
REmatch: a novel regex engine for finding all matches
Cristian Riveros

PUC Chile & IMFD Chile

cristian.riveros@uc.cl

Nicolás Van Sint Jan

PUC Chile & IMFD Chile

nicovsj@uc.cl

Domagoj Vrgoč

PUC Chile & IMFD Chile

vrdomagoj@uc.cl

ABSTRACT
In this paper, we present the REmatch system for information

extraction. REmatch is based on a recently proposed enumeration

algorithm for evaluating regular expressions with capture variables

supporting the all-match semantics. It tells a story of what it takes

to make a theoretically optimal algorithm work in practice. As we

show here, a naive implementation of the original algorithm would

have a hard time dealing with realistic workloads. We thus develop

a new algorithm and a series of optimizations that make REmatch
as fast or faster than many popular RegEx engines while at the

same time being able to return all the outputs: a task that most

other engines tend to struggle with.

PVLDB Reference Format:
Cristian Riveros, Nicolás Van Sint Jan, and Domagoj Vrgoč. REmatch: a

novel regex engine for finding all matches. PVLDB, 16(11): 2792 - 2804,

2023.

doi:10.14778/3611479.3611488

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/REmatchChile/REmatch-paper.

1 INTRODUCTION
Regular expressions, or RegEx, are one of the most used technolo-

gies for managing text data. The development of RegEx engines

started in the early 70s [26, 44], and they are now a common part of

many complex information systems such as compilers, databases,

or search engines. Moreover, modern RegEx engines are highly-

optimized systems that are crucial for finding patterns in diverse

areas like biology [33], literature [14], or medicine [17].

Given a regular expression and a document, the task of a RegEx

engine is to find all occurrences, or matches, of the pattern in the

document. For this, RegEx engines deploy the so-called leftmost-
longest paradigm [25], meaning that they find the match which

is the leftmost one, and from there they find the longest possible

match. The process is then repeated starting from the rightmost

position of the previous match. For example, if we want to evaluate

the RegEx aa over the document 𝑎0𝑎1𝑎2𝑎3 (here the subindices

are for referencing positions; the document consists of the letter 𝑎

repeated four times), a typical RegEx engine will output the matches

𝑎0𝑎1 and 𝑎2𝑎3. In particular, RegEx engines will not output 𝑎1𝑎2
since the first leftmost-longest match ends with 𝑎1.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611488

The leftmost-longest semantics is standard for RegEx engines, as

it captures the majority of meaningful matches, although not all of

them.However, in some scenarios adopting an “all-match semantics”

is a valuable and desirable feature for the users. For instance, in

DNA analysis we will often need to match patterns (called motifs)

onto a DNA sequence, and these can overlap. The question of

finding overlapping matches with RegEx is also recurrent in user

discussions [21, 22, 42]. For information extraction, the all-match

semantics leaves freedom to the user to extract all positions, called

spans, where there is relevant information in a document. Therefore

the all-match semantics is a desirable feature for RegEx engines

that, to the best of our knowledge, no engine supports natively.

To overcome the problem of finding all-matches, RegEx engines

offer look-around operators, namely, operators that allows check-

ing if a subexpression can be matched forward or backward from

the current position, without advancing from the current position.

For instance, by using look-around, we can modify the expression

aa to (?=(aa)) and find the missing match 𝑎1𝑎2 over the above

document. Despite this example, look-around operators cannot dis-

cover all matches for every RegEx expression. For instance, consider

the document 𝑎𝑏𝑐𝑑 and the RegEx [abcd]+. This expression asks

to find a match of one or more letters, which is satisfied by the

substrings 𝑎, 𝑎𝑏, 𝑎𝑏𝑐 , 𝑎𝑏𝑐𝑑 , 𝑏, 𝑏𝑐 , etc. A typical RegEx engine will

only output 𝑎𝑏𝑐𝑑 . Instead, this time look-ahead will not help us.

The most obvious way would be to use an expression of the form

(?=([abcd]+)); however, the engine will only output the matches

𝑎𝑏𝑐𝑑 , 𝑏𝑐𝑑 , 𝑐𝑑 , and 𝑑 , and 𝑎 or 𝑎𝑏 will be omitted, since they both

start at the same position 0 like 𝑎𝑏𝑐𝑑 (see also Example 2.4).

In terms of implementation, RegEx engines are usually divided

into three categories: DFA-based, NFA-based, and recursive NFA-

based [18]. DFA is generally the fastest evaluation strategy, followed

by NFA. In contrast, recursive NFA-based engines use backtracking,

which is susceptible to well-documented performance issues, like

regular expression denial of service attacks (ReDos) [18], where

the engine can exhibit exponential time performance [10]. From

the positive side, recursive NFA-based engines have the advantage

of keeping track of the evaluation, which allows implementing

operators like look-around and back-references. In summary, until

now, the only way of finding all matches (in some cases) is by

using look-around operators implemented by recursive NFA-based

engines, which suffer from unfortunate performance issues.

Contribution. To overcome these issues, this paper presents RE-
match, a RegEx engine supporting the all-match semantics, and

its accompanying regular expression language REQL. Contrary to

the status quo of RegEx evaluation, REmatch is based on a new

evaluation strategy, inspired by the theory of enumeration algo-

rithms [40], that allows finding all the matches, and avoids the

exponential behavior of recursive NFA evaluation. Moreover, RE-
match performance is comparable to popular RegEx engines, while

2792

https://doi.org/10.14778/3611479.3611488
https://github.com/REmatchChile/REmatch-paper
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611488
https://www.acm.org/publications/policies/artifact-review-and-badging-current

at the same time finding all the matches, thus obtaining the best of

both worlds. Specific contributions of the paper are as follows:

(1) We introduce the REQL query language, which extends

classical RegEx with variables and the all-match semantics.

(2) We presentREmatch, a RegEx system that allows evaluating

REQL using output-linear delay. For this, we develop a new

evaluation method extending the algorithm of [16], and

allowing REmatch to compete with modern RegEx engines.

(3) We develop a set of experiments to evaluate the effect of

different optimizations on REmatch performance, and com-

pare it to existing RegEx engines.

Related work. Regular expressions are a classical formalism in

computer science, introduced by Kleene [28]. The first appearance

of regular expressions in program form (RegEx) is credited to Thom-

son [44] andwas initially conceived for patternmatching and lexical

analysis. RegEx has been implemented by different tools (e.g., AWK,

grep, PCRE) and widely included in programming languages (e.g.,

PHP, Python, Java), with the leftmost longest semantics being the

de-facto standard [18].

RegEx engines are highly optimized these days [11], with ad-

vancements in algorithms [7], hardware [41], or filtering [48, 49]

techniques being developed to speed-up their performance. All

these optimizations usually apply for pattern matching of RegEx,

and it is unclear how to apply them to finding all matches of a

RegEx in a text document. For instance, in [48, 49] all substrings

satisfying a RegEx are detected in an efficient manner. However, our

approach goes a step further and allows to nest capture variables

inside patterns, thus effectively requiring to detect all matches both

for the pattern and for some of its sub-patterns. Combining these

approaches seems a very promising line of future work.

The Document Spanners framework was first introduced by

Fagin et al. [15] as a formal approach for information extraction,

attracting a lot of research in the last few years [12]. We base

REmatch’s model and query language (REQL) on the Document

Spanners framework; however, there are several differences in its

syntax (e.g., REQL is a user-oriented language) and semantics (e.g.,

REQL is unanchored and disallows capturing 𝜖 substrings). A theo-

retical algorithm for non-deterministic variable-set automata was

also proposed and implemented in [4]. This implementation is ex-

perimental and preliminary tests with REmatch show that it runs

at least one order of magnitude slower over realistic query work-

loads. To the best of our knowledge, REmatch is the first practical

implementation based on the Document Spanners framework with

a performance comparable to popular RegEx engines.

Outline. In Section 2 we introduce REQL. We then explain each

module of the REmatch architecture. Section 3 presents the rewrit-

ing module, Section 4 the filtering module, and Section 5 the output

module. Section 6 explains the evaluation algorithm of REmatch.
Section 7 puts all components together and displays the experimen-

tal comparison with other engines. We conclude in Section 8.

2 REQL: A REGEX QUERY LANGUAGE FOR IE
This section introduces REQL, a RegEx Query Language for infor-

mation extraction, that we implement in REmatch. The language

adopts the classical RegEx syntax (e.g., POSIX Basic Regular Ex-

pressions), which is familiar to most users. However, the REQL

semantics for capture variables differs from classical RegEx: it finds

all appearances of a pattern in the document. This “all-match” se-

mantics allows for defining meaningful queries that classical RegEx

engines cannot express (see examples below). Therefore, this new

semantics motivates the need for a new query language, REQL.

Documents and spans. We follow the theoretical framework of

documents and spans introduced in [15]. For us, a document 𝑑 is

simply a string over some finite alphabet (e.g. the ASCII charset,

UTF-8, or a similar encoding scheme)
1
. We write 𝑑 = 𝑎0𝑎1 . . . 𝑎𝑛−1

to denote a document of length |𝑑 | = 𝑛 where 𝑎𝑖 is the 𝑖-symbol

and the first symbol starts from 0
2
. An example of a document is:

t
0

h
1

a
2

t
3

h
4

a
5

t
6

h
7

a
8

t
9

𝑑1 :=

A span of a document 𝑑 (also called a match) is a pair 𝑠 = [𝑖, 𝑗⟩ of
natural numbers 𝑖 and 𝑗 with 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑑 |. In that case, 𝑠 is

associated with the continuous region of the document 𝑑 whose

content is the substring of 𝑑 from position 𝑖 to position 𝑗 − 1. We

denote this substring by 𝑑 (𝑠) or 𝑑 (𝑖, 𝑗). For instance, 𝑑1 ([0, 4⟩) =
that, since this is the content of the string𝑑 in positions 0 through 3.

Notice that if 𝑖 = 𝑗 , then 𝑑 (𝑠) = 𝑑 (𝑖, 𝑗) = 𝜀, the empty string. Given

two spans 𝑠1 = [𝑖1, 𝑗1⟩ and 𝑠2 = [𝑖2, 𝑗2⟩ such that 𝑗1 = 𝑖2, we define

their concatenation as 𝑠1 · 𝑠2 = [𝑖1, 𝑗2⟩. The set of all spans of 𝑑 is

denoted by span(𝑑).

Syntax. Syntactically, REQL is similar to standard regular ex-

pressions, apart from a special construct !x{e}, which states that

a substring matching e should be stored into the variable name x.
Formally, the syntax of REQL queries can be defined as follows:

e ≔ a | . | [w] | [^w] | !x{e} |
ee | e|e | e* | e+ | e? | e{n,m}

Here, a is a character (e.g., ASCII charset or UTF-8), the dot symbol

is a wildcard for any character, and [w] or [^w] are a char class

or the negation of a char class, respectively, where w declares a

set of characters. We use the standard notation of ranges of ASCII

characters found in POSIX for declaring char classes (e.g. [a-z],
[A-Z0-9apt], etc) and write set(w) to denote the set of characters

represented by w (e.g. set(a-z) = {𝑎, 𝑏, ..., 𝑧}). Moreover, x is a vari-

able name where the character ! is used to differentiate a variable

name from a letter or string of the alphabet. This, along with the

use of { and } for delimiting the captured subregex is the only

special notation where we differ from POSIX. Finally, n and m are
numbers such that 0 ≤ n ≤ m. In the REmatch system, REQL also

allow the usual regex abbreviations for character classes (e.g. \d
for a digit, or \w for a word, etc), however, we do not include them

in the formal definition in order to keep the presentation concise
3
.

Example 2.1. To give a preliminary example of how REQL works,
assume that we would like to extract all the occurrences of the word

1
Note that a multi-line document is simply a single string.

2
In [15], the first position is 1. We use 0 to be compliant with programming languages

and RegEx engines which use 0 as the start position.

3
We remark that the start-of-file symbol (^) and end-of-file symbol ($) are currently
not supported in REmatch. However, adding them is a straightforward exercise.

2793

“that" from a text document. This can be done in REQL as follows:

e0 := !x{that}

Intuitively, the query captures the positions of a substring that into
the variable𝑥 . This query also illustrates a key feature of our semantics
(defined below): there can be overlapping matches. To make this more
clear, consider again the document 𝑑1. The query above will result in
precisely three matches for the variable x, corresponding to the three
occurrences of the substring that in the document we are processing.
The first match will be in positions [0, 4⟩, the second in [3, 7⟩, and the
last match in [6, 10⟩. We notice that the middle match [3, 7⟩ will not
be captured by most regular expression tools, unless some sort of a
look-around operator is used.

The reader could notice that the above syntax is so general that

one can define the capture of the same variable multiple times. For

instance, a query like !x{a!x{b}} defines the capture of x twice.

For this reason, REQL has some simple syntactic restrictions to

use variables correctly. Let var(e) be the set of all variables names

used in e. We say that a REQL query is well-designed4 if every

subquery e satisfies the following four conditions: (1) if e = !x{e1},
then x ∉ var(e1), (2) if e = e1 e2, then var(e1) ∩ var(e2) = ∅; (3) if
e = e1|e2, then var(e1) = var(e2); and (4) if e is equal to e1*,
e1+, e1? or e1{n,m}, then var(e1) = ∅. One can easily check that

queries !x{a!x{b}}, !x{a}!x{b}, a|!x{b}, or (!x{a}b)* are not

well-designed. Instead, queries like !x{a}!y{b}, !x{a}|!x{b}, or
!x{a}(b)* do satisfy all conditions and then are well-designed.

Note that, as shown in [15], the well-designed condition does not

diminish the query language’s expressive power. Then from now

on, we will consider all the queries we evaluate to be well-designed.

Semantics. We define the matches extracted by REQL in terms

of mappings. Formally, a mapping for a document 𝑑 is a (partial)

function 𝜇 from variables to spans of 𝑑 . Intuitively, a mapping

represents a single match that a REQL query makes on a document

𝑑 . For instance, in our previous example, the query e0 will produce

three mappings as its output: 𝜇1, with 𝜇1 (𝑥) = [0, 4⟩, 𝜇2, with
𝜇2 (𝑥) = [3, 7⟩, and 𝜇3, with 𝜇3 (𝑥) = [6, 10⟩. We write dom(𝜇)
to denote the domain of 𝜇 and 𝜇1 ∪ 𝜇2 for the disjoint union of

mappings whenever dom(𝜇1) ∩ dom(𝜇2) = ∅. We also use the

notation [𝑥 → 𝑠] to define the singleton mapping that only maps

𝑥 to the span 𝑠 (e.g., 𝜇1 = [𝑥 → [0, 4⟩]), and use ∅ for the trivial
empty mapping (where the domain is the empty set).

With the formalism of mappings, we can give a concise declara-

tive semantics for REQL, similarly as in [31]. This is done in Table 1.

The semantics is defined by structural induction on e and has two

layers. The first layer, VeU𝑑 , defines the set of all pairs (𝑠, 𝜇) with
𝑠 ∈ span(𝑑) and 𝜇 a mapping such that (1) e successfully matches

the substring 𝑑 (𝑠) and (2) 𝜇 results as a consequence of this success-
ful match. For example, the REQL query 𝑎 matches all substrings

of input document 𝑑 equal to 𝑎, but results in only the empty map-

ping. On the other hand, !x{e} matches all substrings that are

matched by e, but assigns to 𝑥 the non-empty span 𝑠 that delimits

the substring being matched, while preserving the previous variable

assignments. Similarly, in the case of concatenation e1 e2 we join
the mapping defined on the left with the one defined on the right.

4
In [15], expressions satisfying these conditions are called functional.

Table 1: The inductive semantics of REQL queries.

JeK𝑑 = {𝜇 | (𝑠, 𝜇) ∈ VeU𝑑 }
VaU𝑑 = {(𝑠, ∅) | 𝑠 ∈ span(𝑑) and 𝑑 (𝑠) = a}
V.U𝑑 = {([𝑖, 𝑖 + 1⟩, ∅) | 0 ≤ 𝑖 < |𝑑 |}

V[w]U𝑑 = {(𝑠, ∅) | 𝑠 ∈ span(𝑑) and 𝑑 (𝑠) ∈ set(w)}
V[^w]U𝑑 = {(𝑠, ∅) | 𝑠 ∈ span(𝑑) and 𝑑 (𝑠) ∉ set(w)}

V!x{e}U𝑑 = {(𝑠, 𝜇) | ∃(𝑠, 𝜇′) ∈ VeU𝑑 : 𝑑 (𝑠) ≠ 𝜖,

x ∉ dom(𝜇′) and 𝜇 = 𝜇′ ∪ [𝑥 → 𝑠] }
Ve1 e2U𝑑 = {(𝑠, 𝜇) | ∃(𝑠1, 𝜇1) ∈ Ve1U𝑑 . ∃(𝑠2, 𝜇2) ∈ Ve2U𝑑 :

𝑠 = 𝑠1 · 𝑠2 and 𝜇 = 𝜇1 ∪ 𝜇2}
Ve1|e2U𝑑 = Ve1U𝑑 ∪ Ve2U𝑑

Ve*U𝑑 = V𝜀U𝑑 ∪ VeU𝑑 ∪ Ve eU𝑑 ∪ Ve e eU𝑑 ∪ · · ·
Ve+U𝑑 = Ve (e*)U𝑑
Ve?U𝑑 = VeU𝑑 ∪ {([𝑖, 𝑖⟩, ∅) | 0 ≤ 𝑖 ≤ |𝑑 |}

Ve{n,m}U𝑑 = Ve n-times. . . e (e?) (m−n)-times. . . (e?)U𝑑

Notice that these mappings will not share any variables, given that

the expression is assumed to be well-formed. The second layer, JeK𝑑 ,
then simply gives us the mappings that e defines when matching

the entire document. Note that when e is an ordinary regular ex-

pression (i.e., no variables), then the empty mapping is output if the

entire document matches e, and no mapping is output otherwise.

In the following, we provide several examples from English text

analysis to grasp the power of REQL for information extraction and

to see its differences concerning classical RegEx. The reader can

test these examples and other REQL queries in our REmatch beta

demo available on www.rematch.cl.

Example 2.2. A typical task in language analysis is detecting
words with particular roots, or more precisely lexemes, which are
basic units of meaning. For example, one could be interested in words
in the English language that start with the prefix ‘a’. To extract all such
words from a text, we can simply use the following REQL expression:

e1 = !word{[Aa]\w+}[.]

where denotes a single white space, and \w denotes the char class
of words characters, as commonly used is Perl-compatible regular
expressions. Note that in [.] the . denotes the dot symbol and not
a wildcard. This is consistent with the classic RegEx syntax, since a
wildcard symbol is useless for defining a char class.

In e1 we are looking for a word staring with the letter ’a’. To assure
we will capture the entire word, we preceded it by a space, and we
require that after reading it we see either a space or a dot symbol5. If
we evaluate e1 over document:

T
0

h
1

e
2 3

a
4

n
5

t
6 7

i
8

s
9 10

a
11

n
12 13

a
14

m
15

a
16

z
17

i
18

n
19

g
20 21

a
22

r
23

c
24

h
25

i
26

t
27

e
28

c
29

t
30

.
31

𝑑2 :=

which is a sentence from the book “What is a man?” by Mark Twain,
we will get four mappings assigning the variable word to the spans
5
This example is for illustration purposes. The actual expression would allow arbitrary

spacing and sentence punctuation, and allow matching the first word in the sentence.

2794

www.rematch.cl

[4, 7⟩, [11, 13⟩, [14, 21⟩, and [22, 31⟩, representing the words “ant”,
“an”, “amazing”, and “architect”, respectively.

In classical RegEx, round parentheses denote a capture group for

extracting a substring. That is, (R) will extract what is matched by

the RegEx R. We could therefore try to express e1 from Example 2.2

by the expression: ([Aa]\w+)[.]which replaces REQL’s capture

variables with a capture group. However, when evaluated over

the document 𝑑2, one fewer output will be produced; namely: the

span [14, 21⟩ corresponding to the word “amazing” will be missing.

This is due to leftmost-longest match semantics deployed by classic

RegEx engines, which will consume the white space following

the word “an”, therefore preventing the expression from matching

“amazing”. A typical workaround for this problem is the use of look-
ahead operators, which allow to check whether a string is present

starting from some position. A RegEx expression equivalent to e1
would then be ([Aa]\w+)(?=[.]) which upon matching a word

will look-ahead for a space or a dot, without advancing with the

current match. In general, using look-ahead operators is somewhat

cumbersome, and, as we show below, is not sufficient to capture all

the matches in some cases.

Example 2.3. Suppose that the user wants to process the English
text into 𝑘-grams (i.e., 𝑘 consecutive words in a text) that satisfy some
particular pattern. Specifically, suppose this user wants to extract all
2-grams where each word begins with the letter ‘a’. We can extract
them by running the following REQL query:

e2 := !w1{[Aa]\w+} !w2{[Aa]\w+}[.]

Note that e2 is the extension of e1 where now we use two variable
names, called w1 and w2, for obtaining the substrings of the first and
second words, respectively. For instance, if we run e2 over document𝑑2
we will get mappings:

[w1 ↦→ [11, 13⟩, w2 ↦→ [14, 21⟩] [w1 ↦→ [14, 21⟩, w2 ↦→ [22, 31⟩]

representing the 2-grams “an amazing” and “amazing architect”.
Note that the previous query cannot be obtained by any RegEx engine
without “look-arounds”, given that 2-grams can overlap.

Example 2.4. We end by showing another capacity of REQL for
extracting contextual information, another feature not supported by
RegEx. Suppose that, in addition to the 2-grams, the user wants to
extract the sentence where the match happens. This additional in-
formation could be useful for understanding the context where these
2-grams are used. For this, we can modify our query e2 as follows:

e3 := \.!sent{ [^.]*

!w1{[Aa]\w+} !w2{[Aa]\w+}
([^.]*)?\. }

Here, the new variable sent will store the information containing the
sentence where the 2-gram occurs. The reader can check that if we
evaluate e3 over 𝑑2, then we will obtain the mappings of Example 2.3
where each mapping will have in addition the variable sent maps
to [0, 31⟩, which represents the whole sentence. Interestingly, this
semantics context of a match cannot be extracted by RegEx, even if
we use look-ahead operators. The main issue for look-ahead operators
is that due to the leftmost-longest semantics, no two matches starting
at the same position can be returned, which is an issue in our case.

Why do we need a new query language? The motivation for intro-

ducing REQL in presence of existing RegEx frameworks is twofold.

The most apparent reason for having a new language is that the

REQL’s semantics differ from RegEx. Indeed, REQL allows captur-

ing all matches, not only the leftmost-longest matches. This fact

implies that REQL does not need look-around operators, given

that these features are naturally incorporated in its semantics, as

Example 2.2 and 2.3 shows. Moreover, REQL queries can be signif-

icantly different than RegEx expressions for the same task, as in

Example 2.2, which is one reason to introduce a new language.

The second and less obvious motivation is that RegEx expres-

sions were originally designed for pattern matching, namely, for

checking the existence of a pattern in a string. Later, people ex-

tended RegEx with captures to support the extraction of some

substrings. Instead, we ground REQL on the theoretical framework

of Document Spanners [15], designed for information extraction.

Although RegEx can extract spans, they are somewhat limited in

this regard. For instance, Example 2.4 shows a task that REQL can

naturally do, and that RegEx cannot express.

3 REWRITING MODULE
The first step for the evaluation of a REQL query is the compilation

and rewriting into a logical plan, called a logical VA. This plan is

essentially an automaton with variables that is equally expressive

as a REQL query. Furthermore, logical VA is suitable for rewriting.

Specifically, we perform an offset transformation over the logical VA

that keeps the semantics of the query but improves the performance

of the evaluation algorithm. Next we explain these two components.

Logical VA. A logical variable-set automata (logical VA) is a finite
state automaton extended with captures variables. Formally, a logi-

cal VAA is a tuple (𝑄, 𝛿, 𝑞0, 𝑞𝑓), where𝑄 is a finite set of states, 𝑞0
and 𝑞𝑓 are the initial and the final state, and 𝛿 is a transition relation

consisting of letter transitions (𝑞,𝐶, 𝑞′), and variable transitions

(𝑞, [𝑥, 𝑞′) or (𝑞, 𝑥⟩ , 𝑞′), where 𝑞, 𝑞′ ∈ 𝑄 , 𝐶 is a char class (e.g, a

letter a, [w] or [^w]) and 𝑥 is a variable. The [𝑥 and 𝑥⟩ are special
symbols to denote the opening or closing of a variable 𝑥 . In the

following, we refer to [𝑥 and 𝑥⟩ collectively as variable markers.
A configuration of a logical VA over a document 𝑑 is a tuple

(𝑞, 𝑖) where 𝑞 ∈ 𝑄 is the current state and 𝑖 ∈ [0, |𝑑 |] is the current
position in 𝑑 . A run 𝜌 over 𝑑 = 𝑎0𝑎1 · · ·𝑎𝑛−1 is a sequence:

𝜌 = (𝑞0, 𝑖0) 𝑜1−→ (𝑞1, 𝑖1) 𝑜2−→ · · · 𝑜𝑚−→ (𝑞𝑚, 𝑖𝑚)

where (𝑞 𝑗 , 𝑜 𝑗+1, 𝑞 𝑗+1) ∈ 𝛿 and 𝑖0, . . . , 𝑖𝑚 is an increasing sequence,

and 𝑖 𝑗+1 = 𝑖 𝑗 + 1 if 𝑜 𝑗+1 is a char class such that 𝑎𝑖 𝑗 ∈ set(𝑜 𝑗+1)
(i.e. the automata moves one position in the document only when

reading a letter) and 𝑖 𝑗+1 = 𝑖 𝑗 otherwise. Furthermore, 𝜌 must

satisfy that variables are opened and closed in a correct manner,

namely, each 𝑥 is closed at most once and only if it is opened

previously. We say that 𝜌 is accepting if 𝑞𝑚 = 𝑞𝑓 in which case we

define the mapping 𝜇𝜌 that maps 𝑥 to [𝑖 𝑗 , 𝑖𝑘 ⟩ if, and only if, 𝑜𝑖 𝑗 = [𝑥
and 𝑜𝑖𝑘 = 𝑥⟩ in 𝜌 . Notice that we do not require that 𝑖0 = 0, nor

𝑖𝑚 = 𝑛; namely, an accepting run can start or end at any position in

the document 𝑑 , as long as it consumes a contiguous substring of 𝑑 .

Finally, the semantics of A over 𝑑 , denoted by JAK𝑑 is defined as

the set of all 𝜇𝜌 where 𝜌 is an accepting run of A over 𝑑 .

2795

Example 3.1. Consider the REQL query e0 of Example 2.1. The
following is a logica VA representing e0:

0 1 2 3 4 5 6

[𝑥 𝑡 ℎ 𝑎 𝑡 𝑥⟩

In this figure, the states are {0, . . . , 5}, where 0 and 5 are the initial
and final state, respectively. The edges between states are transitions,
where the first and last edges are variable transitions, i.e., they open
and close 𝑥 with the variable markers [𝑥 and 𝑥⟩, respectively, and the
middle edges are letter transitions.

Example 3.1 shows how to compile a REQL query into a logical

VA. Using a Thomson-liked construction [20], we can covert every

REQL query into a logical VA, giving us a logical plan for the query.

Proposition 3.2. For every REQL query e, one can build in linear
time a logical VA A such that JeK𝑑 = JAK𝑑 for every document 𝑑 .

Note that logical VA is an extension of variable-set automata
(VA) from [15]. The main difference between the two models is

that logical VA uses char classes in its letter transitions whereas VA

uses individual letters. Moreover, a logical VA can start a run at any

position, whereas VA starts from the beginning of the document.

Although both models are equally expressive, we use logical VAs

as logical plans for compiling REQL formulas in practice.

Offsets (Optimization). In some cases, opening a variable can be

postponed in order not to store the information about runs that

will not result in an output. To illustrate this, consider again the

expression e0 and its logical VA of Example 3.1. Intuitively, our

algorithm needs to store the position information for the opening

of a variable 𝑥 every time a t would be read. If the document we

are reading has the text thasty, this run would then be extended

for two more steps, although it will eventually be abandoned, and

not result in any outputs. In cases such as these, we can actually

postpone (offset) opening of the variable 𝑥 by transforming the

logical VA as follows: (i) first read the word that; (ii) now open a

variable marker [𝑥 , but remember that it was actually opened four

symbols before (i.e. it has an offset 4); (iii) proceed with the current

run. When reconstructing the output, we will start reading four

symbols before the position that is stored for [𝑥 . The transformation

of the logical VA from Example 3.1 would look as follows:

0 1 2 3 4 5 6

𝑡 ℎ 𝑎 𝑡 [𝑥−4 𝑥⟩

The notation [𝑥−4 is used in order to signal that the variable 𝑥 was

actually opened four positions before it was recorded in the run.

Offsets are implemented in the rewriting module of REmatch
after constructing the first logical VA from a REQL query. When

the query contains quantifiers or alternations special care must be

taken for offsetting the variables. More details are provided at [2].

4 FILTERING MODULE
In this section, we present themodule in charge of filtering the input

document and reducing the load of the main algorithm. The plan is

to run a light process that scans the input and quickly finds sections

of the document where there is at least one output. Formally, let

A be the logical VA constructed from a REQL query, and let 𝑑 be a

document. For a mapping 𝜇 and a number ℓ , let 𝜇+ℓ be a mapping

Algorithm 1 [Light Search] The segmentation algorithm for a

logical VA A = (𝑄, 𝛿, 𝑞0, 𝑞𝑓) over a document 𝑑 = 𝑎0 . . . 𝑎𝑛−1.

1: procedure Filtering(A, 𝑎0 . . . 𝑎𝑛−1)
2: 𝑆 ← ∅
3: 𝑖 ← 0, 𝑗 ← 0

4: for ℓ = 0 to 𝑛 do
5: (𝑆, output, ends) ← next𝛿 (𝑆, 𝑎ℓ)
6: if output then
7: 𝑗 ← ℓ + 1
8: else if ends then
9: if 𝑖 < 𝑗 then
10: Enumerate [𝑖, 𝑗⟩
11: 𝑖 ← ℓ + 1
12: if 𝑖 < 𝑗 then
13: Enumerate [𝑖, 𝑗⟩

shifted by ℓ , namely, for every variable 𝑥 , 𝜇+ℓ (𝑥) = [𝑖+ℓ, 𝑗+ℓ⟩ where
𝜇 (𝑥) = [𝑖, 𝑗⟩. A segmentation of 𝑑 is a sequence [𝑖1, 𝑗1⟩, . . . , [𝑖𝑘 , 𝑗𝑘 ⟩
of spans of 𝑑 such that 𝑗ℎ < 𝑖ℎ+1 for every ℎ < 𝑘 . We say that the

segmentation is valid for A over 𝑑 iff

JAK𝑑 = ∪𝑘
ℎ=1
{𝜇+𝑖ℎ | 𝜇 ∈ JAK(𝑑 [𝑖ℎ, 𝑗ℎ⟩)}

namely, if we can evaluate A over 𝑑 by considering the segments

𝑑 [𝑖ℎ, 𝑗ℎ⟩ of 𝑑 and shifting the results. The task of the filtering mod-

ule is to search for a good segmentation that is valid for A over 𝑑 ,

and which can be computed quickly. The segmentation [0, |𝑑 |⟩ is
always valid, and we wish to refine it into smaller segments.

Filtering the document into disjoint segments is not new when

evaluating regular expressions. For example, RE2 [10] runs a deter-

ministic automaton back and forth to find the starting and ending

positions for the leftmost-longest match. For simulating this behav-

ior in REmatch we use the split-correctness framework of [13]. The

main goal of split-correctness is to find a REQL query eA with a

single variable such that JeAK𝑑 is a valid segmentation ofA over 𝑑 .

The filtering module in REmatch is inspired by split-correctness,

but we improve the approach in two ways. First, REmatch does not

restrict the filtering module to using single-variable expressions.

Second, we look for a “cheap” segmentation algorithm, i.e., a pro-

cess that runs faster than the evaluation algorithm. Indeed, using

regex for filtering does not payoff if computing the segmentation

takes longer than evaluating the target query itself.

Light search (Optimization). In REmatch, the filtering module

finds a segmentation by simulating the logical VA over the docu-

ment, but only storing the starting and ending position where there

is at least one output. For this we need the following extension

of the transition relation. Let A = (𝑄, 𝛿, 𝑞0, 𝑞𝑓) be a logical VA.

We extend 𝛿 to a function 𝛿∗ that given a set 𝑆 ⊆ 𝑄 and a letter

𝑎, outputs all states that can be reached from 𝑆 by using zero or

more variable transitions and then a letter transition that satisfies 𝑎,

namely, 𝑝 ∈ 𝛿∗ (𝑆, 𝑎) if there exists a sequence of transitions in 𝛿 of

the form 𝑞
𝑣1−→ 𝑞1

𝑣2−→ · · · 𝑣𝑚−→ 𝑞𝑚
𝐶−→ 𝑝 such that 𝑞 ∈ 𝑆 , 𝑎 ∈ set(𝐶),

and 𝑣𝑖 is a variable marker (e.g., [𝑥 or 𝑥⟩) for every 𝑖 ≤ 𝑚. We

also define 𝛿∗ (𝑆, 𝜖) such that 𝑝 ∈ 𝛿∗ (𝑆, 𝜖) if, and only if, 𝑝 can be

reached from a state in 𝑆 , by only using variable transitions.

2796

Algorithm 1, also called Light Search, presents the filtering

procedure for finding a segmentation of A over 𝑑 . The algorithm

simulates A over 𝑑 by keeping a set of states 𝑆 ⊆ 𝑄 of active runs,

namely, each𝑞 ∈ 𝑆 represents a run ofA over a prefix of𝑑 that could

produce an output. The workhorse of Algorithm 1 is the function

next𝛿 (see line 5). Given a set 𝑆 ⊆ 𝑄 and a letter 𝑎, the function

next𝛿 (𝑆, 𝑎) returns a triple (𝑆 ′, output, ends) where 𝑆 ′ ⊆ 𝑄 and

output, ends are boolean values. The first component 𝑆 ′ is equal to
𝛿∗ (𝑆, 𝑎) ∪𝛿∗ ({𝑞0}, 𝑎). Intuitively, 𝛿∗ (𝑆, 𝑎) are all states that one can
reach from 𝑆 by using some variable transitions and reading 𝑎. On

the other hand, 𝛿∗ ({𝑞0}, 𝑎) are the new states that one can reach by

starting from 𝑞0 and by reading 𝑎. Recall that a match can be made

from any position in the document, so we start a fresh run by using

𝛿∗ ({𝑞0}, 𝑎). The second component output is true iff𝑞𝑓 ∈ 𝛿∗ (𝑆 ′, 𝜖),
namely, output is true when there is a run that reaches the final

state. Finally, ends is true iff 𝛿∗ (𝑆, 𝑎) = ∅, which tells whether the

runs in 𝑆 ends with the new letter. When implementing Algorithm 1

in REmatch, we cache the output next𝛿 (𝑆, 𝑎), in order to compute

it at most once for every pair (𝑆, 𝑎).
We have all the ingredients to explain how Algorithm 1 works.

The algorithm keeps a set of active states 𝑆 , and two pointers 𝑖 and 𝑗 .

As we already mentioned, 𝑆 contains all active states when reading

the document. Instead, the pair (𝑖, 𝑗) stores the last span [𝑖, 𝑗⟩ (called
active span) where there is an output, namely, JAK(𝑑 [𝑖, 𝑗⟩) ≠ ∅.
We assume here that, if 𝑗 ≤ 𝑖 , then the algorithm has not found

a segment yet (i.e., from the previous segment that was output).

In lines 2-3, we start by setting 𝑆 = ∅ (i.e., no active runs) and

(𝑖, 𝑗) = (0, 0) (i.e., no active span). Then we iterate sequentially over
each letter 𝑎ℓ . For each letter, we compute next𝛿 (𝑆, 𝑎ℓ) returning
as output the triple (𝑆 ′, output, ends) where 𝑆 ′ is the new set of

active states (line 5). If output is true, an active state can reach

𝑞𝑓 and the segment [𝑖, ℓ + 1⟩ contains an output. Then by setting

𝑗 = ℓ + 1 we update the new active span (lines 6-7). Instead, if there

is no output and ends is true, then all active states of the previous

iteration end with the new letter 𝑎ℓ , and we can start a new active

span by setting 𝑖 = ℓ (line 11). However, if 𝑖 < 𝑗 , then we cannot

extend more the active span represented by (𝑖, 𝑗), we can safely

return the active span [𝑖, 𝑗⟩ and continue (lines 9-10). Finally, after

the document ends (lines 12-13) we check if there is an active span

that was not output (i.e., 𝑖 < 𝑗), and return it if this is the case.

Example 4.1. In the figure below, we display the execution of
Algorithm 1 for the logical VA of query e0 (see Example 3.1) over the
document thathatsthat. For each letter, we show below the value
of variables ℓ , 𝑆 , output, ends, 𝑖 , and 𝑗 after finishing each iteration.

t h a t h a t s t h a t
0 1 2 3 4 5 6 7 8 9 10 11ℓ =

∅ {2} {3} {4} {2,5} {3} {4}{2, 5} ∅ {2} {3} {4}{2, 5}𝑆 =

F F F T F F T F F F F Toutput =

T F F F F F F T T F F Fends =

0 0 0 0 0 0 0 0 7 8 8 8 8𝑖 =

0 0 0 0 4 4 4 7 7 7 7 7 12𝑗 =

By following the run of the algorithm, we can check that it outputs
the segmentation [0, 7⟩ and [8, 12⟩ corresponding to the substrings
thathat and that, respectively.

Algorithm 1 maintains the invariant that, after reading 𝑎ℓ , 𝑖 is a

position before any of the current active runs started and, if 𝑖 < 𝑗 ,

then 𝑗 is the latest position such that JAK(𝑑 [𝑖, 𝑗⟩) ≠ ∅. Indeed,
these invariant is enough to prove that the algorithm is correct.

Theorem 4.2. Given a logical VA A and a document 𝑑 , Algo-
rithm 1 outputs a sequence of spans [𝑖1, 𝑗1⟩, . . . , [𝑖𝑘 , 𝑗𝑘 ⟩ that is a valid
segmentation for A over 𝑑 .

Note that the load of computing Algorithm 1 is low: we need

one pass over the document and for each letter we need to perform

a small number of simple operations (i.e., apply the function next𝛿

and check at most two if-statements). Given that we can cache the

output next𝛿 (𝑆, 𝑎) for each new pair (𝑆, 𝑎), the cost per new letter

is low when the caching of the function next𝛿 stabilizes. This is

probably the main reason why filtering runs faster than performing

the main evaluation algorithm (see Section 7 for further discussion).

5 OUTPUT MODULE
The output of a REQL query e over a document 𝑑 can be pro-

hibitively large, namely, of size O(|𝑑 |2 |𝑒 |), since for the all-match

semantics we could even ask for all substrings being matched to all

the variables. Since such queries are, at least in principle, express-

ible in REQL, we need to be able to handle them in REmatch. For
this, we deploy the notion of enumeration algorithms and output

delay, which measure the efficiency of an algorithm with respect

to both its input and its output.

More formally, we use the framework of enumeration algorithms,
which received a lot of attention in the database community [4, 6, 16,

23, 24, 29, 39, 40, 46]. In enumeration algorithms, we are required

to produce the (finite) output set 𝑂 = {𝑜1, . . . , 𝑜𝑘 }, in any order,

and without repetitions. Such algorithms operate in two phases:

(1) The pre-processing phase builds a data structure which

allows enumerating the results;

(2) The enumeration phase retrieves the outputs from the data

structure.

In the case of REQL queries, the desired result is the set of all the

output mappings. We will say that an enumeration algorithmworks

with output-linear delay, if the time to print out the 𝑖-th output 𝑜𝑖 ,

measured as the time needed from printing the (𝑖 − 1)-st output
𝑜𝑖−1 to finishing the output 𝑜𝑖 , is proportional to the length of 𝑜𝑖 ,

and independent of the size of the document, the query, or the size

of the output set 𝑂 . The algorithm is also required to terminate

immediately after outputting the final output. If these conditions are

met, the time needed to enumerate𝑂 is O(|𝑂 |), hence output-linear.
Next we describe the REmatch module for managing the system

memory and the data structure supporting output-linear delay.

The data structure. In general, the pre-processing phase builds a

data structure encoding all the mappings that are to be enumerated.

We next explain which operations this structure needs to support

in order to encode outputs of a REQL query. For this, consider again

the document 𝑑1 from Section 2 and the REQL query:

e4 := !x{th}.*!y{hat}

that extracts the substring th in the variable 𝑥 followed by the

substring hat in the variable 𝑦. One output here is 𝜇1, with 𝜇1 (𝑥) =
[0, 2⟩, and 𝜇1 (𝑦) = [4, 7⟩. Notice that for each output mapping, we

2797

need to define when a variable is opened, and when it is closed, in

order to define the span it captures. In REmatch we will represent

a mapping as an output sequence of pairs (𝑆, 𝑖), where 𝑆 is a set of

variable markers (e.g., 𝑆 = {𝑥⟩, [𝑦}), denoting when a span associ-

ated with the variable 𝑥 starts, or finishes, respectively. Therefore,

the mapping 𝜇1 is represented by the output sequence:

([𝑥, 0), (𝑥⟩, 2), ([𝑦, 4), (𝑦⟩, 7).6

In essence, REmatch will create a data structure encoding this

information for each mapping. Since many mappings will share

information (for instance, 𝜇2, with 𝜇2 (𝑥) = [0, 2⟩, and 𝜇2 (𝑦) = [7, 9⟩
has the 𝑥-part identical to 𝜇1), we can exploit this fact to create a

succinct representation of all the outputs.

The data structure we will use to represent the set of all output

sequences in JeK𝑑 , for a REQL query e and a document 𝑑 is called

enumerable compact set, or ECS for short, and was first introduced

in [5, 32]. The ECS data structure can be thought as a directed

acyclic graph (DAG) with three types of nodes n:

(i) a (unique) terminal node (denoted emptyNode or ⊥ for

short), with no children that signals the end of output;

(ii) content nodes, which store a pair (𝑆, 𝑖) from an output

sequence and have a single child n′; and
(iii) union nodes, which have two children n1 and n2.

More importantly, every node n defines a set of mappings JnK, rep-
resented as a set of output sequences. Specifically, the emptyNode
represents the set JemptyNodeK = {𝜖}, the output node n with the

child n′ represents the set Jn′K · {(𝑆, 𝑖)}, and the union node with

children n1 and n2 the set Jn1K ∪ Jn2K.

Example 5.1. Consider again the query e4, and document 𝑑1 from
Section 2. The output sequences of mappings in Je4K𝑑 are then:

𝜇1: ([𝑥, 0), (𝑥⟩, 2), ([𝑦, 4), (𝑦⟩, 7)
𝜇2: ([𝑥, 0), (𝑥⟩, 2), ([𝑦, 7), (𝑦⟩, 10)
𝜇3: ([𝑥, 3), (𝑥⟩, 5), ([𝑦, 7), (𝑦⟩, 10)

The ECS for this set of output sequences is given in Figure 1. The
rightmost union node represents 𝜇1, 𝜇2, and 𝜇3. Following the paths
from this node to the ⊥ node represent the three output sequences. The
shared output for the variable 𝑦 in 𝜇2 and 𝜇3 is represented only once.

Node manager (Optimization). The key step when evaluating a

REQL query over a document is building the ECS which encodes

all the outputs. Naively building the ECS would require allocating

the memory for each node being added, which is highly inefficient.

Therefore, REmatch includes a node manager module, denoted NM,
which allocates memory in bulk, and acts as a garbage collector

for the ECS. The NM module essentially creates a memory pool for

storing the nodes in the ECS. Each time NM fills the pool, it allocates
the memory for another pool double the original size. This strategy

allows memory allocation to occur infrequently and in big chunks,

thus preventing fragmentation and multiple pointer dereferenc-

ing. In addition, the NM module acts as a lazy garbage collector by

keeping a pointer count for each node in the memory pool. Once

the pointer counter hits zero, it moves the node to a pool of nodes

that can be deleted. This will happen when a node is not required

6
Strictly speaking, we should write ({ [𝑥 }, 0), ({𝑥 ⟩}, 2), For the sake of simplifi-

cation, we omit the set brackets whenever it is possible.

⊥

[𝑥, 0 𝑥⟩, 2

[𝑥, 3 𝑥⟩, 5 ∪

[𝑦, 4

[𝑦, 7

𝑦⟩, 7

𝑦⟩, 10

∪

Figure 1: The ECS representing three outputs.

anymore by the evaluation algorithm, detecting that it will not be

reached from any newly added node, thus allowing to delete the

node and other nodes whose pointer count hits zero by this removal.

As stated previously, the memory locations of deleted nodes are not

liberated but are instead overwritten by newly created nodes and

returned to the memory pool. We use the command NM.discard(n)
when we wish to signal that a node is to be discarded.

The node manager NM is also in charge of implementing the

following three operations over nodes:

• NM.emptyNode, which creates the terminal node;

• NM.extend(n, (𝑆, 𝑖)), which creates a content node which

contains (𝑆, 𝑖), and links this newly created node to n; and
• NM.union(n1, n2), which takes nodes n1 and n2, and creates

a new union node, representing the union of both outputs.

NM implements these three operations, taking constant time for

each operation. Moreover, NMmodule supports enumerating outputs

from any given node n, whichwe denote by NM.enumerate(n). More

importantly, this enumeration takes output-linear delay, and one

can do it at any point without further preprocessing. This last fact is

the guarantee for REmatch to retrieve all outputs JeK𝑑 with output-

linear delay. We refer to [32] for the implementation details of such

operations and enumeration procedure.

Early output (Optimization). Note again that NM allows enumer-

ating the outputs from a node at any point without further prepro-

cessing. This fact is crucial for the optimization that we call early
output enumeration. Specifically, when evaluating a logical VA over

a document, we can often detect whether we reach a final state

before the entire document is read completely (for details, see Sec-

tion 6). In essence, this means that we can provide certain outputs

to the user at this point before continuing to construct the ECS in

its entirety. The benefits are twofold: (i) the outputs are delivered

to the user as soon as possible, similarly as pipelined evaluation

is done in databases; and (ii) once we enumerate these outputs,

we can delete the unused nodes, thus saving storage space. This

optimization is highly effective in decreasing the memory usage

and decreasing the time to deliver the first output (see Section 7).

6 EVALUATION MODULE
To evaluate REQL, we compile logical VA into so-called extended
VA, a “physical” automata model closer to the evaluation algorithm

than to the query language. We use this model for the REQL eval-

uation algorithm used in REmatch, which makes one pass over

the document and produces the resulting mappings with output-

linear delay. This evaluation algorithm refines and improves the

theoretical algorithm presented in [16] for evaluating extended VA

by taking care of the memory usage, simplifying the algorithm, and

applying various optimizations presented in the previous sections.

2798

Extended VA. An extended variable-set automaton (eVA) [15] is

a finite-state automaton extended with capture variables in a way

analogous to logical VA. The difference is that reading and out-

putting variable markers can be done in a single transition
7
For-

mally, an eVA E is a tuple (𝑄,𝑞0, 𝐹 , 𝛿), where 𝑄 is a finite set of

states; 𝑞0 ∈ 𝑄 is the initial state; 𝐹 ⊆ 𝑄 is the set of final states;

and 𝛿 is a transition relation consisting of transitions of the form

(𝑞, 𝑎, 𝑆, 𝑞′) where 𝑞, 𝑞′ ∈ 𝑄 , 𝑎 ∈ Σ ∪ {■}, and 𝑆 is a set of variable

markers (e.g., 𝑆 = {[𝑥,𝑦⟩}). The meaning behind the transition

(𝑞, 𝑎, 𝑆, 𝑞′) is that when the automaton is in the state 𝑞 and reads

the 𝑖-th letter 𝑎𝑖 = 𝑎, then it switches to state 𝑞′ and outputs (𝑆, 𝑖),
where 𝑆 is the set of variables that are opened and closed before
reading the 𝑖-th letter. In particular, when 𝑆 = ∅, the automaton

changes the state and nothing is output.

The fact that a transition can open or close multiple variables at

the same time allows us to handle nested variables (e.g. !x{!y{a}})
in a single automaton transition. Furthermore, the ■ symbol is used

as a special input to denote the end of a document (i.e., an End Of

File, or EOF). This will be useful in the run of an eVA for outputting

spans [𝑖, 𝑗⟩ over a document of size 𝑛, where 𝑖 and 𝑗 range from 0

to 𝑛 (i.e., we need 𝑛 + 1 possible positions).
Next we define how an eVA produces outputs. A run 𝜌 of E over

a document 𝑑 = 𝑎0 · · ·𝑎𝑛−1 is a sequence of the form:

𝜌 = 𝑞0
𝑏0/𝑆0−−→ 𝑞1

𝑏1/𝑆1−−→ 𝑞2
𝑏2/𝑆2−−→ . . . 𝑞𝑛

𝑏𝑛/𝑆𝑛−−→ 𝑞𝑛+1 (1)

where𝑏0𝑏1 . . . 𝑏𝑛 = 𝑎0 . . . 𝑎𝑛−1■, 𝑆 𝑗 is a set of variable markers, and

(𝑞 𝑗 , 𝑏 𝑗 , 𝑆 𝑗 , 𝑞 𝑗+1) ∈ 𝛿 , for 0 ≤ 𝑗 ≤ 𝑛. Also, we say that 𝜌 is accepting
if 𝑞𝑛+1 ∈ 𝐹 . A run 𝜌 like (1) naturally defines an output sequence as

out(𝜌) = out(𝑆0, 0) · . . . · out(𝑆𝑛, 𝑛) such that out(𝑆𝑖 , 𝑖) = (𝑆𝑖 , 𝑖) if
𝑆𝑖 ≠ ∅, and 𝜖 , otherwise. Finally, the semantics of E over 𝑑 , denoted

by JEKseq
𝑑

, is defined as the set of all output sequences out(𝜌) where
𝜌 is an accepting run of E over 𝑑 .

eVA has several differences compared to logical VA: (1) an eVA

starts from the beginning of the document, (2) produces output

sequences instead of mappings, and (3) the transitions are fired

by symbols (i.e., not by char classes). These relaxations plus read-

captures transitions will considerably simplify the evaluation algo-

rithm. Indeed, we can show that if we start from a logical VA A,

then we can construct an equivalent eVA E in linear time.

Proposition 6.1. For every logical VA A compiled from a REQL
query e, one can build, in linear time, an eVA E such that E eval-
uated over a document 𝑑 produces precisely the output sequences
representing the mappings in JAK𝑑 = JeK𝑑 .

Example 6.2. To illustrate Proposition 6.1, recall the logical VA
A0 from Example 3.1. The following eVA E0 is equivalent to A0:

0 1 2 3 4 5

∗/∅

𝑡/{[𝑥} ℎ/∅ 𝑎/∅ 𝑡/∅ ∗/{𝑥⟩}

∗/∅

Here we draw an edge 𝑞 𝑎/𝑆−−→ 𝑞′ to denote a transition from 𝑞 to 𝑞′

that output 𝑆 when reading a letter 𝑎, and use ∗ to denote any letter.
Intuitively, we havemoved transitions with variablemarkers “forward”
if we compare E0 withA0. For instance,A0 had transitions 0

[𝑥−→1
𝑡−→2,

but instead E0 has a direct transition 0
𝑡/[𝑥−−→1. Since an extended VA

7
The name eVA is also used by [16] for an automaton model outputting sets of markers.

needs to consume the entire document, we add self-loops in the initial
and the final state; for instance 4𝑡/𝑥 ⟩−−→5. Also note that the transition
0
∗/∅−−→0 closes the variable x before the character (EOF or any other

character) is consumed.

Determinization. There is a critical issue with using eVA as our

guide for evaluating REQL: several runs can produce the same

output sequence. To illustrate this issue in its simplest form, assume

the following extended VA E′
0
, which is a mild modification of E0:

0 1 2

3

3
′

4 5

∗/∅

𝑡/{[𝑥} ℎ/∅
𝑎/∅ 𝑡/∅

𝑎/∅ 𝑡/∅

∗/{𝑥⟩}

∗/∅

One can check that E′
0
is equivalent to E0, namely, JE′

0
Kseq (𝑑) =

JE0Kseq (𝑑) for every document 𝑑 . However, for every output se-

quence of JE′
0
Kseq (𝑑), two different runs are witnessing it: one

crossing the state 3 and another crossing the state 3
′
. Then, if we

guide an evaluation algorithm of eVA with runs, for E′
0
we will

enumerate each output sequence twice, although the user expects

to extract each output without duplicates.

To remove duplicate runs from eVA, we use a subclass called de-
terministic eVA. We say that an eVA E is deterministic if its transition
relation 𝛿 satisfies that for every two transitions (𝑞, 𝑎1, 𝑆1, 𝑞′

1
) ∈ 𝛿

and (𝑞, 𝑎2, 𝑆2, 𝑞′
2
) ∈ 𝛿 , if (𝑎1, 𝑆1) = (𝑎2, 𝑆2), then 𝑞′

1
= 𝑞′

2
. In other

words, given a state 𝑞, the next state is determined by the pair (𝑎, 𝑆).
The reader can check that E0 is deterministic but E′

0
is not.

A deterministic eVA ensures that for every document and output

sequence, there is at most one accepting run. This correspondence

is crucial for our evaluation algorithm, given that we can simulate

runs and construct the output, without worrying about duplicates.

Fortunately, we can always “determinize” a non-deterministic eVA

E = (𝑄,𝑞0, 𝐹 , 𝛿) by using a subset construction, similar to the

standard determinization procedure for NFAs. More precisely, we

define Edet = (𝑄det, 𝑞det
0

, 𝐹det, 𝛿det) such that: 𝑄det = 2
𝑄
, 𝑞det

0
=

{𝑞0}, 𝐹det = {𝑋 | 𝑋 ∩ 𝐹 ≠ ∅}, and:

𝛿det = {(𝑋, 𝑎, 𝑆, 𝑋 ′) | ∀𝑞′ ∈ 𝑋 ′ . ∃𝑞 ∈ 𝑋 . (𝑞, 𝑎, 𝑆, 𝑞′) ∈ 𝛿}.

One can check that E and Edet are equivalent (i.e., they define the

same output for every document), and that Edet is deterministic.

An inconvenience of Edet is that its size is exponential in |E |.
Fortunately, for the evaluation algorithm it is not necessary to

construct entire Edet. Instead, we can start from the initial set {𝑞0}
and traverse only the transitions and states needed by the next

letter. Each time that we need a new state or transitions of Edet, we
use E to build them and cache it in main memory for future access.

This is the purpose of the determinization module of REmatch,
called DET. Specifically, DET has a method next such that, given

a state 𝑋 ∈ 𝑄det
and a letter 𝑎, DET.next(𝑋, 𝑎) computes a list ℓ

with all pairs (𝑆, 𝑋 ′) such that (𝑋, 𝑎, 𝑆, 𝑋 ′) ∈ 𝛿det. Instead, if ℓ was
already computed before (and cached), DET.next(𝑋, 𝑎) outputs ℓ
immediately. Then by using DET we only need to compute each

state and transition once. Moreover, the number of states accessed

by DET depends on E and the input document 𝑑 . In practice, this

size is small and at most three or four times the size of E.

2799

Algorithm 2 Evaluation of an extended variable-set automaton E = (𝑄, 𝛿, 𝑞0, 𝐹) over the document 𝑏0 . . . 𝑏𝑛 where 𝑏0 . . . 𝑏𝑛−1 is the original
document and 𝑏𝑛 = ■ is an EOF symbol. DET and NM are the determinization module and node manager, respectively.

1: procedure Evaluate(E, 𝑏0 . . . 𝑏𝑛)
2: DET.initialize(E)
3: InitializeLists

4: for 𝑖 = 0 to 𝑛 do
5: for all 𝑋 ∈ setslist do
6: ℓ ← DET.next(𝑋,𝑏𝑖)
7: if ℓ ≠ empty then
8: UpdateSets(𝑋, ℓ, 𝑖)
9: else
10: NM.garbage(𝑋 .n)
11: setslist.swap(setslist′)
12: setslist′ .clear
13: Enumerate

14: procedure InitializeLists
15: setslist.clear
16: setslist′ .clear
17: 𝑋0 ← DET.initialStateSet
18: 𝑋0 .phase← −1
19: 𝑋0 .n← NM.emptyNode
20: setslist.add(𝑋0)
21:

22: procedure Enumerate
23: for all 𝑋 ∈ setslist do
24: if 𝑋 .isFinal then
25: NM.enumerate(𝑋 .n)

26: procedure UpdateSets(𝑋, ℓ, 𝑖)
27: for all (𝑆, 𝑋 ′) ∈ ℓ do
28: n′ ← 𝑋 .n
29: if 𝑆 ≠ ∅ then
30: n′ ← NM.extend(n′, (𝑆, 𝑖))
31: if 𝑋 ′ .phase < 𝑖 then
32: 𝑋 ′ .phase← 𝑖

33: setslist′ .add(𝑋 ′)
34: 𝑋 ′ .n← n′

35: else
36: 𝑋 ′ .n← NM.union(𝑋 ′ .n, n′)

Algorithm’s variables. In Algorithm 2 we present the main algo-

rithm for REmatch. This algorithm evaluates an eVA E over the

input document 𝑑 , enumerating all output sequences JEKseq (𝑑).
Two main components used by the algorithm are the node manager

NM, introduced in Section 5, and the determinization module DET,
introduced above. In addition, we use states-sets constructed by DET,
set-lists that store states-sets, and nodes created and operated by NM.
We introduced nodes n in Section 5.

The states-sets, denoted by 𝑋 in the algorithm, are built and

cached by the determinization module for representing a set𝑋 ⊆ 𝑄 .

Each states-set 𝑋 has two variables: 𝑋 .n and 𝑋 .phase. The former

can store a node that represents the current outputs of runs that

reached 𝑋 . Instead, the latter is an integer that encodes the current

phase number: if 𝑋 .phase = 𝑖 then the 𝑖-th iteration was the last

one that reached 𝑋 . In practice, phase will help to know whether it

is the first time we reached 𝑋 during some iteration. Further, each

states-set has a method 𝑋 .isFinal that outputs TRUE if, and only

if, 𝑋 is a final set (i.e., 𝑋 ∩ 𝐹 ≠ ∅). In the implementation, this is a

flag that the determinization module sets when creating 𝑋 .

We will also use set-lists, denoted by setslist in the algorithm,

which are linked-list of states-sets. For this data structure, we as-

sume a method setslist.clear to empty the list, setslist.add(𝑋) to
add 𝑋 at the end, and setslist.swap(setslist′) to swap the content

between two lists. To iterate over each element 𝑋 in the list, we

conveniently write “for all 𝑋 ∈ setslist”. We assume any straight-

forward implementation of set-list that takes constant time for each

call to these methods. Finally, during the algorithm, we use two

set-lists variables, setslist, and setslist′. We assume that setslist,
setslist′, NM, and DET can be globally accessed by all methods.

Main algorithm. The main method of Algorithm 2 is Evaluate,

which receives as input an eVA E = (𝑄, 𝛿, 𝑞0, 𝐹) and the document

𝑏0 . . . 𝑏𝑛 . Recall that𝑏0 . . . 𝑏𝑛−1 is the original document and𝑏𝑛 = ■
is the EOF symbol. The algorithm starts by initializing the deter-

minization module DET with E at line 2. The initialize method

is for storing E inside DET and using it later during the determiniza-

tion. Then we do the initialization of setslist and setslist′ by calling
InitializeLists (line 3). This method clears both lists (lines 15-16)

and adds the state-set 𝑋0 to setslist (line 20). This state-set rep-

resents {𝑞0}, namely, the determinization initial set. For this, DET

provides a method DET.initialStateSet that outputs 𝑋0 = {𝑞0}
(line 17). Then we initiate 𝑋0 .phase with −1 (line 18) and fill 𝑋0 .n
with the empty output node (line 19). Intuitively, no iterations have

accessed 𝑋0 yet, and the Edet-run at 𝑋0 only has the empty output.

The evaluation algorithm processes the document 𝑏0 . . . 𝑏𝑛 sym-

bol by symbol, from 𝑖 = 0 to 𝑛 (line 4). During the 𝑖-th iteration, the

setslist keeps all state-sets 𝑋 that can be reached by runs reading

𝑏0 . . . 𝑏𝑖−1, and𝑋 .n a node storing all outputs of these runs. Instead,
setslist′ will contain the new state-sets after reading the letter 𝑏𝑖 .

Intuitively, to build setslist′ from setslist we fire all state-sets 𝑋 in

setslist one-by-one (line 5) by calling the method DET.next(𝑋,𝑏𝑖)
with symbol 𝑏𝑖 (line 6). This method gives a list ℓ of pairs (𝑆, 𝑋 ′),
where there is a transition (𝑋,𝑏𝑖 , 𝑆, 𝑋 ′) ∈ 𝛿det. Then, if (𝑆, 𝑋 ′) ∈ ℓ ,
we must extend the output sequences in 𝑋 .n with (𝑆, 𝑖), and store

them in 𝑋 ′. We do this updating by calling UpdateSets(𝑋, ℓ, 𝑖)
(line 8), discussed below. If the list ℓ is empty (e.g., DET detects that

by reading 𝑏𝑖 from 𝑋 , there is no way to continue), then we call the

node manager NM and mark 𝑋 .n for the garbage collection (line 10).

Finally, when we end firing all state-sets in setslist, we swap the

two lists and clean setslist′ to start the iteration again (lines 11-12).

Update method. The workhorse of the evaluation algorithm is

UpdateSets(𝑋, ℓ, 𝑖), which is in charge of updating each state-set

𝑋 ′ by extending the outputs in 𝑋 .n with (𝑆, 𝑖), for each (𝑆, 𝑋 ′) ∈ ℓ .
For this purpose, we iterate over each (𝑆, 𝑋 ′) ∈ ℓ , create a copy n′

of 𝑋 .n, and extend all output sequences in n′ with (𝑆, 𝑖) if 𝑆 ≠ ∅
(lines 28-30). Next, we need to update 𝑋 ′ .n depending on whether

it is the first time or not that we reach 𝑋 ′. For this, we use variable
𝑋 ′ .phase: if 𝑋 ′ .phase < 𝑖 , then we update 𝑋 ′ .phase to 𝑖 , add 𝑋 ′ to
setslist′, and set 𝑋 ′ .n equal to n′ (lines 31-34). Otherwise, it is not
the first time that we reach 𝑋 ′, and we need to union the output

sequences in 𝑋 ′ .n with the ones in n′ (lines 35-36).
For the correctness of UpdateSets, we cannot reach any state-

set 𝑋 in two consecutive iterations (i.e., both in the (𝑖 − 1)- and 𝑖-th
iteration for some 𝑖). Otherwise, we could use 𝑋 .n by reading and

updating it simultaneously, possibly erasing its content. For this

reason, the rewriting module duplicates the logical VA, alternating

between even and odd positions. This construction ensures that we

cannot reach any state-set 𝑋 in two consecutive iterations.

2800

t h a t h a t h a t ■
0 1 2 3 4 5 5 5 5 5 5 5
𝑛0 𝑛1 𝑛1 𝑛1 𝑛3 𝑛3 𝑛3 𝑛3 𝑛6 𝑛6 𝑛6 𝑛9

0 0 0 1 2 3 4
𝑛0 𝑛0 𝑛0 𝑛2 𝑛2 𝑛2 𝑛5

0 0 0 1

2 3 4

𝑛0 𝑛0 𝑛0 𝑛4

𝑛4 𝑛4 𝑛7

0

0 0 1

𝑛0

𝑛0 𝑛0 𝑛8

0

0

𝑛0

𝑛0

⊥

[𝑥,0

[𝑥,3

[𝑥,6[𝑥,9

𝑥⟩,4

𝑥⟩,7

𝑥⟩,10

∪

∪
𝑛0 :

𝑛1 :

𝑛2 :

𝑛4 :

𝑛3 :

𝑛5 :

𝑛7 :

𝑛6 :

𝑛9 :

𝑛8 :

se
ts
lis
ts

E
n
u
m
e
r
a
b
l
e
c
o
m
p
a
c
t
s
e
t

Figure 2: An example of how Algorithm 2 works.

UpdateSets passes and updates the outputs from the (𝑖 − 1)- to
the 𝑖-th layer, which is the heaviest part of the algorithm. Therefore,

it is crucial to perform UpdateSets as efficiently as possible. For

this, we use linked-lists and phase variables, which allows us to

check in a single instruction whether𝑋 ′ is already in setslist′ or not.
Our approach here is similar as in [10], but computes all matches.

Example 6.3. Figure 2 displays a graphic of how Algorithm 2
would run with eVA A0 from Example 6.2 and document 𝑑0. Below
document 𝑑0, we draw as columns the setslists that are computed after
reading the corresponding symbol. For this example, each state-set
is a single state, and then each number in a setslist corresponds to a
state in A0. Below each state-set 𝑋 , we draw in grey the node 𝑋 .n
from the ECS that the algorithm construct.

Next index (Optimization). A significant step for the evaluation

algorithm is the call to the DET.next function (line 6). Given a

state-set 𝑋 and a symbol 𝑏𝑖 , the first time that the algorithm calls

DET.next(𝑋,𝑏𝑖) the DET module must compute a list with all pairs

(𝑆, 𝑋 ′) such that (𝑋, 𝑎, 𝑆, 𝑋 ′) ∈ 𝛿det, and save it in its cache. Then,

for later calls to DET.next(𝑋,𝑏𝑖), the DETmodule must quickly find

this list in the cache. The evaluation uses the DET’s cache multiple

times, making it one of the heaviest parts of the computation. To

decrease the load of the algorithm, we add an index to each state

set 𝑋 , which quickly allows finding the next state-set given a 𝑏𝑖 .

Currently, REmatch only supports ASCII documents; therefore, we

implement this index as an array with 128 entries. This array on

each state-set allows us to quickly find the next state-set, consider-

ably improving the performance of the evaluation algorithm. Here,

for the next index, we are sacrificing space versus time. Of course,

a more compact next index (e.g., for non-ASCII documents) could

save space during the evaluation. We leave this for future work.

Enumeration. When we get to the end of the document, setslist
contains all state-set 𝑋 that can be reached by runs of Edet when
reading 𝑏0 . . . 𝑏𝑛 . In particular, 𝑋 .n has the node representing all

outputs of these runs. Then we call Enumerate (line 13), which

iterates over all 𝑋 ∈ setslist that are final, and enumerates the out-

put sequences in 𝑋 .n by calling the enumerate method of the node

manager (lines 23-25). As described in Section 5, we can perform

Rewriting

Module

Filtering

Module

DET
Module

Evaluation

Module

Output

Module

REQL

doc

Output (mappings)

lVA

lVA eVA

segm

nodes

*Early output

*Offsets

*Light search

*Node manager

*Next index

Figure 3: REmatch’s architecture. Optimizations are in grey.

an early output enumeration whenever we reach a final state at the

𝑖-th iteration. For ease of presentation, we code Algorithm 2 with

the enumeration procedure after reading the whole document.

7 EXPERIMENTAL EVALUATION
In this section we provide an experimental evaluation showing

the viability of REmatch in practice. For this we designed our

experiments around several real-world text corpora, and:

(1) Set internal baselines by showing how various optimiza-

tions described throughout this paper affect the perfor-

mance of REmatch (Subsection 7.2);

(2) We compare the performance of REmatch against estab-

lished RegEx engines (Subsection 7.3).

Data, queries and the REmatch source code, can be obtained at [2].

7.1 Experimental setup
The implementation. REmatch was implemented in C++, and

includes all the components presented in the paper. An overview of

theREmatch architecture can be found in Figure 3. Eachmodulewas

described in a section of the paper. The Rewritingmodule (Section 3)

takes a REQL expression and converts it to a logical VA (lVA), which

is used both by the DET module (Section 6), and by the Filtering

module (Section 4). The latter processes the input document by

splitting it into segments containing outputs, which are then passed

to the Evaluation module (Section 6). The Evaluation module runs

Algorithm 2 by communicating with the DET module to obtain

the next state of the eVA, and with the Output module (Section 5),

which creates the nodes of the data structure encoding the output

mappings. Specific optimizations were highlighted in each section.

The datasets. We use the following three real-world text corpora:

(1) Literature. This is a combined corpus of collected works

by English literature greats: Mark Twain, William Shake-

speare, and Charles Dickens. We used texts provided by the

Project Gutenberg [1], and concatenated them into a single

document of size 50.7 MB and around 50 million characters.

(2) DNA. This dataset consists of DNA sequences. In particular,

we used the list of proteomes of the zebrafish organism, as

provided by the BLAST initiative [8]. The combined size of

this dataset is 38.5 MB and 38.5 million characters.

2801

(3) SPARQL. Our final dataset consists of public query logs of

the (now defunct) British Museum SPARQL endpoint, as

collected by the Linked SPARQL Queries Dataset team [43].

We merged all the logs into a single document weighing

71.1 MB, and consisting of roughly 76 million characters.

The queries. Our queries for each dataset are designed as follows:

(1) Literature. Here we take a list of common English language

morphemes
8
, as provided by [30]. We then specify queries

that look for 2-grams [30], that is, two consecutive words

each containing a morpheme from our list (e.g. the first

word ends in -ing, and the second one in -er).

(2) DNA. Motif detection is a key task in DNA analysis [3].

We select 100 DNA motifs from the Prosite database [19]

that commonly occur in our dataset. Our queries take any

such pair of motifs, and look for their occurrences in the

proteomic sequence separated by at most 20 characters.

(3) SPARQL. Our logs have one query per line. For our expres-

sions we fix two sets of up to three SPARQL keywords [47]

(e.g., WHERE or OPTIONAL), and extract two consecutive que-
ries where the first one contains the keywords from the

first set, and the second one from the second set.

For each dataset roughly 10,000 queries were generated. We then

sample 150 queries from each set and use these for our experiments.

The queries were designed to cover real world-scenarios where

overlapping matches occur naturally. For instance, in the DNA
dataset, a starting motif might be paired with multiple occurrences

of an end motif, which requires the use of the all-match semantics.

How we ran the queries. All the experiments were run on a Apple

M1 Pro 10 cores/10 threads machine with clock speed 2064 – 3220

MHz and 16GB RAM. The operating system used was MacOS 13.1.

Queries were run in succession, and each query was executed 5

times with the average of runtime/memory being reported.

7.2 What do our optimizations do?
Throughout the paper we described a series of optimizations which

define the REmatch system architecture, as illustrated in Figure 3.

Of course, a natural question to ask is what is the effect of each

one of these optimizations, and whether implementing the basic

algorithm for computing all matches of a REQL expression would

be competitive enough already? In this subsection, we test that

hypothesis, and show that a naive implementation of Algorithm 2

runs several orders of magnitude slower that the full REmatch
stack. Additionally, we test how each single optimization in iso-

lation affects the performance of REmatch. For this, we run our

experiments with the following versions of REmatch:

• Naive, which is just the implementation of Algorithm 2.

• NodeManager, which adds the NMmodule and will discard

unusable nodes as soon as possible (Section 5).

• Next Index, which uses a bit array for ASCII characters in

a transition for quick access (Section 6).

• Offset, which postpones storing the (potential) output

information as much as possible (Section 3).

8
A morpheme is the smallest meaningful constituent of a linguistic expression.

1 2 3 4 5 6 7

DNA

0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

(1) Naive
(2) Node Manager
(3) Next Index

(4) Offset
(5) Early Output

(6) Light Search
(7) All optimizations

1 2 3 4 5 6 7

Literature

0

1

2

3

4

5

1 2 3 4 5 6 7

SPARQL

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 4: Performance gains of REmatch optimizations

Table 2: Average memory usage of different versions (MB).

DNA Literature SPARQL
Naive 1202.1 435.1 1418.4

Node Manager 3.19 2.1 7.98

Next Index 1333.6 517.3 1502.5

Offset 7.8 271 9.86

Early Output 1268.2 453 1457.3

Light Search 11.2 1.96 739.8

REmatch 13.4 2.1 3.6

• Early Output, which outputs results as soon as they are

available (Section 5).

• Light Search, which finds a valid segmentation of the

document that are guaranteed to produce the output and

runs the full algorithm over these segments (Section 4).

• REmatch, which is the full version of the system.

Here we test the effect of each optimization in isolation. For

instance, theOffset version only has the offset optimization on top

of the naive algorithm. The exception is the full REmatch system,

which includes all of the mentioned optimizations. We consider two

metrics: runtime (Figure 4) and memory consumption (Table 2).

Discussion. As we can observe (Figure 4), each of our optimiza-

tions does drop the total runtime of the workload. The most consis-

tent improvements come from Next index and Offset optimiza-

tions. The Light Search version offers significant improvements,

particularly in the median, but bad cases can hamper its perfor-

mance, as witnessed over the SPARQL dataset. Over all the dataset

the full version of REmatch runs the fastest, as expected. Concern-

ing memory consumption (Table 2), Node Manager drastically

reduces memory usage. Offset and Light Search can also reduce

memory usage, but their performance varies significantly based on

the query load. Over all the tested dimensions, the full version of

REmatch shows superior performance to any a single optimization

on its own. Slight hit in memory usage is noticeable in some cases

due to the interaction of different optimization methods in the full

version, but overall memory usage is still very low.

2802

7.3 Comparison with other engines
The setup. Here we do a thorough analysis of how REmatch com-

pares to classic RegEx processing libraries. For a fair comparison,

we considered a representative set of RegEx engines implemented

in C++ that can approximate the all-match semantics using look-

around operators. In addition, we also considered two engines that

do not support look-around operators; and will thus not output the

same matches. The engines used for comparison are:

• PCRE [35] version: 8.45;

• PCRE2 [36] version 10.40 (using JPCRE2 C++wrapper [27]);
• pcregrep [37] version 8.45;

• Boost.Regex [9] version 1.81.0;

• Oniguruma [34] version 6.9.7.1;

• RE2 [38] version 2021–11–01; and

• TRE [45] version 0.8.0.

For engines that support look-around operators (PCRE, PCRE2,
Boost and Oniguruma) we rewrite the experiments from Subsec-

tion 7.1 so that they retrieve all thematches. ForRE2 and TRE, which
do not support look-around operators, we rewrite the queries us-

ing capture groups such they resemble as closely as possible the

original experiments, although they do not perform the same task.

We also include grep and use its PCRE syntax to have a standard

command line tool in our comparison. Since standard grep does

not allow extracting substrings an extended version is used.

The results are presented in Figure 5 and Table 3. Here we com-

pare only in terms of time. The memory consumption was relatively

stable along all the engines, with REmatch generally using slightly

more memory, which is justified by the extra bookkeeping needed

to retrieve all the matches. REmatch had some spikes in memory

usage for the DNA dataset, and PCRE2 in the SPARQL dataset, but

the document size still dominated memory usage significantly.

In this discussion, it is essential to recall that REmatch is incom-

parable with standard RegEx engines, given that it always finds all

matches. Therefore, it is not our purpose to prove that REmatch
is “faster” than other RegEx engines. Instead, we want to show

that the performance of REmatch is comparable to standard RegEx

engines, despite running a more heavy processing load.

Discussion. As we can see, REmatch shows good performance

as compared to other engines. On the Literature dataset, REmatch
is bested only by RE2, which does not look for all the outputs.

On the DNA dataset REmatch is a close third, bested only by RE2
and PCRE2 by a tiny margin. When it comes to SPARQL the story

is similar, now with pcregrep also being fairly competitive. We

remark that on the SPARQL dataset TRE throws an error on every

query, while over the DNA dataset pcregrep runs out of buffer,

since the document is one very long line. Comparing the number

of outputs, in Table 3 we can observe that REmatch generally does

more work compared to other engines. This is particularly evident

when comparing to engines not using look-around operators (RE2
and TRE). Even for the engines with look-around supported, we

sometimes cannot capture all the outputs (for instance when two

nested matches start at the same position), as witnessed in Table 3.

Interestingly, on the SPARQL set of experiments look-ahead allows

capturing all the outputs. While in this case PCRE2 does outperform
REmatch in general, the median result for REmatch is better, same

1 2 3 4 5 6 7

DNA

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

1 2 3 4 5 6 7 8

Literature

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(1) REmatch
(2) RE2

(3) PCRE
(4) PCRE2

(5) Boost
(6) Oniguruma

(7) TRE
(8) pcregrep

1 2 3 4 5 6 8

SPARQL

0

1

2

3

4

5

Figure 5: Runtime metrics of our experiments

Table 3: Average number of outputs (highest in bold).

DNA Literature SPARQL
REmatch 16,187.4 706.6 29,424.2
RE2 10,556.9 704.9 12,287.8

PCRE 13,130.4 705.1 29,424.2
PCRE2 13,130.4 705.1 29,424.2
pcregrep N/A 701.3 29,424.2
Boost 13,130.4 642.6 29,424.2
Oniguruma 13,130.4 705.5 29,424.2
TRE 10,556.9 704.2 N/A

as in the other two datasets. The bad cases for REmatch come

from the extra bookkeeping needed to assure that all matches will

be captured. Overall, the experiments illustrate that the task of

encountering all the outputs can be done with minimal overhead

when comparing with classical RegEx matching.

8 CONCLUSIONS
This paper presents REmatch, a novel RegEx engine allowing to

find all matches. The reader can test the all-match semantics at

our beta demo available on www.rematch.cl. Such a semantics is

relevant in areas like literature or DNA analysis, where overlap-

ping matches do matter. We experimentally prove that although

REmatch does a more demanding job, it does so with almost no ad-

ditional cost when compared to classical RegEx engines, making it a

good candidate for use cases where all matches are needed. Finally,

this paper presents the architecture, algorithms, and optimizations

for capturing all matches. However, we see plenty of room for new

optimizations like state reductions, filtering, or indices. A promis-

ing first step would be to integrate the approach of [48, 49] into the

filtering module of REmatch, allowing to speed up our light search

procedure. Additionally, it would be interesting to see whether [48]

can be extended to also capture sub-patterns of the main search

pattern, and thus incorporated into the main REmatch algorithm.

ACKNOWLEDGMENTS
Work supported by ANID – Millennium Science Initiative Program

– Code ICN17_002 and ANID Fondecyt Regular project 1221799.

2803

www.rematch.cl

REFERENCES
[1] [n.d.]. Project Gutenberg. https://www.gutenberg.org/. Accessed on 2023-07-21.

[2] [n.d.]. REmatch Website. https://github.com/REmatchChile/REmatch-paper.

Accessed on 2023-07-21.

[3] [n.d.]. Sequence motif. https://en.wikipedia.org/wiki/Sequence_motif . Accessed

on 2023-07-21.

[4] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2021.

Constant-Delay Enumeration for Nondeterministic Document Spanners. ACM
Transactions on Database Systems (TODS) 46, 1 (2021), 2:1–2:30.

[5] Antoine Amarilli, Louis Jachiet, Martin Muñoz, and Cristian Riveros. 2022. Effi-

cient Enumeration for Annotated Grammars. In PODS. 291–300.
[6] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7, 1
(2020), 4–33.

[7] Philip Bille and Mikkel Thorup. 2009. Faster Regular Expression Matching. In

ICALP. 171–182.
[8] BLAST: Basic Local Alignment Search Tool 2022. https://blast.ncbi.nlm.nih.gov/

doc/blast-help/downloadblastdata.html. Accessed on 2023-07-21.

[9] Boost Regex Library 2022. https://github.com/boostorg/regex. Accessed on

2023-07-21.

[10] Russ Cox. 2007. Regular expression matching can be simple and fast (but is slow

in java, perl, php, python, ruby,...). https://swtch.com/~rsc/regexp/regexp1.html.

Accessed on 2023-07-21.

[11] Russ Cox. 2010. Regular expression matching in the wild. https://swtch.com/

~rsc/regexp/regexp3.html. Accessed on 2023-07-21.

[12] Johannes Doleschal, Benny Kimelfeld, and Wim Martens. 2021. Database princi-

ples and challenges in text analysis. ACM SIGMOD Record 50, 2 (2021), 6–17.

[13] Johannes Doleschal, Benny Kimelfeld, Wim Martens, Yoav Nahshon, and Frank

Neven. 2019. Split-Correctness in Information Extraction. In PODS. 149–163.
[14] Krzysztof Dorosz and Anna Szczerbinska. 2009. Enhancing Regular Expressions

for Polish Text Processing. Computer Science 10 (2009), 19–36.
[15] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. 2015.

Document Spanners: A Formal Approach to Information Extraction. Journal of
the ACM (JACM) 62, 2 (2015), 12:1–12:51.

[16] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Transactions on Database Systems (TODS) 45, 1 (2020), 3:1–3:42.
[17] Christopher A. Flores, Rosa L. Figueroa, and Jorge E. Pezoa. 2021. Active Learning

for Biomedical Text Classification Based on Automatically Generated Regular

Expressions. IEEE Access 9 (2021), 38767–38777.
[18] Jeffrey E.F. Friedl. 2006. Mastering regular expressions. O’Reilly.
[19] The Swiss-Prot group. 2022. The PROSITE database. https://ftp.expasy.org/

databases/prosite/prosite.dat. World Wide Web Consortium.

[20] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

[21] How can I match overlapping strings with regex? 2014. https:

//stackoverflow.com/questions/20833295/how-can-i-match-overlapping-

strings-with-regex/33903830. Accessed on 2023-07-21.

[22] How to find overlapping matches with a regexp? 2013. https://stackoverflow.

com/questions/11430863/how-to-find-overlapping-matches-with-a-regexp. Ac-

cessed on 2023-07-21.

[23] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The Dynamic

Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.

In SIGMOD. 1259–1274.
[24] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2020. General dynamic Yannakakis: conjunctive queries with theta

joins under updates. The VLDB Journal 29, 2-3 (2020), 619–653.
[25] IEEE and The Open Group. 2018. https://pubs.opengroup.org/onlinepubs/

9699919799/basedefs/V1_chap09.html. Accessed on 2023-07-21.

[26] Walter L. Johnson, James H. Porter, Stephanie I. Ackley, and Douglas T. Ross.

1968. Automatic Generation of Efficient Lexical Processors Using Finite State

Techniques. Commun. ACM 11, 12 (1968), 805–813.

[27] JPCRE2 C++ wrapper for PCRE2 library 2022. https://github.com/jpcre2/jpcre2.

Accessed on 2023-07-21.

[28] Stephen C Kleene et al. 1956. Representation of events in nerve nets and finite

automata. Automata studies 34 (1956), 3–41.
[29] Katja Losemann and Wim Martens. 2014. MSO queries on trees: enumerating

answers under updates. In CSL-LICS. 67:1–67:10.
[30] Andrea D. Sims Martin Haspelmath. 2010. Understanding Morphology. Hodder

Education.

[31] Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. 2018. Document

Spanners for Extracting Incomplete Information: Expressiveness and Complexity.

In PODS. 125–136.
[32] Martin Muñoz and Cristian Riveros. 2022. Streaming Enumeration on Nested

Documents. In ICDT. 19:1–19:18.
[33] Gonzalo Navarro and Mathieu Raffinot. 2005. New Techniques for Regular

Expression Searching. Algorithmica 41, 2 (2005), 89–116.
[34] Oniguruma – a modern and flexible regular expressions library 2022. https:

//github.com/kkos/oniguruma. Accessed on 2023-07-21.

[35] PCRE – Perl Compatible Regular Expressions 2022. https://www.pcre.org/. Ac-

cessed on 2023-07-21.

[36] PCRE2 – Perl-Compatible Regular Expressions 2022. https://github.com/

PCRE2Project/pcre2. Accessed on 2023-07-21.

[37] PCREgrep – A grep program that uses the PCRE regular expression library 2014.

https://github.com/vmg/pcre/blob/master/pcregrep.c/. Accessed on 2023-07-21.

[38] RE2 regular expression library 2022. https://github.com/google/re2. Accessed

on 2023-07-21.

[39] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. 2022. Enumeration

for FO Queries over Nowhere Dense Graphs. Journal of the ACM (JACM) 69, 3
(2022), 22:1–22:37.

[40] Luc Segoufin. 2013. Enumerating with constant delay the answers to a query. In

ICDT. 10–20.
[41] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast regular expression matching

using FPGAs. In FCCM. IEEE, 227–238.

[42] Anubhava Srivastava. 2017. Java 9 Regular Expressions. Packt Publishing.
[43] The LSQ team. 2015. The Linked SPARQL Queries Dataset. http://aksw.github.

io/LSQ/. Accessed on 2023-07-21.

[44] Ken Thompson. 1968. Programming techniques: Regular expression search

algorithm. Commun. ACM 11, 6 (1968), 419–422.

[45] TRE – a lightweight, robust, and efficient POSIX compliant regexp matching

library 2021. https://github.com/laurikari/tre. Accessed on 2023-07-21.

[46] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. 2020. Optimal Algorithms for Ranked Enumeration of Answers

to Full Conjunctive Queries. VLDB 13, 9 (2020), 1582–1597.

[47] W3C Sparql 2013. SPARQL 1.1 Query Language. https://www.w3.org/TR/

sparql11-query/. Accessed on 2023-07-21.

[48] Xiaochun Yang, Tao Qiu, Bin Wang, Baihua Zheng, Yaoshu Wang, and Chen Li.

2016. Negative factor: Improving regular-expression matching in strings. ACM
Transactions on Database Systems (TODS) 40, 4 (2016), 1–46.

[49] Xiaochun Yang, Bin Wang, Tao Qiu, Yaoshu Wang, and Chen Li. 2013. Improving

regular-expression matching on strings using negative factors. In SIGMOD. 361–
372.

2804

https://www.gutenberg.org/
https://github.com/REmatchChile/REmatch-paper
https://en.wikipedia.org/wiki/Sequence_motif
https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
https://blast.ncbi.nlm.nih.gov/doc/blast-help/downloadblastdata.html
https://github.com/boostorg/regex
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://ftp.expasy.org/databases/prosite/prosite.dat
https://ftp.expasy.org/databases/prosite/prosite.dat
https://stackoverflow.com/questions/20833295/how-can-i-match-overlapping-strings-with-regex/33903830
https://stackoverflow.com/questions/20833295/how-can-i-match-overlapping-strings-with-regex/33903830
https://stackoverflow.com/questions/20833295/how-can-i-match-overlapping-strings-with-regex/33903830
https://stackoverflow.com/questions/11430863/how-to-find-overlapping-matches-with-a-regexp
https://stackoverflow.com/questions/11430863/how-to-find-overlapping-matches-with-a-regexp
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html
https://github.com/jpcre2/jpcre2
https://github.com/kkos/oniguruma
https://github.com/kkos/oniguruma
https://www.pcre.org/
https://github.com/PCRE2Project/pcre2
https://github.com/PCRE2Project/pcre2
https://github.com/vmg/pcre/blob/master/pcregrep.c/
https://github.com/google/re2
http://aksw.github.io/LSQ/
http://aksw.github.io/LSQ/
https://github.com/laurikari/tre
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

	Abstract
	1 Introduction
	2 REQL: a RegEx Query Language for IE
	3 Rewriting module
	4 Filtering module
	5 Output module
	6 Evaluation module
	7 Experimental evaluation
	7.1 Experimental setup
	7.2 What do our optimizations do?
	7.3 Comparison with other engines

	8 Conclusions
	Acknowledgments
	References

