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ABSTRACT
Median absolute deviation (MAD), the median of the absolute devi-

ations from the median, has been found useful in various applica-

tions such as outlier detection. Together with median, MAD is more

robust to abnormal data than mean and standard deviation (SD). Un-

fortunately, existing methods return only approximate MAD that

may be far from the exact one, and thus mislead the downstream

applications. Computing exact MAD is costly, however, especially

in space, by storing the entire dataset in memory. In this paper,

we propose COnstruction-REfinement Sketch (CORE-Sketch) for

computing exact MAD. The idea is to construct some sketch within

limited space, and gradually refine the sketch to find the MAD

element, i.e., the element with distance to the median exactly equal

to MAD. Mergeability and convergence of the method is analyzed,

ensuring the correctness of the proposal and enabling parallel com-

putation. Extensive experiments demonstrate that CORE-Sketch

achieves significantly less space occupation compared to the afore-

said baseline of No-Sketch, and has time and space costs relatively

comparable to the DD-Sketch method for approximate MAD.
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1 INTRODUCTION
Median absolute deviation (MAD), derived from the median of a

dataset, is a statistic that can well describe the degree of data volatil-

ity [7]. Like the relationship between standard deviation (SD) and

mean, MAD is the median of the absolute difference between the

elements of the dataset and the median of the dataset, describing

the fluctuation degree of the elements in the dataset around the

median [19]. MAD has been widely used in various applications

such as outlier detection [11, 12, 15], rare query event detection

[2], error detection [13], database intrusion detection [24], hard-

ware assertion evaluation [3] and so on, owing to its robustness to

abnormal data.
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Figure 1: Outlier detection with exact and approximate MAD

1.1 Motivation
While computing exact MAD is costly, efficient estimation of ap-

proximate MAD [4] has been studied using DD-Sketch [16] for

estimating median. Unfortunately, approximate MAD could be very

far from the exact one, and thus mislead downstream applications.

Example 1.1. Figure 1 presents the outlier detection application

of MAD over data distribution. Similar to the traditional 𝜇 ± 𝑘𝜎
method where 𝜇 is mean, 𝜎 is SD, and 𝑘 is a coefficient like 3 [1, 23],

data elements outside the bound of median±𝑘MAD are regarded as

outliers [4]. It is known that the mean and SD are not robust enough

compared to the median and MAD [18]. We show how approximate

MAD affects the performance of outlier detection compared to the

exact one. The error bounds 𝜖 used in Figures 1 (a) and (b) are both

1e-2 under bucket limit M=500 for DD-Sketch [16].

For dataset Power in Figure 1 (a), the approximateMAD is smaller

than the exact MAD. As a result, 511,717 points are regarded as out-

liers using approximate MAD, while only 355,461 points are indeed

true outliers calculated by the exact MAD. Under this situation, the

precision of outlier detection is merely 56%.

For dataset Gas in Figure 1 (b), the approximate MAD is larger

than the exact MAD. Hence, approximate MAD detects only 72,873

points, among 135,241 true outliers calculated by the exact MAD.

In this case, the recall of outlier detection is barely 54%.

1.2 Challenges
To compute exact MAD, a straightforward method is to load the

entire datasetD in memory and apply the algorithm such as Quick-

select [8] to calculate the median 𝜆 of D. Then, the exact MAD is

computed by calling the algorithm again to find the median of ab-

solute deviations to the median 𝜆. The No-Sketch method assumes

that it is possible to fit the entire dataset D in memory, as illus-

trated in Figure 2 (a). Though its runtime may be faster as shown in

Figures 11 and 13 of experiments in Section 5, the memory require-

ments of loading the entire dataset are impractical for real-world
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Figure 2: An overview of different MAD query approaches

use. Instead, the computation is often with limited space in practice.

For example, MCUs or FPGAs in end-devices for IoT applications

have only hundreds of KBs or a few MBs memory [14, 17]. The

default memory budget for a function in Apache IoTDB is 30 MB

and can be up to 1.5% of physical memory [9]. The space is even

more limited when multiple queries are processed in parallel (see

experiments in Figure 20 in Section 5.3). The memory requirements

of No-Sketch algorithm make it impractical for real-world use.

Rather than raw data elements, the approximate MAD approach

[4] stores only statistical information in memory, by DD-Sketch

presented in Figure 2 (b). Each bucket B counts the number of data

elements in D that are in the range of bucket boundaries. It identi-

fies the median bucket B𝑚 , whose boundaries serve as the lower

and upper bounds of the exact median 𝜆, and thus can estimate

approximate median
˜𝜆 but cannot obtain the exact one. Similar to

the aforesaid exact computation, in the second round, another DD-

Sketch for D∗, the absolute deviations to ˜𝜆, is constructed. Again,

by identifying the median bucket B∗𝑚 , the approximate median of

D∗ is estimated, i.e., approximate MAD. Since the sketch stores

only statistical information, it cannot obtain the exact MAD.

1.3 Intuition
In this paper, we propose a novel sketch structure, COnstruction-

REfinement Sketch (CORE-Sketch), for computing exact MAD. In

addition to the median bucket B𝑚 , it maintains two more buckets

B𝑙 and B𝑟 , whose boundaries together with B𝑚 serve as the lower

and upper bounds of MAD.

While MAD is a statistic of the dataset D, we denote the data

element 𝜂 ∈ D the MAD element, which has |𝜂 − 𝜆 | = MAD, as in

Definition 1. To compute the MAD statistic, it is thus to find the

median 𝜆 and the MAD element 𝜂 in D. Rather than computing

medians twice, we directly identify the ranges 𝐽 of data where the

median 𝜆 and the MAD element 𝜂 must belong. As illustrated in

Figure 2 (c), the exact MAD is thus computed by loading only the

corresponding data elements in the ranges 𝐽 , i.e., a subset D′ of D.

Note that the ranges 𝐽 are much narrower than that of the entire

dataset D, [𝑒min = minD, 𝑒max = maxD], while still covering the

median bucket 𝐵𝑚 and the MAD buckets 𝐵𝑙 and 𝐵𝑟 . Intuitively,

we propose to refine the buckets for the data in the ranges 𝐽 . The

refined sketch with smaller median and MAD buckets, 𝐵𝑚 , 𝐵𝑙 and

𝐵𝑟 , can further narrow down the ranges 𝐽 of data elements to load.

1.4 Contributions
Our major contributions in this paper are summarized as follows.

(1) We devise a sketch structure CORE-Sketch in Section 2. The

bucket boundary in the sketch is specially designed for refinement.

(2) We present the algorithm of computing exactMADusing CORE-

Sketch in Section 3. First, we investigate the bounds of median and

MAD referring to the median bucket 𝐵𝑚 and the MAD buckets

𝐵𝑙 and 𝐵𝑟 , in Propositions 1 and 2. It leads to the ranges 𝐽 which

bound the median 𝜆 and the MAD element 𝜂, in Propositions 3 and

4. Once the sketch is refined for 𝐽 , we further prove the bounds of

median and MAD over the narrowed buckets, in Propositions 5 and

6. Likewise, the ranges 𝐽 can be further narrowed down, referring

to the ranges determined by the median bucket 𝐵𝑚 and the MAD

buckets 𝐵𝑙 and 𝐵𝑟 , as well as the ranges in the previous iteration,

in Proposition 7. Finally, the exact MAD is computed by loading

the data elements in the ranges of 𝐽 , referring to Proposition 8.

(3) We prove mergeability of CORE-Sketch, in Proposition 9, which

enables parallel computation of exact MAD. Convergence of the

iterative algorithm is also analyzed, in Proposition 11.

(4) We conduct extensive experiments over real and synthetic data.

Our CORE-Sketch approach shows up to 6 order-of-magnitude

improvement in space cost compared to the No-Sketch baseline. The

time and space costs of CORE-Sketch are relatively comparable to

the method returning only approximate MAD, such as DD-Sketch.

2 PRELIMINARY
In this section, we first formalize the problem of exact MAD query

with limited sketch space in Section 2.1. The design of CORE-Sketch

is then presented in Section 2.2.
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2.1 Problem Statement
To begin with, we first introduce the definition of the median abso-

lute deviation, and formalize the exact MAD query problem.

Definition 1 (Median Absolute Deviation). For a dataset
D = {𝑒1, 𝑒2, · · · , 𝑒N }, which can be a multiset, its median absolute
deviation (MAD) is defined as the median of the absolute differences
between the elements and the median of D
MAD(D) = MEDIAN({|𝑒 −MEDIAN(D)| | 𝑒 ∈ D}) = |𝜆 − 𝜂 |,

where 𝜆 ∈ D is the median of D, and 𝜂 ∈ D is the MAD element.

To compute exact MAD, it is to find median 𝜆 and MAD element

𝜂. In practice, a sketch with a number of buckets on statistics is often

employed to determine the bounds of 𝜆 and 𝜂, and thus estimate

approximate MAD [4]. In this study, we propose to design a sketch

for finding the exact MAD element with limited buckets.

Problem 1 (Exact MAD Computation with Limited Space).

With a limited number of buckets in the sketch, the problem is to
compute the exact MAD of a given dataset D.

To simplify the calculation, for an input datasetD withminimum

value 𝑒min, all the elements are subtracted by 𝑒min − 1 to make the

minimum value 1. Thus, without loss of generality, we suppose

𝑒min = 1 in the rest of our paper.

2.2 Sketch Design
To find the MAD element, a sketch is expected to be refined, till

the data elements in certain buckets can be stored in memory for

computation under certain space budget. Moreover, to ease parallel

computation, mergeability is also desired. Both requirements moti-

vate us to design a sketch structure with bucket boundaries from a

fixed domain.

Definition 2 (Bucket Boundary Domain). The bucket bound-
ary domain, denoted asZ, is defined asZ =

{
𝜁 | 𝜁 = 2

2
−𝑥
, 𝑥 ∈ N

}
.

For example, for 𝑥 = 0, we have 𝜁 = 2
2
−𝑥

= 2 ∈ Z. If 𝑥 = 1, then

we have 𝜁 = 2
2
−𝑥

=
√
2 ∈ Z.

Sketches with uniform bin sizes, i.e., equal-width buckets, per-

form well on datasets with uniform distribution. The buckets keep

information equally for all parts of data. For skewed input distri-

butions, buckets of exponential sizes are employed [16] with more

buckets concentrated around 𝑒min than 𝑒max. It naturally fits the

data with more values around 𝑒min. For the skewed distribution

with more values around 𝑒max, a simple idea is to reverse the order

[6], e.g., by 𝑒′ = 𝑒max − 𝑒 + 1 for each 𝑒 ∈ D. However, if the

distribution is extremely skewed, too many data are concentrated

around 𝑒min and thus may need more iterations to refine as shown

in Figures 15 (a) and (c). For the data concentrated in the middle,

it is not the best case for buckets of exponential sizes (as well as

equal-width buckets).

The equal-depth buckets give the most even partition of the

dataset, which maximizes the utility of the space. However, the

boundaries of the equal-depth buckets can be any values without a

fixed domain as in Definition 2. It brings difficulty in refinement,

as the bucket boundaries could be completely different before and

after refinement, and needs to re-compute entirely. Moreover, the

buckets cannot be merged for parallel computing, again owing





 

 

 





  





   



 










Figure 3: Determine the finest base 𝜁 with bucket limit𝑀

to the arbitrary bucket boundaries. In contrast, our sketch with

bucket boundaries always from the fixed domainZ in Definition 2

is convenient for refinement and mergeability.

Definition 3 (CORE-Sketch). A CORE-Sketch S(𝜁 ) with base
𝜁 ∈ Z is defined as S(𝜁 ) = {|𝐵𝑖 | | 𝑖 = 1, 2, . . . } where each |𝐵𝑖 |
counts the number of data elements in

[
𝜁 𝑖−1, 𝜁 𝑖

)
.

Note that a bucket with |𝐵𝑖 | = 0 does not need to be stored in the

sketch. In practice, we store a map of buckets to support insertion,

and a sorted array of buckets to support median and MAD range

calculation. On average, a single bucket occupies 48 Bytes. Thus,

for a space budget of 1MB, the bucket limit M can be estimated as

1024×1024
48

≈ 20000.

3 MAD COMPUTATION
We present the technical details of MAD computation, from CORE-

Sketch construction to refinement. The pseudo-code of exact MAD

computation with limited sketch size is presented in Algorithm 1

in Section 3.8.

3.1 Sketch Construction
Given a dataset D with maximum value 𝑒max and minimum value

𝑒min and the bucket limit M as the input, we should first determine

the base 𝜁 for CORE-Sketch S(𝜁 ). For 𝜁 ∈ Z, it satisfies that the

sketch can cover the range [𝑒min, 𝑒max], and should be as fine as

possible under the given bucket limit |S(𝜁 ) | ≤ 𝑀 .

Definition 4 (Finest 𝜁 for Dataset D). Given dataset D, the
finest 𝜁 for CORE-Sketch with bucket limit M is

𝜁 = min

𝜁 ∈Z

{
𝜁 |

⌈
log𝜁 𝑒max

⌉
−
⌈
log𝜁 𝑒min

⌉
+ 1 ≤ 𝑀

}
. (1)

Figure 3 illustrates how to determine the finest sketch without

exceeding the bucket limit 𝑀 . As shown, the constructed sketch

should have buckets covering the entire range [𝑒min, 𝑒max] of the
dataset D. For any 𝜁 , according to the definition of buckets, 𝑒min

drops in the bucket 𝐵⌈
log𝜁 𝑒min

⌉
, while 𝑒max is in 𝐵⌈

log𝜁 𝑒max

⌉
. The

number of buckets in between should not exceed 𝑀 . We consider

𝜁 = 2
2
−𝑥 ∈ Z in the domain, starting from 𝑥 = 1 and gradually
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Figure 4: Median and MAD buckets for deriving bounds

increasing 𝑥 ∈ N. It is to find the largest 𝑥 , i.e., the minimum 𝜁 ,

which still satisfies the limit𝑀 in Formula 1. The sketch in Figure 3

(a) can be further refined for more buckets, whereas the one in

Figure 3 (c) is too fine having the number of buckets exceeding M .

Figure 3 (b) is the finest sketch that satisfies the bucket limit.

3.2 Buckets for MAD Bound
To compute the exact MAD, it is necessary to find out the bound

of the median and MAD of the dataset D. Thus, we identify one

median bucket and two MAD buckets in CORE-Sketch to give a

bound for the median and MAD [4]. In the following, given the

constructed CORE-Sketch S(𝜁 ) according to Section 3.1, we first

give the bound of median using the median bucket in S(𝜁 ). Then,
we bound MAD based on the MAD buckets in CORE-Sketch S(𝜁 ).

3.2.1 Median Bucket. Given dataset D, we want to figure out the

range of its median from CORE-Sketch S(𝜁 ). Thus, we give the

definition of the median bucket in order to bound the median.

Proposition 1 (Median Bucket). For dataset D and CORE-
Sketch S(𝜁 ), the median bucket 𝐵𝑚 can bound the median of D
with its boundaries 𝜁𝑚−1 ≤ MEDIAN < 𝜁𝑚, where the index𝑚 is
determined by

∑
𝑖<𝑚 |𝐵𝑖 | < 1

2
N ≤ ∑

𝑖≤𝑚 |𝐵𝑖 |.

Figure 4 (a) shows how to identify the median bucket 𝐵𝑚 in the

sketch. We aggregate the counts of buckets starting from 𝐵1 (where

𝑒min locates). When the sum first reaches
1

2
N , the last added bucket

is indeed 𝐵𝑚 , covering the median 𝜆 with rank
1

2
N .

3.2.2 MAD Bucket. We show below, given dataset D and median

bucket 𝐵𝑚 of CORE-SketchS(𝜁 ), there exists some buckets inS(𝜁 )
that can bound the MAD with boundaries.

Proposition 2 (MAD Bucket). For dataset D and CORE-Sketch
S(𝜁 ), the MAD buckets 𝐵𝑙 and 𝐵𝑟 can bound MAD by their left and
right boundaries together with the median bucket 𝐵𝑚

min{𝜁𝑚−1−𝜁 𝑙 , 𝜁 𝑟−1−𝜁𝑚} < MAD < max{𝜁𝑚 −𝜁 𝑙−1, 𝜁 𝑟 −𝜁𝑚−1},

where the indexes 𝑙 and 𝑟 are determined by∑︁
𝑖∈ (𝑙,𝑚)

|𝐵𝑖 | +
∑︁

𝑖∈ (𝑚,𝑟 )
|𝐵𝑖 | + |𝐵𝑚 | <

1

2

N

≤min {|𝐵𝑙 |, |𝐵𝑟 |} +
∑︁

𝑖∈ (𝑙,𝑚)
|𝐵𝑖 | +

∑︁
𝑖∈ (𝑚,𝑟 )

|𝐵𝑖 | + |𝐵𝑚 |
(2)

and one of the following two conditions

𝜁𝑚−1 − 𝜁 𝑙+1 ≤ 𝜁 𝑟−1 − 𝜁𝑚 ≤ 𝜁𝑚−1 − 𝜁 𝑙 ,

𝜁 𝑟−2 − 𝜁𝑚 ≤ 𝜁𝑚−1 − 𝜁 𝑙 ≤ 𝜁 𝑟−1 − 𝜁𝑚 .
(3)

Intuitively, Proposition 2 figures out the MAD buckets 𝐵𝑙 and

𝐵𝑟 , based on the median bucket 𝐵𝑚 . As illustrated in Figure 4 (b),

MAD should be greater than the distance between the right and left

boundaries of 𝐵𝑙 and 𝐵𝑚 , i.e., 𝜁𝑚−1 − 𝜁 𝑙 , or 𝜁 𝑟−1 − 𝜁𝑚 of buckets

𝐵𝑚 and 𝐵𝑟 . Meanwhile, MAD should be less than the distances

𝜁𝑚 − 𝜁 𝑙−1 or 𝜁 𝑟 − 𝜁𝑚−1 of 𝐵𝑙 , 𝐵𝑚 , 𝐵𝑟 boundaries.

To have the aforesaid bounds onMAD, referring to the symmetric

property of MAD w.r.t. the median, the MAD buckets 𝐵𝑙 and 𝐵𝑟
are expected to be almost equally distant from 𝐵𝑚 . For example, in

Figure 4 (b), the distance between the right boundary of 𝐵𝑙 and the

left boundary of 𝐵𝑚 , 𝜁𝑚−1 − 𝜁 𝑙 , is close to that between 𝐵𝑚 and 𝐵𝑟 ,

i.e., no less than 𝜁 𝑟−2 − 𝜁𝑚 and no greater than 𝜁 𝑟−1 − 𝜁𝑚 . In other

words, it satisfies the second condition of Formula 3, 𝜁 𝑟−2 − 𝜁𝑚 ≤
𝜁𝑚−1 − 𝜁 𝑙 ≤ 𝜁 𝑟−1 − 𝜁𝑚 .

In addition to distance, the total number of elements in be-

tween the right boundary of 𝐵𝑙 and the left boundary of 𝐵𝑟 is∑
𝑖∈ (𝑙,𝑚) |𝐵𝑖 | +

∑
𝑖∈ (𝑚,𝑟 ) |𝐵𝑖 | + |𝐵𝑚 |, as shown in Figure 4 (b). To

bound MAD, the count should not exceed
N
2
as in Formula 2. More-

over, together with bucket 𝐵𝑙 or 𝐵𝑟 , the total number of elements

should be no less than
N
2
. Hence, the MAD buckets 𝐵𝑙 and 𝐵𝑟 are

determined by Formulas 2 and 3.

3.3 Ranges of MAD Element 𝜂
Given the median bucket 𝐵𝑚 and MAD buckets 𝐵𝑙 and 𝐵𝑟 in CORE-

Sketch S(𝜁 ), we can figure out the ranges of median 𝜆 and MAD

element 𝜂 accordingly. The idea is to determine the range of 𝜂

referring to the aforesaid bounds of 𝜆 andMAD = |𝜆 − 𝜂 |.

3.3.1 Median Range. The median 𝜆 of the dataset D is naturally

bounded by the median bucket 𝐵𝑚 , referring to Proposition 1.

Proposition 3 (MedianRange). For datasetD and CORE-Sketch
S(𝜁 ), the median range 𝐽𝑚 , having boundaries 𝜁𝑚−1 and 𝜁𝑚 same
as the median bucket 𝐵𝑚 , bounds the median 𝜆 ∈ 𝐽𝑚 =

[
𝜁𝑚−1, 𝜁𝑚

)
.

3.3.2 MAD Element Range. For the MAD element 𝜂 of dataset D,

we recall the definition of MAD given in Definition 1,MAD(D) =
|𝜆 − 𝜂 |. As the bounds of 𝜆 and |𝜆 − 𝜂 | are figured out by the left

and right boundaries of 𝐵𝑚 , 𝐵𝑙 and 𝐵𝑟 in Propositions 1 and 2, the

range of 𝜂 can be derived accordingly.

Proposition 4 (MADElementRange). For datasetD and CORE-
Sketch S(𝜁 ), let 𝑑min and 𝑑max be the minimum and maximum dis-
tances of median bucket 𝐵𝑚 , MAD buckets 𝐵𝑙 and 𝐵𝑟 ,

𝑑min = min{max{−𝜌, 𝜁𝑚−1 − 𝜁 𝑙 },max{−𝜌, 𝜁 𝑟−1 − 𝜁𝑚}}

𝑑max = max{𝜁𝑚 − 𝜁 𝑙−1, 𝜁 𝑟 − 𝜁𝑚−1}
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Figure 5: Ranges of median and MAD elements

where 𝜌 is an infinitesimal. Then the MAD element 𝜂 of D can be
bounded by the ranges 𝐽𝑙 and 𝐽𝑟 , i.e., 𝜂 ∈ 𝐽𝑙 ∪ 𝐽𝑟 , where

𝐽𝑙 =

(
𝜁𝑚−1 − 𝑑max, 𝜁

𝑚 − 𝑑min

)
𝐽𝑟 =

(
𝜁𝑚−1 + 𝑑min, 𝜁

𝑚 + 𝑑max

)
.

By defining 𝐽 = 𝐽𝑙 ∪ 𝐽𝑚 ∪ 𝐽𝑟 , we can narrow down the ranges

of median 𝜆 and MAD element 𝜂 from D to 𝐽 ∩ D. For example,

in Figure 5, given 𝑑min and 𝑑max determined in Figure 4 (b), the

median 𝜆 and MAD element 𝜂 must locate in ranges 𝐽𝑚 , 𝐽𝑙 and 𝐽𝑟 .

3.4 Sketch Refinement
Since 𝐽 specifies the ranges of median 𝜆 and MAD element 𝜂, the

CORE-Sketch S(𝜁 ) can be further refined with a smaller 𝜁 , within

the fixed bucket limit𝑀 .

Let 𝐽 ↓ and 𝐽 ↑ denote the left and right boundaries of the ranges

𝐽 , respectively. It is to determine the finest 𝜁 ∈ Z that can cover

the ranges 𝐽 and still satisfies the bucket limit |S(𝜁 ) | ≤ 𝑀 .

Definition 5 (Finest 𝜁 for Ranges 𝐽 ). Given the ranges 𝐽 of
median and MAD elements, the finest 𝜁 with bucket limit M is

𝜁 = min

𝜁 ∈Z

𝜁 |
∑︁

𝑝=𝑚,𝑙,𝑟

(⌈
log𝜁 𝐽

↑
𝑝

⌉
−
⌈
log𝜁 𝐽

↓
𝑝

⌉
+ 1

)
≤ 𝑀

 . (4)

Figure 6 shows how to refine CORE-Sketch by calculating the

finest 𝜁 for the ranges 𝐽 . Different from Figure 3 for the entire D,

the buckets only need to cover the ranges 𝐽 . For example, for 𝐽𝑙 ,

the buckets with indexes

⌈
log𝜁 𝐽

↓
𝑙

⌉
and

⌈
log𝜁 𝐽

↑
𝑙

⌉
cover the left and

right boundaries 𝐽
↓
𝑙
and 𝐽

↑
𝑙
, respectively.

3.5 Buckets for MAD Bound in Refined Sketch
Given the refined CORE-Sketch S(𝜁 ) with smaller buckets, the

corresponding median bucket 𝐵𝑚 and MAD buckets 𝐵𝑙 and 𝐵𝑟
should be re-identified. To identify the median and MAD buckets

for the targetD, we should record the number of elements that are

no longer considered in the refined sketch for ranges 𝐽 = 𝐽𝑙∪ 𝐽𝑚∪ 𝐽𝑟 .
Thereby, we define four subsets for the elements in D \ 𝐽 .

𝐼1 = D ∩ [𝑒min, 𝐽
↓
𝑙
], 𝐼2 = D ∩ [𝐽 ↑𝑙 , 𝐽

↓
𝑚)

𝐼3 = D ∩ [𝐽 ↑𝑚, 𝐽
↓
𝑟 ], 𝐼4 = D ∩ [𝐽 ↑𝑟 , 𝑒max]

 

 





 

 
 


 





Figure 6: Determine the finest base 𝜁 for the data ranges 𝐽

  

 

   








     

 

   

 



 





 



  
  

 





  

   

Figure 7: Median and MAD buckets in the refined sketch

Dataset D can thus be divided into seven non-intersecting parts,

D =

(⋃
4

𝑝=1 𝐼𝑝

)
∪
(⋃

𝑝=𝑚,𝑙,𝑟 (𝐽𝑝 ∩ D)
)
.

3.5.1 Median Bucket in the Refined Sketch. For datasetD, to figure

out the range of the median over the refined CORE-Sketch S(𝜁 ),
we give the median bucket in the refined sketch.

Proposition 5 (MedianBucket in Refined Sketch). For dataset
D and the refined CORE-Sketch S(𝜁 ), the median bucket 𝐵𝑚 bounds
the median 𝜁𝑚−1 ≤ MEDIAN < 𝜁𝑚,where the index𝑚 is determined
by

∑
𝑖<𝑚 |𝐵𝑖 | +

∑
2

𝑝=1 |𝐼𝑝 | <
1

2
N ≤ ∑

𝑖≤𝑚 |𝐵𝑖 | +
∑
2

𝑝=1 |𝐼𝑝 |.

Figure 7 (a) shows how to identify the median bucket 𝐵𝑚 in the

sketch. Instead of aggregating from |𝐵1 | in Figure 4 (a), we only

need to aggregate the counts of buckets in the ranges 𝐽 and |𝐼1 |+ |𝐼2 |.
Again, when the sum first reaches

1

2
N , the last added bucket (in

𝐽𝑚) is indeed 𝐵𝑚 , covering the median 𝜆 with rank
1

2
N .

3.5.2 MAD Bucket in the Refined Sketch. Given dataset D and

median bucket 𝐵𝑚 in CORE-Sketch S(𝜁 ), we identify the buckets

that can bound MAD with their boundaries.

Proposition 6 (MAD Bucket in Refined Sketch). For dataset
D and the refined CORE-Sketch S(𝜁 ), the MAD buckets 𝐵𝑙 and 𝐵𝑟
can bound MAD with their left and right boundaries together with
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Figure 8: Shrink ranges of median 𝜆 and MAD element 𝜂

median bucket 𝐵𝑚 in the refined sketch

min{𝜁𝑚−1−𝜁 𝑙 , 𝜁 𝑟−1−𝜁𝑚} < MAD < max{𝜁𝑚 −𝜁 𝑙−1, 𝜁 𝑟 −𝜁𝑚−1},

where the indexes 𝑙 and 𝑟 are determined by∑︁
𝑖∈ (𝑙,𝑚)

|𝐵𝑖 | +
∑︁

𝑖∈ (𝑚,𝑟 )
|𝐵𝑖 | + |𝐵𝑚 | +

3∑︁
𝑝=2

|𝐼𝑝 | <
1

2

N

≤min {|𝐵𝑙 |, |𝐵𝑟 |} +
∑︁

𝑖∈ (𝑙,𝑚)
|𝐵𝑖 | +

∑︁
𝑖∈ (𝑚,𝑟 )

|𝐵𝑖 | + |𝐵𝑚 | +
3∑︁

𝑝=2

|𝐼𝑝 |

(5)

and one of the following two conditions

𝜁𝑚−1 − 𝜁 𝑙+1 ≤ 𝜁 𝑟−1 − 𝜁𝑚 ≤ 𝜁𝑚−1 − 𝜁 𝑙 ,

𝜁 𝑟−2 − 𝜁𝑚 ≤ 𝜁𝑚−1 − 𝜁 𝑙 ≤ 𝜁 𝑟−1 − 𝜁𝑚 .
(6)

As shown in Figure 7 (b), in the refined sketch, Proposition 6

figures out the MAD buckets 𝐵𝑙 and 𝐵𝑟 , based on the median bucket

𝐵𝑚 . The MAD bound is the same as in Proposition 2. Moreover,

referring to the symmetric property of MAD w.r.t. the median, the

conditions in Formula 6 are also the same as in Formula 2.

Note that only the buckets in the ranges of 𝐽𝑙 , 𝐽𝑚, 𝐽𝑟 will be

refined and maintained, as illustrated in Figure 7 (b). Thereby, the

total number of elements lying from the right boundary of 𝐵𝑙 to the

left boundary of 𝐵𝑟 is
∑
𝑖∈ (𝑙,𝑚) |𝐵𝑖 | +

∑
𝑖∈ (𝑚,𝑟 ) |𝐵𝑖 | + |𝐵𝑚 | + |𝐼2 | + |𝐼3 |,

where |𝐼2 | and |𝐼3 | are counted in the previous iterations. Intuitively,

to bound MAD, it should not exceed
N
2
as in Formula 5. Likewise,

together with the bucket 𝐵𝑙 or 𝐵𝑟 , the total number of elements

exceeds
N
2
. Finally, the MAD buckets 𝐵𝑙 and 𝐵𝑟 in the refined sketch

can be obtained by Formulas 5 and 6.

3.6 Ranges of MAD Element in Refined Sketch
Following the same line of Section 3.3, we can determine the new

ranges 𝐽 ′, referring to the boundaries of MAD buckets 𝐵𝑙 and 𝐵𝑟
together with median bucket 𝐵𝑚 in the sketch refined for the pre-

vious ranges 𝐽 . Intuitively, since both ranges 𝐽 and 𝐽 ′ specify the

ranges where the median 𝜆 and the MAD element 𝜂 must belong,

the ranges can be further shrunk by their intersections.

Proposition 7 (MAD Element Range in Refined Sketch). For
the ranges 𝐽 in sketch S(𝜁 ), and 𝐽 ′ in the sketch S(𝜁 ′) refined from
S(𝜁 ), the shrunk ranges 𝐽 ′′ = 𝐽 ′′

𝑙
∪ 𝐽 ′′𝑚 ∪ 𝐽 ′′𝑟 = (𝐽𝑙 ∩ 𝐽 ′𝑙 ) ∪ (𝐽𝑚 ∩ 𝐽

′
𝑚) ∪

(𝐽𝑟 ∩ 𝐽 ′𝑟 ) still bound the median 𝜆 and MAD element 𝜂 in S(𝜁 ′).






    






 

   









    





  







  

Figure 9: MAD calculation with ranges 𝐽 of 𝜆 and 𝜂

Figure 8 gives an example of the shrunk ranges. Given buckets

𝐵𝑚 , 𝐵𝑙 and 𝐵𝑟 in S(𝜁 ) over ranges 𝐽 , the new ranges 𝐽 ′ can be

calculated for the sketch S(𝜁 ′) refined from S(𝜁 ). As shown, 𝐽 ′′ =
𝐽 ∩ 𝐽 ′ can still bound median 𝜆 and MAD element 𝜂, referring to

the property of ranges. We replace 𝐽 ′ with the further shrunk 𝐽 ′′.

3.7 MAD Calculation
Once the CORE-Sketch is sufficiently refined such that data ele-

ments in ranges 𝐽 can fit in memory, e.g., recycling the space of

CORE-Sketch, we can find exactly the median 𝜆 and the MAD ele-

ment 𝜂 by ranking elements in 𝐽 ∩ D. Again, efficient algorithms

such as Quickselect [8] can be used to determine the exact rank in

the small subset 𝐽 ∩ D in memory.

Proposition 8 (MAD Calculation). Given dataset D with me-
dian range 𝐽𝑚 and MAD element ranges 𝐽𝑙 ∪ 𝐽𝑟 , the exact MAD can
be calculated with ranges 𝐽 = 𝐽𝑙 ∪ 𝐽𝑚 ∪ 𝐽𝑟 as follows.

(1) The exact median of D, i.e., 𝜆, is the element in 𝐽 ∩ D with rank
1

2
N − |𝐼1 | − |𝐼2 |.

(2) The exact MAD ofD is the element in {|𝑒 − 𝜆 | | 𝑒 ∈ 𝐽 ∩D} with
rank 1

2
N − |𝐼2 | − |𝐼3 |.

Figure 9 illustrates the process of MAD calculation. Without

loss of generality, we suppose 𝜂 < 𝜆. As shown in Figure 9 (a), the

median 𝜆, with rank
1

2
N in D, should have rank

1

2
N − |𝐼1 | − |𝐼2 | in

𝐽 ∩ D. Likewise, in Figure 9 (b), the MAD element 𝜂 should be the

one with rank
1

2
N in the dataset {|𝑒 − 𝜆 | | 𝑒 ∈ D}. As shown, the

number of elements between 𝜂 and 2𝜆 − 𝜂 should be exactly
1

2
N .

Or equivalently, there should be
1

2
N − |𝐼2 | − |𝐼3 | elements between

𝜂 and 2𝜆 − 𝜂 in 𝐽 ∩ D.

3.8 Iterative Algorithm
Finally we present the algorithm for exact MAD with limited space.

It takes datasetD and bucket limitM as the input, gradually refines

the CORE-Sketch to find the MAD element 𝜂 using the aforesaid

techniques, and outputs the exact MAD.
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Algorithm 1 presents the iterative computation. Lines 1-2 con-

struct the sketch by scanning the data in D in Section 3.1. Lines

3 searches for the median bucket 𝐵𝑚 and MAD buckets 𝐵𝑙 and 𝐵𝑟
as stated in Section 3.2. Line 4 calculates the ranges 𝐽 of median 𝜆

and MAD element 𝜂 in Section 3.3. Line 6-7 refines the sketch by

querying the data elements 𝐽 ∩ D in disk as stated in Section 3.4.

Line 8 searches for the median and MAD buckets over the refined

sketch as stated in Section 3.5. Line 9 calculates and shrinks the

ranges 𝐽 of 𝜆 and 𝜂 in Section 3.3 and 3.6. Line 11 stores 𝐽 ∩ D in

memory and calculates the exact MAD as stated in Section 3.7.

Algorithm 1:MAD-CORE-Sketch(D, M)

Input: Dataset D and bucket limit M
Output:MAD of dataset D

1 𝜁 ← Finest-Base([𝑒min, 𝑒max], M);

2 S(𝜁 ) ← Construct-Sketch(D);

3 𝐵𝑚, 𝐵𝑙 , 𝐵𝑟 ←Median-MAD-Buckets(S(𝜁 ));
4 𝐽𝑚, 𝐽𝑙 , 𝐽𝑟 ←Median-MAD-Element-Ranges(𝐵𝑚, 𝐵𝑙 , 𝐵𝑟 );

5 while Data in 𝐽 = 𝐽𝑙 ∪ 𝐽𝑚 ∪ 𝐽𝑟 are too large in memory do
6 𝜁 ← Refined-Base(𝐽 , M);

7 S(𝜁 ) ← Refine-Sketch(D ∩ 𝐽 );
8 𝐵𝑚, 𝐵𝑙 , 𝐵𝑟 ← Refine-Buckets(S(𝜁 ));
9 𝐽𝑚, 𝐽𝑙 , 𝐽𝑟 ← Shrink-Ranges(𝐵𝑚, 𝐵𝑙 , 𝐵𝑟 );

10 MAD←MAD-Calculation(D ∩ 𝐽 );

11 return MAD;

4 SKETCH ANALYSIS
In this section, we present the theoretical analysis of CORE-Sketch.

Mergeability is illustrated in Section 4.1 to ensure the feasibility

of parallel computing. Convergence is proved in Section 4.2 to

guarantee the correctness of the iterative algorithm.

4.1 Mergeability
In order to run the exact MAD computation algorithm in parallel, it

is expected to construct CORE-Sketches in different partitions of the

dataset, and merge them for finding the MAD element. According

to Section 2.2, the boundaries of buckets in any CORE-Sketch are

defined with 𝜁 from a fixed domain and thus possibly aligned. Such

buckets from different sketches with aligned boundaries can thus

be directly merged without accessing the raw dataset.

Proposition 9 (Mergeability of CORE-Sketch). For CORE-
Sketch S(𝜁 ) on dataset D and S′ (𝜁 ′) on dataset D′ with 𝜁 ≥ 𝜁 ′,
the sketch S′′ (𝜁 ) on the merged dataset D ∪D′ always has |𝐵′′

𝑖
| =

|𝐵𝑖 | +
∑

𝑗∈
(
(𝑖−1) log𝜁 ′ 𝜁 ,𝑖 log𝜁 ′ 𝜁

] |𝐵′
𝑗
|.

Figure 10 gives an example of merging. For 𝜁 = (𝜁 ′)2, the sketch
S′′ (𝜁 ) on the merged dataset D ∪D′ also has base 𝜁 . For each 𝐵′′

𝑖
in S′′ (𝜁 ), its count has |𝐵′′

𝑖
| = |𝐵𝑖 | + |𝐵′

2𝑖−1 | + |𝐵
′
2𝑖
|.

4.2 Convergence
Algorithm 1 proposes to gradually refine the CORE-Sketch and

shrink ranges 𝐽 for finding the MAD element. Convergence of the

iterative computation is thus concerned, i.e., whether the sketch

  
 




  

 


 

 

 






 



      




Figure 10: Merge S(𝜁 ) on dataset D and S′ (𝜁 ′) on dataset D′

and the ranges can be reduced in each iteration. We show how 𝜁 is

reduced in each CORE-Sketch refinement in Lemma 10, and thus

leads to shrunk ranges 𝐽 in each iteration in Proposition 11.

Lemma 10 (Success of Refinement). Given a sufficiently large
𝑀 ≥ 2𝑙 + 2𝜆 + 2max{𝜂, 𝜆 − 𝜂} + 8, where 𝑙 is the index of the MAD
bucket 𝐵𝑙 , in each iteration, we can always have 𝜁 ′ < 𝜁 , where 𝜁 ′ is
the base of CORE-Sketch S(𝜁 ′) refined from the previous S(𝜁 ).

Note that the performance of sketch with exponential-size buck-

ets is related to the data distribution. For example, the bucket limit

of DD-Sketch is determined by the CDF of the dataset [16]. Hence,

it is not surprising that the bucket limit M guaranteeing the con-

vergence depends on the true median value 𝜆, a feature of data

distribution. Specifically, as shown in Figure 3, if 𝜁 ∈ Z becomes

smaller by refinement, the number of buckets in a particular range

doubles. For a larger median 𝜆, the length of the median bucket 𝐵𝑚 ,

denoted as 𝑑𝑚 = 𝜁𝑚 − 𝜁𝑚−1, will be larger as well due to the expo-

nentially increasing bucket size. Consequently, 𝑑max − (𝑑min − 𝑑𝑚)
in Figure 5 is larger as well, resulting in wider ranges 𝐽𝑙 and 𝐽𝑟 .

The aforesaid doubled buckets for refining the wider ranges 𝐽𝑙 and

𝐽𝑟 may exceed the bucket limit M , i.e., failed refinement. In other

words, the bucket limit M should be enlarged for a larger median 𝜆,

in order to ensure successful refinement and thus convergence.

Proposition 11 (Convergence of Ranges). Given a sufficiently
large 𝑀 ≥ 𝑙 + 𝜆 + max{𝜂, 𝜆 − 𝜂} + 8, where 𝑙 is the index of the
MAD bucket 𝐵𝑙 , in each iteration, we can always have the new ranges
𝐽 ′ ⊂ 𝐽 shrunk from the previous ranges 𝐽 .

Since the ranges 𝐽 of median 𝜆 and MAD element 𝜂 shrink in

each iteration, the data elements in 𝐽 ∩D will finally become small

enough to store in memory, and thus find 𝜆 and 𝜂 in Section 3.7.

That is, the iterative computation converges.

4.3 Complexity Analysis
The space cost of CORE-Sketch is O(M), referring to the bucket

limit M . The time complexity is O (𝑓 (C) (N +𝑀 log𝑀)) , as ana-
lyzed in Proposition 12, where 𝑓 (C) in Formula 7 serves as the

upper bound on the number of refinements. As shown, the larger

the proportion C is, i.e., more data inD to fit in memory, the fewer

the iterations are needed. The experiments also show that with the

sameM , a larger data size N needs more iterations of refinements in

Figure 15 (a) and (b), and consequently higher time cost in Figure 11.

On the other hand, given a larger bucket limit M , fewer iterations
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(f) Power, M=4e3, ε=1e-4

Figure 11: Time cost over data size N

of refinements are needed, as shown in Figure 15 (c) and (d). The

corresponding time cost decreases as well in Figure 13.

Proposition 12 (Time Complexity of CORE-Sketch). The time
complexity of CORE-Sketch is O (𝑓 (C) (N +𝑀 log𝑀)) , having the
upper bound on the number of refinements

𝑓 (C) = − log logmax

{
𝜁 | max

𝑖=1,· · · ,M−1

(
𝐹 (𝜁 𝑖+1) − 𝐹 (𝜁 𝑖−2)

)
≤ C

}
,

(7)

where N is the data size, M is the bucket limit, C is the percentage of
data that can fit in memory and 𝐹 is the CDF of the dataset D.

5 EXPERIMENTS
We implement CORE-Sketch and other baselines in Java. The ex-

periment code and data can be found in [5] for reproducing. The

experiments are conducted on a machine with 8-core 2.3 GHz CPU

and 64 GB memory. We employ 3 synthetic datasets and 3 real-

world datasets with various distributions as introduced in the full

version technical report [5].

5.1 Comparison with Baselines
We compare CORE-Sketch with baselines introduced in Section 6,

No-Sketch, DD-Sketch and TP-MAD, in Figures 11, 12, 13 and 14.
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(e) Pareto, M=4e3, ε=1e-4
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Figure 12: Relative error of approximate MAD over data size

5.1.1 Comparison on Data Size. In Figure 11, when the data size

of datasets Normal, Chi-Square and Pareto reaches 1e10, the No-

Sketch algorithm fails to complete. The datasets are too large to load

in 64 GB memory for applications. On substantially large synthetic

datasets, DD-Sketch fails to give an approximate MAD within the

error bound 𝜖 , except (d) Gas in Figure 12. In contrast, CORE-Sketch

can still compute the exact MAD under limited space. It shows the

effectiveness of our proposed algorithm compared with both exact

No-Sketch algorithm and DD-Sketch approximation.

The time cost of TP-MAD is low in Figure 11 (b), since it fails to

return an approximate MAD within the specified error bound 𝜖 but

simply the worst error 1 as illustrated in Figure 12 (b). Indeed, with

the increase in data size, the data cannot be accurately summarized

by the sketch with the limited space. The relative error of TP-MAD

thus increases from the specified 𝜖 to the worst 1, e.g., starting from

2e6 in Figure 12 (d).

5.1.2 Comparison on Bucket Limit. For the same reason, by enlarg-

ing the bucket limit M in Figure 14, the relative error of TP-MAD

drops from 1 to the specified 𝜖 . The corresponding time cost in

Figure 13 increases for obtaining the more accurate 𝜖 rather than

the worst 1. Indeed, to obtain the specified 𝜖 with bucket limit M
larger than 8e3 in Figure 14 (d), the time cost of TP-MAD in Figure

13 (d) is comparable to CORE-Sketch returning the exact MAD.

5.1.3 Evaluation of Single Thread Implementation. As shown in

Figure 13, CORE-Sketch(1) with single thread can show competitive
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(f) Power, N=1e7, ε=1e-5

Figure 13: Time cost over bucket limit M

time cost compared with the baselines, when the bucket limit M
is large. The reason is that a larger M leads to fewer iterations of

sketch refinement, as illustrated in Figure 15 (c) and (d). For the

same reason, given the same M , a larger data size means more

iterations in Figure 15 (a) and (b), and higher corresponding time

cost, e.g., in 1e7 of Figure 11 (d) Gas. The No-Sketch method needs

up to 10
6
times larger memory (data size N / bucket limit M), i.e., a

trade-off between time and space for exact MAD.

For a small bucket limitM in Figure 13, CORE-Sketch(1) is about

2 to 3 times slower than the approximate methods. The higher

time cost is worthwhile, since the approximation by TP-MAD and

DD-Sketch may fail to return approximate MAD within the given

error bound 𝜖 in such a limited M . That is, as shown in Figure 14,

TP-MAD and DD-Sketch give approximate MAD with rather high

relative error (1 for TP-MAD and even up to 10000 for DD-Sketch in

M=2e3). The results verify again the trade-off between effectiveness

and efficiency by exact and approximate methods.

5.1.4 Evaluation on the Number of Iterations. As shown in Figures

15 (a) and (b), for all datasets, as the data size increases, CORE-

Sketch needs to perform more rounds to complete the calculation

of exact MAD. The reason is that more elements are likely to be

stored in one bucket, and thus the sketch needs more refinement.

The time cost of CORE-Sketch also grows with the data size due to

the increase of number of rounds in Figure 11.

According to Figures 15 (c) and (d), as the buckets size increases, a

fewer number of rounds are required by CORE-Sketch. The buckets
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(e) Pareto, N=1e9, ε=1e-4
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Figure 14: Relative error of approximate MAD over M
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Figure 15: Refinement iteration rounds of CORE-Sketch over
data size N and bucket limit M

of CORE-Sketch in each round are more refined and can store more

statistical information. It also leads to the decrease in time cost of

CORE-Sketch, in Figure 13, when the bucket limit grows.
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(c) Chi-Square, N=1e9, M=2e3
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(d) Gas, N=1e7, M=2e3
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(e) Pareto, N=1e9, M=2e3
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(f) Power, N=1e7, M=2e3

Figure 16: Time cost over various error bounds 𝜖 if applicable

5.2 Comparison with Approximation
Compared with DD-Sketch [16] and TP-MAD [4], the contributions

of our present paper are as follows. First, while DD-Sketch and TP-

MAD are approximate quantile or MAD algorithms, CORE-Sketch

is the first sketch to support exact MAD with comparable space.

Moreover, under limited space budget, DD-Sketch and TP-MAD

may fail to return the quantile or MADwithin the given error bound

𝜖 . This is because a small 𝜖 requires DD-Sketch and TP-MAD to have

fine-grained buckets, in order to store the statistical information

around median and MAD elements. Limited space prevents DD-

Sketch and TP-MAD from allocating such fine-grained buckets.

In contrast, our CORE-Sketch introduces the technique of sketch

refinement to handle this problem. By refining the sketch through

iterations, the buckets can be fine enough to compute the ranges of

the median and MAD element.

5.2.1 Computation Performance. To compare CORE-Sketch with

DD-Sketch and TP-MAD, in great detail, Figures 16 and 17 present

the experiments by varying the error bound 𝜖 of approximation.

Generally, as shown in Figure 17, given a large error bound 𝜖 , the

relative error of the returned approximate MAD will be high. In

particular, when 𝜖 is up to 1e-1, TP-MAD may return approximate

MAD with relative error 1. The reason is that it regards median

and MAD element as the same value. On the other hand, for a

small error bound 𝜖 , the sketch fails to perform in the limited space.
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(a) Normal, N=1e9, M=2e3
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(b) Bitcoin, N=1e7, M=2e3

 10
-4

 10
-3

 10
-2

 10
-1

 10
0

 10
1

 10
2

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1

R
e
la

ti
v
e
 e

rr
o
r

ε

(c) Chi-Square, N=1e9, M=2e3
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(e) Pareto, N=1e9, M=2e3
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(f) Power, N=1e7, M=2e3

Figure 17: Relative error of approximate MAD under various
error bounds 𝜖

DD-sketch returns extremely large relative error, e.g., for 𝜖=1e-6 in

Figures 17 (b) and (e), whereas TP-MAD has the worst error 1.

Again, the TP-MAD time cost of such failure cases is low in

Figure 16. Indeed, our CORE-Sketch(4) with four threads for exact

MAD has a time cost comparable to TP-MAD when its error is

successfully bounded by 𝜖 rather than the worst 1, e.g., for 𝜖=1e-2 in

Figure 16. Thereby, the advantage of the proposed CORE-Sketch(4)

is to return the exact MADwith time and space costs comparable to

the approximate DD-Sketch and TP-MAD having bounded error 𝜖 .

5.2.2 Application in Outlier Detection. We conduct qualitative ex-

periments of outlier detection by varying error bound 𝜖 of approxi-

mation and resource limitation M . As in Example 1.1, we compare

the outliers detected by approximate MAD with the truths by exact

MAD, and report F1 score of precision and recall.

Figure 18 presents the F1 score of outlier detection, using the

MAD returned by the approximate baselines under various error

bounds 𝜖 . The results are generally analogous to the corresponding

relative errors in Figure 17. A larger relative error of the approx-

imate MAD leads to a lower F1 score of outlier detection. If the

approximation methods fail to return MAD within the error bound

𝜖 , e.g., 1e-6 to 1e-4 in Figure 17 (a), the approximate MAD is useless

with outlier detection accuracy almost 0 in Figure 18 (a).

Figure 19 illustrates the outlier detection accuracy of approxi-

mate MAD returned by DD-Sketch and TP-MAD under various

bucket limit M . Again, the detection F1 score is analogous to the
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(c) Chi-Square, N=1e9, M=2e3
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(d) Gas, N=1e7, M=2e3
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(e) Pareto, N=1e9, M=2e3
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(f) Power, N=1e7, M=2e3

Figure 18: F1 score of outlier detection by approximate MAD
under various error bounds 𝜖

relative error in Figure 14. When the returned approximate MAD

is not bounded by 𝜖 , e.g., for M=2e3 in Figure 14 (a), it could barely

detect outliers with F1 score close to 0 in Figure 19.

The trade-off between approximation and exact computation is

thus on time and space. While the approximation methods need

more space to obtain MAD having low relative error in Figure 14

and consequently higher outlier detection accuracy in Figure 19, the

proposed exact method CORE-Sketch needs a bit higher time cost

in Figure 13. Nevertheless, CORE-Sketch(4) with four threads has

time performance comparable to the approximation computation.

However, the approximation methods may fail to obtain MAD with

error bounded by 𝜖 even with M=1e4, for datasets (b) Bitcoin, (c)

Chi-Square and (e) Pareto, in Figures 14 and 19.

Even worse, one may need to try different error bounds 𝜖 for

various datasets, in order to obtain approximate MAD that is suc-

cessfully bounded by 𝜖 , as illustrated in Figures 17 and 18. In con-

trast, without tuning such a parameter, the proposed method can

always return the exact MADin one shot. In this sense, the proposed

approach provides new insight faster.

5.3 Evaluation on System Implementation
Note that the sketch refinement technique is necessary when the

memory is limited, e.g., in IoT devices or databases with heavy loads.

For example, consider a trillion records of 16-byte floats. The No-

Sketch method without sketch refinement needs
16×1012
1024

4
≈ 15 TB
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(e) Pareto, N=1e9, ε=1e-4
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Figure 19: F1 score of outlier detection by approximate MAD
under various bucket limit M
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Figure 20: Concurrent MAD query processing

memory to load the data. The experiments in Figure 11 demonstrate

that No-Sketch works on one billion (1e9) records with 64 GB

memory for applications, but fails in ten billion (1e10) data size.

In contrast, the proposed CORE-Sketch with bucket limit needs

extremely lower space cost. This major advance also enables more

concurrent MAD queries in parallel. We implement CORE-Sketch(1)

with single thread in Apache IoTDB [10], and compare with the No-

Sketch implementation in the database. Figure 20 presents the time

cost of various concurrent queries. As shown, when the number of

concurrent queries reaches 8, all 64 GB memory is consumed and

the No-Sketch method suffers out-of-memory (OOM) error.
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The proposed CORE-Sketch with refinement technique can still

perform in even 32 concurrent queries. The total memory for sketch

with bucket limit M = 1𝑒6 is only 48 Byte ×106 ≈ 50 MB, shared

by all concurrent queries, where the size for a single bucket is 48

Bytes. Although the refinement takes some extra time cost in query

processing, it is a worthwhile trade-off for the extremely lower

space cost and thus supporting much more current queries.

6 RELATEDWORK
6.1 MAD Computation
To show the best known upper bounds of the computational com-

plexity of the problem, we discuss the time and space complexity

of exact and approximate algorithms in Table 1.

For exact MAD, one may call QuickSelect [20] twice to compute

the median and the median of deviation to median, i.e., No-Sketch

with both time and space complexity O(N ), where N is the size

of dataset D. Note that it is often impractical to load the entire

data in memory, and thus fails to perform on data size 1e10 even

with 64 GB memory in Figure 11. In contrast, our CORE-Sketch

has significantly lower space cost O(M), but a bit higher time cost

O (𝑓 (C) (N +𝑀 log𝑀)) , as analyzed in Proposition 12, where M
is the maximum number of buckets, and 𝑓 (C) in Formula 7 serves

as the upper bound on the number of refinements.

For approximate MAD, the exact contributions of the previous

works [4, 16] are discussed as follows. DDSketch [4] gives a data

structure to query the quantile under relative error 𝜖 with a success

rate 𝛿 . The space complexity of DD-Sketch is O(M), and the time

complexity is O(N +M logM). Note that using DD-Sketch twice

to compute MAD cannot give an explicit error bound for MAD.

Thereby, its relative error could be extremely large in practice, e.g.,

in Figures 12 and 14, (b) and (e).

TP-MAD [16] extends the DD-Sketch algorithm to support ap-

proximate MAD query. It can return an (𝜖, 1)-accurate MAD, i.e.,

the relative error is at most 𝜖 or 1. The space complexity of TP-MAD

remains O(M), while guaranteeing the O(N +M logM) time com-

plexity. Unfortunately, TP-MAD does not support exact MAD with

parameter 𝜖 = 0, as stated in [16]. This is because the algorithm can-

not construct buckets under 𝜖 = 0, as the boundary of the buckets

is computed according to
1+𝜖
1−𝜖 . The boundary of the buckets will all

be 1 if we set 𝜖 = 0, i.e., the buckets can only store elements lying

in (1, 1] = ∅. In short, without the sketch refinement proposed in

this study, the TP-MAD method [4] returns approximate MAD and

cannot be made exact.

6.2 Database Implementation
Sketches are constructed to accelerate the in-database statistical

computing. For example, DD-Sketch [16] introduces a sketch with

logarithmic-sized bins, i.e., exponentially increasing widths to com-

pute the approximate quantile of a dataset. In this study, we em-

ploy such exponential ranges in CORE-Sketch to better handle the

skewed data. Likewise, KLL± [25] is designed to handle dynamic

datasets with frequent updates by a combination of adaptive sam-

pling and merging techniques. It is promising to also extend the

proposed CORE-Sketch to handle frequent updates in the future.

Moreover, MAD query functions are also supported in database

products. For example, the function anomalydetection.mad() in

Table 1: Complexity analysis of MAD algorithms

Algorithm Result Time Space

No-Sketch Exact O(N ) O(N )
CORE-Sketch Exact O (𝑓 (C) (N +𝑀 log𝑀)) O(𝑀)
DD-Sketch Approximate O(N +𝑀 log𝑀) O(𝑀)
TP-MAD Approximate O(N +𝑀 log𝑀) O(𝑀)

InfluxDB is used for MAD calculation and anomaly detection [21].

Similarly, the MAD function can be called in SQL statements in

Apache IoTDB [22], e.g., select mad(s0) from root.d0.
Remarkably, the proposed CORE-Sketch with extremely low

space cost enables more MAD queries processed in parallel. Figure

20 in Section 5.3 compares CORE-Sketch with the No-Sketch imple-

mentation in Apache IoTDB [10]. As shown, the No-Sketch method

fails in more than 4 concurrent queries owing to OOM errors, while

CORE-Sketch can successfully handle 32 concurrent queries.

7 CONCLUSIONS
In this paper, we propose a novel structure of CORE-Sketch for

computing exact MAD with limited space. Instead of estimating

approximateMAD by statistics in the sketch, the refinement scheme

of sketch gradually narrows down the ranges of the median and

MAD element. Once the ranges of data elements are small enough

to be stored inmemory, the exact MAD is computed. Mergeability of

CORE-Sketch is illustrated, which enables parallel computation of

exact MAD. Moreover, convergence of the iterative algorithm with

sketch refinement is also analyzed. The extensive experiments over

real and synthetic data demonstrate that our CORE-Sketch shows

up to 3 order-of-magnitude improvement in space cost compared

to the No-Sketch baseline. Remarkably, the time and space costs of

CORE-Sketch are relatively comparable to the DD-Sketch method

for estimating approximate MAD.

In CORE-Sketch, three buckets, one for median and two others

for MAD, are refined at the same time to share the same scan of

full data in each iteration. It is interesting to refine the median and

MAD buckets separately, in order to further reduce the memory

space. With a shuffle to partition the data according to buckets,

one may refine the median bucket first by scanning only the corre-

sponding data partition. Then, the MAD buckets are refined, again

by scanning only the data partitions corresponding to two MAD

buckets. While the buckets maintained at the same time are reduced,

a substantial reduction in memory consumption, such separated

refinements incur an extra cost of data shuffle in the disk, and more

iterations of refinement for median and MAD buckets, respectively.

It is promising to further study the trade-off in performance.
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