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ABSTRACT
The performance of worst-case optimal join algorithms depends

on the order in which the join attributes are processed. Selecting

good orders before query execution is hard, due to the large space

of possible orders and unreliable execution cost estimates in case of

data skew or data correlation. We propose ADOPT, a query engine

that combines adaptive query processing with a worst-case optimal

join algorithm, which uses an order on the join attributes instead

of a join order on relations. ADOPT divides query execution into

episodes in which different attribute orders are tried. Based on run

time feedback on attribute order performance, ADOPT converges

quickly to near-optimal orders. It avoids redundant work across

different orders via a novel data structure, keeping track of parts

of the join input that have been successfully processed. It selects

attribute orders to try via reinforcement learning, balancing the

need for exploring new orders with the desire to exploit promis-

ing orders. In experiments with various data sets and queries, it

outperforms baselines, including commercial and open-source sys-

tems using worst-case optimal join algorithms, whenever queries

become complex and therefore difficult to optimize.
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1 INTRODUCTION
The area of join processing has recently been revolutionized by

worst-case optimal join algorithms [29, 45]. LeapFrog TrieJoin

(LFTJ) is a prime example of aworst-case optimal join algorithm [45].
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Figure 1: Execution time of different attribute orders for the
five-clique query on the ego-Twitter graph.

Such algorithms guarantee asymptotically worst-case optimal per-

formance. Those formal guarantees set them apart from traditional

join algorithms, which are known to be sub-optimal [30]. In prac-

tice, they often translate into orders of magnitude runtime im-

provements, specifically for cyclic queries, compared to traditional

approaches. They are incorporated in several recent query engines:

for factorized databases [32, 33], graph processing [2, 15] and gen-

eral query processing [11], in-database machine learning [36], and

in the commercial systems LogicBlox [4] and RelationalAI [3].

As pointed out in prior work [45], in practice, the performance

of worst-case optimal join algorithms often depends heavily on the

order in which join attributes (i.e., groups of join columns that are

linked by equality constraints) are processed. Yet this is not reflected

in the formal analysis of worst-case optimal join algorithms [45].

Worst-case optimality is defined with regards to worst-case assump-

tions about the database content. Under these assumptions, different

attribute orders have asymptotically equivalent time complexity.

On the other side, given the actual database content, some attribute

orders may perform much better than others in practice. Similar to

the classical join ordering problem, it is therefore important to aim

for the instance-optimal order, e.g., using data statistics.

Example 1.1. Figure 1 illustrates the need for accurate attribute

order selection. It compares LFTJ execution times (scaled to the

time of the fastest order) for different attribute orders and the same

query that asks for the number of cliques of five distinct nodes. 120

attribute orders (on the x-axis) are ranked by execution time. The

performance gap between the best and worst attribute orders is

more than 16x. The choice of an attribute order has thus significant

impact on performance and near-optimal orders are sparse.
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Execution engines using worst-case optimal join operators (e.g.,

the LogicBlox system [4]) typically select attribute orders via a

query optimizer. Similar to traditional query optimizers selecting

join orders, such optimizers exploit data statistics and simplifying

cost models to pick an attribute order. This approach is however

risky. Erroneous cost estimates (e.g., due to data skew not repre-

sented in data statistics) can lead to highly sub-optimal attribute

order choices. Incorrect cost estimates are known to cause signifi-

cant overheads in traditional query optimization [23]. The exper-

iments in Section 5 show that this case appears in the context of

optimization for worst-case optimal join algorithms as well. In par-

ticular, this applies to queries on non-uniform data with an elevated

number of predicates, increasing the potential for inter-predicate

correlations that make size and cost predictions hard.

Example 1.2. In social network analysis, analysts are often in-

terested in finding people who are mutually connected in cliques

via links in the graph representing the social network [17, 19, 34].

Specifically, prior analysis often considers cliques of up to five or

six [17, 34], or more [19] members. The experiments in Section 5

show that such queries already create challenges in cost prediction,

making methods that are robust to prediction errors preferable.

To overcome these challenges, we propose an adaptive execu-

tion strategy for worst-case optimal join algorithms. The goal of

adaptive processing is to enable attribute order switches, during

query processing. The processing time is divided into episodes and

in each episode we may choose an attribute order for the execution

of the query over a fragment of the input data. By measuring exe-

cution speed for different attribute orders, the adaptive processing

framework converges to near-optimal attribute orders over time.

To the best of our knowledge, this is the first adaptive processing

strategy for worst-case optimal join algorithms.

Adaptive processing for query processing based on attribute

orders leads, however, to new challenges, discussed in the following.

First, we must limit overheads due to attribute order switching.

In particular, we must avoid redundant processing when applying

multiple attribute orders to the same data. We solve this challenge

by a task manager, capturing execution progress achieved by differ-

ent attribute orders. Join result tuples are characterized by a value

combination for join attributes. Hence, we generally represent exe-

cution progress by (hyper)cubes within the Cartesian product of

value ranges over all join attributes. Having processed a cube im-

plies that all contained result tuples, if any, have been generated.

Data processing threads query the task manager to retrieve cubes

not covered previously. Also, the task manager is updated when-

ever new results become available. It ensures that different threads

process non-overlapping cubes, independently of the current at-

tribute order. Query processing ends once all processed cubes, in

aggregate, cover the full space of join attribute value ranges.

Second, we need a metric to compare different attribute orders,

based on run time feedback. This metric must be applicable even

when executing attribute orders for a very short amount of time.

The number of result tuples generated per time unit may appear

to be a good candidate metric. However, it is not informative in

case of small results. Instead, we opt for a metric analyzing the size

of the hypercube (within the Cartesian product of join attribute

values) covered per time unit. Even if no result tuples are generated,

this metric rewards attribute orders that quickly discard subsets of

the output space.

Third, we must choose, in each episode, which attribute order

to select next. This choice is challenging as it is subject to the so

called exploration-exploitation dilemma. Choosing attribute orders

that obtained good scores in past invocation (exploitation) may

seem beneficial to generate a full query result as quickly as possible.

However, executing attribute orders about which little is known (ex-

ploration) may be better. It may lead to even better attribute orders

that can be selected in future episodes. To balance between these

two extremes in a principled manner, we employ methods from

the area of reinforcement learning. Under moderately simplifying

assumptions, based on the guarantees offered by these methods,

we can show that ADOPT converges to optimal attribute orders.

We have integrated our approach for adaptive processing with

worst-case optimal join algorithms into ADOPT (ADaptive wOrst-

case oPTimal joins), a novel, analytical SQL processing engine. We

compare ADOPT to various baselines, including traditional data-

base systems such as PostgreSQL and MonetDB, prior methods for

adaptive processing such as SkinnerDB [42], as well as commer-

cial and open-source database engines that use worst-case opti-

mal join algorithms. We evaluate all systems on acyclic and cyclic

queries from public benchmarks, TPC-H, JCC-H [8], join order [13]

and SNAP graph data [21, 31] workloads. For complex queries on

skewed data, ADOPT outperforms all competitors. In particular,

it improves over a commercial database engine using the same

worst-case optimal join algorithm as ADOPT. This demonstrates

the benefit of adaptive attribute order selections.

In summary, the contributions in this paper are the following:

• We propose the first adaptive processing strategy for worst-

case optimal join algorithms using reinforcement learning.

• We describe specialized data structures, progress metrics,

and learning algorithms that make adaptive processing in

this scenario practical.

• We formally analyze worst-case optimality guarantees and

convergence properties.

• We compare ADOPT experimentally against various base-

lines, showing that it outperforms them for a variety of

acyclic and cyclic queries and datasets.

The remainder of this paper is organized as follows. Section 2

presents an overview of the ADOPT system. Section 3 describes the

algorithm used for adaptive processing in detail. Section 4 analyzes

the approach formally while Section 5 reports experimental results.

Finally, Section 6 discusses prior related work.

2 OVERVIEW
Figure 2 overviews the ADOPT system, illustrating its primary

components. ADOPT supports SPJAG queries with sub-queries,

covering the majority of TPC-H queries (see Section 5.1 for de-

tails). It performs in-memory data processing and uses a columnar

data layout. The highly specific requirements of the ADOPT ap-

proach (e.g., support for high-frequency attribute order switching

in a worst-case optimal join processing framework) motivate a

customized system, rather than the integration into classical SQL

execution engines. The implementation uses Java and supports
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Figure 2: Overview of ADOPT system components.

multi-threading via the Java ExecutorService API. It uses a worst-

case optimal algorithm to process joins and selects attribute orders

via reinforcement learning.

For complex queries (i.e., queries with sub-queries), ADOPT

first decomposes them into a sequence of simple SPJAG queries,

using decomposition techniques proposed in prior work [27, 41].

After decomposition, it executes the resulting queries, storing query

results in temporary tables that are referenced by later queries in

the query sequence (as input tables). For each simple query, ADOPT

first performs a pre-processing step to filter the tables using unary

predicates from the query (the resulting tables are typically much

smaller than the original ones). After that, the following join phase

is executed on the filtered tables.

For worst-case optimal computation of equality joins, ADOPT

uses LeapFrog TrieJoin (LFTJ). LFTJ considers join attributes in a

fixed order to find value combinations that satisfy all join predi-

cates. ADOPT uses an anytime version of this algorithm, so it can

suspend and resume execution with high frequency. This enables

the adaptive processing strategy, allowing ADOPT to identify near-

optimal attribute orders, based on run time feedback. Similar to

LFTJ, ADOPT does not materialize intermediate join results: LFTJ

stores at most one tuple, containing one value per attribute, as

intermediate state and adds complete tuples directly to the join re-

sult. This makes suspend and resume operations very efficient. Our

technical report [48] provides further details on the original LFTJ

algorithm that ADOPT is based upon, including several examples.

It also discusses details on the LFTJ variant used for ADOPT, such

as how ADOPT uses and maintains data structures enabling the sys-

tem to perform fast seek operations on the input tables, retrieving

tuples that satisfy inequality conditions on their attributes.

Besides the join algorithm itself, ADOPT uses an optimizer based

on reinforcement learning. The optimizer selects attribute orders,

balancing the need for exploration (i.e., trying out new attribute

orders) with the need for exploitation (i.e., trying out attribute or-

ders that performed well in the past). Each selected attribute order

is only executed for a limited number of steps, enabling ADOPT

to try thousands of attribute orders per second. To compare dif-

ferent attribute orders, ADOPT generates quality estimates. These

estimates judge the performance achieved via an attribute order

during a single invocation. Performance may vary, for the same

order, across different invocations (e.g., due to heterogeneous data

distributions). However, by averaging over different invocations for

the same attribute order, ADOPT obtains increasingly more precise

quality estimates over time.

Switching between attribute orders makes it challenging to avoid

redundant work. ADOPT uses a task manager to keep track of re-

maining parts of the join input to process. More precisely, the task

manager manages (hyper)cubes in the Cartesian product space,

formed by value ranges of all join attributes. Each cube represents

a part of the input space that still has to be processed by some

attribute order (i.e., corresponding result tuples, if any, have not

been added into a shared result set yet). The execution of the any-

time LFTJ is restricted to cubes that have not been processed yet.

More precisely, data processing threads query the task manager for

cubes, called target cubes in the following, that do not overlap with

any cubes processed previously or concurrently (by other threads).

Threads process the target cube until completion or until reaching

the per-episode limit of computational steps. The task manager is

notified of processed parts of the target cube (if the step limit is

reached, only a subset of the target cube, represented by a small

set of cubes contained in the target cube, was processed). The task

manager removes processed cubes from the set of remaining cubes.

Join processing terminates once the entire input (i.e., the hyper-

cube representing the full Cartesian product of join attribute values)

has been covered. This can be verified efficiently using the task

manager. If no unprocessed cubes remain, a complete result has

been generated. Depending on the type of query, ADOPT executes

a post-processing stage in which group-by clauses and aggregates

are executed. Specifically for (count, max, min, sum, and avg) ag-

gregates without grouping, ADOPT integrates join processing with

aggregation and does not need to perform a post-processing stage.

Several processing phases of ADOPT can be parallelized. Specif-

ically, ADOPT parallelizes the join preparation phase (i.e., unary

predicates are evaluated on different data partitions in general) and

sorts data in parallel. During the join phase, ADOPT assigning non-

overlapping hypercubes to different threads. Hence, using the same

mechanism that avoids redundant work across attribute orders,

ADOPT avoids redundant work across different threads as well.

3 ALGORITHM
We discuss the algorithm used by ADOPT in detail. Section 3.1

discusses the top-level function, used to process queries. Section 3.2

introduces ADOPT’s parallel anytime join algorithm with worst-

case optimality guarantees. Section 3.3 discusses the mechanism

by which ADOPT avoids redundant work across different attribute

orders. Section 3.4 describes how ADOPT selects attribute orders

via reinforcement learning. Finally, Section 3.5 describes the reward

metric used to guide the learning algorithm.

3.1 Main Function
ADOPT uses Algorithm 1 to process simple SPJAG queries (i.e.,

without sub-queries). In addition to the query, the algorithm also

takes as input a number of data processing threads and a number

of computational steps spent to evaluate a selected attribute order.

First, ADOPT filters the tables with the unary predicates (Line 5).

ADOPT supports hash indexes on single columns and uses them,

if available, to retrieve rows satisfying unary equality predicates.

Without indexes, it scans and filters data, exploitingmulti-threading.
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Algorithm 1Main function of ADOPT, processing queries.

1: Input: Query 𝑞, number of threads 𝑛, per-episode budget 𝑏

2: Output: Query result

3: function ADOPT(𝑞,𝑛,𝑏)

4: // Filter input tables via unary predicates

5: {𝑅1, . . . , 𝑅𝑚 } ←Prep.UnaryFilter(𝑞)

6: // Initialize join result set

7: 𝑅 ← ∅
8: // Initialize reinforcement learning

9: RL.Init(𝑞)

10: // Initialize constraint store

11: TM.Init(𝑞,𝑛)

12: // Iterate until result is complete

13: while ¬ TM.Finished do
14: // Select attribute order via UCT algorithm

15: 𝑜 ← RL.Select

16: // Use order for limited join steps

17: 𝑟𝑒𝑤𝑎𝑟𝑑 ←AnytimeWCOJ(𝑞,𝑜,𝑛,𝑏, 𝑅)

18: // Update UCT statistics with reward

19: RL.Update(𝑜, 𝑟𝑒𝑤𝑎𝑟𝑑)

20: end while
21: // Return result after post-processing

22: return Post(𝑞, 𝑅)
23: end function

After that, the only remaining predicates are then join predicates

(including equality and other join predicates). Next, the algorithm

initializes the set of join result tuples, the reinforcement learning

algorithm by specifying the search space of attribute orders (which

depends on the query), and the task manager with the input query

and the number of processing threads (Lines 6 to 11). Internally,

the task manager initializes the hypercube representing the total

amount of work for each thread. More precisely, it divides the cube,

representing the Cartesian product of all join attribute ranges, into

equal shares for each thread.

The task manager keeps track of cubes processed by the worker

threads. Hence, query processing finishes once all processed cubes,

in aggregate, cover the full input space. Iterations continue (Lines 13

to 20) until that termination condition is satisfied. In each iteration,

ADOPT first selects an attribute order via reinforcement learning

(Line 15). Then, it executes that order, in parallel, for a fixed number

of steps (Line 17). By executing the attribute order, the result set (𝑅)

may get updated. Note that 𝑅 only contains complete result tuples

(mapping each attribute to a value) or partial values for aggregates.

However, it does not contain any intermediate result tuples. Besides

updating results, executing an attribute order yields reward values,

representing execution progress per time unit. Those reward values

are used to update statistics (Line 19), maintained internally by the

reinforcement learning optimizer, to guide attribute order selections

in future iterations. Once the join finishes, the algorithm performs

post-processing (e.g., calculating per-group aggregates for group-by

queries, based on join results in 𝑅) and returns the result (Line 22).

3.2 Anytime Join Algorithm
Algorithm 2 is the (worst-case optimal) join algorithm, used to

execute a given attribute order for a fixed number of steps. Exe-

cution proceeds in parallel: different worker threads operate on

non-overlapping cubes. Each worker thread iterates the following

Algorithm 2 Parallel anytime version of worst-case optimal join

algorithm.

1: Input: Query 𝑞, attribute order 𝑜 , number of threads 𝑛, per-episode

budget 𝑏, Result set 𝑅

2: Output: Reward 𝑟
3: function AnytimeWCOJ(𝑞,𝑜,𝑛,𝑏, 𝑅)

4: // Initialize accumulated reward

5: 𝑟 ← 0

6: // Execute in parallel for all threads

7: for 1 ≤ 𝑡 ≤ 𝑛 in parallel do
8: // Initialize remaining cost budget

9: 𝑙𝑡 ← 𝑏

10: // Iterate until per-episode budget spent

11: while 𝑙𝑡 > 0 do
12: // Retrieve unprocessed target cube

13: 𝑐𝑡 ←TM.Retrieve

14: // Process cube until timeout, add results

15: ⟨𝑃𝑡 , 𝑠𝑡 ⟩ ←JoinOneCube(𝑞, 𝑙𝑡 , 𝑜, 𝑐𝑡 , 𝑅)

16: // Update constraints via processed cube

17: TM.Remove(𝑐𝑡 , 𝑃𝑡 )

18: // Update accumulated reward (see Section 3.5)

19: 𝑟 ← 𝑟 + 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑃𝑡 , 𝑞)
20: // Update remaining budget

21: 𝑙𝑡 ← 𝑙𝑡 − 𝑠𝑡
22: end while
23: end for
24: // Return accumulated reward

25: return 𝑟

26: end function

steps until its computational budget is depleted (Lines 11 to 22).

First, it retrieves an unprocessed cube, the target cube, from the task

manager (Line 13). Then, it uses a sub-function (an anytime version

of the LFTJ) to process the retrieved target cube (Line 15). In prac-

tice, it is often not possible to process the entire target cube under

the remaining computation budget. Hence, the result of the triejoin

invocation (Function JoinOneCube) reports the set of cubes, con-

tained within the target cube, that were successfully processed. In

addition, it returns the number of computation steps spent. The

task manager is notified of successfully processed cubes which will

be excluded from further consideration (Line 17). Also, a reward

value is calculated that represents progress towards generating a

full join result (Line 19). We postpone a detailed discussion of the

reward function to Section 3.4. Finally, Algorithm 2 returns the

reward value, accumulated over all threads and iterations (Line 25).

Algorithm 3 describes the sub-function, used to process a single

cube, at a high level of abstraction. The actual join is performed

by Procedure JoinOneCubeRec. This procedure is based on the

leapfrog triejoin [45], a classical, worst-case optimal join algorithm
1
.

For conciseness, the pseudo-code describes the algorithm as a re-

cursive function (whereas the actual implementation does not use

recursion). The input to the algorithm is the join query, the re-

maining computational budget, an attribute order, a target cube

to process, the result set, and the index of the current attribute.

The algorithm considers query attributes sequentially, in the given

attribute order. The attribute index marks the currently considered

1
A detailed example of the LFTJ execution is given in our technical report [48].
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Algorithm 3Worst-case optimal join algorithm with timeout, join-

ing a single cube.

1: Input: Query 𝑞, remaining budget 𝑏, attribute order 𝑜 , target cube to

process 𝑐 , result set 𝑅, attribute counter 𝑎, value mappings𝑀

2: Effect: Iterates over attribute values and possibly adds results to 𝑅

3: procedure JoinOneCubeRec(𝑞,𝑏, 𝑜, 𝑐, 𝑅, 𝑎,𝑀)

4: if 𝑎 ≥ |𝑞.𝐴 | then // Check for completed result tuples

5: Insert tuple with current attribute values𝑀 into 𝑅

6: else
7: // Initialize value iterator (do not evaluate it!)

8: 𝑉 ← iterator over values for 𝑜𝑎 in [𝑐.𝑙𝑜𝑎 , 𝑐 .𝑢𝑜𝑎 ] that satisfy
all applicable join predicates in 𝑞.

9: // Iterate over values until timeout

10: for 𝑣 ∈ 𝑉 do
11: // Select values for remaining attributes

12: JoinOneCubeRec(𝑞, 𝑙, 𝑜, 𝑐, 𝑅, 𝑎 + 1, 𝑀 ∪ {⟨𝑜𝑎, 𝑣⟩ })
13: // Check for timeouts

14: if Total computational steps > 𝑏 then
15: Break
16: end if
17: end for
18: end if
19: end procedure

20: Input: Query 𝑞, remaining budget 𝑏, attribute order 𝑜 , target cube to

process 𝑐 , result set 𝑅

21: Output: Processed cube 𝑝 , computational steps performed 𝑠

22: function JoinOneCube(𝑞,𝑏, 𝑜, 𝑐, 𝑅)

23: // Resume join for fixed number of steps

24: JoinOneCubeRec(𝑞,𝑏, 𝑜, 𝑐, 𝑅, 0, ∅)
25: // Retrieve state from JoinOneCubeRec invocation

26: 𝑠 ← Number of computational steps spent

27: 𝑣 ← Vector s.t. 𝑣𝑎 is last value considered for attribute 𝑜𝑎

28: // Calculate processed cubes

29: 𝑃 ← ∅
30: for 0 ≤ 𝑎 < |𝑞.𝐴 | do
31: Create new cube 𝑝 s.t.

32: ∀𝑖 < 𝑎 : 𝑝𝑖 = [𝑣𝑖 , 𝑣𝑖 ];
33: 𝑝𝑎 = [𝑐.𝑙𝑜𝑎 , 𝑣𝑎) ;
34: ∀𝑎 < 𝑖 : 𝑝𝑖 = [𝑐.𝑙𝑜𝑖 , 𝑐 .𝑢0𝑖 ]
35: 𝑃 ← 𝑃 ∪ {𝑝 }
36: end for
37: return ⟨𝑃, 𝑠 ⟩
38: end function

attribute. Once the attribute index reaches the total number of at-

tributes (represented as 𝑞.𝐴), the algorithm has selected one value

for each attribute. Furthermore, at that point, it is clear that the

combination of attribute values satisfies all applicable join condi-

tions. Hence, the algorithm adds the corresponding result tuple

into the result set (Line 5). As a variant (not shown in Algorithm 3),

for queries with simple aggregates without grouping, ADOPT does

not store result tuples but merely updates partial aggregate values

for each aggregate. If the attribute index is below the total number

of attributes, the algorithm iterates over values for that attribute

(i.e., attribute 𝑜𝑎 where 𝑜 is the order and 𝑎 the attribute index) in

the loop from Line 10 to 17.

In Line 8, Algorithm 3 creates an iterator over values for the

current attribute that satisfy all applicable join predicates and

are within the target cube, i.e., values contained in the interval

Attribute 𝐴1

A
t
t
r
i
b
u
t
e
𝐴
2

Entire Cube

Target Cube: 𝐴1, 𝐴2

Target Cube: 𝐴2, 𝐴1

Processed Cubes

Figure 3: Illustration of containment relationships between
hypercubes when processing a query with two attributes.

[𝑐.𝑙𝑜𝑎 , 𝑐 .𝑢𝑜𝑎 ] for attribute number 𝑎 within order 𝑜 (𝑐.𝑙 and 𝑐.𝑢 des-

ignate vectors, indexed by attribute, that represent lower and upper

target cube bounds respectively). It should be well understood that

the algorithm does not assemble the full set of matching values

before iterating (as that would create significant overheads when

switching attribute orders before being able to try all collected val-

ues). Instead, Line 8 is meant to represent the initialization of data

structures that allow iterating over matching values efficiently. Join

predicates are applicable if, beyond the current attribute 𝑜𝑎 , they

only refer to attributes whose values have been fixed previously (i.e.,

a corresponding value assignment is contained in 𝑀). For equality

join predicates, ADOPT uses the same mechanism as LFTJ [45]

to efficiently iterate over satisfying values. This mechanism is de-

scribed in detail in the extended technical report [48]. It is based on

data structures that support fast seek operations on query relations.

Whenever required data structures are not available, ADOPT dy-

namically creates them at run time. For base relations, but not for

relations filtered via unary predicates, ADOPT caches and reuses

those data structures across queries.

Join processing via Procedure JoinOneCube terminates once

the computational budget is depleted (check in Line 14), or if the

current cube is entirely processed. Function JoinOneCube retrieves

the number of computational steps, spent during join processing,

as well as the last selected value for each attribute. It uses the latter

to calculate the set of processed cubes (to be removed from the

set of unprocessed cubes). Procedure JoinOneCubeRec does not

advance from one value of an attribute to the next, unless all value

combinations for the remaining attributes have been fully consid-

ered. Hence, if value range 𝑐.𝑙𝑜𝑎 to 𝑣𝑎 was covered for the current

attribute 𝑎, the cube representing processed value combinations

reaches the full cube dimensions for all attributes that appear later

than 𝑎 in the order 𝑜 , and is fixed to the currently selected value for

all attributes appearing before 𝑎 in 𝑜 . Note that the pseudo-code

uses a shortcut to assign both cube bounds at once (e.g., 𝑝𝑖 = [𝑣𝑖 , 𝑣𝑖 ]
is equivalent to [𝑝.𝑙𝑖 , 𝑝.𝑢𝑖 ] = [𝑣𝑖 , 𝑣𝑖 ]) in Lines 32 to 34.

Example 3.1. Figure 3 illustrates the containment relationships

between different cubes when processing a query with two at-

tributes. Processed cubes are contained within target cubes and

target cubes are contained within the entire query cube. The figure

represents target cubes that were processed, in different episodes,

according to both possible attribute orders. The first one (left) was

processed using order 𝐴1, 𝐴2. Hence, values for the first attribute
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Algorithm 4Managing cubes representing unprocessed join input.

1: 𝑈 ← ∅ // Global variable representing unprocessed cubes

2: Input: Query 𝑞, number of threads 𝑛.

3: Effect: Initialize set of unprocessed cubes.

4: procedure TM.Init(𝑞,𝑛)

5: 𝐴← attributes that appear in 𝑞 in equality join conditions

6: [𝑙𝑎,𝑢𝑎 ] ← attribute value ranges for all attributes 𝑎 ∈ 𝐴
7: // Identify attribute with largest value domain

8: 𝑎∗ ← argmax𝑎∈𝐴 (𝑢𝑎 − 𝑙𝑎)
9: // Use full value range for all but that attribute

10: 𝑓 ←>
𝑎∈𝐴:𝑎≠𝑎∗ [𝑙𝑎,𝑢𝑎 ]

11: // Divide largest value domain into per-thread ranges

12: 𝛿 ← (𝑢𝑎∗ − 𝑙𝑎∗ )/𝑛
13: // Form one unprocessed cube per thread

14: 𝑈 ← {𝑓 × [𝑙𝑎∗ + 𝑖 · 𝛿, 𝑙𝑎∗ + (𝑖 + 1) · 𝛿 |0 ≤ 𝑖 < 𝑛] }
15: end procedure

16: Output: Returns an unprocessed hypercube.

17: function TM.Retrieve

18: return Randomly selected cube from𝑈

19: end function

20: Input: Target cube 𝑐 to subtract, processed cube set 𝑃 .

21: Effect: Updates set of unprocessed cubes.

22: procedure TM.Remove(𝑐, 𝑃 )

23: // Subtract target cube from unprocessed cubes

24: 𝑈 ← 𝑈 \ 𝑐
25: // Add complement of processed cubes as unprocessed

26: for 𝑝 ∈ 𝑃 do
27: // Get dimensions where 𝑝 fully covers 𝑐

28: 𝐹 ← indexes 𝑖 s.t. 𝑝.𝑙𝑖 = 𝑐.𝑙𝑖 and 𝑝.𝑢𝑖 = 𝑐.𝑢𝑖

29: // Get dimensions where 𝑝’s bounds collapse

30: 𝑆 ← indexes 𝑖 s.t. 𝑝.𝑙𝑖 = 𝑝.𝑢𝑖

31: // Get single remaining dimension

32: 𝑑 ← single remaining dimension not in 𝐹 or 𝑆

33: Create new cube 𝑢 s.t.

34: 𝑢𝑑 = (𝑝.𝑢𝑑 , 𝑐 .𝑢𝑑 ]; ∀𝑓 ∈ 𝐹 : 𝑢𝑓 = 𝑝𝑓 ; ∀𝑠 ∈ 𝑆 : 𝑢𝑠 = 𝑝𝑠

35: // Add newly created cube to unprocessed cubes

36: if 𝑢 is not empty then
37: 𝑈 ← 𝑈 ∪ {𝑢 }
38: end if
39: end for
40: end procedure

41: Output: True iff no unprocessed cubes are left.

42: function TM.Finished

43: return true iff𝑈 = ∅
44: end function

change only after trying all values for the second attribute. There-

fore, processed cubes fill the target cube “column by column”. The

other target was processed using the order𝐴2, 𝐴1. Hence, processed

cubes fill the target cube “row by row”.

3.3 Avoiding Redundant Work
ADOPT changes between different attribute orders over the course

of query processing. This creates the risk of redundant work across

different orders. ADOPT avoids redundant work by keeping track

of cubes, in the space of join attribute values, that have not been

considered yet. More precisely, ADOPT keeps track, at any point

in time, of remaining, i.e. unprocessed, cubes. Whenever one of

the processing threads requests a new cube to work on, ADOPT

returns an unprocessed cube, thereby avoiding redundant work.

Algorithm 4 gives functions used to manipulate cubes. At the

beginning (Procedure TM.Init), it initializes the set of unprocessed

cubes to cover the entire attribute space. To do so, ADOPT first

retrieves all join attributes (Line 5), then their value ranges (Line 6).

Forming one single cube (i.e., the Cartesian product of all value

ranges) diminishes chances for parallelization, at least at the start of

query processing. Hence, ADOPT divides the attribute value space

into equal-sized cubes with one cube per thread (Lines 7 to 14). To

do so, it uses the attribute with maximal value domain, dividing its

range equally across threads (Line 12). Note that, as discussed in the

following, threads are not restricted to processing cubes initially

assigned to them over the entire course of query evaluation. Instead,

at the end of each episode, unprocessed parts of cubes assigned to

a specific thread may get re-assigned to other threads.

Whenever a worker threads requests a cube to work on (Line 13

in Algorithm 2), a randomly selected cube from the set of unpro-

cessed cubes is returned (Line 18 in Algorithm 4). Note that the

pseudo-code is slightly simplified, compared to the implementation,

by omitting checks used to avoid concurrent changes to the set of

unprocessed cubes (by multiple threads).

Whenever a worker threads finished processing, it registers a

set of cubes that was processed. It calls Procedure TM.Remove

to update the set of unprocessed cubes. This function takes two

parameters, representing the set of processed cubes as well as the

target cube, as input. All processed cubes are contained within the

target cube and have a special structure, explained in the following.

As a first step, ADOPT removes the target cube from the set of

unprocessed cubes in Line24 (the target cube was selected by an

invocation of the TM.Retrieve function and is therefore contained

in the set𝑈 ). If the set of processed cubes, in aggregate, do not cover

the target cube (in general, that is the case), the set of unprocessed

cubes is now missing all cubes contained in the target cube but

not covered by the processed cubes. Hence, ADOPT adds more

unprocessed cubes to reflect the difference.

Each processed cube has a special form, due to the structure of

the join algorithm generating it (Lines 23 to 28 in Algorithm 3).

All processed cubes are generated according to the same attribute

order and based on the same, final values selected for each attribute.

Consider one single processed cube, using the selected attribute

values 𝑣𝑠 for a prefix 𝑆 of the attribute order, the range of values

up to the selected value 𝑣𝑑 for a single attribute 𝑑 , and the full

target cube range for the remaining attributes 𝐹 . Clearly, given the

selected values for attributes 𝑆 , none of the values greater than 𝑣𝑑
for attribute 𝑑 has been considered by the join algorithm (instead,

such value combinations would have been considered later by the

join algorithm). Hence, the corresponding cube is added to the set

of unprocessed cubes (Line 37). Also note that these unprocessed

cubes cannot overlap (as, for each pair of unprocessed cubes, there

is at least one attribute 𝑎 for which one cube fixes a value 𝑣𝑎 , the

other cube covers only values greater than 𝑣𝑎). This preserves the

invariant that elements of 𝑈 , representing unprocessed cubes, do

not overlap. It also means that work done by different threads

does not overlap. The processing finishes (Procedure TM.Finished)

whenever no unprocessed cubes are left.
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Figure 4: Illustrating cube processing in Example 3.2: The
initial target cube ( [1, 5], [1, 5], [1, 5]) is processed up to (5, 3, 4)
(marked by X). Processed cubes are represented by blue rect-
angles, complementary unprocessed cubes by red rectangles.

Example 3.2. Figure 4 illustrates the processing of a target cube

( [1, 5], [1, 5], [1, 5]) for an attribute order (𝐴0,𝐴1,𝐴2). In each sub-

plot, the x-axis represents attributes while the y-axis represents

attribute values. Assume the timeout for this episode occurs after

considering the values (5, 3, 4) (marked by X). This means that we

managed to process the following sub-cubes, left: ( [1 − 4], [1 −
5], [1 − 5]), middle: (5, [1 − 2], [1 − 5]), right: (5, 3, [1 − 4]). We

infer the remaining unprocessed sub-cubes that complement these

processed sub-cubes with respect to the target cube, left: (5, [1 −
5], [1 − 5]), middle: (5, [4 − 5], [1 − 5]), right:(5, 3, 5).

3.4 Learning Attribute Orders
ADOPT uses reinforcement learning to learn near-optimal attribute

orders, over the course of a single query execution. At the beginning

of each time slice, ADOPT selects an attribute order that maximizes

the tradeoff between exploration and exploitation. It uses the Upper

Confidence Bounds on Trees (UCT) algorithm [18] to choose an

attribute order. This requires mapping the scenario (of attribute

order selection) into a Markov-Decision Problem. Next, we discuss

the algorithm as well as the problem model.

An episodic Markov Decision Process (MDP) is generally defined

by a tuple ⟨𝑠0, 𝑆, 𝐴,𝑇 , 𝑅⟩ where 𝑆 is a set of states, 𝑠0 ∈ 𝑆 the initial

state in each episode, 𝐴 a set of actions, and 𝑇 : 𝑆 × 𝐴 → 𝑆 a

transition function, linking states and action pairs to target states.

Component 𝑅 represents a reward function, assigning states to a re-

ward value. In our scenario, the transition function is deterministic

while the reward function is probabilistic (i.e., states are associated

with a probability distribution over possible rewards, rather than

a constant reward that is achieved, every time the state is visited).

The transition function is partial, meaning that certain actions are

not available in certain states. Implicitly, we assume that all states

without available actions are end states of an episode. After reach-

ing and end state, the current episode ends and the next episode

starts (from the initial state 𝑠0 again). Given an MDP, the goal in

reinforcement learning [39] is to find a policy, describing behavior

that results in maximal (expected) reward. In order to leverage rein-

forcement learning algorithms for our scenario, we must therefore

map attribute order selection into the MDP formalism.

Our goal is to learn a policy that describes an attribute order.

The policy generally recommends actions to take in a specific state.

Here, we introduce one action for each query attribute. States are

associated with attribute order prefixes (i.e., each state represents

an order for a subset of attributes). To simplify the notation, we

will refer to states by the prefix they represent, to actions by the

attribute they correspond to. The transition function connects a

first state 𝑠1 to a second state 𝑠2 via action 𝑎, if the second state can
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Figure 5: UCT search tree for a query with three attributes:
nodes are labeled with partial attribute orders, transitions
append one attribute. Red numbers next to nodes represent
the episode number at which they are added when selecting
attribute orders ABC, BCA, CBA, ABC, ACB, CBA, CAB, and
CBA (in that order).

be reached by appending the attribute, represented by the action,

to the prefix represented by the first state. More precisely, using

the notation introduced before, the transition function links the

state-action pair ⟨𝑠1, 𝑎⟩ to state 𝑠2 = 𝑠1 ◦ 𝑎 (where ◦ represents
concatenation). Each state represents a prefix of an attribute order

in which each attribute appears at most once. Hence, the actions

available in a state correspond to attributes that do not appear

in the prefix represented by the state. This means that all states

representing a complete attribute order are end states, implicitly. As

a further restriction, we do not allow actions representing attributes

that do not connect to any attributes in the prefix represented by the

current state. This is similar to the heuristic of avoiding Cartesian

product joins, used almost uniformly in traditional query optimizers.

The reward function is set to zero for all states, except for end states.

States of the latter category represent complete attribute orders.

Upon reaching such a state, ADOPT executes the corresponding

attribute order for a limited number of steps, measuring execution

progress. The process by which execution process is measured is

described in the following subsections.

ADOPT applies the UCT algorithm to solve the resulting MDP.

As the MDP represents the problem of attribute ordering, linking

rewards to execution progress, solving theMDP (i.e., finding a policy

with maximal expected reward) yields a near-optimal attribute

order. The UCT algorithm represents the state space as a search

tree. Nodes represent states while tree edges represent transitions.

Tree nodes are associated with statistics, establishing confidence

bounds on the average reward associated with the sub-tree rooted at

that node. Confidence bounds are updated as new reward samples

become available. In each episode, the UCT algorithm selects a

path from the search tree root to one of the leaf nodes. At each

step, the UCT algorithm selects the child node with maximal upper

confidence bound (hence the name of the algorithm). This approach

converges to optimal policies [18]. After selecting a path to a leaf

and calculating the associated reward, the UCT algorithm updates

confidence bounds for each node on that path.

ADOPT grows the UCT search tree gradually over the course of

query execution. At the start of execution, the tree only contains

the root node. Then, in each episode, the tree is expanded by at
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most one node. Which nodes are added depends on the selected

attribute orders. Each attribute order corresponds to a sequence of

states in the MDP (a state represents an attribute order, each state

appending one attribute, compared to its predecessor). In the fully

grown search tree, each state is associated with one node. If, for the

currently selected attribute order, some of the states do not have

associated nodes in the tree yet, ADOPT expands the tree by adding

a node for the first such state. ADOPT uses the partial tree to select

attribute orders as follows. Given a state for which all possible

successor states have associated nodes in the tree (i.e., reward sta-

tistics are available), ADOPT uses the aforementioned principle and

selects the attribute that maximizes the upper confidence bound on

reward values. If some of the successor states do not have associated

nodes yet, ADOPT transitions to a randomly selected state among

them (which will create a corresponding node). As a special case,

if no nodes are available for any of the successor states, ADOPT

selects the next attribute with uniform random distribution.

Example 3.3. Given a query with three attributes (A, B, and C),

assume that ADOPT selects the following attribute orders in the

first episodes (some orders are selected in multiple episodes): ABC,

BCA, CBA, ABC, ACB, CBA, CAB, CBA. Figure 5 shows the UCT

search tree after those episodes. Nodes represent partial attribute

orders and edges represent the addition of one attribute. Next to

each node, in red, the figure shows the number of the episode in

which the node was added. Initially (episode zero), the tree contains

only the root node. In the first episode, ADOPT selects order ABC,

adding a node for the first prefix (A) without corresponding node in

the tree. Later, in episode four, ADOPT selects order ABC and, again,

adds a node for the first prefix (AB) for which no node has been

created. Once nodes are added, ADOPT starts collecting reward

statistics for all attribute orders extending the corresponding prefix.

These statistics are used to select attribute orders in future episodes.

3.5 Estimating Order Quality
The reinforcement learning, described in Section 3.4, is guided by

reward values. Next, we discuss the definition of the reward func-

tion. Before that, we introduce an auxiliary function, measuring the

volume of a cube as the product of range sizes over all dimensions:

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑐) =
∏
𝑖

(𝑐.𝑢𝑖 − 𝑐.𝑙𝑖 ) (1)

With a slight abuse of notation, we write 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑞) to denote

the volume of the cube, spanned by all join attributes of a query 𝑞.

In order to fully process a query, ADOPTmust cover the cube rep-

resenting the entire space of attribute value combinations. Hence,

the more volume of that cube we cover per time unit, the faster

query processing is. Of course, even for a fixed attribute order, the

volume processed per time unit may vary across different parts of

the data (e.g., since the number of result tuples per volume varies).

However, the fastest order processes most volume in average, aver-

aging over the entire data set, and the UCT algorithm converges to

decisions with highest average reward, even if the reward function

is noisy [18]. This implies that volume covered is a useful measure

of progress. The reward function, presented next, follows that in-

tuition. Given a set of processed cubes 𝑃 for query 𝑞, it uses the

aggregate volume covered, scaled to the total volume to process

(scaling ensures reward values between zero and one, consistent

with the requirements of the UCT algorithm):

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑃, 𝑞) = (
∑︁
𝑝∈𝑃

𝑉𝑜𝑙𝑢𝑚𝑒 (𝑝))/𝑉𝑜𝑙𝑢𝑚𝑒 (𝑞) (2)

4 ANALYSIS
In this section, we prove that ADOPT converges to optimal at-

tribute orders. Two further properties, correctness and worst-case

optimality, are analyzed in the appendix of our extended technical

report [48]. First, we show that ADOPTmust finish processing once

the accumulated rewards reach a precise threshold.

Theorem 4.1. Join processing finishes once the sum of accumu-
lated rewards over all threads and episodes reaches one.

Proof. Reward is proportional to the volume of the cube cov-

ered, scaled to the size of the full cube. Hence, accumulating a

reward sum of one means that a volume equal to the full cube has

been processed. Furthermore, ADOPT avoids covering overlapping

cubes by different threads and in different episodes (independently

of the attribute order). Hence, once the accumulated reward reaches

one, processed cubes must cover the full cube. □

This implies that the reward function is a good measure of at-

tribute order quality indeed.

Theorem 4.2. The attribute order with the highest average reward
per episode minimizes the number of computational steps.

Proof. For any attribute order 𝑜 , processing finishes once the ac-

cumulated rewards reach one (Theorem 4.1). Therefore, the average

reward 𝑟𝑜 per episode for 𝑜 is inversely proportional to the number

of episodes 𝑒𝑜 needed by 𝑜 , i.e. 𝑟𝑜 = 1/𝑒𝑜 . Also, the number of

computational steps per episode is constant. Therefore, minimizing

the number of episodes needed maximizes the average reward. □

This implies convergence to optimal attribute orders.

Corollary 4.3. ADOPT converges to an optimal attribute order.

Proof. Following Theorem 4.2, the order with the highest aver-

age reward is also the fastest one to process. Furthermore, the UCT

algorithm used by ADOPT converges to a solution with maximal

expected reward [18]. Hence, ADOPT converges to an attribute

order that minimizes the number of processing steps. □

5 EXPERIMENTAL EVALUATION
We confirm experimentally that ADOPT outperforms a range of

competitors for both acyclic and cyclic queries from the join or-

der benchmark [13], standard decision support benchmarks (i.e.,

TPC-H and JCC-H [8]), and graph data [21, 31] workloads. The

robustness of ADOPT’s query evaluation becomes more evident

for queries with an increasingly larger number of joins and with

filter conditions whose joint selectivity is hard to assess correctly

at optimization time. The superior performance of ADOPT over its

competitors is due to the interplay of its four key features: worst-

case optimal join evaluation; reinforcement learning that eventually

converges to near-optimal attribute orders (Sec. 5.5); hypercube

data decomposition (Sec. 5.4); and domain parallelism (Sec. 5.6). For
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Table 1: Overall runtime (in seconds) to compute all queries for each benchmark. For the JOB benchmark, ">" indicates the time
is only for some of the 113 queries. For the four graph datasets, ">" indicates the time exceeded the six-hour (21,600 seconds)
timeout for some of the cyclic queries. The multiplicative factors in parentheses after the runtimes of systems are the speedups
of ADOPT over these systems.

Systems JOB ego-Facebook ego-Twitter soc-Pokec soc-Livejournal1 TPC-H JCC-H

ADOPT 45 4,414 3,931 9,268 26,350 141 194
System-X > 287 (6.38x) > 22,459 (5.09x) 11,384 (2.90x) > 23,623 (2.55x) > 63,878 (2.42x) – –

EmptyHeaded – 6,783 (1.54x) 10,381 (2.64x) > 43,444 (4.69x) > 55,144 (2.09x) – –

PostgreSQL 285 (6.33x) > 67,774 (15.35x) > 70,515 (17.94x) > 67,016 (7.23x) > 101,193 (3.84x) 182 (1.53x) > 216,122

(1,114x)

MonetDB 41 (0.91x) > 66,165 (14.99x) > 86,596 (22.03x) > 59,131 (7.23x) > 96,222 (3.84x) 17 (0.12x) > 216,035

(1,114x)

SkinnerDB 65 (1.44x) > 69,366 (15.71x) > 129,741 (33.00x) > 95,374 (10.29x) > 101,392 (3.85x) 173 (1.23x) 320 (1.6x)

lack of space, we defer to a technical report [48] further experi-

ments on: memory consumption, scalability with the number of

join attributes per table, sorting and synchronization overhead, and

the performance comparison of ADOPT and System-X.

5.1 Experimental Setup
We benchmark the query engines on acyclic and cyclic queries.

Benchmark for acyclic queries. The join order benchmark (JOB) [13]

consists of 113 queries over the highly-correlated IMDB real-world

dataset. This benchmark shows an orders-of-magnitude perfor-

mance gap between different join orders for the same query. TPC-H

(JCC-H [8]) is a benchmark used for decision support, comprising

of 22 queries that incorporate standard SQL predicates. In TPC-H,

data is synthetically generated with uniform distribution, whereas

in JCC-H, the data is highly skewed, which makes JCC-H a harder

benchmark to optimize. In our experiments, we use TPC-H/JCC-H

with scaling factor ten. We omit four queries in TPC-H (JCC-H)

queries, Q2, Q13, Q15, and Q22, for lack of support for non-integer

join columns, outer joins, views, and substring functions.

Benchmark for cyclic queries. We follow prior work on benchmark-

ing worst-case optimal join algorithms against traditional join

plans [31] and consider the evaluation of clique and cycle queries

over the binary edge relations of four graph datasets from the SNAP

network collection [21]. The considered queries are as follows:

• 𝑛-clique: Compute the cliques of 𝑛 distinct vertices. Such

a clique has an edge between any two of its vertices. For

instance, the 3-clique is the triangle:

𝑒𝑑𝑔𝑒 (𝑎, 𝑏), 𝑒𝑑𝑔𝑒 (𝑏, 𝑐), 𝑒𝑑𝑔𝑒 (𝑎, 𝑐), 𝑎 < 𝑏 < 𝑐

• 𝑛-cycle: Compute the cycles of𝑛 distinct nodes. Such a cycle

has an edge between the 𝑖-th and the (𝑖 + 1)-th vertices for

1 ≤ 𝑖 < 𝑛 and an edge between the first and the last vertices.

For instance, the 4-cycle query is:

𝑒𝑑𝑔𝑒 (𝑎, 𝑏), 𝑒𝑑𝑔𝑒 (𝑏, 𝑐), 𝑒𝑑𝑔𝑒 (𝑐, 𝑑), 𝑒𝑑𝑔𝑒 (𝑎, 𝑑), 𝑎 < 𝑏 < 𝑐 < 𝑑

The inequalities in the above queries enforce that each node

in the clique/cycle is distinct. Instead of returning the list of all

distinct cliques/cycles, all systems are instructed to return their

count. ADOPT counts the result tuples as they are computed. The

reason for returning the count is to avoid the time to list the result

tuples and only report the time to compute them.

Systems. ADOPT is implemented in JAVA (jdk 1.8). It uses 10,000

steps per episode and UCT exploration ratio 1E-6. The competitors

are: the open-source engines MonetDB [9] (Database Server Toolkit

v11.39.7, Oct2020-SP1) and PostgreSQL 10.21 [38] that employ tra-

ditional join plans; a commercial engine System-X (implemented

in C++) that uses the worst-case optimal LFTJ algorithm [45]; the

open-source engine EmptyHeaded that uses a worst-case optimal

join algorithm [2]; and SkinnerDB [41] (implemented in Java jdk

1.8) that uses reinforcement learning to learn an optimal join order

for traditional query plans.

Setup. We run each experiment five times and report the average

execution time. We used a server with 2 Intel Xeon Gold 5218

CPUs with 2.3 GHz (32 physical cores)/384GB RAM/512GB hard

disk. ADOPT, EmptyHeaded, MonetDB, SkinnerDB, and System-X

were set to run in memory. By default, all engines use 64 threads.

For all systems, we create indexes to optimize performance (index

creation overheads are reported separately in the extended technical

report [48]). For systems such as MonetDB that create indexes

automatically, based on properties of observed queries, we perform

one warm-up run before starting our measurements.

5.2 Runtime Performance
ADOPT puts together worst-case optimal join algorithm, which

is primarily motivated by cyclic queries, and adaptive processing,

which is motivated by scenarios in which size and cost prediction

for query planning is difficult (e.g., due to data skew or complex

queries). This motivates the following hypotheses.

Hypothesis 1. ADOPT outperforms baselines without worst-case
optimal join algorithms on cyclic queries.

Hypothesis 2. ADOPT outperforms non-adaptive baselines for
complex queries on skewed data.

Hypothesis 3. ADOPT performs worse, compared to baselines, if
queries are simple, acyclic, and are executed on uniform data.

Table 1 reports the total time in seconds for different systems

and benchmarks. ADOPT performs best for the four benchmarks on

graphs, featuring cyclic queries. Figure 6 breaks those results down

by query size and query type. Compared to other baselines using

worst-case optimal joins, ADOPT’s gains derive from larger queries
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with more predicates, creating the potential for inter-predicate

correlations that are hard to predict. This makes it difficult to select

optimal attribute orders before execution. PostgreSQL, MonetDB,

and SkinnerDB suffer from over-proportionally large intermediate

results when processing cyclic queries as they do not implement

worst-case optimal joins.

The join order benchmark (JOB) features acyclic queries but non-

uniform data (i.e., it contains some elements that should benefit

ADOPT in the comparison and some that have the opposite effect).

Here, ADOPT performs comparably but slightly worse to the best

baseline: MonetDB. For System-X, Table 1 only reports time for

executing a subset of the queries (39 out of 113). The remaining

queries have IS/NOTNULL and IN predicates that are not supported

by System-X. EmptyHeaded needs more than five days to construct

the data indices (tries) it needs for the non-binary JOB tables so we

were not able to report its runtime on the JOB queries.

TPC-H and JCC-H share the same query templates and database

schema but differ in the database content: TPC-H uses uniform data

whereas JCC-H uses highly correlated data. On TPC-H, MonetDB

performs best and outperforms ADOPT significantly. This is con-

sistent with prior work [1], showing that systems with worst-case

optimal joins (specifically: the LFTJ that ADOPT uses internally)

perform significantly worse than MonetDB on TPC-H. Given those

prior results and limited support for TPC-H queries in System X

and EmptyHeaded, we compare only to MonetDB as the strongest

baseline. Besides drawbacks due to the join algorithm, ADOPT in-

curs overheads due to adaptive processing which is unnecessary on

TPC-H: predicting sizes of intermediate results and plan execution

cost is relatively easy due to uniform data.

On the other hand, ADOPT outperforms all other systems on

JCC-H. Despite sharing the same query templates with TPC-H, JCC-

H makes query optimization hard due to highly correlated data.

Here, both adaptive baselines (SkinnerDB and ADOPT) benefit,

with ADOPT being significantly faster, whereas all other systems

reach the timeout of six hours. This means, even on acyclic queries,

traditionally not considered the sweet spot for LFTJ-based joins [1],

ADOPT is preferable if data is sufficiently correlated.

5.3 Robustness
ADOPT does not rely on query optimization to pick the best at-

tribute order. This can be a significant advantage for queries with

user-defined functions or selection predicates, for which there are

no available selectivity estimates. Mainstream systems pick a query

plan that may be arbitrarily off from a good one. In contrast, ADOPT

may quickly realize that such a plan is subpar and switch to a differ-

ent one. To benchmark this observation, we consider experiments

to assess the robustness of ADOPT and System-X, which are the two

systems we use that rely on attribute orders, when adding to the

join queries very simple (unary) yet arbitrary selection conditions

that can throw off standard query optimizers.

Hypothesis 4. ADOPT outperforms System-X consistently when
varying the selectivity of unary predicates.

Figure 7 shows the relative speedup of ADOPT over System-

X as we vary the selectivity of unary predicates (selections with

constants) on three randomly chosen attributes: we choose the five

selectivities 0.2, 0.4, 0.6, 0.8, and 1 for the three attributes along the

x-axis, y-axis, and the circles for an (x,y)-point. The color of each 3D

point in the plot varies from blue to red: The more intense the red

is, the higher is the speedup of ADOPT over System-X. System-X

mostly outperforms ADOPT for 3-cliques. ADOPT is up to three

times faster than System-X for all other cliques and cycles. This is

due to the difficulty of optimizers to pick a good query plan in the

absence of selectivity estimates, here even for unary predicates.

5.4 Hypercube Data Partitioning
We next benchmark the effect of our hypercube partitioning scheme

and verify that it indeed leads to faster execution time than Skin-

nerDB’s alternatives called shared prefix+offset progress tracker [41].

Hypothesis 5. Hypercube partitioning leads to faster execution
than shared prefix progress tracker and offset progress tracker.

SkinnnerDB shares progress between all join orders with the

same prefix (iterating over all possible prefix lengths). Given a join

order, it restores a state by comparing execution progress between

the current join order and all other orders with the same prefix and

by selecting the most advanced state. Offset progress tracker keeps

the last tuples of each table that have been joined with all other

tuples already. Using hypercube partitioning, ADOPT executes

the episodes on disjoint parts of the input data so it can trivially

compute distributive aggregates such as count. This is not the case

for SkinnerDB’s partitioning: To avoid recomputation of the same

result in different episodes, it has to maintain a data structure

(concurrent hash map). In the multi-thread environment, the prefix

share progress tracker blocks the concurrent execution and causes

significant synchronization overhead.

Figure 8 shows the speedup of using the hypercube partitioning

over using the prefix+offset share progress tracker in ADOPT. The

hypercube approach consistently has significant smaller overhead

than prefix+offset share progress tracker. For larger (above 4) clique

and cycle queries, the speedup is 10x to 100x.

5.5 Time Breakdown by Attribute Order
Hypothesis 6. ADOPT spendsmost time on executing near-optimal

attribute orders.

We verified this hypothesis for 𝑛-clique and 𝑛-cycle queries with

𝑛 ∈ {4, 5}, since for these queries it was feasible to generate and exe-
cute all possible attribute orders. This was necessary to understand

which orders are better than others and assess whether ADOPT

uses predominantly good or poor orders. We plot the orders that

we select and their quality relative to the optimal orders (i.e., with

lowest execution time) in Figure 9. The x-axis is the number of

time slices that use an order: the larger the x-value, the more we

use an order. The y-axis is execution time of an order relative to

the optimal one: The smaller the y-value, the closer to the opti-

mal the order is. For 4-clique and 4-cycle, ADOPT spends more

than 10
6
(over 95% frequency) times on executing an order with

near-optimal performance. For 5-cycle and 5-clique, ADOPT picks

a near-optimal order more than 10
8
times (over 98% frequency).

ADOPT thus quickly converges to a near-optimal order and then

uses it for most of the processing, which confirms our hypothesis.

Table 2 compares ADOPT and LFTJ with an optimal attribute

order: The runtime gap decreases from 2.52x for 3-clique/cycle to
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Figure 6: Execution (wall-clock) time for clique and cycle queries on four graphs (x axis represents query size).
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Figure 7: Speedup of ADOPT over System-X when varying
the selectivity of newly added unary predicates on three ran-
domly chosen attributes (along the x-axis, y-axis, and the cir-
cles for an (x,y)-point). More intense red (blue) means higher
(lower) speedup. All queries are executed on ego-Twitter.

1.48x (1.14x) for 5-clique (5-cycle). This is remarkable, given that

ADOPT tries out several attribute orders and switches between

them, whereas LFTJ only uses one attribute order, which is optimal.

Table 2 also shows that ADOPT takes significantly less time than

the average runtime of LFTJ over all attribute orders.
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Figure 8: Speedup of using our hypercube approach versus
using prefix+offset share progress tracker in ADOPT.
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Table 2: Execution times (sec) for clique and cycle queries
on ego-Twitter of: ADOPT, LFTJ with optimal attribute order
(OPT), average runtime of LFTJ over all attribute orders (AVG).
Relative speedup of OPT over ADOPT (last column).

ADOPT OPT AVG ADOPT/OPT

3 clique 4.1 1.6 3.7 2.52

4 clique 10.5 6.8 23.9 1.54

5 clique 77.9 52.5 275.6 1.48

3 cycle 4.1 1.6 3.5 2.52

4 cycle 20.1 17.4 58.9 1.16

5 cycle 377.9 328.8 3618.1 1.14
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Figure 10: Speedup of multi-threaded ADOPT over single-
threaded ADOPT for clique and cycle queries on ego-Twitter.

5.6 Parallelization
Hypothesis 7. ADOPT achieves almost linear speedup for large

cyclic queries.

Figure 10 plots the speedup of ADOPT as a function of the num-

ber of threads. ADOPT achieves significant speedups for large clique

and cycle queries. In particular, it achieves nearly 30x speedup on

5- and 6-clique, and 40x speedup on 5-cycle (with 48 threads). The

main reason is that the hypercube approach partitions disjointly the

workload across threads, minimizing synchronization overheads.

6 RELATEDWORK
The choice of an attribute order, for worst-case optimal join algo-

rithms, resembles the problem of join order selection for traditional

join algorithms [37]. Both tuning decisions have significant impact

on processing performance. At the same time, it is hard to find

good attribute orders before query processing starts, mainly due

to challenges in estimating execution cost for specific orders (e.g.,

due to challenges in estimating sizes of intermediate results). The

latter problem has been well documented for traditional query op-

timizers [13, 23]. Our experiments demonstrate that it appears in

the context of worst-case optimal join algorithms as well.

Adaptive processing [6, 10, 35, 43, 49, 52] has been proposed as

a remedy to this problem, allowing the engine to switch to a differ-

ent join order during query execution based on run time feedback.

While early work focused on stream data processing [6, 10, 35, 43]

(where query execution times are assumed to be longer), adaptive

processing has recently also gained traction for classical query pro-

cessing [26, 41]. SkinnerDB [41] is the closest in spirit to ADOPT:

both use reinforcement learning and adaptive processing. However,

ADOPT uses an anytime version of a worst-case optimal join al-

gorithm, whereas SkinnerDB’s join algorithm is not optimal. The

learning problems (i.e., actions and states of the corresponding

MDPs) differ between the systems as ADOPT optimizes attribute

orders whereas SkinnerDB orders tables. Most importantly: ADOPT

introduces a novel data structure, characterizing precisely the cubes

in the space of attribute value combinations that have not been pro-

cessed yet, along with operators for updating it after each episode.

This data structure avoids redundant work across episodes and

attribute orders as well as across threads. This property is cru-

cial to be able to maintain optimality guarantees for equi-joins

when switching between attribute orders. Instead, SkinnerDB uses

a tree-based data structure that reduces but does not completely

avoid redundant work across join orders that are dissimilar. As

the amount of redundant work is hard to bound, it is difficult to

maintain worst-case optimality guarantees with such mechanisms.

Our work uses reinforcement learning to select attribute orders.

It relates to works that employ learning for database tuning [14, 22,

40, 44, 46, 47, 50] and in particular for query optimization [20, 24,

25, 51]. Our work differs as it focuses on learning and specialized

data structures for worst-case optimal join algorithms.

Prior work on query optimization for worst-case optimal joins

investigates "model-free" information-theoretic cardinality estima-

tion. A seminal work, which enabled reasoning about worst-case

optimal join computation, established tight bounds on the worst-

case size of join results [5], the so-called AGM bound that is defined

as the cost of the optimal solution of a linear program derived from

the joins and the sizes of the input tables. This is further refined

in the presence of functional dependencies [12] and for succinct

factorized representations of query results [33]. The latest devel-

opment extends this line of work with data degree constraints and

histograms [28]. Classical approaches to query optimization based

on heuristics [11] and data statistics [2, 4] have also been consid-

ered. To the best of our knowledge, ADOPT is the first adaptive

approach for optimization in the context of worst-case optimal join

algorithms. Our approach is free from cost-based heuristics.

7 CONCLUSION
Worst-case optimal join algorithms and adaptive processing strate-

gies have been two of the most exciting advances in join processing

over the past decades. Worst-case optimal joins enable efficient

processing of cyclic queries. Adaptive processing allows handling

complex queries where a-priori optimization is hard. For the first

time, ADOPT brings together these two techniques, resulting in

attractive performance for both acyclic and cyclic queries and in

particular excellent performance for large cyclic queries.

ADOPT is an adaptive framework readily applicable to further

query processing techniques, e.g., factorized databases [7] and func-

tional aggregate queries [16]. These works combine worst-case op-

timal joins with effective techniques to push aggregates past joins

to achieve the best known computational complexity for query

evaluation. In future work, we plan to merge this line of work with

ADOPT-style adaptivity.
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