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ABSTRACT

We introduce EQUI-VOCAL: a new system that automatically syn-

thesizes queries over videos from limited user interactions. The

user only provides a handful of positive and negative examples

of what they are looking for. EQUI-VOCAL utilizes these initial

examples and additional ones collected through active learning to

efficiently synthesize complex user queries. Our approach enables

users to find events without database expertise, with limited label-

ing effort, and without declarative specifications or sketches. Core

to EQUI-VOCAL’s design is the use of spatio-temporal scene graphs

in its data model and query language and a novel query synthesis

approach that works on large and noisy video data. Our system

outperforms two baseline systems—in terms of F1 score, synthesis

time, and robustness to noise—and can flexibly synthesize complex

queries that the baselines do not support.
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1 INTRODUCTION

Video data is increasingly becoming a prized commodity. Inexpen-

sive large-scale video storage and advances in machine learning

and computer vision have propelled the use of large video datasets

with new applications including drone analytics [75, 77], citywide

traffic analytics [2, 26], civil engineering [4, 25], and many oth-

ers [24, 52, 58, 67, 69]. Although video database management sys-

tems (VDBMSs) have recently re-emerged as an active research

area to support these applications [3, 5, 17, 23, 39, 40, 49], existing

systems fall short of supporting many use cases.
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Figure 1: Given 1○ a video dataset, 2○ user-defined functions

that extract semantic information from videos, and 3○ a few

user-provided labels, EQUI-VOCAL synthesizes a query to

find instances of an event of interest. It iteratively 4○ asks

the user for more labels to reduce its uncertainty. Once syn-

thesized, it 5○ executes the query to return matching events

on unseen videos.

Consider a traffic analytics application: A traffic engineer may

want to understand road hazards involving car and motorcycle in-

teractions (e.g., motorcycles swerving abruptly in front of turning

cars). Although many computer vision models exist that detect com-

mon objects (e.g., “cars” and “motorcycles”) [78] and relate objects

spatially (e.g., “bottom of”, “left of”, “near”) [12], a specific classi-

fier that identifies “a motorcycle swerving in front of a car, while

the car is turning at an intersection” is unlikely to exist [80, 82].

Worse, training one would require many hours of user effort in

labeling for a single query. Given the relative rarity of most interest-

ing events, finding sufficient positive instances further exacerbates

these labeling requirements. In our example, there will be many in-

stances of cars and motorcycles in intersections. Only rarely would

a motorcycle swerve in front of a turning car.

Assuming that we can run existing computer vision mod-

els on videos to identify objects, extract attributes, and reason

about their pairwise relationships, some recent video data man-

agement systems support users by providing an interface to ex-

press a declarative query as a composition of extracted informa-

tion [7, 11, 14, 23, 49, 54, 80]. For example, a user might be able

to query for an event using a specification that searches for video

clips containing car and motorcycle objects, and specifying their

desired relationships (near then front_of, etc.). These systems

expect users to possess a level of database expertise to be able to

express such queries. Additionally, real-world events can be difficult

to express declaratively—even for experts. For example, there are

multiple ways to express our sample query. The best way depends
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on the data (e.g., in a given video, motorcycles may be swerving

from outside the frame, as illustrated in Figure 2, discussed later).

Other similar systems ask users to sketch their events [10, 14]; this

is equally challenging for the same reason: an event of interest may

deviate from the exact user-provided sketch.

In this paper, we present EQUI-VOCAL (Figure 1), a system

that addresses the above challenge by synthesizing declarative

queries on behalf of users from a small number of labeled video

segments. Put another way, EQUI-VOCAL Evolves Queries for

Users Iteratively and is part of our larger VOCAL system [19]. In

our example, a user provides as few as two positive and ten negative

examples containing the event of interest (see Section 5). EQUI-

VOCAL then synthesizes a declarative query and executes it on the

remaining large pool of video data to identify other examples of

the desired event.

EQUI-VOCAL supports users’ search for complex events without

requiring any specific domain knowledge, with limited effort, and

without requiring precise declarative specifications or sketches.

Similar to other systems, we use the insight that while most user

queries are new and unseen, they are usually composed of known,

previously seen atoms. Computer vision models for common atoms

already exist such as objects (e.g., “car”, “backpack”) and their spa-

tial and semantic relationships (e.g., “left of”, “holding”). Formally,

such a composition of visual scenes is referred to as a scene graph

in the computer vision community [35, 43] and was developed

from its cognitive grounding in human perception [8, 46, 83]. Key

to EQUI-VOCAL’s contribution is to encapsulate spatio-temporal

scene graphs in its data model and use them to define a query

language. A spatio-temporal scene graph conceptualizes the con-

tents of a video as a sequence of graphs, each graph representing

a single video frame. Each graph contains vertices, which repre-

sent objects in the frame; edges represent the relationships be-

tween those objects. Each object can possess a set of attributes

that describe its properties (e.g., “red”, “leather”). EQUI-VOCAL ex-

tracts relevant data from each video using user-provided functions:

i.e., pre-existing detectors and classifiers; it synthesizes queries

as a composition of extracted scene graph atoms. We show that

EQUI-VOCAL’s data model and query language, both based on the

relational model, can express a variety of compositional queries.

Leveraging scene graphs, EQUI-VOCAL contributes a new query

synthesis approach that finds user events with far fewer labeled

examples than would be required to train a specialized machine

learning model directly, and that works on noisy, video-scale data,

and complex events. To support query synthesis in such environ-

ment, EQUI-VOCAL solves two technical challenges: it reduces

computational effort and user effort.

EQUI-VOCAL reduces computational effort by limiting query

search using scene graphs, by pruning search paths using beam

search, and by avoiding expensive database operations. First, un-

like prior query-by-example techniques that synthesize arbitrary

SQL [22, 48, 59, 70, 73], EQUI-VOCAL reduces the search space by

limiting the query search to sequences of scene graphs. Second,

synthesizing queries over sequences of scene graphs can still be

a computationally slow process to traverse the search space of

possible queries. Existing query-by-example systems enumerate

all possible queries; although pruning techniques like equivalence

Figure 2: Example frames of multiple, simultaneous car-

motorcycle interactions [28]. EQUI-VOCAL represents video

content as a sequence of region graphs in its data model.

Each region graph models a frame (left figure), with nodes

representing objects and edges representing relationships. A

region graph is a subset of the full scene graph (not shown).

classes [71], over-approximation [73], and lifting projection opera-

tors [70] can be used to reduce the search space, these mechanisms

are not sufficient to make exhaustive exploration tractable. Instead,

EQUI-VOCAL adopts a beam search strategy to explore the query

space efficiently. Beam search limits exploration to a subset of the

most promising branches at each step. Third, executing the many

candidate queries on the user examples is prohibitively expensive.

Existing systems [70, 73] evaluate candidate queries with many

joins and thus do not scale well when the size of user examples be-

comes large. EQUI-VOCAL carefully generates efficient queries that

avoid expensive operations such as recursive joins. EQUI-VOCAL

comes with a set of optimizations to generate efficient SQL state-

ments and uses the PostgreSQL database engine to execute them.

EQUI-VOCAL reduces user effort by using active learning and

by being robust to noise. With active learning, EQUI-VOCAL re-

duces the number of labeled examples needed: Instead of asking

a user to provide all examples up front, EQUI-VOCAL iteratively

requests labels of carefully selected additional examples to reduce

the uncertainty in query synthesis. Noise can naturally creep into

systems that interface with user labeling, machine learning models,

and potentially ambiguous real-world events. Distinct from other

existing systems [54, 70], EQUI-VOCAL searches for queries that

best match potentially noisy data and input. It also retains imper-

fect query candidates at every iteration and uses regularization to

prevent overfitting to noise or limited user input.

We evaluate our approach on synthetic and real datasets [5, 81]

and show that it outperforms two baselines [54, 70]—in terms of F1

score, synthesis time, and robustness to data noise—and can flexibly

synthesize complex queries that the baselines do not support. We

also conduct a user study to show the performance of real users

using EQUI-VOCAL.

Overall, EQUI-VOCAL is an important step toward making video

database management systems more accessible to experts and non-

experts alike, by easing the task of expressing queries over videos.

2 EQUI-VOCAL DATA MODEL

This section describes EQUI-VOCAL’s data model and query lan-

guage, which we briefly introduced in our vision paper [19], but

develop in depth here. Section 3 shows how EQUI-VOCAL synthe-

sizes queries from user input using this data model.

For ease of presentation, we use a simplified, running example,

where a traffic engineer seeks to find instances of “a car arriving

from the left and passing a motorcycle at the intersection.” Figure 2
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shows two representative frames from a video that contains such

an event. We show other example queries in Section 5.

2.1 Scene graphs as our data model

EQUI-VOCAL represents a video 𝑉 as a set of short, non-

overlapping video segments, 𝑣 ∈ 𝑉 (5-second segments in our pro-

totype implementation). Each video segment is a sequence of 𝑁

frames {𝑓1, . . . , 𝑓𝑁 }. The visual content of each frame is represented

by a scene graph [43]: A scene graph 𝑔𝑖 = (o𝑖 , r𝑖 ) contains the set
of all objects o𝑖 in a frame, along with a set of all relationships r𝑖

between those objects. Often a scene graph contains more informa-

tion than is necessary to identify an event, and so the literature also

defines a region graph 𝑔𝑖 𝑗 , which is a subgraph of 𝑔𝑖 , i.e., 𝑔𝑖 𝑗 ⊆ 𝑔𝑖 .

Figure 2 (left) shows an example frame and region graph.

We define an object in a frame as 𝑜 = (𝑣𝑖𝑑, 𝑓𝑖 , 𝑜𝑖𝑑, 𝑐𝑖𝑑, 𝑏𝑏𝑜𝑥),
where 𝑓𝑖 is the sequence number of frame 𝑖 in video segment, 𝑣𝑖𝑑 .

𝑜𝑖𝑑 is a unique identifier of the object in the video segment, 𝑐𝑖𝑑 is

the identifier for the class of the object (e.g., “car”, “motorcycle”),

and 𝑏𝑏𝑜𝑥 is the bounding box containing the object in frame, 𝑓𝑖 . A

𝑏𝑏𝑜𝑥 is represented by its upper-left and bottom-right coordinates,

i.e., 𝑏𝑏𝑜𝑥 = (𝑥1, 𝑦1, 𝑥2, 𝑦2).
Objects can have intra-frame relationships defined as 𝑟 =

(𝑣𝑖𝑑, 𝑓𝑖 , 𝑟𝑖𝑑, 𝑜𝑖𝑑sub, 𝑝𝑖𝑑, 𝑜𝑖𝑑tar), where 𝑟𝑖𝑑 is a unique identifier of

the relationship in frame, 𝑓𝑖 . Subject, 𝑜sub, is connected to target,

𝑜tar, with the relationship class identifier, 𝑝𝑖𝑑 (e.g., “near” or “holds”).

Both subject and target belong to frame 𝑓𝑖 : i.e., 𝑜sub, 𝑜tar ∈ o𝑖 .
Objects can have attributes 𝑎 = (𝑣𝑖𝑑, 𝑓𝑖 , 𝑜𝑖𝑑, 𝑘, 𝑣), where 𝑘 is the

name of the attribute, 𝑣 is the value of the attribute, 𝑣𝑖𝑑 , 𝑓𝑖 and

𝑜𝑖𝑑 identify the video segment, frame, and object. EQUI-VOCAL

distinguishes state and property attributes. The former change over

time and are typically computed from the bounding box of an object

(e.g., “location=bottom”). The latter capture intrinsic properties of

objects and are immutable (e.g., “color=red”).

Finally, an event 𝑒 is a temporally ordered sequence of region

graphs 𝑒 = (𝑒𝑖𝑑, {𝑔1, . . . , 𝑔𝑘 }). Region graphs in an event do not

need to be contiguous or distinct.

Example. Suppose that the two frames in Figure 2 are the 10th and

15th frames of a video segment V1, and that the motorcycle and car

are the 7th and 9th objects detected in V1. Then, for the left frame,

we generate the region graph 𝑔1 = (o1, r1), where: o1 = {𝑜11, 𝑜12}
represents the car 𝑜11 = (V1, F10, OID9, car, 𝑏𝑏𝑜𝑥1) and the motor-

cycle 𝑜12 = (V1, F10, OID7,motorcycle, 𝑏𝑏𝑜𝑥2) and r1 = {𝑟11} con-
tains a relationship 𝑟11 = (V1, F10, RID1, OID9, leftOf, OID7). The
car also has an attribute 𝑎11 = (V1, F10, OID9, location, bottom).
We can define the region graph 𝑔2 for the right frame similarly.

The only difference will be the relationship between the object will

indicate that the car is now rightOf the motorcycle. Finally, the

event 𝑒 = (EID1, {𝑔1, 𝑔2}) represents a car arriving from the left

and passing a motorcycle at the intersection.

The relational schema in Table 1 captures the above data model.

The benefit of using a relational schema is that we can execute re-

lational queries to specify region graphs and find events of interest,

which is flexible and follows the well-understood semantics of the

relational model. For each video (or collection of related videos),

EQUI-VOCAL creates a view with this schema. In Section 4 we

describe when and how relations in the view are materialized.

Table 1: Relational schema representation of data model.

Objects(vid, fid, oid, cid, 𝑥1, 𝑦1, 𝑥2, 𝑦2)

Relationships(vid, fid, rid, oid1, pid, oid2)

Attributes(vid, fid, oid, key, value)

To populate each relation, EQUI-VOCAL uses available user-

defined functions (Figure 1). User-defined functions can be provided

by the user or be available publicly in the form of existing machine

learningmodels, such as object detectors. Various user-defined func-

tions can be declared in EQUI-VOCAL: (i) an object detector [62]

that takes a video frame as input and outputs the set of objects

and their bounding boxes, (ii) an object tracking algorithm [78]

that takes objects in consecutive frames as input and, for each pair

of objects, determines if they are the same, and (iii) a set of pre-

trained models (e.g., [12]) or rules that can take two objects in the

same frame as input and determine their relationship (e.g., “near”,

“behind”, “riding”, “holding”) or that can take one object as input

and determine its attributes (e.g., “location=bottom”, “color=red”).

In our experiments, EQUI-VOCAL uses a general-purpose object

detector [31] to locate objects and intrinsic attributes of objects to

generate trajectories across frames [81].

2.2 Scene graphs as our query language

EQUI-VOCAL could execute arbitrary relational queries on the

view defined above. However, this would form an intractable search

space, making query synthesis unusably slow for most real-world

applications. Instead, we define a query language that is more re-

strictive, affording a smaller search space and therefore, faster syn-

thesis. We constrain queries to (i) a temporally ordered sequence

of region graphs, (ii) a set of predicates, (iii) a set of duration con-

straints, (iv) a window specification, and (v) to output video segment

identifiers. Using Datalog and with some abuse of notation, a query

in EQUI-VOCAL can be expressed as:

𝑞(𝑣𝑖𝑑) :- 𝑔1, . . . , 𝑔𝑘 , p, d,𝑤 , where:

• A temporally ordered sequence of region graphs 𝑔1, . . . , 𝑔𝑘
specifies that a matching event consists of 𝑔1, followed by 𝑔2,

followed by 𝑔3, etc. Each 𝑔𝑖 is specified with a set of atoms:

Objects, Relationships, and Attributes joined on a shared
𝑣𝑖𝑑 and 𝑓 𝑖𝑑 . Moreover, each 𝑔𝑖 can persist for multiple frames

and there can be other frames between 𝑔𝑖 and 𝑔𝑖+1.
• A set of predicates p can be applied to objects, relationships,

and attributes. In our example, predicates would specify that

the query is looking for “car” and “motorcycle” objects, that

the car needs to be “left of” then “right of” the motorcycle,

and that the car should be at the “bottom” of the frame.

• A set of duration constraints d can be applied to region graphs

and define the minimum number of contiguous frames that

a region graph 𝑔𝑖 should be valid before transitioning to the

next region graph 𝑔𝑖+1.
• A window specification𝑤 is the maximum number of frames

that can separate 𝑔1 from 𝑔𝑘 .

For example, following the above restricted template, the event

in Section 2.1 can be expressed with the following Datalog rules:
1

1
In this and the following examples we use English words instead of integers for 𝑐𝑖𝑑

and 𝑝𝑖𝑑 values to make the examples more readable
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Table 2: Comparison between compositional VDBMSs.

SVQ++

[11]

Chen

et al.

[16]

Caesar

[49]

STAR

[14]

VidCEP

[80]

CVQL

[45]

Quivr

[54]

Rekall

[23]
Ours

Object detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Object tracking ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relationship ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Attribute ✓ ✓ ✓ ✓

Conjunction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sequencing ✓ ✓ ✓ ✓ ✓ ✓ ✓
Iteration ✓ ✓ ✓ ✓ ✓
Window ✓ ✓ ✓ ✓

Query by example ✓ ✓

g1(vid, fid, oid1, oid2) :-

Objects(vid, fid, oid1, 'car', _, _, _, _),

Objects(vid, fid, oid2, 'motorcycle', _, _, _, _),

Relationships(vid, fid, _, oid1, 'leftOf', oid2),

Attributes(vid, fid, oid1, 'location', 'bottom'), oid1 != oid2.

The above rule will find frames in video segments that contain a

car and a motorcycle, such that the car is on the left of the motorcy-

cle, and the car is at the bottom of the frame, where the intersection

is located. Next, the event will likely consist of a sequence of such

frames, which can be captured with the following recursive rules:

g1_star(vid, fid, fid, oid1, oid2) :- g1(vid, fid, oid1, oid2).

g1_star(vid, fid_start, fid_end, oid1, oid2) :-

g1_star(vid, fid_start, fid, oid1, oid2),

g1(vid, fid_end, oid1, oid2), fid_end = fid + 1.

We could use equivalent rules to define g2 and g2_star. Finally,
the query that returns matching video segments takes the form:

q(vid) :- g1_star(vid, fid11, fid12, oid1, oid2),

g2_star(vid, fid21, fid22, oid1, oid2),

fid21 > fid12, fid22 - fid11 < 1800

The predicate 𝑓 𝑖𝑑21 > 𝑓 𝑖𝑑12 indicates that the second sequence

of region graphs should follow the first one. The predicate allows

for a gap between sequences, which may arise, for example, if

something obstructs the vehicles from the camera’s view. Finally,

𝑓 𝑖𝑑22 − 𝑓 𝑖𝑑11 < 1800 puts a time constraint on the event (a 30-

second time-window, assuming 60 frames per second).

To summarize, EQUI-VOCAL’s query language is a subset of

Datalog with recursion, expressed on a specific schema. In Section 4,

we explain how we avoid executing expensive recursive queries.

2.3 Expressiveness of our data model

We compare the expressiveness of EQUI-VOCAL’s data model

against other compositional video analytics systems in Table 2.

Among them, SVQ++ [11] only supports spatial relationships be-

tween two objects, Chen et al. [16] only supports temporal queries

that count co-occurring objects. Caesar [49], STAR Retrieval [14],

and VidCEP [80] lack the important feature of iteration that allows a
region graph to persist for multiple frames and thus cannot support

duration constraints. CVQL [45] does not track objects and all its

predicates are defined at the object class level. Quivr [54] has similar

expressiveness to us, but is limited to trajectory queries. Rekall [23]

introduces a flexible Python library for video event specification,

but requires that users manually write and refine queries.

Our data model currently does not support tertiary relationships

between three objects, such as “a person hitting a ball with a bat”.

The closest approximation we have is “a person holding a bat” and

“a bat hitting a ball”. We also do not support disjunctions or nega-

tions. Several existing systems have support for these operators.

For example, Chen et al. [16] supports arbitrary CNF queries, Cae-

sar [49] supports disjunctions, and Rekall [23] can flexibly support

all three operators. However, the focus of these systems lies in

query execution, rather than in learning query specifications from

examples, which is the primary focus of this paper.

Datalog and scene graphs serve as the foundation of our query

language. By building on the relational model and Datalog, we en-

sure that our queries have precise and well-understood semantics.

By focusing on queries that specify a desired sequence of region

graphs, we constrain the search space for queries, which accel-

erates synthesis, we are able to optimize the execution of those

queries (compared with trying to support arbitrary recursive Data-

log queries), and we are still able to capture events that occur in

videos, where objects interact with each other in space and time.

3 QUERY SYNTHESIS

With our data model and query language defined, we now for-

mally present the query synthesis problem statement, then describe

all the components of our proposed solution.

3.1 Query synthesis problem statement

Following the aforementioned data model, a user would like to

execute a query 𝑞𝑢 on video database 𝐷 that returns a set of video

segment identifiers, 𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑞𝑢 (𝐷). Given the user’s intended

query, 𝑞𝑢 , each video segment 𝑣𝑖 can be seen as having a ground-

truth label 𝑦𝑖 ∈ {0, 1} indicating whether it matches 𝑞𝑢 . Initially,

both the ground-truth labels and 𝑞𝑢 are unknown because the user

is unable to specify 𝑞𝑢 and can only label video segments as positive

or negative instances. The goal of EQUI-VOCAL is to synthesize

a target query, 𝑞𝑡 ∈ 𝑄 , that is the best approximation of 𝑞𝑢 in its

search space. When executed over database 𝐷 , 𝑞𝑡 should yield the

best measure performance (e.g., F1 score):

𝑞𝑡 = argmax

𝑞∈𝑄
measure(𝑞(𝐷), 𝑞𝑢 (𝐷))

EQUI-VOCAL can request a label from the user 𝑂 : 𝑦𝑖̂ = 𝑂 (𝑣𝑖 ).
Since user labels may be noisy, it is possible that 𝑦𝑖̂ ≠ 𝑦𝑖 . Given that

enumerative search is intractable, EQUI-VOCAL uses a heuristic

approach to find an approximately-best query 𝑞̂𝑡 to the objective,

while reducing both user effort and query synthesis time.

3.2 Query synthesis algorithm overview

Algorithm 1 provides an overview of EQUI-VOCAL’s synthesis

algorithm. It traverses the space of possible queries to synthesize

a final target query that matches the user’s intent. The algorithm

takes as input the set of unlabeled video segments, 𝑈 , and a small

set of labeled segments, 𝐿. 𝐿 is provided by the user and should

include both positive and negative examples of the desired event.

In our experiments, we require as few as two positive and ten

negative examples. While providing these examples requires extra

work from the user, such a setting is common in query-by-example

approaches [22, 54, 61]. We leave starting with zero examples for

future work. The algorithm also takes as input a set of user-defined

functions, 𝑃 , comprised of indicator functions for object classes

(e.g., “car”), relationships (e.g., “near”), and attribute key-value pairs
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Figure 3: Running example of the query synthesis algorithm. The algorithm starts with 𝑞∅ and synthesizes queries by iter-

atively (a) expanding queries, (b) selecting new video segments for the user to label, (c) sampling a small set of queries for

further expansion, and (d) updating a list of top-𝑘 queries after each iteration. The algorithm returns 𝑄𝑡 = {𝑞𝑖 }.

Algorithm 1:Query synthesis algorithm that returns top-𝑘
synthesized queries matching user input.

Input :𝑈 - set of unlabeled video segments

𝐿 - set of labeled video segments

𝑃 - set of user-defined functions

𝑏, 𝑏𝑤, 𝑠𝑞 , 𝑠𝑣 , 𝑘 - hyperparameters

Output :𝑄𝑡 - set of top-𝑘 target queries

1 𝑆 ← {𝑞∅ }
2 while |𝑆 | > 0 do

3 𝑆′ ← {}
4 foreach 𝑞 ∈ 𝑆 do

5 𝑆′ ← 𝑆′ ∪ ExpandQuery(𝑞, 𝑃 )
6 if |𝐿 | < 𝑏 then

7 𝐿,𝑈 ← PickNextSegments(𝐿,𝑈 , 𝑆′)
8 𝑆 ← SampleQueries(𝑆′, 𝐿,𝑏𝑤)
9 𝑄𝑡 ← 𝑄𝑡 ∪ 𝑆′

10 𝑄𝑡 ← RetainTopQueries(𝑄𝑡 , 𝐿, 𝑘)
11 return𝑄𝑡

(e.g., “color=red”). Algorithm 1 enumerates 𝑃 when expanding its

search space.

The algorithm returns a set of target queries,𝑄𝑡 , which is the top-

𝑘 synthesized queries ranked by a performance measure (F1 score

in our prototype implementation) and is updated regularly through

the search process. The learned queries can be applied to unseen

videos to find video segments containing the matching event. By

default, EQUI-VOCAL returns the top-𝑘 queries but then executes

the best one over unseen videos. The user can also randomly sample

one query from𝑄𝑡 , execute multiple queries from𝑄𝑡 and aggregate

the results, or manually examine 𝑄𝑡 to pick the intended query. If

the user is not satisfied with the synthesized query, they can edit it

directly. The user can also restart the search with a larger number

of initial examples by reusing the video segments labeled during

the last session. Moreover, the user could provide a starter query to

EQUI-VOCAL (e.g., a simple query or an earlier query) rather than

starting from an empty query.

To populate 𝑄𝑡 efficiently, EQUI-VOCAL synthesizes queries

in a bottom-up fashion. It starts with an empty query, 𝑞∅ , and
incrementally adds predicates to it, up to a certain complexity

(ExpandQuery method on line 5 and Section 3.3). At each step,

different predicates can be added to a query, expanding the search

in multiple directions. To limit the size of the search space and

ensure fast query synthesis, EQUI-VOCAL adopts a beam search-

style strategy (SampleQueries method on line 8 and Section 3.4).

An important challenge for EQUI-VOCAL is that learning a

query from a small number of user-provided examples is difficult.

To address this challenge, EQUI-VOCAL uses active learning to

effectively guide the query synthesis process and identify good

target queries with limited initial and additional user effort. Specifi-

cally, method PickNextSegments on line 7 and in Section 3.5 uses

active learning to select additional video segments for the user to

label in order to effectively differentiate between multiple candidate

subqueries, and expand the search in the most promising directions.

At the end of each iteration, method RetainTopQueries (line

10 and Section 3.6) maintains a list of top-𝑘 queries seen so far,

which is larger than the number of queries selected for additional

expansion, in case a query seen earlier in the search ends up with

the best score on the final labeled set of segments, or, as mentioned

above, to give users options if they would like to try alternative,

high-performing queries.

The algorithm has several hyperparameters, including a labeling

budget 𝑏 (i.e., the maximum number of labels the user is willing to

provide), the number of candidate queries to retain during explo-

ration 𝑏𝑤 (i.e., the beam width), the number of candidate queries,

𝑠𝑞 , and the number of candidate video segments, 𝑠𝑣 , sampled during

active learning, and the number of queries in the final answer 𝑘 .

Figure 3 illustrates the algorithm using the running example.

3.3 Query expansion

Existing query-by-example systems use sketch-based query synthe-

sis approaches [54, 70, 73] to enumerate candidate queries. A sketch

query is a query with unspecified parts in the form of holes and

these approaches enumerate the search space by first generating

high-level sketch queries and then filling them with low-level de-

tails. However, enumerative search is slow and memory-intensive.

Inspired by execution-guided synthesis approaches [13, 34], which

treat a program as a sequence of manipulations and use the results

of partial programs to guide the search, EQUI-VOCAL explores

the search space based on the results of executing intermediate

queries on the examples. Instead of synthesizing sketch queries

with uninstantiated holes that cannot be executed directly, or di-

rectly applying techniques from [13, 34], which require a large

amount of data to train a neural synthesizer, EQUI-VOCAL expands

queries by adding instantiated and executable constraints, execut-

ing partial queries to assess the promise of each explored path, and

iteratively refining a query towards the target query.

In our synthesis algorithm, method ExpandQuery(𝑞, 𝑃) takes
as input a query 𝑞 to expand, and a set of user-defined functions, 𝑃

2718



to construct more complex queries. The function returns a set of

expanded queries as illustrated in Figure 3(a).

Our query synthesis approach uses a compact query notation,

which can be seen as a DSL. The DSL captures the logical structure

of the queries to synthesize and key query parameters, but omits

the details of the full, underlying SQL (or Datalog). This approach

is important for several reasons: First, since we do not generate

arbitrary SQL, but rather queries that conform to the structure

presented in Section 2.2, the DSL captures that structure precisely,

simplifying the search space and guiding synthesis toward the

correctly-structured queries. Second, this approach helps to de-

couple the logical query specification from the details of the SQL

queries that are ultimately executed. As we present in Section 4,

critical optimizations are necesssary during the translation from

our DSL to SQL to achieve efficient query execution.

In our DSL, we use a variable 𝑜 to represent an object in a query.

Different variables represent objects with different 𝑜𝑖𝑑’s. All pred-

icates of a region graph are connected by commas and are repre-

sented with shorthand notations that specify only their key-value

pairs (for property attributes, e.g., Color(𝑜1, ‘cyan’)), value (for

state attributes, e.g., Bottom(𝑜1)), or class (for objects and relation-

ships, e.g., Car(𝑜1)). Then, region graphs are connected in sequence

with semicolons. For example, the query for the event from Sec-

tion 2.1 can be represented as:

𝑞 =(Car(𝑜1), Motorcycle(𝑜2), LeftOf(𝑜1, 𝑜2), Bottom(𝑜1)) ;
(Car(𝑜1), Motorcycle(𝑜2), RightOf(𝑜1, 𝑜2), Bottom(𝑜1))

We further use the notation Duration(𝑔,𝑑) to require that the

region graph 𝑔 exist in at least 𝑑 consecutive frames.

During query synthesis, EQUI-VOCAL expands queries written

in our DSL. ExpandQuery takes any of the following three actions:
(i) Graph construction (GC): Add a predicate to an existing region

graph. (ii) Sequence construction (SC): Insert a new region graph

consisting of one predicate into any position of the existing se-

quence of region graphs. (iii) Duration refinement (DR): Increment

the duration constraint of an existing region graph in the sequence.

As shown in Figure 3(a), EQUI-VOCAL starts with an empty

query 𝑞0 = 𝑞∅ . In iteration 1, EQUI-VOCAL takes action SC to

expand 𝑞0. This results in 𝑞1 to 𝑞5, each consisting of a single

region graph with one predicate drawn from 𝑃 . In iteration 2 of

Figure 3(a), EQUI-VOCAL first expands 𝑞1 = LeftOf(𝑜1, 𝑜2). Per-
forming action GC leads to 𝑞6 = (LeftOf(𝑜1, 𝑜2), Bottom(𝑜1));
SC leads to 𝑞7 = LeftOf(𝑜1, 𝑜2); Bottom(𝑜1); and DR leads to

𝑞8 = Duration(LeftOf(𝑜1, 𝑜2), 5), assuming the granularity of

Duration is 5 frames.

Deciding which actions to take to expand queries is an important

design decision. We consider both a restrictive rule that constrains

each query to have one construction path and a relaxed rule that

allows each query to be generated through all possible permutations

of actions with multiple construction paths. Our early experiments

showed that the relaxed rule led to better performance. It is thus the

approach that we use. Specifically, GC can add any predicates that

are not already in the region graph (predicates from the same user-

defined function but applied to different variables are considered

as different); SC can insert a new region graph before or after any

existing region graph; DR can increment the duration constraint of

any existing region graph (more details in our technical report [84]).

3.4 Beam search

When traversing the search space, we can greedily expand only the

top query or exhaustively expand all. The former is quick to com-

pute but may not find the target query, while the latter is optimal

but comes with a prohibitive computational cost. EQUI-VOCAL

uses beam search to balance query performance and synthesis effi-

ciency. Beam search has a wide range of applications in problems

with large search spaces [44, 50, 72]. The greedy approach can be

viewed as a special case of the beam search with a beam width of

one, and the exhaustive search is equivalent to having an infinitely

large beam width. Beam search reduces runtime by limiting the

number of explored branches at each iteration. However, the search

outputs are not guaranteed to be optimal. Search quality depends on

how branches are expanded, scored, and pruned. In our approach,

method SampleQueries(𝑆 ′, 𝐿, 𝑏𝑤) retains the top 𝑏𝑤 queries to

expand by evaluating the F1 score of the 𝑆 ′ candidate queries on
the set of labeled video segments 𝐿 (see Figure 3(c)). Prior work has

analyzed the theoretical properties of beam search under certain

assumptions (e.g., monotonicity of scoring functions [53], Bayes

optimality of tree models under approximations [85]). While in this

paper, we directly use the F1 score as the scoring function and to

retain top queries, other more sophisticated scoring functions and

pruning techniques can be used as alternatives [1, 53, 72]. We show

the effectiveness of our synthesis algorithm empirically in Section 5.

3.5 Active learning

One challenge with asking the user for only a handful of examples

of the intended event is that we risk overfitting, but asking the user

to find a larger number of initial examples is difficult. To address

this challenge, we use active learning during query synthesis.

Many active learning methods have been proposed in the lit-

erature with the goal of labeling samples that maximally im-

prove a model trained on those samples, e.g., uncertainty-based

sampling [47], estimated error reduction [64], and core-set ap-

proach [66]. In our work, we use active learning to label samples

that help us identify which candidate queries are better than oth-

ers. To do so, we need to label samples where candidates disagree:

Therefore, we use disagreement-based active learning [42]. At every

iteration, EQUI-VOCAL asks the user for a handful of additional

labels to differentiate between the 𝑏𝑤 queries retained from the

previous iteration. Intuitively, this method picks the video segments

where the retained queries disagree the most. A similar idea ap-

pears in the query-by-committee algorithm [68] and has been used

in other program synthesis systems [36, 54]. EQUI-VOCAL’s con-

tribution is to incorporate active learning in each iteration of the

search process, ensuring an interaction-level labeling experience.

Using active learning reduces the number of data points a user has

to provide; additionally, we posit that it is easier for users to label

system-selected examples than to come up with their own.

During each call to PickNextSegments(𝐿,𝑈 , 𝑆 ′), EQUI-VOCAL
computes a score for a sample of unlabeled video segments𝑈 over

the candidate queries 𝑆 ′ and then picks the video segments with

the largest disagreement. The score of each sampled, unlabeled

video segment is computed as the weighted disagreement between

the candidate queries. The weight of each candidate query is set

to its regularized performance over the labeled set 𝐿 (Section 3.7).
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While the algorithm in [42] is designed for the setting where la-

beling candidates are streamed, EQUI-VOCAL instead maintains a

pool of candidates. Therefore, for each call to PickNextSegments,

EQUI-VOCAL computes the score for a sample of unlabeled video

segments 𝑠𝑣 over a sample of candidate queries 𝑠𝑞 and then picks the

best one. The function updates 𝐿 and𝑈 given the new user labels.

As shown in Figure 3(a), EQUI-VOCAL generates five candidate

queries 𝑞1 to 𝑞5 in iteration 1. Among them, 𝑞1 has the highest score

0.6, while 𝑞2 and 𝑞3 give the same second highest score 0.4. EQUI-

VOCAL requests a new video segment to be labeled (Figure 3(b)),

which distinguishes 𝑞3 from 𝑞2 (Figure 3(c)).

Before query synthesis begins, users can set the labeling budget

as a hyperparameter. EQUI-VOCAL precomputes the number of

iterations of query expansion it will perform and uniformly divides

the labeling budget among iterations. At every iteration, EQUI-

VOCAL asks for new labels only if it has a labeling budget left to do

so; otherwise, it proceeds to synthesize queries without requesting

new labels. EQUI-VOCAL precomputes the number of iterations by

relying on the hyperparameters (Section 4) that bound the search

process and the query expansion rules (Section 3.3), which incre-

ments the complexity of synthesized queries in each iteration.

3.6 Retaining top queries

At the end of each iteration, EQUI-VOCAL updates its list of

candidate final queries in order to retain 𝑘 best performing

ones, as measured by their F1 scores on the labeled dataset.

RetainTopQueries(𝑄𝑡 , 𝐿, 𝑘) evaluates all candidate queries 𝑄𝑡 on

labeled set 𝐿 and returns the top 𝑘 . In Figure 3(d), at the end of

iteration 1, EQUI-VOCAL stores 𝑞1 in 𝑄𝑡 because 𝑘=1, and 𝑞1 has

the highest score. When the algorithm terminates, EQUI-VOCAL

returns 𝑞𝑖 as the final query. In our evaluation, we set the default

value of 𝑘 to 100 (and to 1000 for a more complex dataset), which

ensures both low overhead and high-performing final queries.

3.7 Regularization

EQUI-VOCAL retains top queries using their F1 scores on the

smaller 𝐿 labeled set. This can lead to overfitting since there are

likely too few training examples to accurately evaluate each candi-

date query. To prevent overfitting, we regularize the score of each

candidate query by adding the term: 𝑠𝑐𝑜𝑟𝑒reg (𝑞) = 𝑠𝑐𝑜𝑟𝑒 (𝑞)−𝜆·𝑅(𝑞),
where 𝜆 controls the importance of the regularization term. 𝑅(𝑞)
represents the complexity of the query 𝑞: 𝑅(𝑞) = ∑︁𝑘

𝑖=1

(︁
𝛼1𝑛𝑝𝑖 +

𝛼2𝑛𝑑𝑖 + 𝛼3𝑛𝑑𝑖𝑛𝑝𝑖
)︁
. Here, 𝑘 is the number of region graphs in 𝑞,

𝑛𝑝𝑖 is the number of predicates in the 𝑖th region graph 𝑔𝑖 , and 𝑛𝑑𝑖
denotes the scale of the duration constraint of 𝑔𝑖 . 𝛼1, 𝛼2, and 𝛼3 are

hyperparameters that control the importance of each term.

4 QUERY EXECUTION

As discussed in Section 3.3, we convert queries in our DSL into

SQL and use a relational engine (PostgreSQL in our prototype) to

execute them. In this section, we discuss important optimizations

that we apply during this translation process.

Query translation algorithm. In Section 2.2, we show that

queries over videos are naturally recursive. Such queries, however,

are slow to execute. To avoid recursion, we leverage the observation

that those queries express the idea of iteratively matching a region

graph in a contiguous sequence of frames, rather than arbitrary re-

cursion. Therefore, we can express them using window functions

instead of recursion. As a second optimization, we note that a query

𝑞 in our DSL (Section 3.3) takes as input a set of video segments

𝑉 and returns all segments in 𝑉 containing at least one event that

matches 𝑞. Therefore, instead of finding all satisfying events for

each video segment, the query execution needs to find only one.

We leverage this observation to reduce intermediate result sizes

by producing SQL that efficiently computes the earliest matching

sequences for each region graph specification. This optimization

applies to queries without window specifications and whose du-

ration constraints are of the form “>” or “>=”, which are the only

types of queries that EQUI-VOCAL currently generates.

Caching.We implement an application-level cache to reuse sub-

query results. EQUI-VOCAL generates SQL queries as described

above to find matching region graphs in the sequence specified

by the DSL query one by one. We cache the intermediate results

of all prefixes on the set of video segments to allow other queries

sharing the same sub-queries to reuse the results. For example,

when executing the query 𝑞 = 𝑔1;𝑔2;𝑔3 on video segments 𝑣1 and

𝑣2, we cache the results of 𝑞1 = 𝑔1, 𝑞2 = 𝑔1;𝑔2, and 𝑞3 = 𝑔1;𝑔2;𝑔3
on 𝑣1 and 𝑣2. Later, if a query 𝑞

′ = 𝑔1;𝑔2;𝑔4 is executed on 𝑣1 and

𝑣3, EQUI-VOCAL will reuse the cached results of 𝑞2 = 𝑔1;𝑔2 on 𝑣1.

Bounding the search space. EQUI-VOCAL synthesizes queries

up to a certain maximum size to ensure that the synthesis algo-

rithm eventually terminates. Assume the number of user-defined

functions for object classes and attributes is𝑚1 and the number

of user-defined functions for relationships is 𝑚2. We bound the

query search space using a set of hyperparameters: the maximum

number of region graphs (𝑛𝑔) in a query, the maximum number

of predicates (𝑛𝑝 ) in the query, the number of possible values a

duration constraint can take (𝑛𝑑 ), and the number of unique ob-

jects allowed in a query (𝑛𝑣 ). The size of the search space is then

|𝑄 | = 𝑂 ((𝑛𝑔 (𝑛𝑣𝑚1 + 𝑛2𝑣𝑚2))𝑛𝑝 · 𝑛
𝑛𝑔

𝑑
).

Predicate evaluation. The current implementation of EQUI-

VOCAL populates the Objects relation and the property attributes

in the Attributes relation before query synthesis (see Table 1),

by executing ML models on all video frames. The Relationships
relation and the state attributes in the Attributes relation are

computed lazily during query execution since they do not require

ML models in our prototype, and are thus inexpensive to compute.

In general, optimizing what information is computed before query

synthesis and what is computed lazily is not the focus of this paper.

To simplify SQL query generation, we implement all predicates

(except for join predicates) in EQUI-VOCAL as user-defined func-

tions that take attributes and bounding box coordinates as input

and return boolean values. In our prototype, we use PostgreSQL and

implement user-defined functions for state and relationship predi-

cates that operate on bounding boxes, and for property predicates

that operate on key-value pairs.

While EQUI-VOCAL provides the above user-defined functions,

the user can also provide additional user-defined functions incre-

mentally as they use the system, and they can be shared and reused

across queries and users [76]. In practice, EQUI-VOCAL has to limit

the number of user-defined functions to a reasonable amount to

ensure the efficiency of query synthesis.
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Table 3: Example queries written for the trajectories dataset. “Pos %” is the percentage of positive examples in the dataset.

ID Query Description Pos %

TQ1 (Near(𝑜1, 𝑜2), Bottom(𝑜1)) 𝑜1 is close to 𝑜2 while 𝑜1 is at the bottom. 7.0%

TQ2 Far(𝑜1, 𝑜2) ; Near(𝑜1, 𝑜2) ; Far(𝑜1, 𝑜2) Two objects move from far to close, then to far again. 7.5%

TQ3 Far(𝑜1, 𝑜2) ; (Near(𝑜1, 𝑜2), Behind(𝑜1, 𝑜2)) 𝑜1 and 𝑜2 are far away, then they move close and 𝑜1 is behind 𝑜2 . 12%

TQ4 Far(𝑜1, 𝑜2) ; (Near(𝑜1, 𝑜2), Behind(𝑜1, 𝑜2), Left(𝑜1)) 𝑜1 and 𝑜2 are far apart, then they move close and 𝑜1 is behind 𝑜2 and 𝑜1 is on the left. 6.5%

TQ5 (FrontOf(𝑜1, 𝑜2), Top(𝑜1)) 𝑜1 is in front of 𝑜2 while 𝑜1 is at the top. 45%

TQ6 Near(𝑜1, 𝑜2) ; Far(𝑜1, 𝑜2) Two objects move from close to far apart. 10%

TQ7 (Near(𝑜1, 𝑜2), Left(𝑜1), Behind(𝑜1, 𝑜2)) 𝑜1 is close to and behind 𝑜2 while 𝑜1 is on the left. 8.5%

TQ8 (Far(𝑜1, 𝑜2), Bottom(𝑜1)) ; Near(𝑜1, 𝑜2) 𝑜1 at the bottom is far from 𝑜2 , then they move close. 6.9%

TQ9 (Far(𝑜1, 𝑜2), Left(𝑜1)) ; (Near(𝑜1, 𝑜2), Left(𝑜1)) 𝑜1 and 𝑜2 move from far to close while 𝑜1 is on the left. 10%

TQ1D Duration(Far(𝑜1, 𝑜2), 5) ; Near(𝑜1, 𝑜2) ; Far(𝑜1, 𝑜2) Two objects are far apart for at least 5 frames, then they move close, then they are far again. 5.6%

TQ2D Duration(LeftOf(𝑜1, 𝑜2), 5) ; (Near(𝑜1, 𝑜2), Top(𝑜1)) ;
Duration(RightOf(𝑜1, 𝑜2), 5)

𝑜1 is on the left of 𝑜2 for at least 5 frames, then they move close to each other and 𝑜1 is at the

top, then 𝑜1 is on the right of 𝑜2 for at least 5 frames.

6%

TQ3D Duration( (Frontof(𝑜1, 𝑜2), Left(𝑜1)), 15) ;
Duration( (Left(𝑜1), RightOf(𝑜1, 𝑜2), Top(𝑜1)), 5)

𝑜1 is in front of 𝑜2 while 𝑜1 is on the left for at least 15 frames, then 𝑜1 moves to the right of

𝑜2 while 𝑜1 is at the top left for at least 5 frames.

8.3%

Table 4: Example queries written for the real-world dataset. “# Pos ” is the number of positive examples in the dataset.

ID Query Description # Pos

WQ1,2,3 (LaneA(𝑜1), LaneA(𝑜2), Near(𝑜1, 𝑜2)) 𝑜1 and 𝑜2 are close and in the same lane. 164, 140, 228

WQ4,5,6 (LaneA(𝑜1), HighAccel(𝑜1)) ; (LaneA(𝑜2), HighAccel(𝑜2)) In lane 1, 𝑜1 accelerates rapidly and then 𝑜2 accelerates rapdily. 790, 495, 657

WQ7 (LaneA(𝑜1), LaneB(𝑜2)) ; (LaneB(𝑜1), LaneB(𝑜2)) 𝑜1 is turning from lane A into lane B while 𝑜2 is in lane B. 105

WQ8,9 (LaneA(𝑜1), LaneC(𝑜2)) ; (LaneB(𝑜1), LaneC(𝑜2)) 𝑜1 merges from lane A into lane B while 𝑜2 is in lane C (which is next to lane B). 492, 216

WQ1,2D Duration( (LaneA(𝑜1), LaneB(𝑜2), Near(𝑜1, 𝑜2)), 5) 𝑜1 and 𝑜2 are in adjacent lanes and close for at least 5 frames. 177, 435

WQ3,4D Duration( (LaneA(𝑜1), LaneB(𝑜2), Faster(𝑜1, 𝑜2)), 5) 𝑜1 and 𝑜2 are in adjacent lanes and 𝑜1 is faster than 𝑜2 for at least 5 frames. 471, 148

5 EVALUATION

We conduct an experimental evaluation of EQUI-VOCAL. First,

we show that on both synthetic and real-world datasets, compared

to existing systems, EQUI-VOCAL reduces the query synthesis

time by 1-2 orders of magnitude, achieves comparable or better

F1 scores under the same labeling budget, is more robust to noisy

data, and explores and executes queries more efficiently. Second, we

show that EQUI-VOCAL is capable of synthesizing more complex,

flexible queries over arbitrary scene graphs, which existing systems

cannot handle. Third, We conduct a user study to demonstrate the

effectiveness and usability of EQUI-VOCAL. We further compare

EQUI-VOCAL with a machine learning method and conduct an

ablation study by varying the various design choices outlined earlier.

We defer the details of the ablation study to the technical report [84].

Baselines. To the best of our knowledge, there are no existing

systems that can synthesize queries over scene graphs. The most

similar system to EQUI-VOCAL is Quivr [54], which synthesizes

queries over trajectories. Since object trajectories can be repre-

sented using scene graphs, we compare our system against Quivr.

We also compare against PATSQL [70], which is a state-of-the-art

query-by-example system for relational data.

Predicates. For the synthetic dataset, we use 13 predicates

in experiments: six relationship predicates (Near, Far, LeftOf,
RightOf, FrontOf, and Behind), four state predicates (Left, Right,
Top, Bottom), and three property predicates (Color, Material,
and Shape). We consider eight colors, two materials, and three

shapes. Property predicates are only used for the scene graphs

dataset. For duration constraints, we consider three possible val-

ues: duration(𝑔) ≥ 5, 10, or 15 frames. Section 4 discussed how

EQUI-VOCAL evaluates these predicates. For the real dataset, we

use nine predicates: two relationship predicates (Faster, Near) and
seven state predicates (LaneK, Stopped, HighAccel). LaneK detects
whether a car is in lane K, and we identify five lanes in the video.

Data. We evaluate our system on both synthetic and real-world

datasets. We first evaluate on the CLEVRER dataset [81], which

comprises synthetic videos of moving objects. This dataset includes

a variety of geometric shapes interacting in space and time, and

comes with ground truth data, facilitating testing queries with

varying complexities. We create two benchmarks from this data:

trajectories and scene graphs datasets.

Trajectories dataset. We create a first dataset to test queries

over trajectories, which baseline systems support. We extract

10,080 pairs of object trajectories that overlap in time from

500, 5-second video segments. Each trajectory pair is essen-

tially a temporally ordered sequence of bounding box pairs 𝑏 =

(𝑥𝑎1, 𝑦𝑎1, 𝑥𝑎2, 𝑦𝑎2, 𝑥𝑏1, 𝑦𝑏1, 𝑥𝑏2, 𝑦𝑏2) representing two objects in a

video segment. We manually generate a set of queries with varying

complexities (Table 3). To generate ground truth labels, we run

each target query on the dataset. We sample 500 trajectory pairs as

training data (i.e., data used during query synthesis) and use the

rest as test data (i.e., to measure the quality of synthesized queries).

Scene graphs dataset. This more complex dataset contains scene

graphs extracted from the CLEVRER dataset, which baseline sys-

tems do not support. We extract scene graphs from 10,000, 5-second

video segments. For every frame of a video segment, we store the ob-

ject track ID (𝑜𝑖𝑑), bounding box coordinates, and object attributes

(shape, color, andmaterial) of every object in the frame (the Objects
and Attributes relations in Table 1). We sample 500 video seg-

ments as training data and use the rest as test data.We automatically

generate three classes of queries with different complexities: easy,
medium, and hard. Each generated query contains exactly three

variables (i.e., three distinct objects). Easy queries have exactly three

predicates on relationships and states, one property predicate, one

region graph, and no duration constraints; medium queries have

exactly five predicates on relationships and states, two property

predicates, three region graphs, and no duration constraints; hard

queries have the same complexity as medium queries but also in-

clude duration constraints with three possible values. Each class

contains 40 queries.

Real-world dataset. We test on a 50-minute traffic video from

the YTStreams dataset [5]. The dataset comes with car trajectories,
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Table 5: Query synthesis time (median, in seconds) for eachmethod to achieve at least 0.9 F1 scores. EQUI-VOCAL successfully

learns all queries with at least 0.9 F1 scores and is faster than (or at least comparable to) the two baselines. (NA: not applicable,

—: failed due to insufficient F1 score or timeout)

Method

Simplified Normal

TQ1 TQ2 TQ3 TQ4 TQ5 TQ6 TQ7 TQ8 TQ9 TQ1 TQ2 TQ3 TQ4 TQ5 TQ6 TQ7 TQ8 TQ9 TQ1D TQ2D TQ3D

PATSQL 1.54 — 538 — 4.00 1.93 552 — — NA NA NA NA NA NA NA NA NA NA NA NA

Quivr 10.5 5.77 27.9 94.2 13.5 4.36 47.7 16.7 — 7228 7428 8185 — 7839 3683 — 8756 — — — —

Ours 3.57 1.85 17.1 46.6 4.36 1.66 18.5 22.7 20.6 75.6 125 106 185 50.4 61.1 106 110 107 223 166 183

and we further extract the velocity and acceleration of each car

trajectory as the object attributes, following the same procedure

described in [54]. From the video, We create 72,159 pairs of overlap-

ping car trajectories, using half of them as training data and the rest

as test data. For our evaluation, We adopt 13 queries from [54], with

some adjustments, including the use of a different in-lane detection

method, removal of real-valued parameters from predicates, and

expression of queries using scene graphs, and the introduction of

additional queries with two scene graphs. These queries capture a

wide range of car behaviors (Table 4).

Metrics. We report the F1 score and query synthesis time. We

synthesize queries using the training set and report the F1 score

of the query (or the median F1 score if there are multiple queries

with the same best score on the training set) over the test set.

Each experiment is run 20 times for the trajectories and real-world

datasets and five times for the scene graphs dataset, and we report

the median F1 score and query synthesis time over these runs.

Implementation details.We implement our prototype in Python

with PostgreSQL as the backend.We conduct all experiments except

for the user study on a computing cluster with Intel Xeon Gold

6230R CPUs at 2.10GHz. When measuring runtimes, we request

one node with one core and 100GB of RAM. Unless otherwise

specified, we configure EQUI-VOCAL as follows. For the trajectories

dataset and the real-world dataset, we search for queries with up

to 5 predicates across up to 3 region graphs. We use beam width

𝑏𝑤 = 10, 𝜆 = 0.01 for regularization (with 𝛼1 = 𝛼2 = 1, and 𝛼3 = 0.1,

see Section 3.7), and we set 𝑘 = 100, 𝑠𝑞=100, and 𝑠𝑣 = 100. For the

scene graphs dataset, we search for queries with up to 7 predicates,

3 region graphs, and 3 objects. Since the dataset is more complex

and challenging, we use a smaller 𝜆 (because the query complexity

term, 𝑅(𝑞) has a greater absolute value) and a greater 𝑘 . We use

beamwidth 𝑏𝑤 = 10, 𝜆 = 0.001 for regularization (with 𝛼1 = 𝛼2 = 1,

and 𝛼3 = 0.1), and we set 𝑘 = 1000, 𝑠𝑞=100, and 𝑠𝑣 = 100.

The user study is conducted on an AWS EC2 c6id.4xlarge
instance with 16 vCPUs and 32GB of RAM. We search for queries

with up to 7 predicates, 3 region graphs, and 3 objects. For duration

constraints, we consider three possible values, 25, 50, and 75 frames,

which translate to 1, 2, and 3 seconds. To improve the interactivity

of the system, we use a smaller beam width 𝑏𝑤 = 5 and a smaller

sample of candidate queries 𝑠𝑞 = 25 for active learning. We set

𝑠𝑣 = 100, 𝜆 = 0.001 and 𝑘 = 100.

We consider two variants of Quivr. As per the original paper, we

limit the number of atomic predicates in Quivr’s queries to 5 and the

depth of the nested constructs to 3, which leads to a similar search

space as EQUI-VOCAL.When considering queries without duration

constraints (e.g., TQ1-TQ9), we omit Kleene star operators from its

search space. Otherwise (e.g., TQ1D-TQ3D), we include Kleene star

in the query expansion and add one more predicate MinLength𝜃 ,

which checks whether the duration of the input is at least 𝜃 frames.

Quivr returns all queries that match the examples, so we select the

queries with the simplest structure (which is determined by the

number of atomic predicates, and, if the former is the same, by the

depth) and report their median F1 score.

Because PATSQL requires that all user-provided input tables be

used in the solution query, when comparing against PATSQL, we

restrict all systems to only the candidate predicates that appear

in the target query. Because PATSQL cannot handle large tables

efficiently, we also downsample each trajectory by 75% (we keep

one frame out of four) to reduce the size of the input tables. We

refer to this configuration as simplified tasks.

5.1 Results against baselines on trajectories

We evaluate EQUI-VOCAL against the two baselines on the

trajectories dataset and the set of queries in Table 3. We run each

method as follows. For each target query, we randomly select 2

positive and 10 negative examples from the training set and use

them as the input to the method. Each method then asks for 𝑏

additional examples during the search. For PATSQL, since it is not

interactive, we simply sample 𝑏 more examples randomly from the

remaining dataset and provide the 12 +𝑏 examples to the system at

the beginning. For Quivr and EQUI-VOCAL, we input the 12 initial

examples, and each system actively requests more examples during

the search process.

EQUI-VOCAL is faster than baselines and can find high-

performant queries even for complex queries. Table 5 shows

the query synthesis time of each query to achieve at least a 0.9 F1

score. For simplified tasks, EQUI-VOCAL outperforms baselines

on 6 queries. PATSQL performs the best or close to the best when

queries are simple (TQ1, 5, and 6) because these queries include only

two predicates and PATSQL terminates once it finds one solution

query. Quivr is slower than EQUI-VOCAL but comparable to it

except for TQ9, in which case Quivr fails due to an insufficient F1

score of the synthesized queries. Under the normal setting, EQUI-

VOCAL is significantly more efficient than Quivr and can find

high-performance queries in hundreds of seconds even for complex

queries with duration constraints, while Quivr cannot synthesize

TQ4, TQ7, TQ9, and TQ1D-TQ3D within 4 hours due to the large

number of queries that need to be explored in the enumerative

search. EQUI-VOCAL achieves a faster synthesis time than Quivr

by exploring fewer queries using beam search and by executing

every query faster. For example, for TQ3 under the normal setting,

Quivr explores 221K queries while EQUI-VOCAL only explores

1101 queries, and EQUI-VOCAL executes each query 4.7× faster. We

include the detailed performance results in our technical report [84].

On simplified tasks, EQUI-VOCAL and QUIVR find

queries with similar F1 scores and outperform PATSQL for
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Figure 4: F1 score for TQ1-TQ9 on simplified tasks. PATSQL performs well only for simple queries. EQUI-VOCAL performs

worse than Quivr when no additional examples are requested, but catches up and outperforms it with a larger labeling budget.

Table 6: Probability that a system returns at least one query

on noisy data. (false positive rate is 0.1 of false negative rate)

FN rate 0.1 0.2 0.3 0.4 0.5

Quivr, Mean

(Range)

68%

(20%-100%)

54%

(35%-75%)

47%

(5%-75%)

34%

(5%-55%)

17%

(0%-50%)

Ours, Mean 100% 100% 100% 100% 100%
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Figure 5: Impact of data noise. EQUI-VOCAL constantly out-

performs Quivr and is thus more robust to data noise.

the same labeling budget. Figure 4 shows the F1 score of each

system when varying the user labeling budget on the simplified

tasks (which all systems can perform). We assign an F1 score of 0 if

a system fails to find a query in 1 hour. Across all labeling budgets

tested, as above, PATSQL performs well when the target query is

simplest (TQ1, 5, and 6). For other queries, PATSQL either fails

to find a solution query within 1 hour or the solution query has

low performance (below a 0.9 F1 score). When the budget is 30, we

observe a decrease in F1 scores for TQ3, 7, 8, and 9, because PATSQL

has a less constrained search space than EQUI-VOCAL and does not

scale well when the size of input and output tables increases as more

examples are provided. Quivr performs better than EQUI-VOCAL

when no additional examples are requested (budget=12) because it

enumerates the entire search space and finds all consistent queries

using the initial examples, while EQUI-VOCAL prunes candidate

queries at every iteration to ensure efficient query synthesis. With

a larger labeling budget, EQUI-VOCAL can request more labels

during the search process to select better paths to explore, thus it

catches up with Quivr and outperforms it when the budget is 30.

EQUI-VOCAL is more robust to noisy data and produces

higher quality queries than Quivr. We compare the perfor-

mance of Quivr and EQUI-VOCAL when the data is noisy. We

do not compare against PATSQL since its performance on video

queries is already low even with perfect data. We inject noise into

the original dataset by randomly flipping a fraction of the labels.

We vary the false negative rate from 0.1 to 0.5 and set the false

positive rate to 0.1 the false negative one. Table 6 shows the per-

centage of runs when the system returned any queries for different

30 50 100
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0.0

0.5

1.0

F1
 sc

or
e
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30 50 100
Budget

Medium

30 50 100
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Hard

Figure 6: EQUI-VOCAL can synthesize high-quality queries

within a reasonable budget, even for scene graph queries.

noise rates. We evaluate the systems over 9 queries (TQ1-TQ9) in

the simplified setting. For Quivr, we also report the range of the

success rate besides the mean value. When the false negative rate

is 0.1, Quivr has a 68% success rate, and this goes down to only

17% when the false negative rate is 0.5. In contrast, EQUI-VOCAL

always returns 𝑘 queries. To demonstrate that EQUI-VOCAL also

produces higher quality queries, Figure 5 shows the F1 score of

EQUI-VOCAL and Quivr with a labeling budget of 20, under two

different noise rates. When Quivr fails to return any queries, we

assign an F1 score of 0. EQUI-VOCAL performs better than Quivr

for different queries and different noise rates.

5.2 Results on scene graphs

Next, we evaluate EQUI-VOCAL on the scene graphs dataset.

Neither PATSQL nor Quivr support such flexible queries at video

scale. Because the dataset is more complex, EQUI-VOCAL requires

that the user provide a slightly larger (although still quite small)

number of initial examples to avoid overfitting. We randomly select

15 positive and 15 negative examples from the training set as the ini-

tial examples. In the technical report [84], we discuss how varying

the initial number of examples affects the system performance.

Figure 6 shows the F1 score of EQUI-VOCAL under different

user labeling budgets. With a larger budget, EQUI-VOCAL can

learn queries with higher F1 scores, and achieves a median F1 score

of 1.0, 0.91, and 0.67 for easy, medium, and hard queries when the

budget is 100. Results for a budget of 50 are nearly identical, which

shows that EQUI-VOCAL can synthesize high-quality queries

within a reasonable budget, even for complex queries.

EQUI-VOCAL does not learn good queries in all cases. We note

that some queries are easier to synthesize than others, which results

in the high variance of the F1 score in Figure 6. In particular, EQUI-

VOCAL assumes that the ancestor queries of the target query are

informative and leverages the performance of those queries to guide

the search. However, if the ancestor queries cannot be distinguished

from other queries in the same iteration (because they all have the

same, typically low, F1 score), EQUI-VOCAL struggles with learning

good queries. One direction of future work could explore other
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Figure 7: F1 scores and query synthesis time on the real-

world dataset. EQUI-VOCAL can synthesize queries with

high performance and is significantly faster than Quivr.

Table 7: Quivr’s success rate on the real-world dataset.

Query WQ1 WQ4 WQ7 WQ8 WQ1D WQ3D

Quivr success rate 40% 55% 35% 60% 5% 5%

types of more fine-grained user feedback besides binary labels to

help EQUI-VOCAL learn intermediate queries [65].

EQUI-VOCAL’s query synthesis time on the scene graphs dataset

is greater than on the trajectories dataset. It increases from tens

of seconds (Table 5) to minutes. However, EQUI-VOCAL can

easily be parallelized to reduce synthesis time, as executing

queries in PostgreSQL is embarrassingly parallel. With eight

cores, EQUI-VOCAL achieves a 3.03× speedup and query synthe-

sis time reduces to 13 minutes for the hard, scene-graphs queries

with a labeling budget of 50. The query synthesis time can be fur-

ther reduced by using more cores, further decreasing the labeling

budget, decreasing 𝑏𝑤 , or decreasing 𝑘 . We show more detailed

performance graphs in our technical report [84].

5.3 Results on real-world dataset

We compare EQUI-VOCAL and Quivr on the real-world dataset and

queries in Table 4. We randomly select 2 positive and 10 negative

examples as initial examples. Since the target events are extremely

rare in the dataset, we consider EQUI-VOCAL with two different

𝑠𝑣 values, 100 and 500, to increase the number of sampled positive

examples during active learning.

EQUI-VOCAL outperforms Quivr in terms of F1 scores

and query synthesis time on the real-world dataset. Figure 7

shows the F1 score and query synthesis time of both systems under

different labeling budgets. We only show 6 queries due to space

constraints, but we include full results in the technical report [84].

The timeout is set to 4 hours for both systems. EQUI-VOCAL can

synthesize all queries in hundreds of seconds with a labeling budget

of 30, while Quivr suffers from a low success rate (as shown in Ta-

ble 7) and, even when it succeeds, takes thousands of seconds to

synthesize queries. EQUI-VOCAL performs poorly with a labeling

budget of 12, but with some additional examples, EQUI-VOCAL

can easily achieve higher F1 scores. In addition, sampling more

candidate segments during active learning (𝑠𝑣=500) increases the

F1 score in most cases but also slightly increases the synthesis time.

5.4 User study

We conduct a user study to understand the effectiveness and us-

ability of EQUI-VOCAL. We use internal validation since asking
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Figure 8: User study results. (a) Participants can complete

the task in a reasonable time. (b) Participants can help EQUI-

VOCAL synthesize UQ1-UQ4 with at least 0.8 F1 scores.

participants to provide their own queries would make it difficult

to compare across participants. Our goals include observing the

system performance in the presence of user noise, measure task

completion time, and collect qualitative feedback. We recruited

18 university students studying Computer Science. The study is

conducted over the scene graphs dataset with six query tasks with

different complexities, as shown in Table 8.

We started each session by explaining our definitions of pred-

icates and walking through an example task with participants to

get them familiar with the interface and the task. Each participant

then completed three query tasks in sequence (either UQ1, 3, 5 or

UQ2, 4, 6) with increasing complexity from easy, to medium, to

hard. Each query task described the target complex event using nat-

ural language. In the user study, we provided the initial examples

with ground-truth labels to EQUI-VOCAL so that participants could

focus on interacting with the system during query synthesis. We

randomly selected 10 positive and 10 negative examples for UQ1, 2

and 4 as the initial examples, and 15 for other queries to account for

the increased query complexity. EQUI-VOCAL iteratively selected

video segments to label, with a budget of 50 per task. After each

task, participants reviewed the synthesized queries and provided

subjective ratings and qualitative feedback via a questionnaire.

Participants are able to complete the task in a reasonable

amount of time. Figure 8a shows the task completion time of each

query. The median completion time of each task ranges between

8.6 and 12.3 minutes. The average time to label a video segment for

each query task is 22, 16, 25, 20, 30, and 22 seconds, respectively.

Also, the system time only takes a small portion of the total time,

suggesting that EQUI-VOCAL is efficient.

EQUI-VOCAL is resilient to user noise, whereas Quivr is

not. Figure 8b shows the F1 score of synthesized queries under dif-

ferent labeling scenarios: using the ground-truth labels (Perfect),
using real user labels (User), using injected label noise with a false

negative rate of 0.3 and a false positive rate of 0.03 (Fixed), and
using injected label noise with the same noise rate as users for

each query task (Simulated). Each experiment is run nine times.

F1 scores of User lie between Perfect and Simulated. Due to
the user noise, the query performance decreases compared to using

perfect labels. Because the same error rate is used, Simulated’s
performance is worse or similar to User’s, which justifies our ex-

pectations for the simulation experiment. For queries that EQUI-

VOCAL can synthesize with high quality, participants can

help to find them with at least 0.8 F1 scores. Not surprisingly,

for queries (UQ5 & 6) that EQUI-VOCAL would fail even with per-

fect labels, participants cannot instruct the system to achieve better
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Table 8: Queries used in the user study. “Pos %” is the percentage of positive examples in the dataset.

ID Query Description Pos %

UQ1 (Color(𝑜1, ‘red’), Shape(𝑜2, ‘cylinder’), Far(𝑜1, 𝑜2)) ; Near(𝑜1, 𝑜2) A red object is far from a cylinder, then they get close. 16.7%
UQ2 (Color(𝑜1, ‘purple’), Material(𝑜1, ‘metal’), Behind(𝑜1, 𝑜2), Bottom(𝑜2)) A purple metal object 𝑜1 is behind another object 𝑜2 at the bottom of the screen. 24.2%
UQ3 (Color(𝑜1, ‘red’), Shape(𝑜2, ‘cylinder’), Far(𝑜1, 𝑜2)) ;

(Near(𝑜1, 𝑜2), Top(𝑜3), Right(𝑜3))
A red object is far from a cylinder, then they get close while a third object is at the top

right of the screen.

12.8%

UQ4 (Color(𝑜1, ‘purple’), Material(𝑜1, ‘metal’),
Behind(𝑜1, 𝑜2), Bottom(𝑜2)) ; Top(𝑜2)

A purple metal object 𝑜1 is behind another object 𝑜2 at the bottom of the screen, then

𝑜2 moves to the top.

12.8%

UQ5 Duration( (Color(𝑜1, ‘red’), Shape(𝑜2, ‘cylinder’),
Far(𝑜1, 𝑜2)), 25) ; (Near(𝑜1, 𝑜2), Top(𝑜3), Right(𝑜3))

A red object is far from a cylinder for at least a second, then they are near each other

while a third object is at the top right of the screen.

4.2%

UQ6 (Color(𝑜1, ‘purple’), Material(𝑜1, ‘metal’), Behind(𝑜1, 𝑜2),
Bottom(𝑜2)) ; Top(𝑜2) ; Duration( (Bottom(𝑜3), Right(𝑜3)), 25)

A purple metal object 𝑜1 is behind another object 𝑜2 at the bottom of the screen, then

𝑜2 moves to the top, then a third object 𝑜3 is at the bottom right for at least a second.

3.8%

Table 9: Median F1 scores of EQUI-VOCAL and MLmethods.

EQUI-VOCAL achieves higher F1 scores for all queries.

Queries Ours CLIP MViT CLIP (all) MViT (all)

Easy 0.997 0.249 0.222 0.327 0.322

Medium 0.843 0.201 0.182 0.278 0.255

Hard 0.638 0.219 0.203 0.286 0.265

performance using the current prototype. Interestingly, most video

segments that EQUI-VOCAL selects for hard queries are negative

examples, making it difficult to learn good queries. However, many

participants consider some negative samples to be almost positive
that fail to satisfy one predicate. This suggests that EQUI-VOCAL

could potentially benefit from more fine-grained user feedback.

Participants would like EQUI-VOCAL to be more respon-

sive. In the questionnaire, the average rating of system respon-

siveness is 3.53 out of 5. Although the average system time across

all tasks is only 195 seconds, participants observe greater latency

in early and middle iterations, since there are more branches to

expand and more candidate queries to evaluate. Taking UQ1 as an

example, the average wait time to receive the first video segment

in the 5th iteration is 31 seconds, while in the 10th iteration, it is

only 1.3 seconds. Other techniques can be used to further hide the

latency of the system [20], which is not the focus of this work.

5.5 Comparing with machine learning method

To determine whether a video segment contains an event of inter-

est, EQUI-VOCAL’s query synthesis approach could be substituted

by training an ML model. However, this approach requires a large

number of labeled examples and complicates interpretability [22].

We compare EQUI-VOCAL against an existing ML approach that

builds domain-specific models for videos [20] on the scene graphs

dataset. For EQUI-VOCAL, we adopt the same setting as outlined

in Section 5.2, with a labeling budget of 50. The ML approach ex-

tracts features using pretrained video and image models and trains

a linear model using the same set of user-labeled video segments

selected by EQUI-VOCAL. We use both MViT [21] and CLIP [60] as

the feature extractors. Table 9 shows that EQUI-VOCAL achieves

higher F1 scores than the ML approach for all queries, even

when using CLIP with all 500 training samples.

6 RELATEDWORK

Video analytics systems.Many recent VDBMSs have been pro-

posed and focus on a wide range of data management challenges,

including fast inference over videos [3, 5, 39, 51, 55], storage op-

timization [18, 27, 79], efficient dataflow processing [58], prepro-

cessing and indexing [6, 32, 41], exploration and organization [19],

privacy [9], and tuning configurations [33, 37, 63]. Those techniques

are orthogonal to our work.

Compositional query processing over videos. Several sys-

tems have explored compositional queries over videos [7, 11, 14–

17, 23, 45, 49, 54, 80]. However, they either require that users express

compositional queries explicitly [14, 23, 49], or train customized

models for such events [7, 11, 17]. Instead, EQUI-VOCAL uses a

query-by-example approach to minimize user effort and learn and

refine a query specification iteratively from user feedback.

Accelerating query execution over visual data. Prior work

has focused on accelerating queries by pre-filtering frames to

avoid expensive computation [29, 30, 51], optimizing the sampling

rate [5, 55], and building specialized models [3, 39]. EQUI-VOCAL

currently extracts all objects in a video before the search process,

but could leverage those existing techniques to avoid running ex-

pensive object detection and tracking algorithms on all frames.

Query by example.Many systems have been proposed for SQL

queries over relational data [22, 48, 59, 70, 73]. EQUI-VOCAL fo-

cuses on learning queries for video events, with a more constrained

form than general relational queries. Quivr [54] is most similar to

our work, but it only operates over object trajectories and assumes

noiseless inputs.

Program synthesis. Program synthesis has been used for a

wide range of tasks, such as generating referring relational pro-

grams [34], authoring visualizations [57, 74], learning relational

data transformation [38], and synthesizing programs for string

processing [56]. Unlike these systems, EQUI-VOCAL synthesizes

queries in the video domain, which is significantly different in terms

of the spatio-temporal complexity and the prevalence of noise.

Active learning.Model Picker [42] uses active learning to dis-

tinguish the best model from a set of pretrained classifiers. EQUI-

VOCAL adapts this approach to select the most promising queries

to explore. Quivr [54] also prunes candidate queries using active

learning, but only after enumerating all candidates. In contrast,

EQUI-VOCAL integrates active learning and labeling into the search

process to ensure both synthesis efficiency and query performance.

7 CONCLUSION

In this paper, we presented EQUI-VOCAL, a new system that synthe-

sizes compositional queries from examples. EQUI-VOCAL models

compositional events as spatio-temporal scene graphs, explores the

query search space using results of executing intermediate queries

and beam search, leverages active learning to reduce user effort,

and generates efficient SQL queries to reduce computational effort.
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