R𝑑 ,
a subset 𝑆 of training instances, and a sequence 𝐹𝑠 = (𝑖1, . . . , 𝑖𝐷), the
procedure InitialEmptyBox constructs a 𝑑-dimensional box 𝐵 that

only contains the query point x′ and no other points. At the same

time, this box also covers as much empty space as possible in the

dimensions specified by 𝐹𝑠 . The box is computed by deriving bounds

for the dimensions specified by 𝐹𝑠 ; the left and right bounds for the

other dimensions are set to −∞ and +∞, respectively. Identifying
such a box is known to be computationally challenging, even for

low-dimensional spaces.
7

3.4.2 Decision Branch Models. In case 𝑅0 ∪ 𝑅1 is pure, TopDown-

Construct in Algorithm 2 returns a single node. Given an im-

pure set in 𝐵𝑜𝑝𝑡 (see, e.g., Figure 4d), the procedure TopDownCon-

struct builds a tree B for the instances given in 𝑅0 ∪ 𝑅1. In our

7
This problem is known as the maximal empty rectangle containing a query point,

i.e., finding the largest axis-parallel rectangle 𝑅 over a set of 𝑛 points such that 𝑅

contains only a given query point. In high-dimensional spaces, finding 𝑅 is non-trivial,

with recent solutions in O(𝑙𝑜𝑔4𝑛) time complexity [24]. We propose a simple yet

effective heuristic that (a) efficiently yields good initial boxes fulfilling the desired

properties and that (b) is also driven by some randomness such that different boxes

are obtained across different runs. As for the other functions, introducing randomness

is important for the construction of ensembles (see above). We illustrate the process of

box initialization with an example in Figure 6.

2851

(a) Start (b) 𝑖1 (c) 𝑖2 (d) Box

Figure 6: Illustration of InitialEmptyBox.

experiments, we consider two versions to implement this function.

The first one, Ta, resorts to all 𝑑 features. The second one, Ts, only

considers the 𝐷 features specified by the feature subset 𝐹 that cor-

responds to the box 𝐵𝑜𝑝𝑡 (i.e., B ⊂ 𝐵𝑜𝑝𝑡 holds true). The benefit of
the first implementation is that it generally yields slightly better

models in terms of classification accuracy. However, it requires

retrieving the full set of 𝑑 features returned by the range query. The

benefit of the second approach is that the 𝐷 features can directly

be stored in the leaves of the index structures (using O(𝑁𝐷) addi-
tional space), which, in turn, allows for immediate retrieval of the

features needed when processing the range queries. However, this

variant generally yields slightly worse classification results than

Ta, see Section 4.

3.4.3 Hybrid Memory K-D Trees. A large number 𝑘 of index struc-

tures have to be pre-built for a large database. For k-d trees, O(𝑁)
additional space is needed, where 𝑁 is the number of elements in

the database. Hence, given a large 𝑘 , it might not be feasible to

keep all these index structures in the main memory of a system.

In order to address this problem, we implement an efficient k-d
tree-based index that supports multidimensional range queries and

leverages disk storage. In particular, our k-d tree implementation

only stores the tree structure up to the leaves in main memory. The

leaves containing the instances with all their features are stored

consecutively on disk. If a query is now forwarded to the index

structure, only the leaves that intersect with the query rectangle

need to be loaded from disk. A crucial hyperparameter for the suc-

cess of our k-d tree index is the leaf size. The smaller the size of

the leaves, the less data not contained in the query rectangle is

falsely loaded. Since the bottleneck of this method will tend to be

the data loading time from disk, it can be expected that a smaller

leaf size leads to faster query times. On the other hand, the loading

time is also influenced by the block size of the underlying (file)

system: leaves that are smaller than the actual block size cannot

make proper use of device bandwidth. Additionally, the larger the

leaf size, the smaller are the parts of the k-d trees that have to be

kept in main memory. Ultimately, we meet a trade-off among all of

these factors, making the optimal leaf size a critical hyperparameter

that has to be determined before constructing the indexes. As we

will show in our experiments, it is possible to keep the top parts of

k-d trees in main memory for a large number k of index structures.

4 EXPERIMENTS

We provide an extensive evaluation of our approach w.r.t. three

aspects: (1) efficiency of index-supported decision branches and

ensembles in terms of inference runtime against scan-based evalua-

tion of decision trees and random forests as well as nearest neighbor

search (Section 4.2); (2) sensitivity of decision branches models to

Table 1: Summary of model notation.

Parameter Description

B Bottom-up (depth of B is 0)

Ts Bottom-up + top-down (using 𝐷 features)

Ta Bottom-up + top-down (using all 𝑑 features)

<num>t DBEns: number of estimators (default: 25t)
<num> DBranch/DBEns: D (default: 10)

<num> DTree/RForest: # of features used (default: all)

crucial hyperparameters and comparison to traditional tree-based

algorithms in (imbalanced) binary classification tasks (Section 4.3);

and (3) trade-off between storage consumption of the underlying

index structures and performance (Section 4.4). In particular, we

consider a realistic case study with more than a billion data points.

The results show that our search-by-classification framework yields

as accurate results as traditional search-by-classification schemes

(that have to scan the entire database per user query), albeit at

dramatically reduced query processing times.

4.1 Experimental Setup

All experiments were conducted on an Ubuntu 18.04 server with

24 AMD EPYC 7402P cores, 192 GB DDR4-RAM and 30 TB of NVMe

storage. The construction schemes for decision branches and for the

hybrid memory k-d tree were implemented in Python 3.8, where

Cython was used for computationally intensive parts.

4.1.1 Models. We consider the Scikit-Learn [36] implementations

of decision trees (DTree), random forests (RForest), and extremely

randomized trees (ExTrees) as baseline search-by-classification

models (which retrieve the positive instances by scanning the en-

tire database). These models are compared with our novel decision

branch approach (DBranch) as well as with a corresponding ensem-

ble variant (DBEns) introduced in Section 3.2.4. For both DBranch

and DBEns, three versions are considered. For the first version (B),
TopDownConstruct returns a single node, i.e., all the decision

branch models have depth zero. The other two versions, Ts and Ta,
are described in Section 3.4.2. For Ts, TopDownConstruct only

uses the features 𝐹 ∈ F that yielded the box 𝐵𝑜𝑝𝑡 (see Algorithm 2).

In contrast, TopDownConstruct resorts all the 𝑑 features for Ta.
An overview of the notation is provided in Table 1. In our evalua-

tion, we aim to demonstrate that our decision tree and tree ensemble

variants yield a competitive classification performance compared to

the aforementioned baselines, without the need to scan the entire

data catalog. Additionally, we include an efficient exact nearest

neighbor search baseline (denoted by NNB) for comparison, which

uses our k-d tree implementation [5] to accelerate the search. This

baseline indicates the classification performance that users would

experience when interacting with an NN-based search engine that

only allows single-instance search queries, an approach commonly

found in visual search engines [26]. To establish a fair compari-

son, we treat the NNB as a model, where all K nearest neighbors

produced given a user query are considered to be positive, while

all other instances are considered to be negative.
8
We assess its

classification performance as an average among all single-instance

8
The value of K is set to the true number of corresponding positive instances per user

query/training set. Note that such important information is actually not known in

practice, which, hence, gives the NNB an unfair advantage.

2852

searches obtained from the positive instances in a training set, thus

abstracting a notion of typical result quality.

4.1.2 Metrics. We assess the quality of the models using the 𝐹1-

score, defined as the harmonic mean of precision P and recall R,
i.e., 𝐹1 = 2 · P·R/(P+R). The application-level impact of a high 𝐹1-

score (e.g., ~0.8) is achieving a good trade-off between precision and

recall, where the system misses only a few relevant objects during

the search. In addition to measuring the total execution time 𝑇𝑡𝑜𝑡𝑎𝑙
for the approaches, we also measure the training time 𝑇𝑡𝑟𝑎𝑖𝑛 and

the query time 𝑇𝑞𝑢𝑒𝑟𝑦 for the different models, where the former

captures the time needed to build the classification models and the

latter to retrieve instances from the database.

4.2 Efficiency Study of Index-Aware Models

(a) Chimney (b) Plane (c) Ship

(d) PV Panel (e) Tank (f) Turbine

Figure 7: Aerial Data Set

We begin by demonstrating the

effectiveness of our approach

through a geospatial case study,

using 12.5 cm per pixel reso-

lution aerial imagery of Den-

mark from 2018 (non-public data

set). The images are decomposed

into 256×256 pixel patches, re-

sulting in a data set size of 𝑁 =

1, 441, 557, 000 patches. We iden-

tified and manually collected la-

bels for six classes of potentially

interesting objects, namely chimneys, planes, ships, PV panels, stor-

age tanks, and (wind) turbines, see Figure 7. Feature extraction was

performed via a ResNet101 neural network [21] pretrained on Ima-

geNet [38], where the feature embedding layer was adapted to yield

𝑑 = 50 features. The model weights were fine-tuned by training the

network for a few epochs using labeled patches over 7 classes (i.e.,

those depicted in Figure 7 and an additional class for “other objects”)

and the Adam optimizer [28] with a learning rate of 0.0001.9 Note

that the ResNet101 was used only as a pre-processing step, since

its application would have required scanning the complete data set

for every user query.

To generate realistic queries, we considered, for each user query,

a set of 30 “rare” patches (𝑦 = 1) belonging to the target class

(e.g., PV panels). We also utilized 30, 000 “non-rare” patches (𝑦 = 0)

for each query, which were selected uniformly at random from the

catalog (containing 𝑁 patches). This approach can be justified by (a)

the assumption that non-rare patches are extremely more frequent

than rare ones for the search tasks addressed (e.g., only about one

out of one hundred thousand patches corresponds to a PV panel,

which leads to only a few falsely labeled instances in our user query)

and by (b) that a user query in practice might also contain a few

falsely labeled instances (e.g., non-rare patches labeled as rare).
10

4.2.1 Query Response Time and Classification Quality. We com-

pare the average total time 𝑇𝑡𝑜𝑡𝑎𝑙 of user queries induced by the

9
ResNet101 yielded satisfying results [21]. Although several alternative methods could

be applied for the purpose of feature extraction, we argue that the quality of features

would affect all downstream models, including our competitors, random forests and

decision trees. The extraction of “optimal” features depends on the data considered

and is not the main goal of our study.

10
Note that machine learning models, including those considered in this work, can

typically deal with a small amount of such “label noise”.

six classes shown in Figure 7. As detailed above, each query was

composed of 30, 030 training instances. The quality in terms of

𝐹1-score was computed using a hold-out set consisting of 110, 000

labeled instances, whereas the runtime results were obtained using

the entire database with 𝑁 instances. We repeated the experiment

five times with different seeds (accounting for randomness) and

report averaged runtimes and scores.

The k-d tree indexes were built for 𝐷 = 3 and different values

for 𝑘 ∈ {50, 150, 300} with a fixed leaf size of 5, 632. To implement a

fast NNB, we built another k-d tree using all the 𝑁 instances in the

database and three (random) features. The leaf size was set to 43

and the full tree was loaded into memory (including the leaves). We

measured the query time for NNB by searching for the K = 1, 000

nearest neighbors of 100 labeled interesting data instances and

report the average query times. The 𝐹1-score was obtained via the

hold-out set of 110, 000 labeled instances, where for each user query

instance, K was set to the (true) number of positive instances in

the entire database.

Table 2 summarizes the results obtained. For 𝑘 = 300 (right col-

umn), the fastest DBranch model (DBranch
[B,3]

) achieved a 715×
lower 𝑇𝑡𝑜𝑡𝑎𝑙 than the DTree model, while exhibiting a comparable

𝐹1-score. In the ensemble case, ensembles with of 5 and 25 deci-

sion branch models were considered, respectively. Here, the fastest

DBEns model (DBEns
[Ts ,5t,3]

) achieved a 195× lower 𝑇𝑡𝑜𝑡𝑎𝑙 than the
RForest (25 trees) and ExTrees (25 trees) with a similar 𝐹1-score. The

NNB was substantially faster than the other approaches, yielded,

however, a significantly worse 𝐹1-score.
11

The table also provides

insights w.r.t. space consumption and model quality. Specifically,

600 GB of disk storage were required to store the entire database,

while the k-d tree indexes required 13 TB of additional storage for

𝑘 = 300 (to store the associated leaves). These storage requirements

could be reduced at a minor expense in 𝐹1-score by selecting a

lower value of 𝑘 (e.g., 50 or 150), see again Table 2.

4.2.2 Optimal𝑘-d Tree Leaf Size. Next, we investigate the influence
of the leaf size of our k-d trees by considering k-d trees with varying
leaf sizes.

12
This experiment was conducted for two feature subset

sizes, 𝐷 = 3 and 𝐷 = 6, and for each of the two cases, 𝑘 = 10

random feature subsets were considered. For each of these feature

subsets, k-d trees with leaf sizes ranging from 22 to 22,582 were

built. For each of the six classes shown in Figure 7, one user query

was generated, each with 30 positive and 30,000 negative instances.

Fitting a decision branch model for each such query led to a set

of range queries (i.e., the 𝐵𝑜𝑝𝑡 boxes), which were processed by

a corresponding k-d tree index. To assess the impact of the leaf

sizes on the query time, we report the average query time needed

to process such user queries for each case and for each leaf size.

We repeated the experiments for two settings, which we call “cold”

and “warm”. For the cold setting, underlying caches (e.g. disk, OS)

were emptied, whereas for the warm setting the loaded objects

11
Another NNB based on 𝑑 = 50 features also resulted in a similar 𝐹1-score, while

exhibiting a significantly worse query time. The corresponding results were there-

fore disregarded. Note that we also excluded approximate nearest neighbor search

algorithms since they would have generally led to even worse 𝐹1 scores, despite their

potential to further reduce the query time.

12
The leaf size of a k-d tree impacts the runtime when executing range queries. Here,

a smaller leaf size leads to a higher cost of traversing the tree, but a lower cost for

scanning the points contained in the leaves intersecting with a query rectangle.

2853

Table 2: Results on aerial image data set (size 0.6 TB). Time in seconds. Index size is reported next to each value of 𝑘 .

Model

𝑘 = 50→ 2.17 TB 𝑘 = 150→ 6.5 TB 𝑘 = 300→ 13 TB

𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑞𝑢𝑒𝑟𝑦 𝑇𝑡𝑜𝑡𝑎𝑙 𝐹1-score 𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑞𝑢𝑒𝑟𝑦 𝑇𝑡𝑜𝑡𝑎𝑙 𝐹1-score 𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑞𝑢𝑒𝑟𝑦 𝑇𝑡𝑜𝑡𝑎𝑙 𝐹1-score

DBranch
[B,3]

0.307 1.556 1.863 0.800 0.398 1.047 1.445 0.833 0.583 0.971 1.554 0.850

DBranch
[Ts ,3]

0.310 1.445 1.756 0.801 0.399 1.090 1.489 0.824 0.567 0.892 1.459 0.847

DBranch
[Ta ,3]

0.335 16.618 16.953 0.818 0.420 14.685 15.105 0.833 0.672 13.844 14.516 0.854

DTree 0.855 1,043.433 1,044.288 0.829 0.855 1,043.433 1,044.288 0.829 0.855 1,043.433 1,044.288 0.829

NNB — 0.298 0.298 0.431 — 0.298 0.298 0.431 — 0.298 0.298 0.431

DBEns
[B,5t,3]

0.529 9.760 10.288 0.895 0.993 5.666 6.658 0.914 1.862 5.156 7.018 0.912

DBEns
[Ts ,5t,3]

0.508 8.418 8.926 0.884 1.013 5.455 6.468 0.904 1.886 4.895 6.780 0.904

DBEns
[B,25t,3]

0.891 28.607 29.497 0.915 1.543 22.639 24.182 0.925 2.729 19.716 22.445 0.930

DBEns
[Ts ,25t,3]

0.892 26.466 27.358 0.897 1.573 21.212 22.785 0.916 2.688 18.596 21.284 0.921

RForest 0.274 1,319.688 1,319.961 0.904 0.274 1,319.688 1,319.961 0.904 0.274 1,319.688 1,319.961 0.904

ExTrees 0.122 1,332.026 1,332.148 0.950 0.122 1,332.026 1,332.148 0.950 0.122 1,332.026 1,332.148 0.950

2
2

8
8

3
5
2

1
4
0
8

5
6
3
2

2
2
5
2
8

0

0.5

1

1.5

2

Leaf Size

𝑇
𝑞
𝑢
𝑒
𝑟
𝑦
(
s
)

Cold Setting

2
2

8
8

3
5
2

1
4
0
8

5
6
3
2

2
2
5
2
8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Leaf Size

Warm Setting

𝐷 3 6

2
2

8
8

3
5
2

1
4
0
8

5
6
3
2

2
2
5
2
8

0

1

2

3

4

5

6

7

Leaf Size

M
e
m
o
r
y
(
G
B
)

Mem. Consumption

Figure 8: Impact of leaf size on query time and size of a single

k-d tree. No results for𝐷 = 6 and leaf size 22 due to exceeding

machine memory capacity.

of a query were already cached, which led to a reduced loading

time. We report results for both settings in Figure 8. The minimal

query time for the cold setting was achieved with a leaf size of

5, 632. Note that 𝑇𝑞𝑢𝑒𝑟𝑦 was slightly larger for 𝐷 = 6, which is

in line with the runtime bounds and performance issues in high-

dimensional spaces of index structures summarized in Section 2,

i.e., longer query times for growing 𝐷 . For the warm setting, the

query times were significantly reduced. This behavior suggests that,

if redundant boxes occur during the search, smaller leaf sizes may

be considered to make better use of caching opportunities. Figure 8

also shows the memory footprint of a single k-d tree index structure
for different leaf sizes and 𝐷 . As expected, memory requirements

are inversely proportional to leaf size. Hence, when halving the

leaf size, memory requirements double due to the larger tree that

needs to be loaded into memory (the leaves are stored on disk).

For the runtime evaluation provided below, we therefore selected

the optimal leaf size of 5, 632, since it not only achieved the fastest

query time but also exhibited a small memory footprint. The latter

allows for loading hundreds of index structures in memory at once,
even on commodity hardware. More specifically, one index requires

only 24 MB for 𝐷 = 3 and 48 MB for 𝐷 = 6.

4.2.3 Scaling Behavior of 𝑘-d Tree. Next, we analyze if the theo-
retical time complexity O(𝑑𝑁 1−1/𝑑 + 𝑞) of range queries over a k-d
tree can be achieved in practice with our implementation. To do so,

we measured the query time 𝑇𝑞𝑢𝑒𝑟𝑦 of the k-d tree for increasing

sizes of 𝑁 . We stopped the search after 10 leaves had been visited

0 0.25 0.5 0.75 1

Number of Points 𝑁 (·109)

0

0.002

0.004

0.006

0.008

𝑇
𝑞
𝑢
𝑒
𝑟
𝑦
(
s
)

k-d tree (𝐷 = 3)

O(𝑙𝑜𝑔𝑁) O (𝑁 1−1/3) O (𝑁) Runtime

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

10
4

Number of Points 𝑁

𝑇
𝑡
𝑜
𝑡
𝑎
𝑙
(
s
)

tree-based models

DTree DBranch
[Ts ,3]

Figure 9: Scaling behavior of our k-d tree search for 𝐷 =

3 (left) and traditional tree-based methods.

to keep 𝑞 (number of points returned) at a constant level. Thereby,

the focus was on the tree traversal time instead of the time needed

to return the contained data instances. In our analysis, we built

k-d tree indexes for different subset sizes 𝑁 and 𝐷 = 3, scaled the

number of instances by selecting instances at random from the

database, and report the query times averaged over five runs. To

measure those query times, we generated 300 random boxes en-

suring no overlap, so as to minimize the chance of caching when

leaves were loaded multiple times. Figure 9 (left) shows that the

scaling behavior of our k-d tree implementation falls in-between

the asymptotic curves for O(𝑙𝑜𝑔𝑁) and O(𝑁 1−1/3), which, again,
is in line with the runtime bounds provided in Section 2.

4.2.4 Scaling Behavior of Decision Branches. Finally, we assessed
the scaling behavior of the two search-by-classification models

with the lowest 𝑇𝑡𝑜𝑡𝑎𝑙 in Table 2 for 𝑘 = 300. Figure 9 (right) shows

the behavior of the models as we increased the number of points

𝑁 in the data set. Note that, similarly to the k-d tree experiments

above, data instances were selected at random for each value of

𝑁 . Each measurement for DBranch
[Ts ,3]

was averaged over three

repetitions with different seeds to account for randomness in the

method, while a single repetition was used for the DTree. DBranch

[Ts ,3]
exhibits very slow growth in 𝑇𝑡𝑜𝑡𝑎𝑙 (e.g., almost no increase

for the last three measurements). By contrast, 𝑇𝑡𝑜𝑡𝑎𝑙 for DTree

grows as expected, linearly with 𝑁 . When 𝑁 > 10
9
, DBranch

[Ts ,3]

outperforms DTree by almost three orders of magnitude, yielding

the query results in a few seconds only.

2854

To conclude, our search framework enables quick processing of

such user queries (e.g., search for planes in satellite imagery) and

can report the (complete) answer set per query in a few seconds

only, compared to minutes needed by scanning-based approaches.

It is worth stressing that the runtime benefits will become more and

more prominent and important in case the database would contain

even more instances (e.g., hundreds of billions of instances).

4.3 Sensitivity Analysis and Benchmark

Table 3: Data Sets

Data set 𝑛 𝑑 𝐾

iris 150 4 3

satimage 6,430 36 6

letter 20,000 16 26

mnist 60,000 784 10

senseit 98,528 100 3

covtype 581,012 54 7

Next, we consider six more data

sets listed in Table 3 with 𝑑 fea-

tures, 𝐾 classes, and 𝑛 instances.

Most of them are widely used for

comparing binary classification

models. However, our setup dif-

fers from known benchmarks in

order to mimic a use case similar

to a search engine for imbalanced

data. To resemble such a case, we

converted the original classifica-

tion tasks to binary “one-vs-all” problems. That is, for each data

set, we selected a class 𝑐𝑝 to represent the positive class, while the

remaining ones were regarded as negative. We fixed the number of

positive objects in the training set to 30 and picked

(
30/�̄�𝑐𝑝

)
· 𝑛𝑐𝑛

instances from each other class 𝑐𝑛 , where 𝑛𝑐𝑝 and 𝑛𝑐𝑛 were the

number of instances belonging to the positive class 𝑐𝑝 and the other

class 𝑐𝑛 , respectively. The remaining instances were split up to form

(almost) equal-sized validation and test sets. The hyperparameters

of each model were optimized via grid search on the validation set

and the final model qualities were assessed using the test set. Each

run was repeated three times with different (random) seeds.

4.3.1 Influence of Parameters. The sensitivity of the different deci-

sion branch variants w.r.t. the feature subset size 𝐷 and the number

of feature subsets 𝑝 tested is shown in Figure 10. The results for

𝐹1-scores are averaged across all one-vs-all classification tasks and

data sets, while the training time results are shown for covtype

only (since this data set is dominant in terms of number of data

instances, and, hence, runtime). We observe that all models benefit

from larger 𝐷 , while 𝐹1-scores increase only slightly beyond 𝐷 = 6.

The𝑇𝑎 model variants (i.e., including both bottom-up and top-down

constructions using all available features) are less dependent on

large 𝐷 while exhibiting comparable training time to 𝑇𝑠 variants

(i.e., including subsets of 𝐷 features only). This effect indicates that

𝑇𝑎 variants can more effectively compensate for suboptimal boxes

learned during the bottom-up construction phase by a subsequent

fine-tuning (top-down) phase on all available features. For the num-

ber of feature subsets 𝑝 tested per box, we considered different

fractions of the total number of feature subsets 𝑘 ranging from a

single subset (𝑝 = 1) to all (𝑝 = 𝑘) available subsets. We can observe

that a small amount of subsets (i.e., 𝑝 =
√
𝑘) is already sufficient to

achieve a good 𝐹1-score with minimal training times. To evaluate

the influence of the total number of feature subsets 𝑘 , we introduce

a factor 𝜏 s.t. 𝑘 = 𝑑 · 𝜏 . This factor 𝜏 acts as a proxy, allowing us

to adjust 𝑘 to heterogeneity in 𝑑 . Figure 11 shows that the overall

impact of 𝑘 on model performance is moderate, independently of

𝐷 . As it can be seen, the training time grows linearly w.r.t. 𝑘 .

4.3.2 Comparison with Baselines. We compare decision branch

models (𝐷 = 4 and 𝐷 = 10) with the other tree-based models and

the NNB.
13

Here, we also evaluate versions of the DTree and RFor-

est that resort to a limited number of features per tree, see again

Section 2.3. Thereby, we can contrast the performance of our meth-

ods with naively constraining DTree or RForest to the same number

of features. All ensembles are based on 25 individual trees/decision

branches. Tables 4 and 5 summarize the results, which confirm that

our alternative tree construction framework leads to models that

exhibit a similar classification performance as those obtained via

standard top-down construction schemes, while requiring only a

fraction of the time to answer incoming user queries. For 𝐷 = 10,

the DBranch variants achieved 𝐹1-scores similar to DTree. With

the same 𝐷 , our DBEns models slightly outperformed the RForest

model, while achieving similarly results in comparison to ExTrees.

Note that with a smaller feature subset size of 𝐷 = 4, the classifi-

cation performance of all DBranch models slightly decreased. Yet,

DBranch and DBEns performed similarly to their classical coun-

terparts and outperformed the constrained versions of DTree and

RForest. Our decision branch models outperformed the NNB under

the considered assumptions and experimental settings.

4.4 Storage and Performance Trade-Off

Selecting suitable parameters for our framework entails finding

a balance between storage capacity and performance, including

response time and result accuracy. Figures 10 and 11 reveal that

the more we increase the complexity of a decision branch model

concerning crucial parameters 𝐷 , 𝑘 , and 𝑝 , the more accurate the

search results become in terms of 𝐹1-score. However, this comes

at the cost of either (a) additional storage (for 𝑘 ; see Table 2), (b)

longer query times (for 𝐷 ; see Figure 8 for the difference between

𝐷 = 3 and 𝐷 = 6), or (c) extended training times (for 𝑘 , 𝐷 and

𝑝; see again Figures 10 and 11). Generally, the optimal parameter

settings depend on the particular data catalog. In our case study,

we prove that even with a small storage overhead (e.g., only 3-4

times more storage for 𝑘 = 50, 𝐷 = 3 and 𝑝 =
√
𝑘), we already

achieve substantial speedup gains of approximately 590 times faster

compared to scan-based approaches, while maintaining nearly the

same 𝐹1-score.

5 RELATEDWORK

To our knowledge, this is the first work transforming the inference

phase of decision trees and tree ensembles into a set of range queries

in low-dimensional spaces. Previous work has focused on the de-

sign of efficient decision-tree-based models, with early approaches

such as SPRINT [39] or BOAT [17] aiming to speed up decision

tree construction and inference over disk-resident data. Substan-

tial previous work has also been dedicated to deriving efficient

approaches to construct and apply random forests [31], including

distributed frameworks [11, 35]. Recently, fast decision tree con-

struction has been studied in online settings, such as streaming data

analysis [25, 32]. Yet, all these approaches require scanning the en-
tire database during inference. PRIM [15] is an alternative top-down

technique for finding boxes that cover regions of the feature space

where the response average (e.g., weighted relative accuracy [2]) is

13
For this experiment, all 𝑑 features were used for the NNB.

2855

Table 4: Mean test 𝐹1-scores for single models on each data set, averaged among all classes.

Data set DBranch
[B,4]

DBranch
[Ts ,4]

DBranch
[Ta ,4]

DBranch
[B,10]

DBranch
[Ts ,10]

DBranch
[Ta ,10]

DTree DTree
[4]

DTree
[10]

NNB

covtype 0.252 ± .100 0.321 ± .027 0.363 ± .029 0.339 ± .033 0.339 ± .040 0.355 ± .030 0.420 ± .022 0.059 ± .078 0.217 ± .120 0.198 ± .054
iris 0.948 ± .049 0.948 ± .049 0.953 ± .041 0.967 ± .044 0.967 ± .044 0.972 ± .036 0.947 ± .052 0.947 ± .052 0.947 ± .052 0.789 ± .146
letter 0.441 ± .058 0.472 ± .060 0.518 ± .055 0.525 ± .053 0.578 ± .053 0.585 ± .049 0.580 ± .051 0.244 ± .107 0.462 ± .062 0.217 ± .081
mnist 0.298 ± .115 0.350 ± .084 0.463 ± .049 0.447 ± .063 0.477 ± .051 0.515 ± .047 0.525 ± .057 0.067 ± .066 0.134 ± .091 0.226 ± .121
satimage 0.647 ± .043 0.659 ± .031 0.667 ± .035 0.659 ± .040 0.669 ± .046 0.675 ± .057 0.653 ± .053 0.632 ± .051 0.660 ± .032 0.608 ± .069
senseit 0.465 ± .037 0.480 ± .031 0.499 ± .035 0.488 ± .056 0.485 ± .041 0.481 ± .034 0.512 ± .040 0.441 ± .050 0.439 ± .047 0.230 ± .100
Total 0.508 ± .067 0.538 ± .048 0.577 ± .041 0.571 ± .048 0.586 ± .046 0.597 ± .042 0.606 ± .046 0.398 ± .067 0.477 ± .067 0.378 ± .095

Table 5: Mean test 𝐹1-scores for ensemble models on each data set averaged among all classes.

Data set DBEns
[B,4]

DBEns
[Ts ,4]

DBEns
[Ta ,4]

DBEns
[B,10]

DBEns
[Ts ,10]

DBEns
[Ta ,10]

RForest RForest
[4]

RForest
[10]

ExTrees

covtype 0.371 ± .047 0.367 ± .027 0.428 ± .035 0.425 ± .029 0.402 ± .034 0.437 ± .035 0.431 ± .027 0.067 ± .007 0.157 ± .025 0.449 ± .043
iris 0.979 ± .027 0.972 ± .038 0.972 ± .038 0.979 ± .027 0.972 ± .038 0.972 ± .038 0.967 ± .027 0.972 ± .038 0.972 ± .038 0.977 ± .030
letter 0.678 ± .041 0.696 ± .033 0.730 ± .031 0.721 ± .036 0.753 ± .030 0.751 ± .031 0.677 ± .054 0.380 ± .067 0.701 ± .031 0.735 ± .028
mnist 0.583 ± .061 0.390 ± .134 0.661 ± .034 0.721 ± .036 0.634 ± .045 0.705 ± .026 0.612 ± .068 0.000 ± .000 0.068 ± .037 0.669 ± .032
satimage 0.740 ± .029 0.763 ± .024 0.767 ± .024 0.742 ± .028 0.767 ± .021 0.775 ± .020 0.755 ± .031 0.764 ± .031 0.778 ± .021 0.781 ± .022
senseit 0.497 ± .022 0.565 ± .039 0.556 ± .049 0.509 ± .021 0.581 ± .041 0.573 ± .036 0.586 ± .043 0.529 ± .058 0.570 ± .050 0.614 ± .033
Total 0.641 ± .038 0.626 ± .049 0.686 ± .035 0.683 ± .030 0.685 ± .035 0.702 ± .031 0.671 ± .042 0.452 ± .033 0.541 ± .034 0.704 ± .031

2 4 6 8 10 15 20

0.4

0.5

0.6

0.7

𝐷

T
e
s
t
𝐹
1
-
S
c
o
r
e

DBranch
[B]

DBranch
[Ts] DBranch

[Ta] DBEns
[B]

DBEns
[Ts]

DBEns
[Ta]

2 4 6 8 10 15 20

0

1

2

3

𝐷

T
r
a
i
n
i
n
g
T
i
m
e
(
s
)

covtype

1
√
𝑘 0.5𝑘 0.75𝑘 𝑘

0.4

0.5

0.6

0.7

𝑝

T
e
s
t
𝐹
1
-
S
c
o
r
e

1
√
𝑘 0.5𝑘 0.75𝑘 𝑘

0

0.5

1

1.5

𝑝

T
r
a
i
n
i
n
g
T
i
m
e
(
s
)

covtype

Figure 10: Influence of feature subset size 𝐷 and feature subsets tested 𝑝 on test 𝐹1-score and training time.

0 2 4 6 8 10

0.4

0.5

0.6

0.7

𝜏

T
e
s
t
𝐹
1
-
S
c
o
r
e

𝐷 = 3

0 2 4 6 8 10

0

0.4

0.8

1.2

𝜏

T
r
a
i
n
i
n
g
T
i
m
e
(
s
)

𝐷 = 3, covtype

0 2 4 6 8 10

0.4

0.5

0.6

0.7

𝜏

T
e
s
t
𝐹
1
-
S
c
o
r
e

𝐷 = 10

0 2 4 6 8 10

0

0.6

1.2

1.8

𝜏

T
r
a
i
n
i
n
g
T
i
m
e
(
s
)

𝐷 = 10, covtype

Figure 11: Influence of number of feature subsets 𝑘 on both test 𝐹1-score and training time via proxy parameter 𝜏 .

high. In contrast to PRIM, our bottom-up construction approach

mimics the construction of classical decision trees, with important

algorithmic ingredients such as the use of randomness at various

stages as well as boxes maximizing the (information) gain based

on the Gini index. Numerous fast (approximate) nearest neighbor

search methods have been developed for handling single-object

queries [23, 37, 41]. Despite their efficiency, these methods are infe-

rior in F1-score compared to search-by-classification approaches.

6 CONCLUSION

We propose a novel approach to efficiently support search-by-

classification tasks in large-scale databases. Our framework lever-

ages a co-design of multidimensional indexes and decision trees and

random forests that can rapidly process user queries formulated as

binary classification data sets. The decision branches and associated

boxes introduced allow for transforming the inference phase into a

set of range queries, which can be efficiently supported by pre-built

multidimensional indexes. Our experiments show that our frame-

work achieves a similar classification performance in comparison

to traditional decision trees and random forests, while drastically

reducing the inference time. We believe that this work will pave the

way for novel index-aware machine learning models that will, in

turn, lead to conceptually novel search engines in remote sensing,

astrophysics, and many other data-intensive domains. In the future,

we will explore techniques to reduce the storage overhead and

optimize for incremental data updates, including LSM-trees [34],

compressed [1] and learned indexes [12].

ACKNOWLEDGMENTS

This research is supported by the Independent Research Fund Den-

mark (grant number 9131-00110B) and by Nvidia (hardware dona-

tions).

2856

REFERENCES

[1] D. Arroyuelo, G. Navarro, J. L. Reutter, and J. Rojas-Ledesma. 2022. Optimal

Joins Using Compressed Quadtrees. ACM Transactions on Database Systems 47,
2 (2022).

[2] V. Arzamasov and K. Böhm. 2021. REDS: Rule Extraction for Discovering Sce-

narios. In Proceedings of the 2021 ACM SIGMOD International Conference on
Management of Data. 115–128.

[3] C. A. L. Bailer-Jones, K. W. Smith, C. Tiede, R. Sordo, and A. Vallenari. 2008.

Finding rare objects and building pure samples: probabilistic quasar classification

from low-resolution Gaia spectra. Monthly Notices of the Royal Astronomical
Society 391, 4 (2008), 1838–1853.

[4] J. L. Bentley. 1975. Multidimensional Binary Search Trees Used For Associative

Searching. Commun. ACM 18, 9 (1975), 509–517.

[5] J. L. Bentley. 1979. Multidimensional Binary Search Trees in Database Applica-

tions. IEEE Transactions on Software Engineering 5, 4 (1979), 333–340.

[6] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. 1999. When Is ”Nearest

Neighbor” Meaningful?. In Proceedings of the 7th International Conference on
Database Theory, ICDT. 217–235.

[7] P. Branco, L. Torgo, and R. P. Ribeiro. 2016. A Survey of Predictive Modeling on

Imbalanced Domains. Comput. Surveys 49, 2 (2016).
[8] L. Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.

[9] G. Cheng, X. Xie, J. Han, L. Guo, and G. Xia. 2020. Remote Sensing Image Scene

Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and

Opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 13 (2020), 3735–3756.

[10] M. d. Berg, O. Cheong, M. J. v. Kreveld, and M. H. Overmars. 2008. Computational
geometry: algorithms and applications, 3rd Edition. Springer.

[11] S. del Río, V. López, J. M. Benítez, and F. Herrera. 2014. On the use of MapReduce

for imbalanced big data using Random Forest. Information Sciences 285 (2014),
112–137.

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

et al. 2020. ALEX: an updatable adaptive learned index. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 969–984.

[13] M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch,

C. Isola, P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and

P. Bargellini. 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES

Operational Services. Remote Sensing of Environment 120 (2012), 25–36.
[14] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. 2014. Do we Need

Hundreds of Classifiers to Solve Real World Classification Problems? Journal of
Machine Learning Research 15 (2014), 3133–3181.

[15] J. H. Friedman and N. I. Fisher. 1999. Bump hunting in high-dimensional data.

Statistics and Computing 9 (1999), 123–143.

[16] V. Gaede and O. Günther. 1998. Multidimensional Access Methods. Comput.
Surveys 30, 2 (1998), 170–231.

[17] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. 1999. BOAT–Optimistic

Decision Tree Construction. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data. 169–180.

[18] P. Geurts, D. Ernst, and L. Wehenkel. 2006. Extremely randomized trees. Machine
Learning 63, 1 (2006), 3–42.

[19] F. Gieseke and C. Igel. 2018. Training Big Random Forests with Little Resources.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD. 1445–1454.

[20] T. Hastie, R. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical
Learning. Springer.

[21] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR. 770–778.

[22] Ž. Ivezić, S. M. Kahn, J. A. Tyson, B. Abel, E. Acosta, R. Allsman, D. Alonso, Y.

AlSayyad, S. F. Anderson, J. Andrew, et al. 2019. LSST: From Science Drivers to

Reference Design and Anticipated Data Products. The Astrophysical Journal 873,
2 (2019), 111.

[23] J. Johnson, M. Douze, and H. Jégou. 2019. Billion-scale similarity search with

GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.
[24] H. Kaplan and M. Sharir. 2011. Finding the Maximal Empty Rectangle Containing

a Query Point. arXiv:1106.3628

[25] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017.

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in
Neural Information Processing Systems, NeurIPS, Vol. 30. 3149–3157.

[26] R. Keisler, S. W. Skillman, S. Gonnabathula, J. Poehnelt, X. Rudelis, and M. S.

Warren. 2019. Visual search over billions of aerial and satellite images. Computer
Vision and Image Understanding 187 (2019), 102790.

[27] O. Keivani and K. Sinha. 2018. Improved nearest neighbor search using auxil-

iary information and priority functions. In Proceedings of the 35th International
Conference on Machine Learning, ICML, Vol. 80. 2573–2581.

[28] D. P. Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization. In

3rd International Conference on Learning Representations, ICLR.
[29] D. T. Lee and C. K. Wong. 1977. Worst-Case Analysis for Region and Partial

Region Searches in Multidimensional Binary Search Trees and Balanced Quad

Trees. Acta Informatica 9, 1 (1977), 23–29.
[30] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S.Winter, A. Coltekin, C. Pettit, B. Jiang,

J. Haworth, A. Stein, and T. Cheng. 2016. Geospatial big data handling theory and

methods: A review and research challenges. ISPRS Journal of Photogrammetry
and Remote Sensing 115 (2016), 119–133.

[31] G. Louppe. 2014. Understanding Random Forests. Ph.D. Dissertation. University of
Liège, Faculty of App. Sciences, Dep. of Electrical Engineering & Comp. Science.

[32] C. Manapragada, G. I. Webb, and M. Salehi. 2018. Extremely Fast Decision Tree.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD. 1953–1962.

[33] R. B. Metcalf, M. Meneghetti, C. Avestruz, F. Bellagamba, C. R. Bom, E. Bertin, R.

Cabanac, F. Courbin, A. Davies, E. Decencière, et al. 2019. The strong gravitational

lens finding challenge. Astronomy & Astrophysics 625 (2019), A119.
[34] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (jun 1996), 351–385.

https://doi.org/10.1007/s002360050048

[35] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. 2009. PLANET: Massively

Parallel Learning of Tree Ensembles with MapReduce. Proceedings of the VLDB
Endowment 2, 2 (2009), 1426–1437.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and É. D. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[37] P. Ram and A. Gray. 2013. Which Space Partitioning Tree to Use for Search?. In

Advances in Neural Information Processing Systems, NeurIPS, Vol. 26. 656–664.
[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer
Vision 115, 3 (2015), 211–252.

[39] J. C. Shafer, R. Agrawal, and M. Mehta. 1996. SPRINT: A Scalable Parallel

Classifier for Data Mining. In Proceedings of the 22th International Conference on
Very Large Data Bases, VLDB. 544–555.

[40] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li. 2014. Deep Learn-

ing for Content-Based Image Retrieval: A Comprehensive Study. In Proceedings
of the 22nd ACM International Conference on Multimedia, ACMMM. 157–166.

[41] M. Wang, X. Xu, Q. Yue, and Y. Wang. 2021. A Comprehensive Survey and Ex-

perimental Comparison of Graph-Based Approximate Nearest Neighbor Search.

Proceedings of the VLDB Endowment 14, 11 (2021), 1964–1978.
[42] Y.-X. Wang, D. Ramanan, and M. Hebert. 2019. Meta-Learning to Detect Rare

Objects. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV.
9924–9933.

[43] G. M. Weiss. 2004. Mining with Rarity: A Unifying Framework. SIGKDD Explo-
rations Newsletter 6, 1 (2004), 7–19.

[44] Y. Zhang and Y. Zhao. 2015. Astronomy in the big data era. Data Science Journal
14 (2015), 11.

2857

https://arxiv.org/abs/1106.3628
https://doi.org/10.1007/s002360050048

	Abstract
	1 Introduction
	2 Background
	2.1 Decision Trees and Tree Ensembles
	2.2 Multidimensional Indexes
	2.3 Decision Trees and Range Queries

	3 Efficient Search-by-Classification
	3.1 Overall Framework
	3.2 Decision Branches
	3.3 Fast Query Processing
	3.4 Implementation Details

	4 Experiments
	4.1 Experimental Setup
	4.2 Efficiency Study of Index-Aware Models
	4.3 Sensitivity Analysis and Benchmark
	4.4 Storage and Performance Trade-Off

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

