
A Randomized Blocking Structure for Streaming Record Linkage

Dimitrios Karapiperis
International Hellenic University

Greece
dkarapiperis@ihu.edu.gr

Christos Tjortjis
International Hellenic University

Greece
c.tjortjis@ihu.edu.gr

Vassilios S. Verykios
Hellenic Open University

Greece
verykios@eap.gr

ABSTRACT

A huge amount of data, in terms of streams, are collected nowadays

via a variety of sources, such as sensors, mobile devices, or even raw

log �les. The unprecedented rate at which these data are generated

and collected calls for novel record linkage methods to identify

matching records pairs, which refer to the same real-world entity.

Towards this direction, blocking methods are used in order to re-

duce the number of candidate record pairs while still maintaining

high levels of accuracy. This paper introduces ExpBlock, a ran-

domized record linkage structure, which guarantees that both the

most frequently accessed and recently used blocks remain in main

memory and, additionally, the records within a block are renewed

on a rolling basis. Speci�cally, the probability of inactive blocks

and older records to remain in main memory decays in order to

make room for more promising blocks and fresher records, respec-

tively. We implement these features using random choices instead

of utilizing cumbersome sorting data structures in order to favour

simplicity of implementation and e�ciency. We showcase, through

the experimental evaluation, that ExplBlock scales e�ciently to

data streams by providing accurate results in a timely fashion.

PVLDB Reference Format:

Dimitrios Karapiperis, Christos Tjortjis, and Vassilios S. Verykios. A

Randomized Blocking Structure for Streaming Record Linkage. PVLDB,

16(11): 2783 - 2791, 2023.

doi:10.14778/3611479.3611487

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dimkar121/ExpBlock.

1 INTRODUCTION

The vast amount of records which is collected using several sources

need �rst to be combined and cleaned before undergoing any data

analysis task. Assume for example a stream of records that origi-

nate from various hospitals or healthcare centers which send data

regarding symptoms and medication of individuals to a central

national repository. These records are, then, integrated in order to

identify possible matches among the underlying individuals, who

should be alerted in cases of dangerous contagious diseases. As-

sume also a central system that collects passenger records from

airline companies with the aim to match these records with crimi-

nal suspects, whose records originate from a criminal or a forensic

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611487

database. This suite of algorithms that perform this kind of integra-

tion tasks belong to the family of record linkage algorithms, which

lie at the core of data integration and analysis.

The area of record linkage has received a lot of attention during

the last decades due to its numerous real-world applications. In

the literature, a plethora of such methods have been proposed

for identifying similar pairs of records [2, 4]. A record linkage

task involves two distinct phases, namely the blocking and the

matching phase. During blocking, the algorithm formulates blocks,

which aim to group together records that share some common

characteristics of certain attributes, such as the initial letters of

surname, or the same zip code. The purpose of blocking is to reduce

the quadratic complexity =2 of the number of possible evaluations

of record pairs, during the matching phase, that originate from a

pair of data sources. We refer the interested reader to [3] which

surveys exact and approximate blocking algorithms.

The task of record linkage given a stream of records has its own

characteristics, challenges, and features. Due to the velocity and

high volume of records, it is infeasible and unrealistic to match a

query record over all those records that have been processed from

the initialization of the stream [21]. In fact, this can be also useless,

since a real-time integration focuses on fresh records in terms of

time. All the works presented thus far [1, 6, 13, 14, 16], in this con-

text, maintain a bounded number of blocks in main memory, which

should be continuously renewed by evicting older and unused

blocks (or records) in favour of fresh incoming records that belong

to new blocks. Gazzari and Herschel in [6] use techniques such as

block pruning and elimination of certain comparisons, which are

based solely on empirical estimations and heuristics that lack com-

pletely any theoretical ground. For example, the authors propose a

block pruning mechanism that (a) discards whole oversized blocks,

and (b) ignores, during matching, record pairs which originate from

blocks that are signi�cantly larger than the smallest block found

therein, in terms of the number of records. However, this abrupt

discontinuation of blocks and comparisons may a�ect negatively

the accuracy of the results. It is not also practical in streaming

settings to specify an oversized block by simply estimating a param-

eter, because if an estimate is poorly made, a considerable memory

overhead may occur. Araujo et al. [1] in order to reduce the memory

consumption apply a time window during blocking so that only

the most recent records remain in main memory, discarding blindly

records, which fall out of the window but might be good candidates

to formulate matching pairs.

In this work, we introduce ExpBlock, a randomized record link-

age streaming algorithm, which utilizes an in-memory blocking

structure that maintains those blocks that are both the most fre-

quently accessed and most recently used. ExpBlock calculates the

potential future access of a block, based both on the frequency of

access and its period of inactivity, where the probability of inactive

2783

https://doi.org/10.14778/3611479.3611487
https://github.com/dimkar121/ExpBlock
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611487
https://www.acm.org/publications/policies/artifact-review-and-badging-current

blocks to remain in the blocking structure decreases as these blocks

remain in main memory. Additionally, ExpBlock renews the records

stored in each block on a rolling basis, where the probability of

a record to remain in a block exponentially decays, in order to

make room for fresh records. ExpBlock is exempted from auxiliary

data structures or cumbersome sorting operations, as it relies on

simple randomized techniques to evict blocks as well as records.

Our experimental evaluation against three state-of-the-art methods

on three real-world data sets indicate that ExpBlock achieves high

levels of recall and extremely fast running times.

Our work makes the following contributions:

• It proposes a randomized algorithm to maintain in main

memory the most promising blocks, according to the fre-

quency of access and their period of inactivity.

• It introduces an algorithm to renew the records stored in

each block on a rolling basis, where the probability of a

record to remain exponentially decays in order to make

room for fresher records.

The rest of this paper is structured as follows: Section 2 discusses

the related work, while Section 3 provides the problem statement.

Our proposed data structure is described in detail in Section 4.

Section 5 presents our experimental evaluation. Conclusions are

discussed in Section 6.

2 RELATEDWORK

Various record linkage methods have been developed for online [9–

13], progressive [5, 7, 15, 20, 22, 24], incremental [8], and topic-

aware [21] settings. Progressive record linkage focuses on how to

identify matching record pairs upfront the linkage process. The

main idea of incremental record linkage is to identify matching

record pairs in the presence of new records utilizing the available

data structures used for blocking without repeating already exe-

cuted comparisons. The online settings aim to link vast amounts of

records in near real-time, whereas the progressive settings provide

results upfront by focusing on record pairs that are more likely to

be matches. Although, these methods must operate in a computa-

tionally and memory e�cient manner, in order to provide accurate

results very fast, they do not assume an unbounded number of

incoming records. Their corresponding data structures are usually

supported by a persistent data store, which aims to provide a com-

plete result set including all possible matching record pairs with

respect to a query record.

In the area of streaming record linkage, only a few works [1,

6, 13, 14, 16] have been introduced in the literature thus far. Kara-

piperis et al. [13] proposed a method to handle record linkage of

streams of records, where the number of blocks might unexpect-

edly grow considerably. [13] bounds the number of blocks that are

maintained in main memory and applies an eviction strategy to

accommodate newly arrived blocking keys from the stream, when

there are no empty slots. Nevertheless, a block due to a short period

of inactivity might be immediately discarded, although it might

have been frequently accessed. A privacy-preserving extension of

[13] is presented in [16].

In [14], the authors propose another streaming algorithm, which

maintains in main memory the most frequently accessed blocks for

fast computations, in order to minimize any accesses to secondary

storage. This approach is more e�cient than the one presented in

[13] because the algorithm does not rely on auxiliary data structures

during the eviction process. However, this method su�ers from

scalability issues, because it does not take into consideration the

growth of the number of records in each block, which might be

partially stored in secondary storage.

Gazzari and Herschel in [6] assume the creation of a redundant

block collection, where each record appears in more than one block

depending on its tokens used as blocking keys. If the number of

blocked records exceed a user-de�ned threshold, then this block

is discontinued and, moreover, its blocking key is added to an in-

memory quarantine list, so that if any records emerge that exhibit

that key will be immediately discarded. Setting though the maxi-

mum admissible block size, without any other quality criterion, will

incur a negative impact in the accuracy of the result set. During

matching, the authors group the pairs per record, and discard those

pairs that do not appear in an adequate number of blocks by setting

the average count per group to be the corresponding threshold.

Although, the aim of these techniques is to keep in main memory

as fewer records as possible, the lack of theoretical grounds may

lead to reduced accuracy and poor scalability.

Araujo et al. in [1] propose a schema-agnostic approach that re-

lies onmeta-blocking [18, 19], which investigates how to restructure

the generated blocks with the aim of discarding any redundant com-

parisons. Their proposal for managing high volumes of records is a

time window technique, which maintains the most recent records

in main memory, to reduce memory consumption. However, the

authors do not take into account the number of blocks which is

unbounded and may lead to a memory over�ow. This technique

also su�ers from low recall because the only criterion for discarding

a record is its admission time into main memory.

3 PROBLEM STATEMENT

In this section, we de�ne the problems and provide some de�nitions

that have led to the development of ExpBlock.

Assume a pair of data sets � and � whose records are created in

real time and formulate a data stream. Each of these records that

belong to � (or �) should undergo a very fast resolution process to

deliver a subset of its matching records in � (or �), which have ap-

peared previously. The results do not need to be complete, because

in streaming settings, one is usually more interested in getting very

fast only a subset of the results.

There are two main problems that arise throughout a record

linkage process, involving streams of records. The �rst problem is

the very large number of blocking keys, whose storage in an un-

bounded inverted index1 would be problematic or even infeasible. A

smart way is required so as to keep the most frequently used blocks

in memory, and discard the ones, whose usage is less frequent. The

second problem is how one can maintain a representative set of

blocked records. The term ‘representative’ boils down to maintain-

ing both newly inserted and older records, without resorting to any

auxiliary data structures for storing the history of these records.

We use an in-memory data structure) , whose details are found

in Section 4, to implement the resolution process.): refers to a

certain block of) (the one with the blocking key :). We also use

1The inverted index is unbounded in terms of the number of slots

2784

) [8] to refer to the block in the 8-th slot. We use the terms block

and slot interchangeably. We also assume that this data structure is

bounded both in the number of blocks and the number of records

that each block hosts. This inevitably leads to the adoption of an

eviction strategy, when either) or blocks are fully occupied and

requirements for empty space arise. The following de�nitions are

related to the block-wise mechanism of) .

De�nition 3.1 (Hit). A hit occurs when a block that is requested,

through its blocking key, already resides in) . Block): exhibits =:
hits. The average number of hits per block is denoted by U .

De�nition 3.2 (Miss). A miss occurs when a requested block is

not found in) .

De�nition 3.3 (Round). A round includes a series of insertions of

records in) and concludes whenever a miss occurs.

The conclusion of a round includes the eviction of at least one

block from) to free space in order to host the new block that

corresponds to a miss.

The following process is related to the management of records

within each block.

De�nition 3.4 (Renewal process). A renewal process occurs when

a block is fully occupied and empty space should be found in order

to store a newly arrived record in) .

A renewal process includes the eviction of some records of that

block in) .

Using the above-mentioned de�nitions, we specify the following

problems.

Problem Definition 1. Evict a block): , whose performance V is

below the average, namely V < U , by minimizing the running time

needed to choose): . The performance of a): should be measured

based on both its hits =: and its period of inactivity in) .

In the absence of a sorting mechanism, the choice of a block for

eviction will be random, but the corresponding probability should

decrease as its performance increases.

The records of each block should be renewed according to the

scheme of the following de�nition:

Problem Definition 2. By assuming C renewal processes for a

block, maintain the proportions of records that originate from the

C-th, (C − 1)-th, (C − 2)-th, . . ., 1-st process to be on expectation

?, ?2, ?3, . . . , ?C , respectively.

This randomized mechanism should work without using any

auxiliary data structures or sorting operations, which a�ectmemory

complexity, to track the status of each record or block so as to be

as fast as possible.

Problems 1 and 2 are both tackled by our proposed algorithms,

which are elaborated in detail in the following section. The main

feature of our mechanism is that its operation provides certain guar-

antees about the blocks and records maintained in main memory

without using any complex data structures.

4 THE OPERATIONS OF EXPBLOCK

ExpBlock utilizes an inverted index) of a bounded number 1 of

slots. Each such slot hosts a block of records that share a blocking

key : , using a linked list. The size, in terms of positions, of these

linked lists is �xed and is equal toF .

ExpBlock operates in a twofold fashion. Speci�cally, a block

should hold a fresh sample of records, and also the most promising

blocks should be maintained in) . The choices of evicting records

or blocks are random, but the whole mechanism works under a

certain probabilistic framework, as shown in Sections 4.1 and 4.2.

The insertion of an incoming record into a block initiates the

matching phase for this block. The running time of matching is

bounded by F , which is the worst case in the extreme scenario

that all blocked records originate from di�erent data sets than the

incoming record’s origin.

ExpBlock o�ers three main operations:

• put(:, rec), which stores record rec in the linked list of block
): . Before inserting a record in the linked list, this method

checks to ensure if there is a free position. Otherwise, it

initiates the eviction process.

• get(:), which fetches the linked list of records that exhibit

a certain blocking key : .

• delete(8), which discards from) the 8-th block.

The space requirements of) isO(1×F), regardless of the number

of the input records.

4.1 Eviction of blocks

Since) is bounded by 1, which is the maximum number of blocks,

an eviction strategy should be applied in case of a miss. Therefore,

whenever) is fully occupied and an incoming record should be

placed in a block that does not exist in) , ExpBlock should free

some space by discarding some blocks, which exhibit both some

period of inactivity and fewer hits compared to some other more

active blocks. Although, the choice of these blocks is random, the

corresponding probability will be rigorously quanti�ed.

Our eviction strategy favours the most frequently and recently

used blocks by minimizing the corresponding probability of choos-

ing such blocks for eviction. For this purpose, ExpBlock maintains

the number =: of hits of each block seen so far during the current

round, the global summation = =

∑1
:=1

=: , as well as the number

of the last round that each block has been accessed. These are the

only additional pieces of information, apart form the records and

their blocking keys, maintained in) .

Before the eviction process of round A , ExpBlock calculates the

average number of hits per block as U =

⌊

=
1

⌋

. Then, it chooses

uniformly at random a block from) and calculates its activity W: ,
2

normalized in the interval (0, 1] as:

W =

A ′

A
, (1)

where A ′ denotes the last round this block had been accessed due

to an arrival of an incoming record, and always holds that A ≥ A ′.
Thus, W for active blocks will tend to 1, while for inactive blocks it

will tend to 0.Using W and U , ExpBlock measures the performance

V of a): , termed as the degree of its potential future access, as:

V =

⌊=: W

U

⌋

. (2)

2For brevity, we drop subscript : , which denotes block : .

2785

In doing so, the number of hits=: is weighted by the block’s activity

factor, which acts as the counterbalance of the =: ; more speci�cally,

if a block exhibits a large number of hits, but has not been accessed

during the last rounds, then ExpBlock downgrades its degree of

potential future access due to its reduced activity factor. On the

other hand, if a block has been accessed during the current round,

then its activity factor would be 1, because A = A ′. If V = 0, then

this block is discarded. Otherwise, the corresponding block remains

in) , but is penalized by reducing its number =: of hits by U . This

eviction process continues until a certain ratio b , where b ≪ 1, of

slots has been released.

Using this scheme, we give another chance of survival to these

blocks that exhibit a large number of recent hits, and simultaneously

discard the blocks that have not been recently accessed, although

they might exhibit large number of hits in the past.

Lemma 4.1. The probability of evicting a block, symbolized by E: ,
is inversely proportional to its degree V of potential future access:

Pr(E:) =
1

1V+1
. (3)

Proof. Assume that block): exhibits U < =: < 2U hits, some

of which have occurred during the the current round. So, the de-

gree of its potential future access would be W = 1. Although the

probability of this block to be initially chosen is 1
1
, it would not be

immediately discarded, if chosen, because 1 < V <
2U
U . Applying

the �oor function, V becomes equal to 1. Hence, ExpBlock would

grant another chance to this): , which will remain in) with a

reduced number =: of hits. 3 Consequently, the probability to be

chosen again, and be evicted, is 1
1
. Therefore, the probability of

eviction for this block is Pr(E:) = 1
12
. By induction, we conclude

the proof of the lemma. □

Since b is a very small constant, e.g., b = 0.05, the lower bound

is quite tight. If V ≤ 0 for a block, then its probability of eviction

is merely 1
1
. The greater the number of hits of a block, the less its

chance of eviction.

Algorithm 1 showcases the eviction of blocks, which exhibit

low degree of potential future access. Initially in line 2, ExpBlock

calculates the average number U of hits per block for the current

round. Then, in line 4 the main loop begins, which terminates when

a certain percentage b of slots have been released. Inside the loop,

a block is chosen uniformly at random to investigate its degree

of potential future access. First, ExpBlock calculates its activity W

(line 6), and then its degree of potential future access V (line 7) by

considering its hits. If V is less than zero, then the chosen block is

discarded and the corresponding slot is released (line 8. Otherwise,

ExpBlock reduces its number =: of hits by U (line 12). In this way,

ExplBlock gives another chance of survival to this block, due to its

high selectivity by the incoming records.

Table 1 shows a snapshot of) in the end of the current round A =

5, when a miss has initiated the eviction process. The average of hits

per block is U =
10+8+5

3 = 7.66, while the degrees of potential future

access for :1, :2, and :3 are V1 =

⌊

10×3/5
7.66

⌋

= 0, V2 =

⌊

8×5/5
7.66

⌋

= 1,

and V3 =
⌊

10×2/5
7.66

⌋

= 0, respectively. Therefore, if :1 or :3 is chosen,

3=: = =: − U

Algorithm 1 Eviction of blocks

1: if () .emptySlots = 0) then ⊲ If a requested block is not found

in) and there are no slots available, then the eviction process

is initiated.

2: U ←
⌊

=
1

⌋

⊲ U is the average number of hits per block.

3: E ← 0

4: while (E ≤ ⌊b 1⌋) do ⊲ The eviction process continues

until a ratio b of blocks has been discarded.

5: 8 ← Random(1, 1) ⊲ Function Random() uses a

pregenerated sequence of random integers.

6:) [8] .W ←) [8] .A ′
) [8] .A ⊲ A random block is chosen to

compute its activity W .

7:) [8] .V =

⌊

) [8] .=: W
U

⌋

⊲ Then, the degree of its potential

future access V is computed.

8: if () [8] .V == 0) then

9:) .delete(8) ← null ⊲ The 8-th block is discarded.

10: E ← E + 1
11: else

12:) [8] .=: =) [8] .=: − U ⊲ Its current number of hits

=: is reduced by U .

13: A ← A + 1
14:) .emptySlots← E

Table 1: A snapshot of) , with 1 = 3 andF = 3, that includes

3 blocking keys, when a miss occurred during the current

round A = 5, which initiates the eviction process. Block :1
although exhibits the largest number of hits =: = 10, its most

recent round that it has been accessed is A ′ = 3, which down-

grades its degree V of potential future access. In contrast,

the current activity of :2 combined with its number of hits

results grant its survival. Block :3 exhibits both a small num-

ber of hits and a long period of inactivity.

blocking key =: A ′ records

:1 10 3 rec1, rec2, rec3
:2 8 5 rec1, rec2, rec3
:3 5 2 rec1, rec2, rec3

either will be evicted. If ExpBlock chooses :2, then it will reduce

=2 by U and will grant :2 another chance of survival.

In a near uniform distribution, the probability of a hit is 1
= and

each block would exhibit the same probability of eviction, which

is 1
12
≤ Pr(E:) ≤ 1

1
. The only important point would be whether

a block has been accessed during the current round or not, which

would vary the value of V . In a skewed distribution of hits, some

popular blocks, which are those with the highest degree V of po-

tential future access, will be found in) with higher probability

than some other blocks with fewer hits. Speci�cally, as Lemma 4.1

suggests, the probability of not evicting a block is 1 − 1
1V+1

, which

is also the probability of a block to remain. This skew would result

in less evictions, at the expense of a negligible overhead; ExpBlock

might perform additional random tosses in order to choose less

popular blocks to evict, when it is required to free some slots. The

degree of potential future access of each block re�ects the skew

2786

of the distribution of hits. Although, the probability of a hit in a

skewed distribution is also 1
= , because a block occupies a single

slot in) , the probability of evicting a popular block depends on V

according to Lemma 4.1.

The running time depends on the distribution of hits in the

blocks. Therefore, in a near uniform distribution, the running time

is O(b×1). In a skewed distribution, by assuming Z , where Z < 1, as

the number of popular blocks, then the running time isO(Z+(b×1)).
This small overhead during the eviction process pays dividends in

minimizing the total blocking time, because by �nding a popular

block in) , we skip an eviction process.

4.2 Eviction of records within a block

Each block hosts a linked list of F positions in order to store the

corresponding blocked records. When these positions of a block

are occupied, and an incoming record should be inserted, ExpBlock

initiates the renewal process of records blocked therein.

During this process, ExpBlock essentially performs a Bernoulli

process for the survival of each record with a �xed probability ? .

This process ismemoryless, whichmeans that there is nomechanism

that remembers the outcome of the previous renewal process for a

record that has survived.

Let us assume that there were C such renewal processes thus far.

The probability of a set of records, that had occupied a block, to

survive from these C processes, exponentially decays in order to

make room for newer records to remain. This is achieved without

utilizing any additional data structure to indicate the age of records

or keep any other kind of tracking history.

Lemma 4.2. The probability of �nding a record from the current

round in) is 1
= ? .

Proof. During a renewal process, each record of a block remains

with probability ? . After C such renewal processes, each of the

blocked records would survive with probability ?C . Thus, by taking

into account the probability of �nding a block in) , which is 1
= , and

by assuming independence, we conclude the proof. □

Therefore, during a renewal process, ? of the blocked records

are expected to survive, while ?2 of the survived ones will undergo

an additional renewal process and so forth.

We derive the numberF of positions of blocks according to the

following lemma:

Lemma 4.3. By assumingF =

⌈

3 ln(2/X)
@n2

⌉

positions, where @ is the

probability of eviction, X < 1, and n < 1, the total number of evictions

in each round is within (1 ± n)F@ with probability at least 1 − X .

Proof. Letk8 represent the outcome {0, 1} of an attempt to evict

a record with success probability @ = 1 − ? . Also, let (=

∑F
8=1k8 ,

which is binomially distributed with expected valueF@. By using

the following Cherno� bound:

Pr (|(−F@ | > nF@) ≤ 24
−F@n2

3 < X => F >

3 ln(2/X)
@n2

, (4)

where n < 1 is a small multiplicative error factor and X is a proba-

bility bound, we deriveF to ensure that (1−n)F@ ≤ (≤ (1+n)F@
with probability at least 1 − X , which concludes the proof. □

If ExpBlock would have used a deterministic approach to evict

the records, which would have required detailed tracking of the

records inserted, then all the current records of a block in any

point of time would have been discarded after exactly log2 (F) + 1
successive evictions.4 Since ExpBlock relies on random choices, the

probability of the total eviction of a set of records found in a block

depends on ? , as the following lemma suggests.

Lemma 4.4. The probability of the total eviction of a set of records,

symbolized by T , is inversely proportional to the probability of sur-

vival ? .

Proof. The probability of a record to remain after log1/? (F) +1
renewal processes is ? log1/? (F)+1, hence the probability of eviction

forF such records is
(

1 − ? log1/? (F)+1
)F

. Therefore,

Pr(T) =
(

1 − ? log1/? (F)+1
)F

=

(

1 − ?

F

)F
≈ 1

1/?√
4

(5)

using the fact that 4−G ≥ 1 − G , which concludes the proof. □

5 EXPERIMENTAL EVALUATION

We evaluated ExpBlock, termed as EXP, against TASK[6], TIME[1],

and UNI[14]. All the baselines are discussed in Section 2 and were

evaluated in terms of the recall and precision rates achieved as

well as the time consumed to perform blocking and matching. The

recall is the ratio of the number of matching record pairs that were

correctly identi�ed to the total number of matching record pairs

that originally existed. The precision is the ratio of the number

of matching record pairs that were correctly identi�ed to the to-

tal number of comparisons. The results of both metrics lie in the

interval [0, 1], where higher values indicate better performance.

Data sets. We have used three real-world data sets, namely

(a) NCVR,5 which includes a registry of voters, (b) DBLP,6 which

comprises bibliographic records between 2013 and 2020 from the do-

main of computer science, and (c) Open Academic Graph (OAG)[23],

which includes includes details of multidisciplinary academic pa-

pers from Microsoft Academic Graph which has been paired with

Aminer. For NCVR and DBLP, each record from the original data

sets, tagged as �, was chosen with probability 1
2 , in order to gener-

ate 2 perturbed records to populate the counterpart data sets, tagged

as �. For OAG, whose ground truth was available, we extracted

1" records from Microsoft Academic Graph, tagged as �, and 1"

records from AMiner, tagged as �, which resulted in almost 300

matching entities. The attributes that played the role of the block-

ing keys were the concatenation of the last name and PO Box, for

NCVR, and the name of the �rst author and the year of publication

for OAG and DBLP. Table 2 summarizes the characteristics of the

data sets used throughout the experimental evaluation.

Implementation. We applied MinHash[17] with murmur hash-

ing8 to the initially formulated blocking keys to facilitate approx-

imate matching. Our method, though, is orthogonal to the block-

ing/matching phases, hence, any such algorithm can be used. We

performed the experiments using a virtual machine with a Xeon

4In this case, we have assumed 1
2 as the rate of eviction.

5https://www.ncsbe.gov/results-data/voter-registration-data
6https://dblp.org/xml
8https://github.com/jmhodges/minhash

2787

https://www.ncsbe.gov/results-data/voter-registration-data
https://dblp.org/xml
https://github.com/jmhodges/minhash

Table 2: � and � are the data sets to be linked,MP is the set

of the truly matching record pairs, and � is the Cartesian

product of � and �.

OAG NCVR DBLP

|�| 1" 1" 8"

|� | 1" 1" 8"

|MP| 300 1" 8"

|� | 1) 1) 64)

#blocks 678 960 3.5"

10^3 10^4 10^5 10^6

80

90

100

110

number of slots

ti
m

e
 (

in
 s

e
c
s
)

NCVR

OAG

DBLP

(a) time

10^3 10^4 10^5 10^6

0.7

0.8

0.9

number of slots

re
c
a

ll

(b) recall

Figure 1: Time for blocking/matching and recall rates by

increasing exponentially the number of slots. The time mea-

surements of DBLP have been scaled down by 0.1.

Table 3: Average time of an eviction process (in millis) and

blocking time (in secs) across all data sets using random

choices (RND), iterative scanning (ITR), and sorting (SRT).

103 104 105 106

RND7 0.9 40.1 9.2 35 91.5 31.2 900.2 28.8

ITR 1.2 43 13.5 39 136.1 35 1453.2 31

SRT 12 89 130 77.6 1160 73 10550 70

Time of an eviction process vs blocking time

Table 4: Comparing total time (in seconds) and recall between

EXP, standard blocking (SB), and sorted neighbourhood (SN).

NCVR OAG DBLP

EXP 87 0.76 89 0.71 983 0.73

SB 960 0.84 1025 0.86

SN 760 0.87 820 0.88

Total time vs recall

CPU and 48GB of main memory. The algorithms were implemented

using the Java programming language (version 8). We ran each ex-

periment 10 times and plotted the average values. The connecting

lines in the plots do not indicate continuity of the respective values

on the axes.

Experimental results. First, wemeasured the clock time needed

for blocking and matching by increasing exponentially the available

number 1 of slots of) . Figure 1a shows the corresponding time

measured in terms of seconds. We initially observe a steep drop up

to 105 slots, where we achieve nearly 15% reduction of time, because

of the availability of the requested blocks in main memory, which

results in fewer evictions. By further increasing the exponent, the

earnings are limited to 2% − 4% of time reduction due to the higher

memory overhead caused by the larger number of slots of) . We

also observe in Figure 1b a linear increase of the recall rates for all

data sets as the number of slots increases. The slopes though of

these lines is low, which indicates that the earnings of recall are

not great, because even with 1 = 103 slots, ExpBlock achieves a

rate almost equal to 0.75. Any further increments of the exponent

will incur diminishing earnings in terms of the recall.

We, also, evaluated the clock time of the eviction process of slots

using our scheme, which is based on random cloices (RND), iterative

scanning (ITR), and quick sort (SRT) in order to calculate V and

evict low-performing slots from) . We �xed b = 0.1 and increased

the number of slots exponentially to obtain the results quoted in

Table 3. We observe that RND scores on average 30% faster times

than ITR and both are 10 times faster than SRT. We also note that

using OAG, whose keys follow a near uniform distribution, ITR

almost exhausts all slots in each iteration, which results in more

running time, until completing the eviction process. In contrast,

although RND is only slightly a�ected by a skewed distribution, it

eventually accelerates the total blocking time, since popular blocks

are found in) .

Comparing with popular o�ine methods like standard blocking

(SB) and sorted neighbourhood (SN) [3], we highlight the level of

e�ciency achieved by EXP. SB creates blocks and compares only

the records within a block, while SN sorts the records and, then,

sequentially moves a window of a �xed number of records over

these records to perform the comparisons. These o�ine methods as-

sume �nite data sets, which can be managed, not always e�ciently

though, by the available computational resources. The clock time

of both SB and SN is one order of magnitude worse than EXP, as

clearly shown in Table 4. We did not obtain any results of DBLP

for both SB and SN, because both crashed during blocking. On the

other hand, the recall rates of the o�ine methods are on average

16% higher than EXP. In conclusion, EXP sacri�ces some recall for

the sake of speed using a small footprint of main memory.

We proceeded the evaluation process by comparing the perfor-

mance of ExpBlock with our competitors. In this set of experiments,

we had set 1 = 1000 slots, n = 0.1, and X = 0.1, which resulted in

F = 1349 positions for creating) .

We, then, measured the blocking time using di�erent levels of

skew, which has also been demonstrated in [14]. We have used

the same synthetic data set, which relies on NCVR, that contains

blocking keys, whose number of records follows a Zipf distribution

of a certain skew speci�ed by the exponent I. Thus, the size of each

each block 8 = 1, 2, 3, . . . , =, in terms of the number of records, is

proportional to 8−I . We, then, measured, for each method, the time

needed for conducting the blocking phase. Figure 2a shows the

performance of each method, where we observe that UNI and EXP

exhibit linearly decreased running times, much lower than TIME

and TASK, as the skew increases, I = {2, 3}; speci�cally EXP is

on average 95% and 89% faster than TASK and TIME, respectively.

This indicates that the number of evictions is smaller when skew is

higher, which consequently results in shorter blocking times. EXP

also maintains a steady gap from UNI, namely 33%. UNI, although

2788

z=1 z=2 z=3

5

10

15

20

ti
m

e
 (

in
 s

e
c
s
)

skew parameter z

EXP

UNI

TASK

TIME

(a) blocking with skew using NCVR

500K 1M 2M
5

10

15

ti
m

e
 (

in
 s

e
c
s
)

number of records

(b) blocking using OAG

500K 1M 2M
20

50

100

150

200

ti
m

e
 (

in
 s

e
c
s
)

number of records

EXP

UNI

TASK

TIME

(c) matching using NCVR

500K 1M 2M
20

50

100

150

180

ti
m

e
 (

in
 s

e
c
s
)

number of records

(d) matching using OAG

Figure 2: Measuring the clock time using NCVR and OAG.

500K 1M 2M

.1

.5

.75

number of records

re
c
a

ll

EXP

UNI

TASK

TIME

(a) NCVR

500K 1M 2M

.1

.5

.75

number of records

re
c
a

ll

(b) OAG

10 50 100

.5

.75

1

number of rounds
re

c
a

ll

EXP

UNI

TIME

(c) NCVR

10 20 50

.5

.75

1

number of rounds

re
c
a

ll

(d) OAG

Figure 3: Measuring the recall rates using NCVR and OAG.

500K 1M 2M

.2

.3

number of records

p
re

c
is

io
n

EXP

UNI

TASK

TIME

(a) NCVR

500K 1M 2M
.2

.3

.4

number of records

p
re

c
is

io
n

(b) OAG

Figure 4:Measuring the precision rates usingNCVRandOAG.

deals with skew, it fails to be faster than EXP, because it conducts

much restructuring, which is due to the early eviction of some

blocks, which remained inactive for a short period but were imme-

diately needed to host incoming records. For TASK and TIME, by

observing their linear times, we concluded that the skew of block-

ing keys does not play any role in their mechanisms. This behavior

is explained by the fact that both TIME and TASK either prune or

quarantine the oversized, yet popular, blocks to save running time.

We also tested the performance of EXP and its competitors us-

ing OAG which exhibits some mild skew with dominating authors

‘Helmut Herrmann’, ‘Wei Wang’, ‘Richard J. Lewis’, and ‘Cristiano

da Silva Teixeira’. Figure 2b displays the results, where we observe

almost linear times but EXP exhibits the lowest slope, as the num-

ber of records increases, among all methods. On the other hand,

TASK maintains the (a) redundant block collection, in terms of an

inverted index, (b) another inverted index for those records that

have exceeded the threshold for the oversized blocks, and (c) lastly

an inverted index that stores for each record all the other records

that will be compared with. This set of data structures pushed the

utilization of main memory to the maximum extent possible by

storing hundreds of millions of records, which resulted in total

failure when the total number of records approached the 2" .

Figures 2c and 2d illustrate the time needed to perform thematch-

ing phase. TIME uses a time window to maintain only the recent

records, while EXP stores a �xed number of records in each slot.

Therefore, the matching time for a query record is expected to be

constant. This claim was emphatically veri�ed during the exper-

iments, where EXP consumed around 20 seconds to resolve the

matching pairs per 500 records. TIME also scored constant times,

which lied a little higher than EXP mainly due to the excessive

number of blocks maintained in main memory. On the other hand,

TASK quarantines the oversized blocks but simultaneously retains

in main memory all blocks, which might remain inactive for long

periods of time. These blocks along with the auxiliary data struc-

tures, maintained in main memory, caused a severe bottleneck that

resulted in costly running times. UNI utilizes the secondary storage

for keeping the records of the oversized blocks, which incurs serious

time delays to retrieve the corresponding records. In conclusion,

EXP scores on average 28% (until 1" records), 81%, and 40% lower

times than TASK, UNI, and TIME, respectively. The totally di�erent

distributions of blocks and records for OAG accounts for the faster

times, as Figure 2d indicates. Blocking OAG resulted in a larger

number of blocks than NCVR, but simultaneously, in fewer records

in each block, which accelerated the resolution times.

We, then, evaluated the recall rate of each method. Figures 3a

and 3b report the cumulative recall rates for both NCVR and OAG

by varying the number of records. We immediately observe the

increasing linear performance of EXP, which reaches almost 75%,

despite its selectivity, in both data sets. This rate is achieved by

2789

8M 12M 16M

.1

.5

.75

number of records

re
c
a

ll

EXP
UNI
TIME

(a) recall

8M 12M 16M
.2

.3

.4

number of records

p
re

c
is

io
n

(b) precision

8M 12M 16M
50

100

150

220

ti
m

e
 (

in
 s

e
c
s
)

number of records

EXP

UNI

TIME

(c) time for blocking

8M 12M 16M
300

1K

2K

3K

ti
m

e
 (

in
 s

e
c
s
)

number of records

(d) time for matching

Figure 5: Measuring the recall rates, precision rates, and clock time using DBLP.

maintaining only 1 million records in main memory throughout

the whole process. UNI, TIME, and TASK exhibit also an increasing

performance, but EXP outperforms them by, on average, 15%, 45%,

and 28%, respectively. The superiority of EXP stems from di�erent

causes; UNI does not take into account the period of inactivity of

each block in the eviction process, while TIME relies solely on the

time factor. TASK, as the number of incoming records increases,

stops the admission of fresh records in oversized blocks, which

a�ects negatively its rates. TASK, then crashes, due to a memory

over�ow, for the reasons, which have been discussed previously.

We also measured the recall rates of EXP, TIME, and UNI, which

use a bounded number of records and some eviction policy of blocks,

by taking into account the �rst 1000 query records in a span of

50 rounds. The purpose of these experiments is to showcase the

e�ectiveness of the eviction policy of each method. TIME and UNI

mainly focus on the time factor in order to evict blocks ignoring

completely the popularity of these blocks. This policy incurs high

costs in terms of the recall rates as shown in Figures 3c and 3d for

NCVR and OAG, respectively. Some blocks that host the initial set of

records are unconditionally evicted due to time constraints, which

results in abrupt drops of the recall rates in each successive round.

In contrast, EXP strikes a nice balance between time constraints

and popularity of blocks and essentially manages to maintain in

main memory those blocks that are expected to gather more hits.

Although, all methods start with exceptional rates after 10 rounds,

UNI and TIME drop their rates considerably as the whole process

progresses. EXP increases the gap from its competitors after 10

and 40 rounds by 21% and 41% on average, respectively. Another

important factor that accounts for the superiority of EXP is its

renewal process of records within each block. This process guaran-

tees that each block contains fresh and older records following the

randomization scheme discussed in Section 4.2.

Precision focuses on the ability of a method to reduce e�ciently

the comparison space. In our experiments, although all methods

employed the same matching conditions for evaluating a record

pair, the precision rates exhibit some interesting �ndings. As we

observe in Figures 4a and 4b, EXP, TIME, and TASK display an

almost linear performance, with a slight downward slope, as the

number of records increases. EXP, though, maintains a small margin

of superiority, which is attributed to its e�ective renewal of records

of each block. In contrast, UNI struggles with the precision rates,

mainly due to the unbounded growth of its blocks, which incurs

the classi�cation of many missed matching pairs.

Lastly, we measured the recall, precision, and the elapsed time

to block and match the records of the largest data set DBLP. EXP

and UNI exhibited the same pattern of performance in recall as

previously reaching almost 0.73 and 0.67, respectively, as Figure 5a

shows. The precision rates, which are depicted in Figure 5b, of EXP

and TIME was linear with a slight negative slope maintaining a

large margin from UNI. Regarding clock time, EXP achieved robust

performance, which was due to its bounded number of slots and

block positions that kept the running time constant. For blocking,

EXP and UNI performed almost equivalently, as Figure 5c suggests,

while TIME, as the number of records was increasing, its response

time was dramatically growing mainly due to the large number

of generated blocks that remained in main memory. In matching,

we veri�ed EXP’s stability to manage large volumes of records,

which reported around 350 seconds per 4" records, as Figure 5d

indicates. We do not report the measurements of TASK, which

crashed upfront due to a memory over�ow.

6 CONCLUSIONS

In this paper, we presented ExpBlock, a randomized streaming

record linkage structure, where simplicity lies at the core of its

mechanism. ExpBlock relies its operation on random choices, with-

out using any cumbersome sorting operations or utilizing complex

data structures. Throughout the experiments, we concluded that

by increasing the number of slots (1 > 105), the running time does

not improve proportionally, because the memory overhead caused

by the size of the data structure in main memory poses some time

delay. We additionally observed that the recall rates do not exhibit

any remarkable increase either. However, we have to note that the

recall depends mainly on the point of time at which the correspond-

ing records will potentially arrive. If these records are far apart,

in terms of time, then the recall will be negatively a�ected. The

skew of the blocking keys is another factor that favours the running

time of EXP, since the number of evictions is smaller, which conse-

quently results in faster blocking times. To sum up, EXP sacri�ces

some recall for the sake of speed using a small footprint of main

memory to maintain fruitful blocks and records.

ACKNOWLEDGMENTS

This research is supported by the European Social Fund-SF in the

context of the project “Support for International Actions of the

International Hellenic University”, (MIS 5154651).

2790

REFERENCES
[1] T. Araujo, K. Stefanidis, C.E.Santos Pires, J. Nummenmaa, and T. P. de Nobrega.

2020. Schema-agnostic Blocking �r Streaming Data. In SAC. 80–91.
[2] P. Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Springer, Data-Centric Sys. and Appl.
[3] P. Christen. 2012. A Survey of Indexing Techniques for Scalable Record Linkage

and Deduplication. TKDE 12, 9 (2012), 1537 – 1555.
[4] A. Elmagarmid, P. Ipeirotis, and V. Verykios. 2007. Duplicate Record Detection:

A Survey. TKDE 19, 1 (2007), 1–16.
[5] D. Firmani, B. Saha, and D. Srivastava. 2016. Online Entity Resolution Using an

Oracle. In PVLDB, Vol. 9. 384 – 395.
[6] L. Gazzari and M. Herschel. 2021. End-to-end Task Based Parallelization for

Entity Resolution on Dynamic Data. In ICDE. 1248–1259.
[7] L. Gazzari and M. Herschel. 2022. Progressive Entity Resolution over Incremental

Data. In EDBT. 80–91.
[8] A. Gruenheid, X.L. Dong, and D. Srivastava. 2014. Incremental Record Linkage.

In PVLDB. 697––708.
[9] H. Altwaijry and D. Kalashnikov and S. Mehrotra. 2013. Query-driven Approach

to Entity Resolution. In PVLDB, Vol. 6. 1846–1857.
[10] I. Bhattacharya and L. Getoor and L. Licamele. 2006. Query-time entity resolution.

In KDD. 529–534.
[11] E. Ioannou, W. Nejdl, C. Niederee, and Y. Velegrakis. 2010. On-the-�y entity-

aware query processing in the presence of linkage. PVLDB 3, 1 (2010), 429–438.
[12] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2018. Fast schemes for

online record linkage. In DMKD, Vol. 32. 1229 – 1250.

[13] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2018. Summarization
Algorithms for Record Linkage. In EDBT. 73 – 84.

[14] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2020. E�cient Record
Linkage in Data Streams. In Big Data. 523 – 532.

[15] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2021. MultiBlock: A
Scalable Iterative Approach for Progressive Entity Resolution. In Big Data. 219 –
228.

[16] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2021. Summarizing and
linking electronic health records. In DPDB, Vol. 39. 321 – 360.

[17] D. Karapiperis and V.S. Verykios. 2015. An LSH-based Blocking Approach with
a Homomorphic Matching Technique for Privacy-Preserving Record Linkage.
TKDE 27, 4 (2015), 909–921.

[18] G. Papadakis, G. Koutrika, T. Palpanas, andW. Nejdl. 2014. Meta-blocking: Taking
Entity Resolution to the Next Level. TKDE 26, 8 (2014), 1946–1960.

[19] G. Papadakis, G. Papastefanatos, and G. Koutrika. 2014. Supervised meta-
blocking. In PVLDB. 1929–1940.

[20] T. Papenbrock, A. Heise, and F. Naumann. 2015. Progressive Duplicate Detection.
TKDE 27, 5 (2015), 1316 – 1329.

[21] W. Ren, X. Lian, and K. Ghazinour. 2021. Online Topic-Aware Entity Resolution
Over Incomplete Data Streams. In SIGMOD. 1478––1490.

[22] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi. 2018. Schema-
Agnostic Progressive Entity Resolution. In ICDE. 53–64.

[23] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B. Hsu, and K. Wang. 2015. An
Overview of Microsoft Academic Service (MAS) and Applications. In WWW.
243–246.

[24] S. E. Whang, D. Marmaros, and H. Garcia-Molina. 2013. Pay–as–you–go entity
resolution. TKDE 25, 5 (2013), 1111–1124.

2791

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 The Operations of ExpBlock
	4.1 Eviction of blocks
	4.2 Eviction of records within a block

	5 Experimental Evaluation
	6 Conclusions
	Acknowledgments
	References

