
Epoxy: ACID Transactions Across Diverse Data Stores
Peter Kraft

Stanford University

kraftp@cs.stanford.edu

Qian Li

Stanford University

qianli@cs.stanford.edu

Xinjing Zhou

MIT

xinjing@mit.edu

Peter Bailis

Stanford University

pbailis@cs.stanford.edu

Michael Stonebraker

MIT

stonebraker@csail.mit.edu

Matei Zaharia

Stanford University

matei@cs.stanford.edu

Xiangyao Yu

University of Wisconsin

yxy@cs.wisc.edu

ABSTRACT
Developers are increasingly building applications that incorporate

multiple data stores, for example to manage heterogeneous data. Of-

ten, these require transactional safety for operations across stores,

but few systems support such guarantees. To solve this problem, we

introduce Epoxy, a protocol for providing transactions across het-

erogeneous data stores. We make two contributions. First, we adapt

multi-version concurrency control to a cross-data store setting, stor-

ing versioning information in record metadata and filtering reads

with predicates on metadata so they only see record versions in a

global transaction snapshot. Second, we show our design enables

an atomic commit protocol that does not require data stores imple-

ment the participant protocol of two-phase commit, requiring only

durable writes. We implement Epoxy for five data stores: Postgres,

Elasticsearch, MongoDB, Google Cloud Storage, and MySQL. We

evaluate it by adapting TPC-C and microservice workloads to a

multi-data store environment. We find it has comparable perfor-

mance to the distributed transaction protocol XA on TPC-C while

providing stronger guarantees like isolation, and has overhead of

<10% compared to a non-transactional baseline on read-mostly

microservice workloads and 72% on write-heavy workloads.

PVLDB Reference Format:
Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker,

Xiangyao Yu, and Matei Zaharia. Epoxy: ACID Transactions Across

Diverse Data Stores. PVLDB, 16(11): 2742 - 2754, 2023.

doi:10.14778/3611479.3611484

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DBOS-project/apiary.

1 INTRODUCTION
Developers are increasingly building large-scale applications uti-

lizing multiple data storage systems. This is driven by two trends

in application design. First, applications increasingly use multiple

data stores to manage heterogeneous data. For example, an online

store may process customer transactions in Postgres, but store item

data in Elasticsearch for rapid search and store images in S3 for

cheap storage; these specialized systems are far more efficient than

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.

doi:10.14778/3611479.3611484

an RDBMS for such tasks. Second, developers are embracing mi-

croservice architectures, where large applications are decomposed

into smaller services, each managing their own data [17].

Many applications require transactional safety for operations

across multiple data stores as without these, they are exposed to se-

rious concurrency anomalies. The traditional solution to providing

transactions across data stores is to use a distributed transaction

protocol based on two-phase commit such as X/Open XA [34]. How-

ever, these do not provide transactional isolation (only atomicity)

and additionally require data stores to implement the participant

protocol of two-phase commit, which is not supported in many

popular data stores such as MongoDB, CockroachDB, and Redis.

Cherry Garcia [12] provides ACID transactions across heteroge-

neous stores, but is limited to key-value operations and not other

query models. Skeena [35] provides transactions across multiple

engines in the same database, but requires modifying these engines

and assumes they share memory. Because of these limitations, devel-

opers in practice provide cross-data store transactions by manually

managing concurrency control, for example by implementing ad

hoc transactions in application code. However, such code is difficult

to write and is a frequent source of bugs and errors [31].

To solve this problem, we introduce Epoxy, a protocol provid-

ing ACID transactions across heterogeneous data stores. The key

challenge in Epoxy is to support distributed ACID transactions

without changing the internals of these stores, which significantly

constrains the design. We make two main contributions.

First, we adapt multi-version concurrency control (MVCC) to a

cross-data store setting to provide transactional isolation. This

requires solving two challenges. First, conventional MVCC ap-

proaches rely on a co-designed data management layer provid-

ing record versioning using custom data structures like version

chains [33], but heterogeneous data stores do not support these.

However, we observe that while few data stores support versioning,

most provide efficient metadata filtering. Thus, Epoxy stores version

information in record metadata, interposing on writes to version

records and on reads to filter input tables, so transactions only see

record versions in the transaction snapshot. Second, unlike conven-

tional MVCC, we must ensure a transaction reads from consistent

snapshot across multiple heterogeneous stores. To make this possi-

ble, we manage snapshots centrally in the transaction coordinator.

To optimize this, we observe that in most applications utilizing

multiple data stores, at least one is a transactional DBMS [17], so

we design Epoxy to use a DBMS as a coordinator.

Second, our design enables a simple commit protocol to provide

transactional atomicity and durability without requiring data stores

2742

https://www.acm.org/publications/policies/artifact-review-and-badging-current

implement the participant protocol of two-phase commit. In pro-

tocols based on two-phase commit, such as XA, each transaction

participant must prepare the transaction to indicate it is ready

to commit, promising it will not unilaterally abort but can still be

rolled back. However, many popular data stores do not support

prepare because it can only be implemented in a transactional

store and requires the cooperation of its concurrency control sys-

tem. By contrast, because we assume all participants utilize Epoxy

concurrency control, we only require they make writes durable.

Epoxy’s concurrency control protocol ensures that a transaction

cannot read durable but uncommitted writes or write to records

modified by a durable but uncommitted transaction; transactional

isolation is controlled by the coordinator instead of the individual

participants. Thus, transactions can be rolled back at any point

before they commit on the coordinator, eliminating the need for a

two-phase commit protocol like XA. The coordinator commits a

transaction once it is complete, validated, and made durable on all

participants, guaranteeing transactions either completely succeed

or completely abort and are durable once committed.

As Epoxy only requires record metadata filtering and durable

writes, it supports most data stores we consider. To prove this, we

implement Epoxy in shim layers on top of five heterogeneous stores:
Postgres, MySQL, Elasticsearch, MongoDB, and Google Cloud Stor-

age (GCS). These shims can provide ACID guarantees for transac-

tions between any combination of these data stores. Each requires

<1K lines of data store-specific code and no changes to the under-

lying data store. One limitation of Epoxy is that it must be the

exclusive mode of accessing a table in a participating store: if one

application accessing a table adopts it, all applications must adopt

it for operations on that table. However, Epoxy interposes transpar-

ently on operations, so adopting it only requires redirecting queries

from a store to its shim layer.

We evaluate Epoxy by adapting TPC-C and microservice work-

loads to a multi-data store setting. On TPC-C, Epoxy performs

similarly to XA but provides stronger guarantees like transactional

isolation. On microservices, Epoxy adds <10% overhead compared

to a non-transactional baseline on read-mostly workloads and 72%

on write-heavy workloads. In summary, our contributions are:

• We propose Epoxy, a protocol providing ACID transactions

across heterogeneous data stores. Epoxy provides isolation by

adapting MVCC to a cross-data store setting and atomicity and

durability through a commit protocol that only requires data

stores provide durable writes.

• We implement Epoxy for five diverse data stores: Postgres,

MySQL, Elasticsearch, MongoDB, and Google Cloud Storage.

• We show Epoxy performs similarly to XA and adds 10-72% over-

head compared to a non-transactional baseline.

2 EPOXY ARCHITECTURE
Epoxy is a protocol for providing ACID transactions across diverse

data stores. We use a primary transactional DBMS as a transac-

tion coordinator for transactions among it and several potentially

non-transactional secondary data stores. Epoxy is implemented in

shim layers co-located with these data stores which intercept and

interpose on client requests, but do not require modifications to

the stores themselves. We sketch Epoxy’s architecture in Figure 1.

Clients
Execute application logic, submit front-end requests

Transactional
DBMS

Postgres, MySQL,
Oracle, etc.

Coordinator
Coordinates Epoxy

transactions
Document

Store
MongoDB,

CouchDB, etc.

Epoxy Shim
Executes local ops

transactionally
Search
System

Elasticsearch,
Solr, etc.

Epoxy Shim
Executes local ops

transactionally

Queries/
Updates

Begin/Commit Txn +
Queries/Updates

Queries/
Updates

Figure 1: Architecture of Epoxy.

One of our goals in Epoxy is to support heterogeneous secondary
stores with diverse data models, including full-text search systems

like Elasticsearch, NoSQL document stores like MongoDB, and

object stores like GCS. Thus, our shims do not manage data or

process queries themselves. Instead, they transparently interpose

onwrites to add versioningmetadata to records and on reads to filter

data sources based on that metadata, then pass those operations on

to the secondary store which can freely optimize and execute them.

2.1 Epoxy Assumptions
We require the primary database provide ACID transactions with

at least snapshot isolation. Our implementation uses Postgres.

We make three secondary store assumptions for correctness:

• Single-object write operations are linearizable and durable.

• Each record has a uniquely identifiable key.

• Epoxy is the exclusive mode of accessing a secondary store table:

if one application accessing a table adopts it, all applications

accessing that table must adopt it for operations on that table.

As we will see, a wide variety of data stores, many of which are

non-transactional, satisfy these assumptions. We implement Epoxy

with four of them: Elasticsearch, MongoDB, GCS, and MySQL.

We also make another assumption needed for performance:

• Records can include metadata, and queries can be efficiently

filtered based on this metadata.

Many data stores satisfy this assumption by supporting complex

record types and efficient indexed filtering. For example, we can

store metadata in record fields in MongoDB and Elasticsearch and

additional columns in MySQL, then index it for efficient filtering

using B-trees in MongoDB and MySQL and numeric indexes in

Elasticsearch. If data stores do not support efficient metadata filter-

ing, we must store versioning information in the primary database,

which entails additional communication per query. We manage

metadata in this way for Google Cloud Storage (GCS), finding over-

head is low because GCS’s latency is naturally high. However, we

do not expect this to be practical for low-latency secondary stores.

2.2 Epoxy Interface
Users perform Epoxy transactions through a small client library,

shown in Figure 2, which interfaces with Epoxy shims. The pri-

mary database shim acts as the transaction coordinator and serves

client-initiated requests to begin, commit, and abort cross-data store

2743

Client-Transaction Coordinator Interface
beginTransaction()
commitTransaction()
abortTransaction()

Client-Secondary Store Shim Interface
query(Query, List[Arg])

→ Result
update(Key, Record)

delete(Key)

➢ Begin Epoxy transaction, create a global snapshot.
➢ Commit an Epoxy transaction.
➢ Abort and rollback an Epoxy transaction.

➢ Execute a query, filtering its input to only see
record versions in the transaction snapshot.

➢ Update a record: create a new version then mark
the previous version as not visible to future txns.

➢ Delete a record by marking it as not visible to
future transactions.

Figure 2: The Epoxy client library.

1 def reserve (hotelId , customerData):
2 ctxt = epoxy . beginTransaction ()
3 # Check room availability in Postgres .
4 res = pg. query (" SELECT avail FROM Hotels WHERE

hotel = hotelId ") # Epoxy does not interpose
on primary database operations .

5 if res == 0:
6 epoxy . commitTransaction (ctxt)
7 return false # No room available .
8 # Update availability in Postgres .
9 pg. update (" UPDATE Hotels SET avail =res −1 WHERE

hotel = hotelId ")
10 # Make a reservation in MongoDB .
11 epoxy . update (context =ctxt , secondary =mongo ,

key=hotelId , record = customerData)
12 epoxy . commitTransaction (ctxt)
13 return true

Figure 3: In an application storing hotel information in Post-
gres and customer data inMongoDB, we use Epoxy to transac-
tionally validate room availability, then make a reservation.

transactions. Users can also query and update the primary database

directly without going through the shim. Each secondary store

shim transparently interposes on client-issued data operations on

that secondary store, tagging writes with version information and

filtering reads to only see appropriate record versions.

We show an example of an Epoxy transaction in Figure 3. Sup-

pose a hotel reservation application stores hotel information in

Postgres and customer information in MongoDB. Without cross-

data store transactions, the application cannot atomically reserve a

room then record customer information, so it may incur anomalies

such as booking a room but not storing customer data for the book-

ing. Additionally, because there is no transactional isolation, it is

possible for concurrent operations to find customer information

in MongoDB that does not correspond to any room reservation in

Postgres (or vice versa), potentially violating constraints and caus-

ing errors. Using Epoxy, the application performs both operations

in a single transaction, providing both atomicity and isolation.

3 EPOXY PROTOCOL
In this section, we discuss Epoxy’s data structures, core algorithm,

and concurrency control and failure recovery mechanisms.

3.1 Epoxy Data Structures
To provide transactional isolation, Epoxy utilizes two data struc-

tures: a snapshot representation and a record versioning scheme.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Committed

xmin xmaxrc_txns

Aborted Active Unused

Figure 4: The Epoxy snapshot for transaction T11. xmin is
the smallest active transaction T5, xmax is transaction T9
(one past the largest committed transaction T8), and rc_txns
contains recently committed transactions T7 and T8.

Item (Record Key) Price beginTxn endTxn

TV $500 T1 ∞
Microwave $50 T4 T8

Microwave $60 T8 ∞
Fork $1 T2 T9

Fork $2 T9 ∞

Visible Not Visible

Figure 5: Record versions visible to transaction T11 from
Figure 4. The TV is visible at $500. The microwave is visible
at $60 because T8 committed before the snapshot was taken.
The fork is visible at $1 because T9 was still active when the
snapshot was taken.

Snapshots. Each Epoxy transaction is associated with a snap-

shot, the set of all past transactions which are visible to it. Because

this set can be large, managing it directly is impractical, so we

need a compact snapshot representation. We assume transaction

IDs increase monotonically. Borrowing notation from Postgres, we

represent a snapshot using two transaction IDs, xmin and xmax, and
a list of recently committed transactions rc_txns. We diagram this

in Figure 4. At the time the snapshot is taken, xmin is defined as

the smallest active transaction ID, xmax is defined as one past the

largest committed transaction ID, and rc_txns is defined as the set
of committed transactions with ID greater than xmin. We assume

that aborted transactions are considered active until they are fully

rolled back; in §5 we discuss how to enforce this. Thus, a transac-

tion with ID 𝑥 is in a snapshot if (𝑥 < xmin) ∨ (𝑥 ∈ rc_txns). It
is important to note that snapshots are monotonic: if 𝑇1 is in the

snapshot of 𝑇2 and 𝑇2 in that of 𝑇3, then 𝑇1 is in the snapshot of 𝑇3.

Record Metadata. Epoxy secondary store shims tag record ver-

sions with metadata so that read operations can easily identify

which versions are in the transaction snapshot. Specifically, shims

tag all record versions with two values: beginTxn and endTxn.
beginTxn is the ID of the transaction that created the record ver-

sion; endTxn is the ID of the transaction that superseded it with

a new version or deleted the record entirely. A record version is

visible to a transaction if and only if beginTxn is in its snapshot

but endTxn is not. We diagram this in Figure 5.

3.2 Epoxy Transactions
An Epoxy transaction executes in four phases, sketched in Figure 6

with pseudocode shown in Algorithm 1. Each phase is initiated

2744

Begin
Transaction

Primary
Database

Secondary
Store 1

Secondary
Store N

Data
Operations

Data
Operations

Data
Operations

Validate
Transaction

Validate
Transaction

Commit/Abort
Transaction

Abort
Transaction

Abort
Transaction

If all ops succeed,
commit on the
primary database

If any ops fail,
abort on all data
stores.

Client Begins Transaction

Client Issues Data Operations

Client Initiates Validation

Coordinator Makes Commit/Abort Decision

…

…

…

…

Figure 6: Steps taken by an Epoxy transaction. First, a client
begins a transaction on the primary database. Then, the client
issues read and write operations, which are interposed on
to enforce transactional isolation. Next, the client instructs
secondary stores to validate the transaction. Finally, the co-
ordinator decides whether to commit or abort.

by the client. First, the client begins a transaction, instructing the

transaction coordinator to begin a transaction on the primary data-

base and create a snapshot of all committed transactions. Then,

the client executes the transaction’s business logic and issues read

and write operations, which secondary store shims interpose on

to enforce transactional isolation. Next, the client instructs each

secondary store shim to validate that the transaction does not con-

flict with concurrent committed transactions. Finally, the client

communicates these results to the coordinator, which decides to

commit (or abort) the transaction.

Begin Transaction. The coordinator initiates an Epoxy transac-

tion by beginning a transaction in the primary database (lines 3-7

in Algorithm 1). If the transaction is between secondary stores, this

is an empty transaction in the primary database. After initiating

a transaction, the coordinator creates a snapshot of all committed

transactions. The snapshot is represented in a summary format

(§3.1) and may be computed from active transaction metadata main-

tained in memory in the coordinator or from snapshot information

provided by the primary database. We describe how we compute

summary information in Postgres in §5.

Data Operations. After a transaction is initiated, it executes its

business logic. Transactions can perform arbitrary read and write

operations in the primary database and secondary stores. Reads

and writes to the primary database are not interposed on.

Algorithm 1 Epoxy Functions

1: Connection primary ⊲ Connection to primary database.

2: List[Connection] secondaries ⊲ Connections to all secondary stores.

3: function beginTransaction()

4: primary.beginTransaction()

5: TxnContext 𝑡𝑥𝑛 ⊲ Initialize transaction context.

6: 𝑡𝑥𝑛.txID, 𝑡𝑥𝑛.xmin, 𝑡𝑥𝑛.xmax, 𝑡𝑥𝑛.rc_txns← primary.snapshot()

7: return 𝑡𝑥𝑛

8: function update(TxnContext 𝑡𝑥𝑛, Secondary 𝑠 , Key 𝑘 , Record 𝑟)

9: 𝑟 .set("key", 𝑘)

10: 𝑟 .set("beginTxn", 𝑡𝑥𝑛.txID)

11: 𝑟 .set("endTxn",∞)
12: 𝑠 .writeLock(𝑘) ⊲ Abort if lock already held.

13: 𝑡𝑥𝑛.𝑠 .modifiedKeys.add(𝑘)

14: 𝑠 .find(key=k ∧ endTxn=∞).set("endTxn", 𝑡𝑥𝑛.txID)
15: 𝑠 .insertRecord(𝑘 , 𝑟)

16: function delete(TxnContext 𝑡𝑥𝑛, Secondary 𝑠 , Key 𝑘)

17: 𝑠 .writeLock(𝑘) ⊲ Abort if lock already held.

18: 𝑠 .find(key=k ∧ endTxn=∞).set("endTxn", 𝑡𝑥𝑛.txID)
19: functionqery(TxnContext 𝑡𝑥𝑛, Secondary 𝑠 , Query 𝑞)

20: 𝑞.addPredicate(((beginTxn < 𝑡𝑥𝑛.xmin)∨ (beginTxn ∈ 𝑡𝑥𝑛.rc_txns)
∨ (beginTxn = 𝑡𝑥𝑛.txID)) ∧ (endTxn ≥ 𝑡𝑥𝑛.xmin) ∧ (endTxn ∉

𝑡𝑥𝑛.rc_txns) ∧ (endTxn ≠ 𝑡𝑥𝑛.txID))

21: return 𝑠 .query(𝑞)

22: function validate(TxnContext 𝑡𝑥𝑛)

23: valid← true

24: for 𝑠 ∈ secondaries do ⊲ Validate secondary stores.

25: 𝑠 .validateLock.lock()

26: for cTxn ∈ 𝑠 .validTxns do
27: if cTxn.txID >= 𝑡𝑥𝑛.xmin ∧ cTxn.txID ∉ 𝑡𝑥𝑛.rc_txns then
28: for 𝑘 ∈ 𝑡𝑥𝑛.𝑠 .modifiedKeys do
29: if 𝑘 ∈ cTxn.𝑠 .modifiedKeys then
30: valid← false

31: if valid then 𝑠 .validTxns.add(𝑡𝑥𝑛)

32: 𝑠 .validateLock.unlock()

33: return valid

34: function commit(TxnContext 𝑡𝑥𝑛)

35: primary.commitTransaction()

36: for 𝑠 ∈ secondaries do
37: s.releaseWriteLocks(𝑡𝑥𝑛.𝑠 .modifiedKeys)

38: function abort(TxnContext 𝑡𝑥𝑛)

39: for 𝑠 ∈ secondaries do ⊲ Roll back secondary stores.

40: for 𝑘 ∈ 𝑡𝑥𝑛.𝑠 .modifiedKeys do
41: 𝑠 .find(key=k ∧ beginTxn=𝑡𝑥𝑛.txID).delete()

42: 𝑠 .find(key=k ∧ endTxn=𝑡𝑥𝑛.txID).set(endTxn,∞)
43: primary.abortTransaction()

44: for 𝑠 ∈ secondaries do
45: s.validTxns.remove(𝑡𝑥𝑛)

46: s.releaseWriteLocks(𝑡𝑥𝑛.𝑠 .modifiedKeys)

47: function garbageCollect(List[TxnContext] 𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑥𝑛)

48: if 𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑥𝑛.isEmpty() then
49: globalXmin← primary.snapshot().xmin

50: else
51: globalXmin← min(txn.xmin ∀ txn ∈ 𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑥𝑛)
52: for 𝑠 ∈ secondaries do ⊲ Garbage collect secondary stores.

53: 𝑠 .findAll(endTxn < globalXmin).delete()

Secondary store shims interpose on write operations to version

records (lines 8-15 in Algorithm 1). Let us say a transaction with ID

2745

𝑥 writes a record with key 𝑘 to a secondary store. The secondary

store’s shim first takes an exclusive write lock on 𝑘 (we discuss

concurrency control in §3.3). It then creates a new version of the

updated record with beginTxn set to 𝑥 and endTxn set to infinity.

Next, it checks if an older version of the record exists and, if one

does, it sets the endTxn field of the most recent older record version

to 𝑥 . This check implicitly enforces the uniqueness of 𝑘 . Because

these operations are not visible to other transactions until the trans-

action commits, they need not be atomic and so can be implemented

on any data store that supports record metadata. If a transaction

performs a delete, the shim sets the endTxn field of the most recent

version of the deleted record to 𝑥 ; once the transaction commits,

the record will no longer be visible (lines 16-18 in Algorithm 1).

Secondary store shims interpose on read operations so they

only see record versions in the transaction snapshot (lines 19-21

in Algorithm 1). Specifically, transactions see all record versions

that were created by transactions in the snapshot but have not

been superseded or deleted by transactions in the snapshot. This

is equivalent to saying transactions can only see record versions

whose beginTxn field is in the snapshot and whose endTxn field is

not. Additionally, transactions can read their own writes. We can

express this condition as a filter, so a read in a transaction with ID

𝑋 can only see records that satisfy:

((beginTxn < xmin) ∨ (beginTxn ∈ rc_txns) ∨ (beginTxn = 𝑥))
∧(endTxn ≥ xmin) ∧ (endTxn ∉ rc_txns) ∧ (endTxn ≠ 𝑥)

Lemma 1. For some record 𝑟 , at most one version of 𝑟 can satisfy
this statement for a given transaction 𝑇 with ID 𝑥 , and this version
reflects the most recent transaction in the snapshot of 𝑇 to modify 𝑟 .

Define 𝑟𝑛 as the most recent version of 𝑟 that satifies this state-

ment (if one exists); it was created by transaction𝑇𝑛 with ID 𝑥𝑛 .𝑇𝑛
must be in the snapshot of 𝑇 as otherwise the beginTxn field of 𝑟𝑛
(set to 𝑥𝑛) would not satisfy the statement. All prior transactions

modifying 𝑟 must be in the snapshot of 𝑇𝑛 (and also of 𝑇 , as snap-

shots are monotonic) because if they were not, 𝑇𝑛 would not have

passed validation (§3.3). Thus, the most recent previous version

𝑟𝑛−1 was created by a transaction in 𝑇𝑛 ’s snapshot, so it either was

visible to 𝑇𝑛 or was deleted by an intervening transaction in 𝑇𝑛 ’s

snapshot. In either case, 𝑟𝑛−1 is not visible to 𝑇 : in the former, be-

cause 𝑇𝑛 would set its endTxn field to 𝑥𝑛 , in the latter because the

deleting transaction (due to montonicity) is also in 𝑇 ’s snapshot. A

similar argument applies to 𝑟𝑛−2 and all previous versions of 𝑟 , so

at most one version of 𝑟 is visible to 𝑇 .

Now, define 𝑇𝑘 as the most recent transaction in the snapshot

of 𝑇 to modify 𝑟 . If it created a new version of 𝑟 , that version is

visible to 𝑇 as its beginTxn field is in 𝑇 ’s snapshot and its endTxn
field (if not∞) is set by a transaction more recent than 𝑇𝑘 , which

is by definition not in 𝑇 ’s snapshot. If it deleted 𝑟 , then no version

of 𝑟 is visible to 𝑇 because at most one version was visible prior to

the deletion, and the deletion makes that version not visible. Either

way, the version of 𝑟 (or lack thereof) visible to 𝑇 reflects the most

recent transaction in the snapshot of 𝑇 to modify 𝑟 .

Validation. Our implementation of Epoxy uses optimistic con-

currency control, requiring a validation step after data operations

complete to ensure they do not conflict with concurrent committed

transactions on any secondary store. We show this step in lines

22-33 of Algorithm 1 and discuss it in detail in §3.3.

Commit or Abort Transaction. A transaction is ready to com-

mit once it validates on all secondary stores. Transactions commit

by committing on the primary database (lines 34-37 in Algorithm 1).

This atomically makes the transaction visible to future transactions

on all data stores as it will appear in their snapshots. Thus, the

set of committed transactions in Epoxy is equivalent to the set of

transactions committed in the primary database; we make use of

this property to perform failure recovery (§3.4) and enforce trans-

actional atomicity and durability (§4.2).

If a transaction fails validation or encounters any error in any

data store, it aborts. To prevent transactions from hanging indef-

initely on client failure, the coordinator also aborts a transaction

if its connection with the client times out. The transaction aborts

in the primary database and rolls back all changes made in sec-

ondary stores by deleting newly added record versions and revert-

ing record endTxn fields (lines 38-46 in Algorithm 1). A transaction

can safely abort at any point before it commits because its uncom-

mitted changes are never visible to other transactions.

Optimizing Read-Only Transactions. While the previously-

described procedure is necessary for any transaction that may

modify data, we can optimize read-only transactions on secondary

stores to bypass the transaction coordinator. All a read-only transac-

tion requires from the coordinator is a snapshot from which to read;

it makes no changes to validate or commit. A secondary store shim

can cache snapshot information in memory and use it to run new

read-only transactions instead of going through the coordinator.

Such transactions are guaranteed to reflect all data committed as

of when the snapshot was taken. Importantly, this optimization

allows read-only transactions on secondary stores to proceed in the

event of a transaction coordinator failure, improving availability.

3.3 Optimistic Concurrency Control
To enforce transactional isolation (specifically snapshot isolation),

we adapt the multi-version optimistic concurrency control (OCC)

protocol of Larson et al. [18], originally designed for a single-node

main-memory database, to a multi-data store setting. We use OCC

and provide snapshot isolation because this naturally fits our light-

weight shim model, requiring us only to check for write-write

conflicts. To use a pessimistic locking scheme or to provide seri-

alizable isolation, we would have to efficiently detect read-write

conflicts, which requires knowledge of query semantics and thus

must be implemented in a data store-specific manner on each shim.

Assume secondary store 𝑆 is executing transaction 𝑇 . Before 𝑆

writes a record, it acquires an exclusive lock on that record’s key.

Each secondary store shim contains a lock manager for records

in that store, with one exclusive write lock for each record. This

lock prevents transactions from concurrently modifying the endTxn
field of the previous version of that record. If 𝑆 fails to acquire a

lock, it is guaranteed to conflict with the lock holder, so it aborts 𝑇 .

After 𝑆 finishes𝑇 , it validates it. 𝑆 takes an exclusive (but local to 𝑆)

validation lock, then verifies that no key written to by 𝑇 was also

written to by a committed transaction not in 𝑇 ’s snapshot (lines

22-33 in Algorithm 1). If 𝑇 passes this validation, 𝑆 provisionally

2746

marks it as committed, releases the lock, then votes to commit.

If the coordinator later decides to abort 𝑇 , 𝑆 unmarks it (we take

this approach to minimize the time the validation lock is held;

it can cause unnecessary validation failures if 𝑇 aborts, but not

incorrect validations). If 𝑆 fails and restarts, it recovers the list of

committed transactions from the coordinator (§3.4). A transaction

only commits if all secondary stores successfully validate; otherwise

it aborts and rolls back. Secondary stores release write locks after

learning of a commit or completing a rollback.

3.4 Availability and Failure Recovery
Epoxy builds on the availability and durability guarantees of par-

ticipating stores. We do not aim to provide higher availability than

participating stores provide natively, but do guarantee that we can

recover to a consistent state from failures of any combination of

participating stores. If any store becomes unavailable (we currently

only consider crash failures), we assume it restarts and recovers all

durable data, then our fault tolerance protocol restores it to a state

consistent with all other stores. We rely on stores’ clients to tell us

when they are unavailable and when they have recovered.

Secondary Store Failures. In the event of a failure of secondary

store 𝑆 (or of its shim), Epoxy guarantees that transactions not in-

volving 𝑆 proceed without disruption and that 𝑆 recovers to a state

reflecting all committed transactions. When 𝑆 fails, the transaction

coordinator aborts all active transactions involving 𝑆 and disallows

any new transactions involving 𝑆 . During the period of failure,

transactions not involving 𝑆 proceed normally. After 𝑆 restarts,

it queries the coordinator for the list of committed transactions

involving 𝑆 . The coordinator ensures that all active transactions

involving 𝑆 are aborted before sending this list. 𝑆 is guaranteed

to contain all record versions created by these committed transac-

tions (excepting garbage-collected outdated versions, see §3.5) as

the Epoxy commit protocol does not commit a transaction until all

secondary stores have validated and persisted its changes. 𝑆 then

undoes the effects of any aborted transactions (because the coordi-

nator aborted all active transactions involving 𝑆 before sending the

list, all uncommitted transactions involving 𝑆 are aborted): it deletes

any records with the beginTxn of an aborted transaction and resets

to infinity any endTxn values set to an aborted transaction ID. We

can recover 𝑆 without any Epoxy-specific logging because Epoxy

relies on the coordinator as a source of truth for which transactions

have committed and assumes 𝑆 persists all transaction data. If 𝑆

fails while recovering, it simply restarts, re-requests the list (which

does not change), and reruns the undo process. 𝑆 is now recovered

to a state reflecting all committed transactions and no uncommitted

transactions, so new transactions can proceed normally.

Primary Database or Coordinator Failures. In the event of

a failure of the primary database 𝑃 or the transaction coordinator,

Epoxy guarantees that read-only transactions on secondary stores

proceed without disruption and that all stores recover to a state

reflecting only the transactions committed on 𝑃 . Upon detecting a

failure of 𝑃 or the coordinator, each secondary store shim aborts

and rolls back any active transactions. During the period of failure,

no transactions that perform writes may execute, but read-only

transactions on secondary stores can proceed normally following

the procedure described in §3.2, bypassing the coordinator to read

from a cached snapshot. We assume that the coordinator restarts

and 𝑃 recovers to a consistent state reflecting all committed trans-

actions. Because (as discussed in §3.2) the set of committed Epoxy

transactions is equivalent to the set of transactions committed to 𝑃 ,

and because we assume 𝑃 transactions are ACID, this recovery does

not require Epoxy-specific logging, instead leveraging 𝑃 ’s native re-

covery mechanism. The coordinator then instructs each secondary

store to recover following the procedure in the previous paragraph.

If any secondary stores fail during this process, the coordinator

waits for them to restart, then recovers them again. This proce-

dure recovers each secondary store to a state where it reflects all

committed transactions but no uncommitted transactions. Once all

secondary stores are recovered, new transactions proceed normally.

3.5 Garbage Collection
Because writes create new record versions instead of updating

existing records, it is important to clean up old record versions.

Record versions can be safely deleted if they are no longer visible

to any transactions, meaning their endTxn is in the snapshot of all

active transactions. Periodically, the transaction coordinator runs a

garbage collector which deletes all record versions satisfying this

condition (lines 47-53 of Algorithm 1). The garbage collector scans

all active transactions and finds the transaction with the smallest

xmin (xmin increases monotonically, so this is the oldest active

transaction). It then instructs secondary store shims to delete all

record versions whose endTxn is less than this smallest active xmin.

4 CORRECTNESS AND DISCUSSION
In this section, we prove the correctness of Epoxy’s isolation, atom-

icity, and durability guarantees, then discuss limitations.

4.1 Isolation Correctness
We first prove Epoxy provides the two properties of snapshot isola-

tion, as defined by Adya [2] for a transaction 𝑇 (SI1-2).

SI1: 𝑇 always reads data from a snapshot of committed
information valid as of the time 𝑇 started. We always take

snapshots at the beginning of a transaction, so this follows from

Lemma 1 (§3.2): for a given record 𝑟 ,𝑇 can only read at most a single

version of 𝑟 and that version reflects the most recent transaction in

the snapshot of 𝑇 to modify 𝑟 .

SI2: 𝑇 can only commit if, at commit time, no committed
transaction not in the snapshot has written data that 𝑇 in-
tends to write. This is enforced by our validation protocol (§3.3).

𝑇 only validates if no key written to by 𝑇 was also written to by a

committed transaction not in 𝑇 ’s snapshot.

4.2 Atomicity and Durability Correctness
To prove the atomicity and durability of Epoxy, we follow the struc-

ture in [5] and show it has the five properties of an atomic commit

protocol (AC1-5). This proof builds on the Epoxy recovery protocol

(§3.4). We say that a secondary store has voted to commit if it signals

the transaction is locally complete, persisted, and validated. We say

the coordinator has made a decision to commit if the transaction is

committed on the primary database.

2747

AC1: All processes that reach a decision reach the same one.
Specifically, all stores reflect the decision made by the coordinator.

The coordinator can only commit if each secondary store votes to

commit. If it decides to abort, it rolls back the transaction on all

secondary stores. If a secondary store fails, it is recovered (§3.4) to a

state reflecting only the transactions committed by the coordinator.

If the primary database or coordinator fail, they restart and recover

(§3.4) themselves and all secondary stores to a state reflecting only

the transactions committed by the coordinator prior to the failure,

implicitly aborting all active transactions.

AC2: A process cannot reverse its decision after it has
reached one. We have already shown that all stores reflect the

decision of the coordinator. The coordinator makes decisions by

committing or aborting on the primary database, which is required

(§2.1) to provide ACID transactions, so its decisions are irreversible.

AC3&4: The Commit decision can only be reached if all pro-
cesses voted Yes. If there are no failures and all processes voted
Yes, then the decision will be to Commit. Both these properties

are clearly enforced by our commit protocol (§3.2).

AC5: Consider any execution containing only failures that
the algorithm is designed to tolerate (i.e., crash failures). At
any point in this execution, if all existing failures are re-
paired and no new failures occur for sufficiently long, then
all processes will eventually reach a decision. Specifically, the
coordinator always reaches a decision; we have already shown all

stores reflect the decision of the coordinator. If a secondary store

fails before voting, the coordinator aborts. If a secondary store fails

after voting, the coordinator makes a decision following the commit

protocol. If the primary database or coordinator fail, they recover

(§3.4) to a state reflecting only transactions committed prior to the

failure, implicitly aborting all active transactions.

4.3 Limitations
One limitation of Epoxy is that it must be the exclusive mode of

accessing a secondary store table. If a client writes to a secondary

store table without using it, the write will lack the version informa-

tion needed to be visible to reads. If a client reads from a secondary

store table without using it, the read may see multiple potentially

conflicting versions of the same record. Thus, if one application ac-

cessing a secondary store table adopts Epoxy, all other applications

accessing that table must also adopt it for operations on that table.

Another limitation of Epoxy is that while it enforces primary key

constraints (requiring each record to have a uniquely identifiable

key), it does not currently support other constraints. Secondary

store shims store different record versions as separate records in

the secondary store, so Epoxy clashes with native constraint en-

forcement and may cause erroneous constraint violations. This

can be solved by enforcing constraints in the shim itself (in the

same way we already enforce key uniqueness and thus primary

key constraints), but we leave that to future work.

5 IMPLEMENTATION
In this section, we discuss how we implement Epoxy primary data-

base and secondary store shims on a range of systems. We imple-

ment one transaction coordinator, on Postgres, and four secondary

store shims, on Elasticsearch, MongoDB, Google Cloud Storage,

and MySQL. We implement each shim in <1K lines of Java code.

5.1 Postgres
We use Postgres as a primary database in our experiments, setting

its isolation level to repeatable read (which Postgres implements as

snapshot isolation). Because Postgres uses MVCC, we can optimize

snapshot creation using Postgres system tables. Postgres represents

a transaction snapshot using xmin, xmax (defined as in Epoxy), and a
list of active transactions at the time of the snapshot xip_list [25].
This is slightly different than our snapshot definition, so we modify

the expression (§ 3.2) used to determine whether a secondary store

record version is visible to a transaction with ID 𝑥 :

(((beginTxn < xmax) ∨ (beginTxn = 𝑥)) ∧ (beginTxn ∉ xip_list))
∧((endTxn ≥ xmax) ∨ (endTxn ∈ xip_list)) ∧ (endTxn ≠ 𝑥)

A major challenge in this expression is handling aborted trans-

actions. We do not want record versions created by an aborted

transaction to ever be visible, so we need aborted transactions to be

considered active until they are rolled back in the primary database

and all secondary stores. Thus, the transaction coordinator keeps

track of all transactions that are active or currently being rolled

back. When starting a new transaction and creating its snapshot,

the coordinator scans these transactions (except those in xip_list)
and adds them to xip_list if Postgres reports they have aborted.

5.2 Elasticsearch
We implement a secondary store shim for the popular full-text

search system Elasticsearch. Elasticsearch stores data as documents,

indexing them for fast search. To implement an Elasticsearch shim,

we add numeric beginTxn and endTxn fields to all documents and

manage them during writes as described in §3.2. All Elasticsearch

queries are searches that find and rank documents based on a set

of conditions, so our shim adds to queries a filter similar to that

described in §3.2. Elasticsearch natively supports fast indexed range

queries on numeric fields, so this additional predicate is efficient.

5.3 MongoDB
We implement a secondary store shim for the popular NoSQL

document database MongoDB. MongoDB provides a schemaless

document-oriented data format backed up by indexes. Like our

Elasticsearch shim, our MongoDB shim adds beginTxn and endTxn
fields to all documents andmanages them duringwrites as described

in §3.2. Our shim interposes on queries by inserting operators that

filter all input collections using the conditions described in §3.2

to ensure the query only sees record versions in the transaction

snapshot. To improve performance, our shim indexes beginTxn
and endTxn using B-trees, which MongoDB supports natively.

5.4 Google Cloud Storage
We implement a secondary store shim for the cloud object store

Google Cloud Storage (GCS); we believe similar principles could be

used for other cloud object stores such as AWS S3 or Azure Blob

Storage. GCS provides a key-value interface for durably storing

large blobs, where each blob is associated with a unique key. While

2748

GCS satisfies the three correctness assumptions we make in §2.1, it

lacks metadata filtering. However, because GCS provides only key-

value lookup, insert, and update operations, we can still implement

an efficient shim by storing all metadata in the primary database.

The shim interposes on all GCS write operations to create a primary

database record containing the key, beginTxn, and endTxn. It then
stores the key and value in GCS, appending beginTxn to the key.
With this metadata, the shim interposes on all GCS read operations

to first check the primary database to find the appropriate key

version, then access the key. Because each read is to only one key

and thus requires only one primary database lookup and because

the latency of GCS is high compared to that of the primary database,

these metadata operations are efficient.

5.5 MySQL
We implement a secondary shim for the relational DBMS MySQL

to demonstrate that Epoxy can efficiently support distributed trans-

actions not only for non-transactional stores but also for relational

DBMSs. Our MySQL secondary shim adds two integer columns,

beginTxn and endTxn, to all client-defined tables and interposes

on write operations to update these columns as described in §3.2.

Epoxy requires every record to have a uniquely identifiable key,

so we expect every MySQL table to have a specified column with

unique values. However, as discussed in §4.3, we do not currently

support enforcing other key constraints in MySQL. To interpose

on read operations, we substitute every table in a query with a

subquery filtering the table using the predicates described in §3.2.

To improve MySQL performance, we apply two optimizations

to our MySQL shim. First, we create indexes on the beginTxn and

endTxn columns to speed up operations on record versions. Sec-

ond, we leverage the native transactional capabilities of MySQL to

reduce the number of disk writes required by Epoxy transactions.

We use the default MySQL transaction isolation level (repeatable

read). When an Epoxy transaction accesses MySQL, it begins a

MySQL transaction internally to perform all queries and updates.

After the transaction finishes validation, it commits on MySQL.

Thus, a committed Epoxy transaction must only perform a durable

write to disk once. If an Epoxy transaction must abort before the

MySQL transaction commits, it simply rolls back the MySQL trans-

action. Otherwise, it executes a new MySQL transaction undoing

the previous one, following the procedure in Algorithm 1. This undo

transaction is guaranteed to succeed because changes committed in

MySQL but not Epoxy are protected by Epoxy concurrency control,

so concurrent transactions may not see them or conflict with them.

We note that this optimization is general and can apply to other

data stores providing interactive transactions.

6 EVALUATION
We evaluate Epoxy with TPC-C and microservice workloads by

adapting them to a multi-data store setting. We compare Epoxy to

a baseline that provides no transactional guarantees (and exhibits

anomalies) and to an XA-based transaction manager that provides

transactional atomicity but not isolation. We also analyze Epoxy

performance with microbenchmarks. We show that:

(1) Epoxy provides comparable performance to but stronger trans-

actional guarantees, including isolation, than an XA-based trans-

action manager on multi-DBMS TPC-C.

(2) Epoxy provides transactional guarantees for multi-data store

microservices and eliminates concurrency anomalies with over-

head compared to a no-transactions baseline of <10% on read-

mostly workloads and 72% on write-heavy workloads.

(3) On microbenchmarked point operations, Epoxy provides trans-

actional guarantees while adding overhead of <20% for reads,

<76% for inserts, and <249% for updates compared to a no-

transactions baseline across all data stores.

6.1 Experimental Setup
We implement each Epoxy shim in <1K lines of Java code. For our

experiments, we use Postgres 14.2, MongoDB Community Server

5.0.9, Elasticsearch 8.2.0, and MySQL Community Server 8.0.30.

Where not otherwise noted, we run on Google Cloud using c2-

standard-8 VM instances with 8 vCPUs, 32GB DRAM, and a SCSI

HDD. In experiments involving multiple data stores, we run each

data store in single-node mode on its own server (except GCS,

which is accessed through its cloud API).

6.2 Baselines
No Transactions. To measure the absolute overhead of Epoxy,

we use a baseline that executes our benchmark workloads with

no cross-data store transactional guarantees. We run this baseline

in a setup identical to that of Epoxy, but do not store additional

versioning metadata or index structures, and execute operations

separately on each data store without coordinating them.

XA-Based Transaction Manager. For cross-DBMS transac-

tions between Postgres and MySQL, we use the XA-based trans-

action manager Bitronix [6] as a baseline. This baseline provides

transactional atomicity, but not isolation. We run it in a setup iden-

tical to the no-transactions baseline, but coordinate cross-DBMS

transactions with the Bitronix transaction manager implementing

the role of coordinator in the standard two-phase commit protocol

as specified in the Java Transaction API (JTA 1.1) [22]. The coor-

dinator is colocated with the client and writes commit and abort

decisions to disk for durability.

6.3 Experimental Workloads
We benchmark Epoxy using multi-data store TPC-C and microser-

vice workloads. Each workload exhibits anomalies if run without

cross-data store transactional guarantees. Epoxy provides cross-

data store transactions that eliminate these anomalies.

Multi-DBMS TPC-C. For our first benchmark, we adapt the

NewOrder and Payment transactions from TPC-C [11] to a multi-

DBMS setting. We choose these two transactions because they com-

prise 90% of the TPC-C workload. The NewOrder transaction mod-

els customers placing orders on their local district of a warehouse.

The Payment transaction models making payments on orders. Both

transactions may access items in multiple warehouses. To simulate

a scenario in which warehouse data is stored in different geographic

locations, we partition the database containing the 40 warehouses

so that half the warehouses are stored in MySQL and the other

2749

half in Postgres. TPC-C tables have composite primary keys, so in

Epoxy experiments we add a unique string column to each table

containing concatenated key values and use its values as Epoxy

keys. We execute a workload of 50% NewOrder and 50% Payment,

running both as multi-DBMS transactions across the warehouse

information in Postgres and MySQL.

Hotel. Our second benchmark simulates a hotel reservation

workload. It consists of a room availability service that stores data

in Postgres and a customer reservation service that stores data

in MongoDB, similar to the example in Figure 3. Our workload

consists of 80% searches for available rooms, performing a read

in Postgres and a geospatial search in MongoDB, and 20% room

reservations, performing a read and update in Postgres and an in-

sert in MongoDB. Without Epoxy, these operations do not occur

atomically and are not isolated, causing anomalies as discussed in

§2.2. We initialize the benchmark with 100 hotels.

Cart. Our third benchmark is an e-commerce service simulat-

ing an online marketplace. The service stores customer shopping

carts and an item catalog in Postgres and replicates the catalog to

Elasticsearch for rapid search. We run a workload of 90% searching

and adding items, performing a search for an item in Elasticsearch

and a read, insert, and update to add the item to a cart in Postgres;

8% checkouts, performing a read, delete, and two inserts to move

items from a cart to an order table in Postgres; 1% catalog inserts,

inserting a new item in Postgres and Elasticsearch; and 1% catalog

updates, updating an item in Postgres and Elasticsearch. Without

Epoxy, this service exhibits what Laigner et al. [17] term “feral

ordering” for concurrent catalog and cart operations. For example,

if a search and add for an item below a certain price happens con-

currently with a catalog update that increases items’ prices, an item

may be added to a customer’s shopping cart despite it being more

expensive than what the customer searched for. We initialize the

benchmark with 10M items.

Profile. Our fourth benchmark simulates a social network where

user profiles are stored in Postgres but user profile images are stored

in GCS. We run a workload of 90% profile reads, consisting of reads

in Postgres and GCS; 5% profile inserts, adding a profile to Postgres

and uploading an image to GCS; and 5% profile updates; updat-

ing a profile in Postgres and replacing its image in GCS. Without

Epoxy, this exhibits fractured reads, a common problem in produc-

tion systems [17], where if a read and update to a profile occur

simultaneously, the read may see the new profile image but not

its accompanying profile change, or vice versa. We initialize the

benchmark with 10K profiles. Images are on average 1MB in size.

Many-Data Store Benchmark. All previous benchmarks per-

form transactions across two systems, so to show Epoxy can support

more we implement a synthetic benchmark performing transac-

tions across Elasticsearch, MongoDB, and Postgres. This benchmark

stores information on items, managing item inventory in Postgres,

item pricing in MongoDB, and item descriptions in Elasticsearch.

We run a workload of 99% reads, reading an item’s properties in

each system, and 1% updates, updating an item’s properties in each

system. Without Epoxy, this exhibits fractured reads, where a read

may reflect a concurrent update in some systems but not others.

We initalize the benchmark with 10M items in each system.

0 250 500 750
Throughput (QPS)

1

10

100

1000

La
te

nc
y

[m
s,

lo
g1

0] a) TPC-C New Order

0 250 500 750
Throughput (QPS)

1

10

100

1000
b) TPC-C Payment

Epoxy p50
Epoxy p99

XA p50
XA p99

No Txns p50
No Txns p99

Figure 7: Throughput versus p50 and p99 latency of Epoxy,
XA, and a no-transactions baseline on TPC-C.

XA TPC-C Payment (8085 μs)
Execution
(2457 μs)

Prepare
(2732 μs)

Commit
(2896 μs)

Epoxy TPC-C Payment (5895 μs)
Execution
(2283 μs)

Flush to Disk
(1963 μs)

Commit
(909 μs)

Metadata Update
(436 μs)

Getting Snapshot
(304 μs)

XA TPC-C NewOrder (18807 μs)
Execution
(13076 μs)

Prepare
(2690 μs)

Commit
(3041 μs)

Epoxy TPC-C NewOrder (19256 μs)
Execution
(14398 μs)

Metadata Update
(1905 μs)

Getting Snapshot
(401 μs)

Commit
(1079 μs)

Flush to Disk
(1473 μs)

Figure 8: Latency breakdowns of the TPC-C Payment and
NewOrder transactions for XA and Epoxy.

6.4 Multi-DBMS TPC-C
Wefirst evaluate the performance of Epoxy on themulti-DBMSTPC-

C workload described in §6.3. We run a 1:1 mixture of NewOrder

and Payment transactions, observing p50 and p99 latency aswe vary

offered load. We compare with both XA, which provides atomicity

but not isolation, and a no-transactions baseline, which provides

neither atomicity nor isolation. We show results in Figure 7.

Epoxy provides 7% higher throughput than XA with comparable

latency despite offering stronger guarantees such as isolation. How-

ever, Epoxy imposes 53% space overhead from maintaining indexed

version columns in each table. Both Epoxy and XA add substantial

(82–95%) overhead compared to a no-transactions baseline.

To further investigate the performance of XA and Epoxy, we

break down the latency of TPC-C transactions in Figure 8. Epoxy

spends 11-24% more time than XA executing transaction business

logic because it must maintain versioning metadata and index struc-

tures. However, XA has expensive prepare and commit phases that

require multiple rounds of communication following the participant

protocol of two-phase commit, while Epoxy can simply commit on

MySQL then commit on Postgres. XA prepare takes 39-83% longer

than a MySQL commit (which Epoxy uses to make MySQL data

durable before committing) and XA commit takes 2.8-3.2× longer

2750

0 2000 4000
1

10

100

La
te

nc
y

[m
s] a) Hotel Search

0 2000 4000
1

10

100
b) Hotel Reservation

0 2000 4000
1

10

100

La
te

nc
y

[m
s] c) Shop Cart Operations

0 2000 4000
1

10
100

d) Shop Catalog Updates

0 100 200 300
10

100

1000

La
te

nc
y

[m
s] e) Profile Reads

0 100 200 300
100

1000
f) Profile Writes

0 2000 4000
Throughput (QPS)

1

10

100

La
te

nc
y

[m
s] g) Many-Data Store Reads

0 2000 4000
Throughput (QPS)

1

10

100
h) Many-Data Store Writes

Epoxy p50 Epoxy p99 No Txns p50 No Txns p99

Figure 9: Throughput versus p50 and p99 latency of Epoxy
and a no-transactions baseline on end-to-end microservice
workloads and a many-data store synthetic benchmark.

0 20 40
Write Percentage

0

2500

Th
ro

ug
hp

ut
 (T

PS
) a) Hotel - MongoDB

0 20 40
Write Percentage

0

2500

b) Shop - Elasticsearch
Epoxy No Txns

Figure 10: Write fraction versus maximum throughput of
Epoxy and a no-transactions baseline.

than an Epoxy commit. Epoxy also incurs overhead constructing a

transaction snapshot, but this is <5% of runtime.

6.5 End-to-end Microservice Benchmarks
We next evaluate Epoxy on the microservice workloads and many-

data store synthetic (MDSS) benchmark described in §6.3. We use

only the no-transactions baseline as none of the data stores in these

experiments support XA. We observe p50 and p99 latency while

varying offered load, showing results in Figure 9.

We find that the throughput and read latency overhead of Epoxy

compared to the no-transactions baseline is 5% for Hotel, 10% for

Shop, not statistically significant for Profile, and 7% for MDSS. For

write latency, overhead is 4-90%. Epoxy performs better relative to

a no-transactions baseline on these workloads than on multi-DBMS

TPC-C because they are read-heavy (as the secondary stores we

evaluate are designed for read-heavy workloads) and the overhead

of Epoxy is lower for reads than for writes, as we show in §6.6.

To analyze the performance of Epoxy for write-heavy workloads,

we vary thewrite fraction of Hotel and Shop andmeasure the impact

on maximum throughput for Epoxy and the baseline, showing

results in Figure 10. We find that for both workloads, overhead

increases with write fraction. For the Hotel workload, where all

writes are inserts, overhead increases from 10% at 2% writes to 17%

at 50% writes. For the Shop workload, where writes are an equal

mixture of inserts and updates, overhead increases from 10% at 2%

writes to 72% at 50% writes. Thus, we see that Epoxy overhead is

higher for write-heavy workloads than read-mostly workloads, and

is higher for updates than inserts. We examine this more in §6.6.

6.6 Microbenchmark Analysis
To break down the performance of Epoxy, we analyze microbench-

marks on each secondary store.We insert 1M records into each store

(10K in GCS), then evaluate the performance of point reads, inserts,

and updates with and without Epoxy, observing p50 and p99 la-

tency as we vary offered load. We compare with the no-transactions

baseline. In each microbenchmark, we perform a point operation

in the secondary store but no operation in the primary database.

When using Epoxy, we coordinate this point operation using an

empty transaction in the primary database (except for reads where

we apply the optimization from §3.2). We show results in Figure 11.

We find overhead is lowest for GCS (5% for reads, not significant

for inserts or updates) because the cost of GCS data operations is

far higher than the overhead of the metadata operations used in

transactions. For the other three systems, overhead is 3-21% for

point reads, 25-76% for point inserts, and 120-249% for point updates.

Overhead is higher for updates than for reads and inserts because

performing an update in Epoxy requires not only creating a new

record version but also updating the endTxn field in the most recent

older record version. Overhead is higher for microbenchmarks than

end-to-end benchmarks because end-to-end benchmarks perform

more complex operations, amortizing Epoxy overhead.

We further investigate Epoxy overhead in Figure 12, breaking

down the performance of inserts and updates in MongoDB. We

observe similar trends for Elasticsearch and MySQL. We find that

insert overhead comes largely from checking that no record al-

ready exists with the key to be inserted. Update overhead comes,

as expected, from updating the endTxn field of the most recent

older record version. There is also a small amount of overhead (not

shown) from coordination in the primary database.

Write Conflicts. We next use a microbenchmark to analyze

the impact of write conflicts on performance. We store a varying

number of key-value pairs in Postgres and MongoDB. We then run

a workload of 50% reads and 50% updates, where reads read and

updates update the same uniformly random key in both systems.

We run this workload in Epoxy and the no-transactions baseline,

varying the size of the key space (and thus the frequency of write

conflicts) and observing maximum achievable throughput. We show

results in Figure 13. Performance of both Epoxy and the baseline

decreases as the size of the key space decreases and the frequency

of write conflicts increases. With 100K keys, conflicts are near zero

and Epoxy is 1.5× slower than the baseline. With 100 keys, 78.8%

of Epoxy transactions and 10.7% of baseline Postgres transactions

abort due to a write conflict with a concurrent transaction on the

same key and Epoxy is 1.9× slower than the baseline. With 10

keys, 98.8% of Epoxy transactions and 57.4% of baseline Postgres

transactions abort and Epoxy is 3× slower than the baseline.

2751

0 10K 20K 30K

10

La
te

nc
y

[m
s] a) MongoDB Reads

0 2500 5000 7500 10K

10

b) ES Reads

0 200 400 600
10

c) GCS Reads

0 5000 10K 15K

10

d) MySQL Reads

0 2000 4000 6000

100

La
te

nc
y

[m
s] e) MongoDB Inserts

0 200 400 600 800

100

f) ES Inserts

0 20 40 60 80 100
100

g) GCS Inserts

0 2000 4000 6000 8000
1

h) MySQL Inserts

0 2000 4000 6000
Throughput (QPS)

100

La
te

nc
y

[m
s] i) MongoDB Updates

0 200 400 600 800
Throughput (QPS)

100

j) ES Updates

0 20 40 60
Throughput (QPS)

100

k) GCS Updates

0 2000 4000 6000 8000
Throughput (QPS)

10

l) MySQL Updates

Epoxy p50 Epoxy p99 No Txns p50 No Txns p99

Figure 11: Throughput versus p50 and p99 latency of Epoxy and a no-transactions baseline on microbenchmarks.

Epoxy Server-side Point Insert (1760 μs)

Existence Check
(275 μs)

Record Insert
(1409 μs)

Index Update
(76 μs)

Epoxy Server-side Point Update (4405 μs)

Record Insert
(2032 μs)

Metadata Update
(2297 μs)

Index Update
(76 μs)

Figure 12: Performance breakdowns of Epoxy point inserts
and point updates in MongoDB.

10
1

10
2

10
3

10
4

10
5

Size of Key Space

0

5000

Th
ro

ug
hp

ut
 (T

PS
)

Epoxy No Txns

Figure 13: For a workload of 50% reads and 50% updates on
Postgres and MongoDB, size of key space versus throughput
for Epoxy and a no-transactions baseline.

10 20 30 40 50 60
Number of Cores

0

20K

Th
ro

ug
hp

ut
 (T

PS
)

Epoxy No Txns

Figure 14: For a workload of 50% reads and 50% updates on
Postgres andMongoDB, number of cores on data store servers
versus throughput for Epoxy and a no-transactions baseline.

Scalability. We also use a microbenchmark to assess Epoxy’s

scalability. We store 1M key-value pairs in Postgres and MongoDB,

then run the same workload of 50% reads and 50% updates as in

the write conflicts benchmark while scaling both data store servers

from 8 to 60 cores. We show results in Figure 14. We find Epoxy

scales similarly to the no-transactions baseline.With 8 cores on each

Table 1: Compared to existing cross-data store transactions
protocols, Epoxy provides ACID guarantees while supporting
heterogeneous and potentially non-transactional stores.

A C I D Supported Data Stores

XA [34] ✓ ✓ X ✓ Transactional DBs.

WS-TX [21] ✓ ✓ X ✓ Web services.

Cherry Garcia [12] ✓ ✓ ✓ ✓ KV Stores.

Skeena [35] ✓ ✓ ✓ ✓ Engines inside the same DB.

Epoxy ✓ ✓ ✓ ✓
Any store that provides metadata

filtering and durable writes (§2.1).

database server, Epoxy achieves 3.5K TPS and the baseline achieves

5.3K TPS, a difference of 1.5×. With 60 cores, Epoxy achieves 22K

TPS and the baseline achieves 27K TPS, a difference of 1.2×.

Storage Overhead. Finally, we measure Epoxy storage overhead.

Using Epoxy, we create in MongoDB a collection of 1M documents,

each containing ten integers, one randomized ten-character string,

and a unique string key. Without Epoxy, this collection consumes

118 MB on disk, on average 118 bytes per document. With Epoxy,

this collection consumes 136 MB on disk, on average 136 bytes per

document. Thus, Epoxy adds storage overhead of ~18 bytes per

document, which is reasonable as Epoxy adds to each document

two long fields (beginTxn and endTxn) and creates an index on

beginTxn. We observe similar results in MySQL and Elasticsearch.

7 RELATEDWORK
Cross-Data Store Transaction Protocols. We summarize the

differences between Epoxy and existing cross-data store transaction

protocols in Table 1. Conventionally, cross-data store transactions

are implemented through a distributed transaction protocol such as

X/Open XA [34] or WS-TX [21]. Such protocols use two-phase com-

mit, requiring participating systems to implement its participant

protocol. They provide atomicity but not isolation; for example, it

is possible for a committed transaction to be visible to an active

transaction in one system but not another. Supporting a distributed

transaction protocol requires modifying database internals to sup-

port two-phase commit and is thus only possible in a transactional

database. By contrast, Epoxy does not require modifying systems

and supports diverse non-transactional data stores.

2752

The recent Cherry Garcia protocol [12] provides ACID transac-

tions across heterogeneous key-value stores. Like Epoxy, Cherry

Garcia supports non-transactional data stores and does not re-

quire modification of participating systems. However, unlike Epoxy,

Cherry Garcia supports only key-value operations (reads from and

writes to specific keys) but not other operations such as searches

or aggregations. This is because Cherry Garcia requires the trans-

action manager to also do data management, storing uncommitted

writes in a local key-value cache, redirecting read queries to read

from the cache, then merging the cache into the key-value store

at commit time. By contrast, Epoxy shims manage data in the sec-

ondary store and are transparent to its data model, interposing on

writes only to version records and interposing on reads only to

filter which record versions they see. Omid [15] is a similar protocol

that, like Cherry Garcia, supports only key-value operations.

Skeena [35] provides transactions across multiple engines in the

same database. It provides isolation by ensuring sub-transactions

of different cross-engine transactions follow the same start order

in each engine. Thus, unlike Epoxy, it requires engines natively

support snapshot isolation andmodifies engines to consult Skeena’s

snapshot registry to choose the appropriate snapshot.

Many-Database Systems. Epoxy builds on a rich literature on

many-database systems, including federated databases [27] and

polystores [30]. Supporting transactions across in these systems is

considered an important research challenge [29].

Federated databases [27] such as MYRIAD [16] or super-

databases [26] require participating data stores to implement the

participant protocol of two-phase commit for atomicity (unlike

Epoxy) and cannot provide transactional isolation without impos-

ing strong requirements on participating data stores (for example,

the ticket method [14] requires all participating stores to provide

serializable transactions). Breitbart et al. [7] propose alternatives to

two-phase commit for achieving atomicity, such as redoing aborted

transactions either by retrying them until they succeed or by in-

stalling their writes directly; however, the former is not guaranteed

to succeed while the latter violates isolation. Polypheny-DB [32]

implements transactions using strict two-phase locking, so, un-

like Epoxy, it can only provide transactions if the underlying data

stores offer transaction support. Recently, Faria et al. [13] proposed

a transactional polystore protocol based on MVCC where changes

to a table are stored in local caches until they are visible to all

queries, then are merged into the table. However, unlike Epoxy,

this protocol requires data stores to provide complex operators such

as a left anti-join to integrate cached data into query results; it also

assumes all writes are done atomically at commit time and does

not allow transactions to read their own writes.

Bolt-on Transactions. Database researchers have developed
many protocols for providing strong guarantees as bolt-on proper-

ties for existing data stores. The decision to architecturally separate

transactional safety from data management in Epoxy was influ-

enced by bolt-on causal consistency [4], which uses a shim layer to

provide causal consistency to an eventually consistent data store.

One system related to Epoxy is Percolator [24], which bolts

ACID transactions onto Bigtable [10] using MVCC with two-phase

locking. Like Epoxy, Percolator stores MVCC metadata with data

to facilitate transactions, but while Epoxy provides cross-database

transactions and supports many diverse data stores, Percolator is

designed exclusively for search indexing on Bigtable. Percolator

trades off latency for scale; its lazy lock management can add tens

of seconds of latency to transactions but eliminates the need for a

central lock manager. Epoxy by contrast uses a transactional DBMS

as a central transaction coordinator.

Deuteronomy [19] proposes decomposing a database into sepa-

rate data and transaction components, a separation of transaction

and data management concerns analogous to Epoxy’s architecture.

The Deuteronomy transaction component provides serializable

ACID transactions using MVCC with timestamp ordering. How-

ever, it is co-designed with the Deuteronomy data component and

its dedicated version manager; by contrast, Epoxy shims can bolt

on to diverse and potentially non-transactional data stores.

Middleware systems automatically distribute data and queries

across multiple data stores, providing fault-tolerant replication [8,

23] with guarantees like snapshot isolation [20]. However, these

systems provide distributed capabilities across multiple single-node

data stores of the same type (e.g., multiple MySQL instances [9]),

not transactions across heterogeneous data stores like Epoxy.

Atomic Commit Protocols. Atomic commit protocols guar-

antee that the participants in a transaction either all commit or

all abort. The most popular atomic commit protocol is two-phase

commit, discussed earlier. The Epoxy commit protocol is related

to one-phase commit protocols, which make strong assumptions

about how participating stores manage data so they can validate

a store is ready without an explicit preparation phase [1]. The co-

ordinator log protocol [28] requires each participating database

send its log records to the coordinator so it can recover them in

case of failure, but this is not practical for heterogeneous stores

that cannot manage each other’s log records. The implicit yes-vote

protocol [3] assumes every database employs strict two-phase lock-

ing for concurrency control and forces redo log writes after every

operation so that they are guaranteed to be ready to commit af-

ter all data operations are complete, but many data stores do not

meet these assumptions. The Epoxy commit protocol can deter-

mine if a participant is ready without making these assumptions

because it instead assumes all participants provide durable writes

and use Epoxy concurrency control: a participant is ready if all its

operations are complete and durable and have passed validation.

8 CONCLUSION
In this paper, we have described Epoxy, a protocol for providing

ACID transactions across heterogeneous data stores. Epoxy makes

two contributions: an adaptation of MVCC to a cross-data store set-

ting to provide isolation and a commit protocol providing atomicity

without requiring data stores to implement the participant protocol

of two-phase commit. Epoxy can be implemented by any data store

satisfying two basic requirements: it must support record metadata

filtering and provide durable writes.

REFERENCES
[1] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. 1998. One-phase

commit: does it make sense?. In Proceedings 1998 International Conference on
Parallel and Distributed Systems (Cat. No. 98TB100250). IEEE, 182–192.

[2] Atul Adya. 1999. Weak consistency: a generalized theory and optimistic implemen-
tations for distributed transactions. Ph. D. Dissertation. Massachusetts Institute

2753

of Technology, Dept. of Electrical Engineering and

[3] Y Al-Houmaily and Panos K Chrysanthis. 1996. The implicit-yes vote commit

protocol with delegation of commitment. In Proc. of 9th Intl. Conf. on Parallel
and Distributed Computing Systems. Citeseer.

[4] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-

on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD
’13). Association for Computing Machinery, New York, NY, USA, 761–772.

https://doi.org/10.1145/2463676.2465279

[5] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley Reading.

[6] bitronix authors. 2022. https://github.com/bitronix/btm

[7] Yuri Breitbart, Hector Garcia-Molina, and Avi Silberschatz. 1992. Overview of

Multidatabase Transaction Management. In VLDB Journal 1. 181–239.
[8] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. 2008. Middleware-

Based Database Replication: The Gaps between Theory and Practice. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data
(Vancouver, Canada) (SIGMOD ’08). Association for Computing Machinery, New

York, NY, USA, 739–752. https://doi.org/10.1145/1376616.1376691

[9] Emmanuel Cecchet, Marguerite Julie, and Willy Zwaenepoel. 2004. C-JDBC:

Flexible Database Clustering Middleware. In USENIX Annual Technical Confer-
ence.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.

Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (jun 2008), 26 pages. https://doi.org/10.1145/1365815.1365816

[11] Transaction Processing Performance Council. 2005. Transaction processing

performance council. Web Site, http://www. tpc. org (2005).

[12] Akon Dey, Alan Fekete, and Uwe Röhm. 2015. Scalable distributed transactions

across heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering. 125–136. https://doi.org/10.1109/ICDE.2015.7113278

[13] Nuno Faria, José Pereira, Ana Nunes Alonso, and Ricardo Vilaça. 2021. Towards

Generic Fine-Grained Transaction Isolation in Polystores. In Heterogeneous Data
Management, Polystores, and Analytics for Healthcare. Springer International
Publishing, Cham, 29–42.

[14] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. 1991. On serializability of

multidatabase transactions through forced local conflicts. In [1991] Proceedings.
Seventh International Conference on Data Engineering. 314–323. https://doi.org/

10.1109/ICDE.1991.131479

[15] Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam

Yabandeh. 2014. Omid: Lock-free transactional support for distributed data

stores. In 2014 IEEE 30th International Conference on Data Engineering. 676–687.
https://doi.org/10.1109/ICDE.2014.6816691

[16] S.-Y. Hwang, E.-P. Lim, H.-R. Yang, S. Musukula, K. Mediratta, M. Ganesh, D.

Clements, J. Stenoien, and J. Srivastava. 1994. The MYRIAD Federated Database

Prototype. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data (Minneapolis, Minnesota, USA) (SIGMOD ’94). Association
for Computing Machinery, New York, NY, USA, 518. https://doi.org/10.1145/

191839.191986

[17] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. 2021. Data Management in Microservices: State of the

Practice, Challenges, and Research Directions. Proc. VLDB Endow. 14, 13 (sep
2021), 3348–3361. https://doi.org/10.14778/3484224.3484232

[18] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (dec 2011), 298–309.

https://doi.org/10.14778/2095686.2095689

[19] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui

Wang. 2015. High Performance Transactions in Deuteronomy. In Conference on
Innovative Data Systems Research (CIDR 2015). https://www.microsoft.com/en-

us/research/publication/high-performance-transactions-in-deuteronomy/

[20] Yi Lin, Bettina Kemme, Marta Patiño Martínez, and Ricardo Jiménez-Peris. 2005.

Middleware Based Data Replication Providing Snapshot Isolation. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data (Bal-
timore, Maryland) (SIGMOD ’05). Association for Computing Machinery, New

York, NY, USA, 419–430. https://doi.org/10.1145/1066157.1066205

[21] Oasis. 2009. Web Services Atomic Transaction (WS-AtomicTransaction). https:

//docs.oasis-open.org/ws-tx/wsat/2006/06

[22] Oracle. 2022. Java Transaction API (JTA). https://www.oracle.com/java/

technologies/jta.html

[23] Marta Patiño Martinez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo

Alonso. 2005. MIDDLE-R: Consistent Database Replication at the Middleware

Level. ACM Trans. Comput. Syst. 23, 4 (nov 2005), 375–423. https://doi.org/10.

1145/1113574.1113576

[24] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using

distributed transactions and notifications. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10).

[25] Postgres. 2022. System Information Functions and Operators. https://www.

postgresql.org/docs/current/functions-info.html

[26] C. Pu. 1988. Superdatabases for composition of heterogeneous databases. In

Proceedings. Fourth International Conference on Data Engineering. 548–555. https:

//doi.org/10.1109/ICDE.1988.105502

[27] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for Man-

aging Distributed, Heterogeneous, and Autonomous Databases. ACM Comput.
Surv. 22, 3 (sep 1990), 183–236. https://doi.org/10.1145/96602.96604

[28] JamesW Stamos and Flaviu Cristian. 1993. Coordinator log transaction execution

protocol. Distributed and Parallel Databases 1, 4 (1993), 383–408.
[29] Michael Stonebraker. 2015. The Case for Polystores. https://wp.sigmod.org/?p=

1629

[30] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G. Mattson. 2017.

Enabling query processing across heterogeneous data models: A survey. In

2017 IEEE International Conference on Big Data (Big Data). 3211–3220. https:

//doi.org/10.1109/BigData.2017.8258302

[31] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,

Haibing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Ap-

plications: The Good, the Bad, and the Ugly. In Proceedings of the 2022 In-
ternational Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 4–18.

https://doi.org/10.1145/3514221.3526120

[32] Marco Vogt, Nils Hansen, Jan Schönholz, David Lengweiler, Isabel Geissmann,

Sebastian Philipp, Alexander Stiemer, and Heiko Schuldt. 2021. Polypheny-DB:

Towards Bridging the Gap Between Polystores and HTAP Systems. In Hetero-
geneous Data Management, Polystores, and Analytics for Healthcare. Springer
International Publishing, Cham, 25–36.

[33] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An Empir-

ical Evaluation of In-Memory Multi-Version Concurrency Control. Proc. VLDB
Endow. 10, 7 (mar 2017), 781–792. https://doi.org/10.14778/3067421.3067427

[34] X/Open. 1991. Distributed Transaction Processing: The XA Specification.

[35] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2022. Skeena:

Efficient and Consistent Cross-Engine Transactions. In Proceedings of the 2022
International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 34–48.

https://doi.org/10.1145/3514221.3526171

2754

	Abstract
	1 Introduction
	2 Epoxy Architecture
	2.1 Epoxy Assumptions
	2.2 Epoxy Interface

	3 Epoxy Protocol
	3.1 Epoxy Data Structures
	3.2 Epoxy Transactions
	3.3 Optimistic Concurrency Control
	3.4 Availability and Failure Recovery
	3.5 Garbage Collection

	4 Correctness and Discussion
	4.1 Isolation Correctness
	4.2 Atomicity and Durability Correctness
	4.3 Limitations

	5 Implementation
	5.1 Postgres
	5.2 Elasticsearch
	5.3 MongoDB
	5.4 Google Cloud Storage
	5.5 MySQL

	6 Evaluation
	6.1 Experimental Setup
	6.2 Baselines
	6.3 Experimental Workloads
	6.4 Multi-DBMS TPC-C
	6.5 End-to-end Microservice Benchmarks
	6.6 Microbenchmark Analysis

	7 Related Work
	8 Conclusion
	References

