
Fast Approximate Denial Constraint Discovery
Renjie Xiao

Fudan University
20210240381@fudan.edu.cn

Zijing Tan∗
Fudan University

zjtan@fudan.edu.cn

Haojin Wang
Fudan University

21210240334@m.fudan.edu.cn

Shuai Ma
Beihang University

mashuai@buaa.edu.cn

ABSTRACT
We investigate the problem of discovering approximate denial con-
straints (DCs), for finding DCs that hold with some exceptions to
avoid overfitting real-life dirty data and facilitate data cleaning
tasks. Different methods have been proposed to address the prob-
lem, by following the same framework consisting of two phases. In
the first phase a structure called evidence set is built on the given
instance, and in the second phase approximate DCs are found by
leveraging the evidence set. In this paper, we present novel and
more efficient techniques under the same framework. (1) We opti-
mize the evidence set construction by first building a condensed
structure called clue set and then transforming the clue set to the ev-
idence set. The clue set is more memory-efficient than the evidence
set and facilitates more efficient bit operations and better cache
utilization, and the transformation cost is usually trivial. We further
study parallel clue set construction with multiple threads. (2) Our
solution to approximate DC discovery from the evidence set is a
highly non-trivial extension of the evidence inversion method for
exact DC discovery. (3) Using a host of datasets, we experimentally
verify our approximate DC discovery approach is on average 8.2 and
7.5 times faster than the two state-of-the-art ones that also leverage
parallelism, respectively, and our methods for the two phases are
up to an order of magnitude and two orders of magnitude faster
than the state-of-the-art methods, respectively.

PVLDB Reference Format:
Renjie Xiao, Zijing Tan, Haojin Wang, and Shuai Ma. Fast Approximate
Denial Constraint Discovery. PVLDB, 16(2): 269-281, 2022.
doi:10.14778/3565816.3565828

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/RangerShaw/FastADC.

1 INTRODUCTION
Data dependencies, a.k.a. integrity constraints, state relationships
between attributes, and are well employed in schema design [3],
data quality management [11, 18], and query optimization [6, 27,
43, 47], among others. The attribute relationship that a dependency

∗Zijing Tan is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.
doi:10.14778/3565816.3565828

Table 1: Relational Instance 𝑟

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺

𝑡1 1 2 3 1 2 apple fruit
𝑡2 1 2 4 2 2 apple vegetable
𝑡3 7 4 5 3 6 banana fruit
𝑡4 7 4 6 4 6 banana fruit
𝑡5 6 5 9 6 10 cabbage vegetable

can specify depends on the type of the dependency. Denial con-
straints (DCs) are proposed [8], as a generalization of many other
dependencies. DCs can express the attribute relationships that these
dependencies can specify, and more beyond them.
Example 1: On the relational instance 𝑟 given in Table 1, (a) a
functional dependency (FD) can state that tuples with the same
value in attribute 𝐴 also have the same value in attribute 𝐵; (b) a
unique column combination (UCC) can state that no distinct tuples
can agree on their values in both attributes 𝐴 and 𝐶; and (c) an
order dependency (OD) [46, 48] can state that for any two tuples,
the tuple with a larger value in attribute𝐶 also has a larger value in
attribute 𝐷 . Using the notations of DCs (the formal definition will
be reviewed in Section 3), we can specify all the above-mentioned
attribute relationships as follows.
(a) ∀𝑡, 𝑠 ∈ 𝑟 , ¬(𝑡 .𝐴 = 𝑠 .𝐴 ∧ 𝑡 .𝐵 ≠ 𝑠 .𝐵).
(b) ∀𝑡, 𝑠 ∈ 𝑟 , ¬(𝑡 .𝐴 = 𝑠 .𝐴 ∧ 𝑡 .𝐶 = 𝑠 .𝐶).
(c) ∀𝑡, 𝑠 ∈ 𝑟 , ¬(𝑡 .𝐶 > 𝑠 .𝐶 ∧ 𝑡 .𝐷 ≤ 𝑠 .𝐷).

Specifically,DCs support a rich set {<, ≤, >, ≥,=,≠} of comparison
operators, and the comparison can be across attributes. For example,
DCs can specify the following attribute relationship.
(d) ∀𝑡, 𝑠 ∈ 𝑟 , ¬(𝑡 .𝐵 = 𝑠 .𝐷 ∧ 𝑡 .𝐸 ≠ 𝑠 .𝐸): if the value of attribute 𝐵 in
a tuple is the same as that of attribute 𝐷 in another tuple, then the
two tuples have the same value in attribute 𝐸. □

DCs in data are usually unknown. This is why discovery methods
for DCs have received much attention [5, 7, 31, 34, 35], aiming at
automatically finding DCs. Since DCs generalize many other de-
pendencies, discovering DCs indeed enables us to discover all of
them in one pass, instead of discovering them one by one with their
specialized methods, e.g., [13, 28, 33, 50, 52] for FDs, [4, 17] for UCCs,
and [9, 20–22, 29, 44, 45] for ODs. Compared with other depen-
dencies, the rich expressiveness of DCs comes with a much larger
search space for DC discovery. As noted in [7], DC discovery has a
search space exponential in the number of predicates, in contrast
to most other dependencies that have a search space exponential
in the number of attributes. As will be illustrated in Section 3, the
number of predicates is much larger than that of attributes, since

269

https://doi.org/10.14778/3565816.3565828
https://github.com/RangerShaw/FastADC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565828
https://www.acm.org/publications/policies/artifact-review-and-badging-current

each predicate can use one of the six comparison operators on a
pair of comparable attributes, and two different attributes can be
comparable. The huge search space makes it very difficult for DC
discovery methods to scale well with real-world datasets.

Worse, it is well known real-life data often contain errors. Hence,
DCs holding on data with some exceptions may be meaningful and
valuable, while DCs holding on data may actually overfit.
Example 2: All the DCs given in Example 1 hold on the relational
instance 𝑟 . Now consider another DC: ∀𝑡, 𝑠 ∈ 𝑟 , ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧
𝑡 .𝐺 ≠ 𝑠 .𝐺). This DC is violated by two tuple pairs (𝑡1, 𝑡2) and (𝑡2, 𝑡1).
Intuitively, some measures are needed to judge whether this DC
should be regarded as an approximate DC holding on 𝑟 . One of the
most common error measures, namely 𝑔1 [7, 26, 31, 35], is defined
as the proportion of violating tuple pairs. The DC has the error rate
of 2/20 = 0.1 for 𝑔1. If an error threshold 𝜖 = 0.1 is used, then this
DC is a valid approximate DC. This DC is also minimal, since the
error rates of ¬(𝑡 .𝐹 = 𝑠 .𝐹) and ¬(𝑡 .𝐺 ≠ 𝑠 .𝐺) are greater than 𝜖 .

Exact DC discovery methods for finding DCs holding on 𝑟 will
miss ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺), but discover, e.g., ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠

𝑠 .𝐺 ∧ 𝑡 .𝐷 = 𝑠 .𝐷) and ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺 ∧ 𝑡 .𝐵 ≠ 𝑠 .𝐵). These
DCs overfit the instance. ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺) can help identify
violations in 𝑟 ; the value of attribute𝐺 in 𝑡2 is likely to be “fruit”. □

DCs that hold on data with some exceptions are approximate
DCs. They are, in particular, well employed in data cleaning [8,
10, 14–16, 23, 38]. We study discovering approximate DCs in this
paper. Approximate DC discovery subsumes exact DC discovery as a
special case, and is necessarily more difficult. In contrast to exact DC
discovery that concerns the satisfaction of DCs (decision problem),
approximate DC discovery measures the degree of satisfaction of
DCs (counting problem). All of the existing works on approximate
DC discovery adopt the same two-phase framework proposed in [7].
A structure, namely evidence set, is built on the given instance in the
first phase, and DC discovery is then conducted by leveraging the
evidence set in the second phase. We adopt the same framework,
but present novel and more efficient techniques for both phases.

Contributions & Organizations.
(1) We present a novel solution to the evidence set construction,
by first building a condensed structure called clue set and then
transforming the clue set to the evidence set (Section 4). Compared
with the evidence set, the smaller memory footprint of the clue set
enables more efficient bit operations and better cache utilization,
and the transformation from the clue set to the evidence set has
a cost irrelevant of the size of the instance. We also propose to
partition the instance, which facilitates efficient parallel clue set
construction with multiple threads.
(2) We present a novel method to discover the set of approximate
DCs from the evidence set (Section 5). Our method is a highly non-
trivial extension of the evidence inversion method [5] for exact DC
discovery, and is combined with several effective pruning rules to
improve the efficiency.
(3) We conduct extensive experimental evaluations to verify our
approach (Section 6). The results show that our approximate DC
discovery method is on average 8.2 and 7.5 times faster than the
two state-of-the-art ones that also leverage parallelism, and that
our new solutions to evidence set construction and approximate DC

discovery from the evidence set are up to an order and two orders
of magnitude faster than the state-of-the-art methods, respectively.

In addition, our solution to approximate DC discovery from the
evidence set can be easily generalized to solve the problem of ap-
proximate set cover (hitting set) enumeration [31]. Set cover enu-
meration is a fundamental problem in computer science and widely
studied in different domains [12, 30].

2 RELATEDWORK
Please refer to [1, 2] for surveys of dependency discovery tech-
niques. In this section, we investigate works close to ours.

Approximate DC discovery. To our best knowledge, approximate
DC discovery methods are studied in [7, 31, 34, 35]. All these meth-
ods are based on the same framework consisting of two phases [7].
In the first phase, a structure, namely evidence set, is built on the
given instance 𝑟 , and in the second phase DC discovery on 𝑟 is recast
as the enumeration of approximate set covers of the evidence set of 𝑟 .
This framework is suitable for DC discovery, since it avoids DC vali-
dations that are costly for inequality comparisons [24, 25, 36, 37, 49].

Existing methods differ in their implementations. For the first
phase, [7] gives the baseline method that requires to check every
predicate against every tuple pair of 𝑟 . This method is improved
in [34], by using bit-level operations to avoid unnecessary tuple
comparisons. [35] further uses auxiliary structures to only com-
pute predicates satisfied by tuple pairs, based on the selectivity of
predicates. Building evidence set is expensive, with a cost quadratic
in |𝑟 | (the number of tuples of 𝑟). Hence, parallel computation tech-
niques are developed in [7, 35] to further improve the efficiency.
The method proposed in [35] is experimentally verified to be the
state-of-the-art technique for the evidence set construction.

For the second phase, a depth-first search (DFS) procedure for
enumerating all approximate set covers is presented in [7], which is
also used in [34, 35] later. Recently, [31] adapts the state-of-the-art
hitting set enumeration algorithm MMCS [32] to enumerate all
approximate hitting sets. This is possible because set cover enumer-
ation is equivalent to hitting set enumeration [12, 30]. The overall
performance of [31] is usually similar to that of [35], because evi-
dence set construction takes most of the time of DC discovery on
most datasets, and [31] uses the same method as [35] for evidence
set construction in the first phase.

This work differs in the following. (1)We present a novel solution
to evidence set construction, by first efficiently building the clue
set and then transforming the clue set to the evidence set. We
also develop methods to partition the data instance 𝑟 such that
clue set construction can be conducted with multiple threads in
parallel. (2) We give a novel method for finding approximate DCs
from the evidence set. It is a highly non-trivial extension of the
technique of evidence inversion [5]. Taken together, our approximate
DC discovery method significantly outperforms the ones of [31, 35]
that also leverage parallelism with multiple threads.

Measure of DC violations. An approximate DC is valid on an in-
stance 𝑟 , when the measure of violations of the DC is below a given
threshold. There are different measures in the literature, namely
𝑔1, 𝑔2 and 𝑔3; they are originally proposed for functional dependen-
cies [26]. Except for [31] that studies all the three measures for DCs,
all the other works consider only 𝑔1. As noted in [31], the measure

270

Table 2: Operator Inverse

𝑜𝑝 = < > ≤ ≥ ≠

𝑜𝑝 ≠ ≥ ≤ > < =

of 𝑔2 can be too sensitive in practice, and the computation of 𝑔3 for
DC is beyond reach (NP-Hard). Hence, we focus on 𝑔1 in this paper.

Ranking DCs. The number of discovered DCs can be large, since
DCs subsume many other dependencies. Therefore, ranking func-
tions are studied in [7, 35] to help users select relevant DCs. All the
ranking functions can be combined with our method, along the
same lines as [7, 35]. The measure of succinctness is used to prune
DCs with (too) many predicates, but it only affects the efficiency of
the second phase. All the other ranking functions are typically used
in a post-processing step after all DCs are discovered, and improve
the effectiveness but not the efficiency of DC discovery methods.

Exact DC discovery. A different line of work is on exact DC dis-
covery, for finding DCs valid on data without exceptions. Exact DC
discovery is a special case of approximate DC discovery. Leveraging
the evidence set built in the first phase, exact DCs can be found
by enumerating (exact) set covers instead of approximate ones in
the second phase, as studied in [7, 34, 35]. Our approach can be
modified for discovering exact DCs along the same lines.

There are no violations of exact DCs on any part of the instance.
Capitalizing on this feature, a hybrid strategy is proposed in [5] that
combines DC discovery on small sample with further refinement
based on DC violations on the full instance. Similar strategies are
also employed to discover other exact dependencies [21, 33, 41].
This strategy does not directly apply to approximate DC discovery,
since an approximate DC holding on the whole instance does not
guarantee to hold on a part of the instance.

3 PRELIMINARIES
In this section, we review basic notations of DCs (Section 3.1) and
the framework of approximate DC discovery (Section 3.2).

3.1 Basic definitions
We use the common notations. 𝑅 denotes a relational schema (an
attribute set), 𝑟 denotes a specific instance (relation) of 𝑅, 𝑡 and 𝑠
denote tuples from 𝑟 , and 𝑡 .𝐴 denotes the value of attribute 𝐴 in a
tuple 𝑡 . We assume each tuple has a distinct identifier. A rich set
of comparison operators, i.e., {<, ≤, >, ≥,=,≠}, can be used in DCs.
We denote by 𝑜𝑝 the inverse of an operator 𝑜𝑝 , shown in Table 2.

Recent studies on DC discovery [5, 31, 34, 35] focus on variable
DCs concerning two tuples, formally defined as follows.

Denial constraints (DCs). DCs are defined based on predicates.
Each predicate 𝑝 is of the form 𝑡 .𝐴𝑖 𝑜𝑝 𝑠.𝐴 𝑗 , where 𝑡 , 𝑠 ∈ 𝑟 , 𝑡 ≠
𝑠 (different identifiers), 𝐴𝑖 , 𝐴 𝑗 ∈ 𝑅, and op ∈ {<, ≤, >, ≥,=,≠}. The
comparison is on the same attribute if 𝑖 = 𝑗 . Otherwise, it is across
two attributes.Wewrite 𝑝1 ∼ 𝑝2 if 𝑝1 .𝐴𝑖 = 𝑝2 .𝐴𝑖 and 𝑝1 .𝐴 𝑗 = 𝑝2 .𝐴 𝑗 ,
i.e., 𝑝1, 𝑝2 are predicates concerning the same attribute pair, and
𝑝1 ≁ 𝑝2 otherwise. For 𝑝 = 𝑡 .𝐴𝑖 𝑜𝑝 𝑠.𝐴 𝑗 , 𝑝 denotes 𝑡 .𝐴𝑖 𝑜𝑝 𝑠.𝐴 𝑗 .

A DC 𝜑 on an instance 𝑟 is defined as follows: ∀𝑡, 𝑠 ∈ 𝑟 , ¬ (𝑝1 ∧
· · ·∧𝑝𝑚), where 𝑝1, . . . , 𝑝𝑚 are predicates concerning 𝑡, 𝑠 . The tuple
quantifiers 𝑡, 𝑠 are omitted when they are clear from the context.

We say 𝜑 is valid (holds) on 𝑟 , iff for every tuple pair (𝑡, 𝑠) where 𝑡, 𝑠
are from 𝑟 , at least one of 𝑝1, . . . , 𝑝𝑚 is not satisfied. A tuple pair
(𝑡, 𝑠) violates 𝜑 , if the pair satisfies every 𝑝𝑖 (𝑖 ∈ [1,𝑚]).

Along the same setting as previous works [5, 7, 31, 34, 35], in
the sequel we consider DCs that do not contain predicates 𝑝1, 𝑝2
such that 𝑝1 ∼ 𝑝2. Recall 𝑝1 ∼ 𝑝2 implies that they are predicates
with different operators on the same attribute pair. A DC with such
predicates can always be neglected or simplified. For example, (a) a
DC with both 𝑡 .𝐴 > 𝑠 .𝐴 and 𝑡 .𝐴 < 𝑠 .𝐴 always holds and is trivial
(an inference rule from [7]). (b) A DC 𝜑 with both 𝑡 .𝐴 > 𝑠 .𝐴 and
𝑡 .𝐴 ≥ 𝑠 .𝐴 is equivalent to the DC 𝜑 ′ that removes 𝑡 .𝐴 ≥ 𝑠 .𝐴 from 𝜑 .

An approximate DC can hold with exceptions, where the excep-
tions are measured by some criteria.

Error measure 𝑔1. The measure of 𝑔1 is originally proposed for
FDs [26], and is extended to DCs [7, 31, 35]. The 𝑔1 value of a given
DC 𝜑 on an instance 𝑟 , denoted by 𝑔1 (𝜑, 𝑟), is defined as the ratio
of the number of violating tuple pairs to the total number of tuple
pairs of 𝑟 . That is, 𝑔1 (𝜑, 𝑟) = | { (𝑡,𝑠) | (𝑡,𝑠) ∈ 𝑟

2 ∧ (𝑡,𝑠) 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑠 𝜑 } |
|𝑟 |2−|𝑟 |

Approximate DC. Given an error threshold 𝜖 , a DC 𝜑 is an ap-
proximate DC valid on 𝑟 iff 𝑔1 (𝜑, 𝑟) ≤ 𝜖 . 𝜑 is minimal if there does
not exist a distinct 𝜑 ′ such that (a) the set of predicates of 𝜑 ′ is a
proper subset of that of 𝜑 , and (b) 𝜑 ′ is an approximate DC valid on
𝑟 . Note the minimality of approximate DCs is defined following the
Augmentation inference rule of [7].

Approximate DC discovery [7, 31, 34, 35]. Given a relation 𝑟

of schema 𝑅 and an error threshold 𝜖 , the aim of approximate
DC discovery is to find the complete set Σ of minimal and valid
approximate DCs on 𝑟 w.r.t. 𝜖 .

3.2 Framework of approximate DC discovery
We review the framework that is employed by all of the existing
approximate DC discovery methods [7, 31, 34, 35]. It consists of two
phases. In the first phase, a structure, namely evidence set, is built
on 𝑟 . In the second phase, approximate DC discovery on 𝑟 is recast
as approximate minimal set cover (hitting set) enumeration of the
evidence set of 𝑟 . We review the definition of predicate space first.

Predicate space. For a given instance 𝑟 , the space of approximate
DCs is measured by the predicate space P, i.e., the set of all pred-
icates that are allowed on 𝑟 . As noted in [7, 35], a predicate is
meaningful when a proper comparison operator is applied to a pair
of comparable attributes. Specifically, (1) all the six operators, i.e.,
{<, ≤, >, ≥,=,≠} can be used on numerical attributes, e.g., age and
salary, but only “=” and “≠” can be used on categorical attributes,
e.g., sex and phone number. (2) Two attributes are comparable if (a)
they are the same, or (b) they have the same type and at least 30%
of common values. Based on the rules, the predicate space P can
be determined in the pre-processing step of DC discovery.
Example 3: In Table 3, we give part of the predicate space P for
the instance 𝑟 from Table 1. Specifically, (a) all the six operators
are used on numerical attribute 𝐵; (b) only “=” and “≠” are used
on categorical attributes 𝐹 and 𝐺 ; and (c) all the six operators are
used for comparisons across attributes 𝐵 and 𝐷 ; attributes 𝐵 and 𝐷
share more than 30% of common values. □

271

Table 3: Sample of Predicate Space

𝑝1:𝑡 [𝐵] ≥ 𝑠 [𝐵] 𝑝2:𝑡 [𝐵] > 𝑠 [𝐵]
𝑝3:𝑡 [𝐵] ≤ 𝑠 [𝐵] 𝑝4:𝑡 [𝐵] < 𝑠 [𝐵]
𝑝5:𝑡 [𝐵] = 𝑠 [𝐵] 𝑝6:𝑡 [𝐵] ≠ 𝑠 [𝐵]
𝑝7:𝑡 [𝐹] ≠ 𝑠 [𝐹] 𝑝8:𝑡 [𝐹] = 𝑠 [𝐹]
𝑝9:𝑡 [𝐺] ≠ 𝑠 [𝐺] 𝑝10:𝑡 [𝐺] = 𝑠 [𝐺]
𝑝11:𝑡 [𝐵] ≠ 𝑠 [𝐷] 𝑝12:𝑡 [𝐵] = 𝑠 [𝐷]
𝑝13:𝑡 [𝐵] ≥ 𝑠 [𝐷] 𝑝14:𝑡 [𝐵] > 𝑠 [𝐷]
𝑝15:𝑡 [𝐵] ≤ 𝑠 [𝐷] 𝑝16:𝑡 [𝐵] < 𝑠 [𝐷]

Evidence set [7]. Given a predicate space P, the evidence 𝑒𝑣𝑖 (𝑡, 𝑠)
of a tuple pair (𝑡, 𝑠) is the set of predicates from P satisfied by
(𝑡, 𝑠), and the evidence set 𝑒𝑣𝑖𝑟 of 𝑟 is the set of evidences for all (𝑡, 𝑠),
where 𝑡, 𝑠 are from 𝑟 . Note different tuple pairs can produce the same
evidence. To facilitate approximate DC discovery, a count 𝑐𝑛𝑡 (𝑒)
is associated with each evidence 𝑒 in 𝑒𝑣𝑖𝑟 , denoting the number of
tuple pairs (𝑡, 𝑠) such that 𝑒𝑣𝑖 (𝑡, 𝑠) = 𝑒 .
Example 4: For the predicate space in Table 3, we show some evi-
dences of tuple pairs. (a) 𝑒𝑣𝑖 (𝑡1, 𝑡2) = {𝑝1, 𝑝3, 𝑝5, 𝑝8, 𝑝9, 𝑝12, 𝑝13, 𝑝15},
𝑒𝑣𝑖 (𝑡2, 𝑡1) = {𝑝1, 𝑝3, 𝑝5, 𝑝8, 𝑝9, 𝑝11, 𝑝13, 𝑝14}; (b) 𝑒𝑣𝑖 (𝑡2, 𝑡3) = 𝑒𝑣𝑖 (𝑡2, 𝑡4)
= 𝑒𝑣𝑖 (𝑡1, 𝑡5) = {𝑝3, 𝑝4, 𝑝6, 𝑝7, 𝑝9, 𝑝11, 𝑝15, 𝑝16}, and hence the count
of this evidence is 3 in 𝑒𝑣𝑖𝑟 . □

In the formal notations, 𝑒𝑣𝑖𝑟 is a subset family {𝑒1,. . . ,𝑒𝑘 } defined
on P. A set cover of 𝑒𝑣𝑖𝑟 is a subset 𝑋 of P such that 𝑋 ∩ 𝑒𝑖 ≠ ∅
for every 𝑒𝑖 from 𝑒𝑣𝑖𝑟 . To make 𝜑 = ¬ (𝑝1 ∧ · · · ∧ 𝑝𝑚) a DC valid on
𝑟 (without exceptions), the set of {𝑝1, . . . , 𝑝𝑚 } must be a set cover
of 𝑒𝑣𝑖𝑟 [7]. That is, every tuple pair from 𝑟 satisfies at least one 𝑝𝑖
(𝑖 ∈ [1,𝑚]) and hence does not satisfy at least one 𝑝𝑖 .

The case of approximate DCs is more complicated, since an ap-
proximate DC can be violated by some tuple pairs. Given an error
threshold 𝜖 , the following result [7] states the connection between
an approximate DC valid on 𝑟 and 𝑒𝑣𝑖𝑟 .
Proposition 1: ¬ (𝑝1 ∧ · · · ∧ 𝑝𝑚) is an approximate DC valid on 𝑟 ,
iff for all 𝑒 ∈ 𝑒𝑣𝑖𝑟 such that 𝑒 contains at least one 𝑝𝑖 (𝑖 ∈ [1,𝑚]),∑︁

𝑐𝑛𝑡 (𝑒) ⩾ (1 − 𝜖) × (|𝑟 |2 − |𝑟 |).
Example 5: Consider the DC: ¬(𝑡 .𝐹 = 𝑠 .𝐹∧𝑡 .𝐺 ≠ 𝑠 .𝐺). The set of in-
verse predicates of this DC is {𝑝7, 𝑝10}. Among all the evidences (not
shown), only {𝑝1, 𝑝3, 𝑝5, 𝑝8, 𝑝9, 𝑝12, 𝑝13, 𝑝15} and {𝑝1, 𝑝3, 𝑝5, 𝑝8, 𝑝9,
𝑝11,𝑝13, 𝑝14}, i.e., 𝑒𝑣𝑖 (𝑡1, 𝑡2) and 𝑒𝑣𝑖 (𝑡2, 𝑡1), do not intersect with this
set, and they both have the count of 1. Hence, the accumulated
count of all the evidences that intersect with {𝑝7, 𝑝10} = 20 - 2 =
18. If the error threshold 𝜖 = 0.1, then we know ¬(𝑝7 ∧ 𝑝10), i.e.,
¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺), is a valid approximate DC.

In contrast, ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺 ∧ 𝑡 .𝐷 = 𝑠 .𝐷) is a valid DC
without exceptions; the set of inverse predicates of it intersects with
every evidence in 𝑒𝑣𝑖𝑟 . So is ¬(𝑡 .𝐹 = 𝑠 .𝐹 ∧ 𝑡 .𝐺 ≠ 𝑠 .𝐺 ∧ 𝑡 .𝐵 ≠ 𝑠 .𝐵). □

Approximate DC discovery with approximate set cover enu-
meration. Proposition 1 states that the set of inverse predicates
of a valid approximate DC, i.e., {𝑝1, . . . , 𝑝𝑚 }, is an approximate set
cover; it intersects with “enough” (not necessarily all) evidences
according to the threshold 𝜖 and the counts associated with evi-
dences. A valid approximate DC is further minimal, if no proper
subset of {𝑝1, . . . , 𝑝𝑚 } is an approximate set cover. The methods for
approximate set cover (hitting set) enumeration of the evidence set
are studied in [7, 31].

4 BUILD EVIDENCE SET
In this section, we present a novel solution to evidence set construc-
tion. We first review a data structure for DC discovery (Section 4.1).
We then propose a condensed structure called clue set, and develop
techniques for clue set construction and transforming the clue set
to the evidence set (Section 4.2). We finally study parallel clue set
construction with multiple threads (Section 4.3).

4.1 Auxiliary structure

Position list index. Position list index (Pli) used for DCs [5, 35]
is an extended version of the original one for FD discovery meth-
ods [28, 33] and also shares some common features as the sorted
partition used in order dependency discovery approaches [21, 29].

Each Pli is built for an attribute from 𝑅. We denote the Pli on
attribute𝐴 by 𝜋𝐴 , and the collection of Plis for attributes of 𝑅 by Π.
𝜋𝐴 is a set (or list) of clusters. Each cluster is a pair ⟨𝑘, 𝑙⟩; the key 𝑘 is
a value in attribute𝐴 and the value 𝑙 is the set of all tuple identifiers
having the same value 𝑘 in attribute 𝐴. For a numerical attribute 𝐴,
clusters in 𝜋𝐴 are further sorted by the key 𝑘 in descending order.

We define the following operations. Given a parameter𝑘 , getEQ ()
returns the cluster whose key is equal to 𝑘 , or 𝑛𝑢𝑙𝑙 if no such cluster
exists. The operation getLTs() is only defined on numerical Plis.
Given a numerical parameter 𝑘 , getLTs() returns the list of clusters
whose keys are less than 𝑘 , or an empty list if no such cluster exists.
Example 6: For the instance 𝑟 in Table 1, 𝜋𝐴 is a list of clusters.
𝜋𝐴 = [⟨7, {𝑡3, 𝑡4}⟩, ⟨6, {𝑡5}⟩, ⟨1, {𝑡1, 𝑡2}⟩]. 𝜋𝐴 .getEQ (6) = ⟨6, {𝑡5}⟩.
𝜋𝐴 .getLTs(6) = [⟨1, {𝑡1, 𝑡2}⟩]. □

4.2 From clue set to evidence set
As demonstrated in previous works [7, 31, 35], building the evidence
set is costly for large datasets. We present a structure, referred to
as clue set. The computation of the clue set is much faster than that
of the evidence set, and the time of transforming the clue set to the
evidence set is usually trivial. Taken together, these yield a much
more efficient solution to the evidence set construction.

An evidence 𝑒𝑣𝑖 (𝑠, 𝑡) is the set of predicates satisfied by a tuple
pair (𝑠, 𝑡), and is implemented with the structure of bitset in previous
works [5, 35]. Specifically, (a) for a categorical attribute pair, 2 bits
are used to encode the 2 predicates with “=” and “≠” respectively;
and (b) for a numerical attribute pair, 6 bits are used to encode the 6
predicates (each with an operator from {<, ≤, >, ≥,=,≠}). However,
we find the evidence is not the most efficient way to encode the
relationship of 𝑠 and 𝑡 , concerning comparable attribute pairs.

Clue and clue set. We present a new structure, referred to as
clue. The clue 𝑐𝑙𝑢𝑒 (𝑠, 𝑡) of the pair (𝑠, 𝑡) is more condensed than the
evidence 𝑒𝑣𝑖 (𝑠, 𝑡), and there is a one-to-one relationship between
the clue and the evidence. The clue directly encodes the relationship
of 𝑠 and 𝑡 w.r.t. comparable attribute pairs rather than predicates.

A clue is also implemented with bitset, but is more efficient in
memory. More specifically, (a) for a categorical attribute pair 𝐴, 𝐵
(or 𝐴,𝐴), only 1 bit is used in 𝑐𝑙𝑢𝑒 (𝑠, 𝑡): “0” if 𝑠 .𝐴≠𝑡 .𝐵 (or 𝑠 .𝐴≠𝑡 .𝐴),
or “1” if 𝑠 .𝐴=𝑡 .𝐵 (or 𝑠 .𝐴= 𝑡 .𝐴); and (b) for a numerical attribute pair
𝐴, 𝐵 (or 𝐴,𝐴), only 2 bits are used in 𝑐𝑙𝑢𝑒 (𝑠, 𝑡): “00” if 𝑠 .𝐴<𝑡 .𝐵 (or
𝑠 .𝐴<𝑡 .𝐴), “01” if 𝑠 .𝐴=𝑡 .𝐵 (or 𝑠 .𝐴=𝑡 .𝐴), or “10” if 𝑠 .𝐴>𝑡 .𝐵 (or 𝑠 .𝐴>𝑡 .𝐴).
A clue saves 50% to 66.7% memory usage than an evidence.

272

For all tuple pairs from 𝑟2, we collect their clues to build the
clue set 𝑐𝑙𝑢𝑒𝑟 of 𝑟 . In the same way as building the evidence set,
we associate each clue 𝑐𝑙 in 𝑐𝑙𝑢𝑒𝑟 with a count 𝑐𝑛𝑡 (𝑐𝑙) denoting the
number of tuple pairs that have the clue.

We then present an algorithm to efficiently compute the clue
set for a given instance 𝑟 . It adapts the idea of presumption and
correction for evidence set construction [35] to clue set construction.
Briefly, it first assigns a default clue 𝑐𝑙0 to all tuple pairs, and then
corrects the clues (with bit operations) for tuple pairs whose clues
are different from the default one. The key is that all such tuple
pairs can be efficiently identified by leveraging the Plis of 𝑟 . It is
hence much more efficient than the baseline that compares all tuple
pairs. The choice of 𝑐𝑙0 also affects the efficiency; a small number
of bits are required to be corrected if 𝑐𝑙0 has many same bits as the
actual clues. Assuming that most tuples have different values in the
attributes [35], we set all bits in 𝑐𝑙0 as “0”, i.e., for a tuple pair (𝑠, 𝑡)
and an attribute pair (𝐴, 𝐵), we assume 𝑠 .𝐴 ≠ 𝑡 .𝐵 for a categorical
attribute pair, and 𝑠 .𝐴 < 𝑡 .𝐵 for a numerical pair.

Algorithm.Algorithm BuildClue (Algorithm 1) builds 𝑐𝑙𝑢𝑒𝑟 . It first
initializes the clues of all tuple pairs with the default clue 𝑐𝑙0 (line 1),
and then corrects clues in bits by considering comparable attribute
pairs (lines 2-21). As an example, tuples 𝑡 , 𝑠 in the same cluster of
𝜋𝐴 have the same value in 𝐴, which differs from the presumption
of 𝑐𝑙0. Procedure Correct is called to correct (the bits in) the clue
of (𝑡, 𝑠) if 𝑡 and 𝑠 are in the same cluster (lines 2-4). As another
example, suppose 𝐴, 𝐵 form a pair of comparable attributes. The
clue of (𝑡, 𝑠) differs from 𝑐𝑙0 in the bits concerning the pair 𝐴, 𝐵, if 𝑡
belongs to the cluster 𝑐1 in 𝜋𝐴 , and 𝑠 belongs to the cluster 𝑐3 in 𝜋𝐵
such that the key of 𝑐3 is no larger than the key of 𝑐1. Procedure
Correct is called to correct 𝑐𝑙𝑢𝑒 (𝑡, 𝑠) accordingly (lines 15-21). The
𝑐𝑙𝑢𝑒𝑟 is finally obtained by computing the accumulated count of
each distinct clue (line 22).
Example 7: Table 3 concerns 4 comparable attribute pairs: (𝐵, 𝐵),
(𝐹, 𝐹), (𝐺,𝐺) and (𝐵, 𝐷). Suppose bits in clues are in the same order
as the above attribute pairs. At first 𝑐𝑙𝑢𝑒 (𝑡1, 𝑡2) is “000000”, and
becomes “011001” after the corrections with BuildClue. □

Remarks. (1) The worst-case complexity of BuildClue is quadratic
in |𝑟 |, but in practice a large proportion of tuple pairs can be skipped
in the computations. (2) At most one bit is modified for each at-
tribute pair when correcting a clue. Specifically, a bit of “0” can only
be modified to “1” for a categorical attribute pair, and “00” can only
be modified to either “01” or “10” for a numerical pair. In contrast,
each correction for an evidence [35] may need to modify several
bits for predicates on the same attribute pair. Reducing the cost of
each correction is crucial to the efficiency, since the number of re-
quired corrections can be large. (3) Note each clue may be corrected
several times in BuildClue, in a different bit each time. The small
memory footprint of the clue set is likely to favor cache hit ratio.
That is, a clue is still kept in the cache when the clue is corrected
again in different bits. This advantage will be further enhanced
with the sharding technique that will be proposed in Section 4.3.

From clue set to evidence set. Generating evidences from clues
concerns simple bit encoding transformations. The cost of the trans-
formation from the clue set to the evidence set is linear in |𝑐𝑙𝑢𝑒𝑟 |, but
is irrelevant of |𝑟 | since many tuple pairs can produce the same clue.

Algorithm 1: Build Clue Set (BuildClue)
Input: the Plis Π of 𝑟
Output: the clue set 𝑐𝑙𝑢𝑒𝑟 of 𝑟

1 𝐶𝑙𝑢𝑒𝑠 ← an array of |𝑟 | × (|𝑟 | − 1) clues that are all equal to 𝑐𝑙0
2 foreach categorical predicate 𝑝 : 𝑡 .𝐴 = 𝑠.𝐴 do
3 foreach cluster 𝑐 ∈ 𝜋𝐴 do
4 Correct(𝑝, 𝑐, 𝑐,𝐶𝑙𝑢𝑒𝑠)
5 foreach categorical predicate 𝑝 : 𝑡 .𝐴 = 𝑠.𝐵 do
6 foreach cluster 𝑐1 ∈ 𝜋𝐴 do
7 cluster 𝑐2 = 𝜋𝐵 .getEQ (𝑐1 .𝑘)
8 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
9 foreach numerical predicate 𝑝𝑒𝑞 : 𝑡 .𝐴 = 𝑠.𝐴 do
10 𝑝𝑔𝑡 ← predicate 𝑡 .𝐴 > 𝑠.𝐴

11 foreach cluster 𝑐1 ∈ 𝜋𝐴 do
12 Correct(𝑝𝑒𝑞, 𝑐1, 𝑐1,𝐶𝑙𝑢𝑒𝑠)
13 foreach cluster 𝑐2 ∈ {clusters behind 𝑐1 in 𝜋𝐴 } do
14 Correct(𝑝𝑔𝑡 , 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠) // 𝑐1 .𝑘 > 𝑐2 .𝑘

15 foreach numerical predicate 𝑝𝑒𝑞 : 𝑡 .𝐴 = 𝑠.𝐵 do
16 𝑝𝑔𝑡 ← predicate 𝑡 .𝐴 > 𝑠.𝐵

17 foreach cluster 𝑐1 ∈ 𝜋𝐴 do
18 cluster 𝑐2 = 𝜋𝐵 .getEQ (𝑐1 .𝑘)
19 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝𝑒𝑞, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
20 foreach cluster 𝑐3 ∈ 𝜋𝐵 .getLTs(𝑐1 .𝑘) do
21 Correct(𝑝𝑔𝑡 , 𝑐1, 𝑐3,𝐶𝑙𝑢𝑒𝑠) // 𝑐1 .𝑘 > 𝑐3 .𝑘

22 accumulate clues in𝐶𝑙𝑢𝑒𝑠 to get the clue set 𝑐𝑙𝑢𝑒𝑟
23

24 Procedure Correct(𝑝, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
25 foreach tuple 𝑡 ∈ 𝑐1 .𝑙 do
26 foreach tuple 𝑠 ∈ 𝑐2 .𝑙 do
27 if 𝑡 ≠ 𝑠 then correct 𝑐𝑙𝑢𝑒 (𝑡, 𝑠) in𝐶𝑙𝑢𝑒𝑠 with 𝑝

This property is desirable, since |𝑐𝑙𝑢𝑒𝑟 | ≪ |𝑟 |2, as experimentally
verified on a host of datasets (Section 6). We find the transformation
time is trivial compared with the time of clue set construction.

4.3 Parallel computation with multiple threads
The space complexity of BuildClue is |𝑟 |2, but the space required by
𝑐𝑙𝑢𝑒𝑟 is actually much smaller since only distinct clues are stored.
This observation motivates us to compute 𝑐𝑙𝑢𝑒𝑟 part by part in-
stead of all at once; the final 𝑐𝑙𝑢𝑒𝑟 can be obtained by merging the
partial clue sets one by one. Better, the strategy enables parallel
computation of 𝑐𝑙𝑢𝑒𝑟 to further improve the efficiency.

Parallel computations are used to speed up evidence set construc-
tion. Specifically, [7] adopts the setting of multiple independent
machines, while [35] exploits multithreaded parallelism. In this
paper we adopt the same setting as [35]. Dependency discovery
methods with multiple threads are shared-memory parallel algo-
rithms [19, 53], and lightweight alternatives to distributed discovery
techniques [39, 40, 42]. The results can be easily reproduced since
multiple threads are readily supported by modern multi-core CPUs.

[35] adopts the scheme that partitions the set of tuple pair identi-
fiers into chunks, and multiple threads are employed to build partial
evidence sets of different chunks in parallel. In this paper, we adopt
a simple yet effective strategy that partitions tuple identifiers into
instance shards and builds partial clue sets for tuples (a) from the
same shard, or (b) from two distinct shards, with multiple threads

273

Algorithm 2: Build Partial Clue Set (BuildPartialClue)
Input: two different PliShards Π𝑖 of 𝑟𝑖 and Π 𝑗 of 𝑟 𝑗
Output: the partial clue set 𝑐𝑙𝑢𝑒𝑖 𝑗

1 𝐶𝑙𝑢𝑒𝑠 ← an array of |𝑟𝑖 | × |𝑟 𝑗 | clues that are all equal to 𝑐𝑙0
2 foreach categorical predicate 𝑝 : 𝑡 .𝐴 = 𝑠.𝐴 do
3 foreach cluster 𝑐1 ∈ 𝜋𝐴

𝑖
do

4 cluster 𝑐2 = 𝜋𝐴
𝑗
.getEQ (𝑐1 .𝑘)

5 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
6 foreach categorical predicate 𝑝 : 𝑡 .𝐴 = 𝑠.𝐵 do
7 foreach cluster 𝑐1 ∈ 𝜋𝐴

𝑖
do

8 cluster 𝑐2 = 𝜋𝐵
𝑗
.getEQ (𝑐1 .𝑘)

9 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
10 foreach numerical predicate 𝑝𝑒𝑞 : 𝑡 .𝐴 = 𝑠.𝐴 do
11 𝑝𝑔𝑡 ← predicate 𝑡 .𝐴 > 𝑠.𝐴

12 foreach cluster 𝑐1 ∈ 𝜋𝐴
𝑖

do
13 cluster 𝑐2 = 𝜋𝐴

𝑗
.getEQ (𝑐1 .𝑘)

14 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝𝑒𝑞, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
15 foreach cluster 𝑐3 ∈ 𝜋𝐴

𝑗
.getLTs(𝑐1 .𝑘) do

16 Correct(𝑝𝑔𝑡 , 𝑐1, 𝑐3,𝐶𝑙𝑢𝑒𝑠) // 𝑐1 .𝑘 > 𝑐3 .𝑘

17 foreach numerical predicate 𝑝𝑒𝑞 : 𝑡 .𝐴 = 𝑠.𝐵 do
18 𝑝𝑔𝑡 ← predicate 𝑡 .𝐴 > 𝑠.𝐵

19 foreach cluster 𝑐1 ∈ 𝜋𝐴
𝑖

do
20 cluster 𝑐2 = 𝜋𝐵

𝑗
.getEQ (𝑐1 .𝑘)

21 if 𝑐2 ≠ 𝑛𝑢𝑙𝑙 then Correct(𝑝𝑒𝑞, 𝑐1, 𝑐2,𝐶𝑙𝑢𝑒𝑠)
22 foreach cluster 𝑐3 ∈ 𝜋𝐵

𝑗
.getLTs(𝑐1 .𝑘) do

23 Correct(𝑝𝑔𝑡 , 𝑐1, 𝑐3,𝐶𝑙𝑢𝑒𝑠) // 𝑐1 .𝑘 > 𝑐3 .𝑘

24 accumulate clues in𝐶𝑙𝑢𝑒𝑠 to get the partial clue set 𝑐𝑙𝑢𝑒𝑖 𝑗

in parallel. Our strategy guarantees each tuple pair is assigned to
one and only one thread where the clue of the pair is computed.

Position list index sharding. We implement Pli sharding by par-
titioning 𝑟 into several instance shards {𝑟0, . . . , 𝑟𝑘 , . . . } and build
PliShards {Π0, . . . ,Π𝑘 , . . . } on each of them. Specifically, with a
shard size 𝜔 , shard 𝑟𝑘 contains tuples whose tuple identifiers are in
[𝑘 ·𝜔 , (𝑘 + 1) ·𝜔), and PliShard Π𝑘 are Plis built on tuples in shard
𝑟𝑘 . We denote by 𝜋𝐴

𝑘
the Pli on attribute 𝐴 in PliShard Π𝑘 . The

accumulated time complexity and space complexity of Pli sharding
are almost the same as the whole Plis of 𝑟 . The operations getEQ ()
and getLTs() are naturally extended to PliShards.

Build partial clue set.We divide the construction of clue set 𝑐𝑙𝑢𝑒𝑟 ,
to enable parallel computation. Each timewe choose instance shards
𝑟𝑖 and 𝑟 𝑗 , and build the partial clue set 𝑐𝑙𝑢𝑒𝑖 𝑗 leveraging PliShards
Π𝑖 and Π 𝑗 , i.e., 𝑐𝑙𝑢𝑒𝑖 𝑗 = {𝑐𝑙𝑢𝑒 (𝑡, 𝑠) |𝑡 ∈ 𝑟𝑖 , 𝑠 ∈ 𝑟 𝑗 }. There are two
cases for the combination of shards. (1) 𝑖 = 𝑗 : shards 𝑟𝑖 and 𝑟 𝑗 refer
to the same shard of the original instance 𝑟 . We build 𝑐𝑙𝑢𝑒𝑖 𝑗 with
BuildClue that takes Π𝑖 as the input. (2) 𝑖 ≠ 𝑗 : 𝑟𝑖 and 𝑟 𝑗 are different
shards. We present Algorithm BuildPartialClue for this case.

Algorithm. Algorithm BuildPartialClue (Algorithm 2) builds the
partial clue set 𝑐𝑙𝑢𝑒𝑖 𝑗 , where 𝑖 ≠ 𝑗 . It is based on BuildClue but
differs from it in the following aspects. (1) The size of array 𝐶𝑙𝑢𝑒𝑠
is |𝑟𝑖 | × |𝑟 𝑗 | (line 1), since tuples in shard 𝑟𝑖 always have different
identifiers from those in 𝑟 𝑗 when 𝑖 ≠ 𝑗 . (2) The two tuples of every
tuple pair are always from different shards, and hence visits to
different shards are required. For example, consider the predicate
𝑡 .𝐴 = 𝑠 .𝐴. A tuple from a cluster of 𝜋𝐴

𝑖
is no longer treated against

Algorithm 3: Build Merge Clue Set (BuildMergeClue)
Input: Array𝑇 of pairs of instance shards
Output: the clue set 𝑐𝑙𝑢𝑒𝑟

1 𝑛 ← |𝑇 |
2 if 𝑛 = 0 then return an empty clue set
3 if 𝑛 = 1 then // suppose the only pair 𝑇 [0] = ⟨𝑟𝑖 , 𝑟 𝑗 ⟩
4 if 𝑖 = 𝑗 then
5 return BuildClue (Π𝑖)
6 else
7 return BuildPartialClue (Π𝑖 , Π 𝑗)
8 𝐿 ← BuildMergeClue(𝑇 [0, ..., 𝑛/2))
9 𝑅 ← BuildMergeClue(𝑇 [𝑛/2, ..., 𝑛))

10 returnMerge(𝐿, 𝑅)

tuples from the same cluster, but against those from a cluster of 𝜋𝐴
𝑗
.

This requires an extra calling of getEQ () (line 4). Similarly for the
cases of lines 13 and 15, which may also concern getLTs().

Based on the partition strategy andBuildPartialClue (BuildClue),
we build the clue set with multiple threads in parallel.

Algorithm. Algorithm BuildMergeClue (Algorithm 3) constructs
the whole clue set 𝑐𝑙𝑢𝑒𝑟 , by building and merging partial clue sets
in parallel. It follows the parallel computation model of class Count-
edCompleter from the standard Java library1, which is well suited
to the recursive decomposition and divide-and-conquer strategies
of our approach. BuildMergeClue takes as input an array𝑇 of pairs
of instance shards; each element in 𝑇 is a pair ⟨𝑖, 𝑗⟩. It is initially
called with all pairs of instance shards. If there is only one element
in 𝑇 , then BuildClue (resp. BuildPartialClue) is called if 𝑖 = 𝑗 (resp.
𝑖 ≠ 𝑗) in lines 3-7. Otherwise, BuildMergeClue recursively calls
itself with each half of 𝑇 (lines 8-9). Function Merge is called to
merge the two partial clue sets (line 10). Internally, an available
thread from the thread pool is used for each call of BuildClue and
BuildPartialClue, and a binary-tree structure is built to maintain
the termination of threads.

Note BuildClue and BuildPartialClue only read Plis. The compu-
tation of a clue is within a single thread, which favors data locality.

5 DISCOVER APPROXIMATE DCS BASED ON
EVIDENCE SET

In this section, we present a novel method to discover approximate
DCs by leveraging the evidence set. It is based on the technique of
evidence inversion [5] proposed for exact DC discovery.

Before reviewing the method of evidence inversion, we give
some notations first. For a DC 𝜑 = ¬ (𝑝1 ∧ · · · ∧𝑝𝑚) and an evidence
𝑒 , we write 𝜑 ⊆ 𝑒 if the set of predicates of 𝜑 , i.e., {𝑝1, . . . , 𝑝𝑚 } is
a subset of 𝑒 . Recall 𝜑 is violated by the tuple pairs that produce
𝑒 , if 𝜑 ⊆ 𝑒 . We say 𝜑 covers (resolves) 𝑒 if 𝜑 ⊈ 𝑒 , i.e., 𝜑 contains at
least one predicate not in 𝑒 and is not violated by the tuple pairs
that produce 𝑒 . For two DCs 𝜑 and 𝜑 ′, we write 𝜑 ⊆ 𝜑 ′ if the set of
predicates of 𝜑 is a subset of that of 𝜑 ′; 𝜑 ′ is not minimal if 𝜑 ≠ 𝜑 ′

and 𝜑 is valid. We denote by 𝜑 ∪ {𝑝} the DC that is obtained by
adding a new predicate 𝑝 to 𝜑 . To simplify the notation, we use
𝑝1𝑝2 as a shorthand for {𝑝1, 𝑝2} when it is clear from the context.
1docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html (last
accessed 2022/10/11).

274

Evidence inversion. Algorithm evidence inversion [5] discovers
the set Σ of exact DCs, with the evidence set 𝑒𝑣𝑖𝑟 . Specifically, (1) it
initially puts |P | candidateDCs into Σ, where eachDC uses a distinct
predicate from P. (2) For each evidence 𝑒 from 𝑒𝑣𝑖𝑟 , it checks all
candidate DCs in Σ against 𝑒 . For every DC 𝜑 ∈ Σ such that 𝜑 ⊆ 𝑒 ,
it removes 𝜑 from Σ, and then generates candidate DCs based on 𝜑

to cover 𝑒 . To do so, for each predicate 𝑝 not in 𝑒 , it forms a new
candidate 𝜑 ′ = 𝜑 ∪ {𝑝} and adds 𝜑 ′ into Σ if there does not exist a
DC 𝜑 ′′ ∈ Σ such that 𝜑 ′′ ⊆ 𝜑 ′, i.e., 𝜑 ′ is minimal in terms of Σ. (3)
It terminates after all evidences from 𝑒𝑣𝑖𝑟 are processed.
Example 8:With a given predicate space P = {𝑝1, 𝑝2, 𝑝3} and 𝑒𝑣𝑖𝑟 =
{𝑝1𝑝2, 𝑝2𝑝3, 𝑝1𝑝3}, we illustrate the running of evidence inversion.
Note the counts of evidences are irrelevant to exact DC discovery.
Initially, Σ = {¬(𝑝1),¬(𝑝2),¬(𝑝3)}; each DC has one predicate from
P. Evidences from 𝑒𝑣𝑖𝑟 are processed one by one. (1) All DCs in Σ
are first checked against 𝑝1𝑝2. We see 𝑝1 ⊆ 𝑝1𝑝2; the tuple pairs that
produce 𝑝1𝑝2 violate ¬(𝑝1). The DC ¬(𝑝1) is replaced by ¬(𝑝1∧𝑝3),
by adding 𝑝3, i.e., a predicate from P and not in 𝑝1𝑝2, to ¬(𝑝1).
However, this DC is not minimal and is not put into Σ, because
¬(𝑝3) is in Σ. Similarly for the case of ¬(𝑝2). ¬(𝑝3) remains intact
since it has the predicate 𝑝3 not in 𝑝1𝑝2. (2) We have Σ = {¬(𝑝3)}
after (1). After checking ¬(𝑝3) against 𝑝2𝑝3, ¬(𝑝3) is replaced by
¬(𝑝3 ∧ 𝑝1) in Σ. (3) After checking ¬(𝑝3 ∧ 𝑝1) against 𝑝1𝑝3, we
finally have Σ = {¬(𝑝3 ∧ 𝑝1 ∧ 𝑝2)}. □

Intuitively, the evidence inversion enumerates all evidences, and
resolves all DC violations w.r.t. each evidence by refining the cor-
responding candidate DCs with a predicate not in the evidence. It
is highly non-trivial to adapt the evidence inversion for finding
approximate DCs. When generating candidate approximate DCs, it
is unnecessary to resolve all the DC violations w.r.t. every evidence
𝑒 . Instead, the count 𝑐𝑛𝑡 (𝑒) of 𝑒 should be considered for generating
or pruning candidates. This yields a much more complicated strat-
egy to generate or prune candidate approximate DCs, compared
with that to generate or prune candidate exact DCs.

Algorithm. AEI (Algorithm 4) discovers the set Σ of minimal valid
approximate DCs, with the evidence set 𝑒𝑣𝑖𝑟 , predicate space P and
error threshold 𝜖 . It initializes some parameters (lines 1-4), and calls
Procedure Inverse (line 5). We illustrate the parameters of Inverse
in detail (line 8). Each time Inverse handles one (the 𝑖-th) evidence
from 𝑒𝑣𝑖𝑟 , in response to Ψ. Each candidate DC𝜓 forms a pair with a
set cand of candidate predicates that can be used to refine𝜓 later; all
such pairs are collected in Ψ. P𝑎𝑑𝑑 is a set of candidate predicates,
which enables efficient pruning of candidate DCs in Inverse. The
parameter 𝑁 is the total count of evidences required to be covered.
All discovered approximate DCs are collected in Σ.

If 𝑁 ≤ 0, then Inverse collects all candidate DCs in Σ if they
are minimal, and returns (lines 9-11). Inverse also returns, if (a)
all evidences are processed, or (b) no candidate DCs exist, or (c)
no candidate predicates exist (line 12). It then processes the 𝑖-th
evidence 𝑒 from 𝑒𝑣𝑖𝑟 . All candidate DCs from Ψ are divided into
two parts, according to whether they cover 𝑒 . The DCs that do not
cover 𝑒 are put into Ψ− , while the others remain in Ψ (lines 14-
15). This is because Inverse can choose not to cover the evidence 𝑒
(lines 16-25), or to cover it (lines 26-37). In the branch where 𝑒 is
not covered, only predicates from 𝑒 can be used afterwards. Hence,
the set P𝑎𝑑𝑑 of candidate predicates is adjusted accordingly (line

Algorithm 4: Approximate Evidence Inversion (AEI)
Input: evidence set 𝑒𝑣𝑖𝑟 , predicate space P, and error threshold 𝜖
Output: the set Σ of minimal and valid approximate DCs

1 sort evidences 𝑒 in 𝑒𝑣𝑖𝑟 by 𝑐𝑛𝑡 (𝑒) , in descending order
2 Σ← ∅
3 𝜓 ← an empty DC (with no predicates), 𝑐𝑎𝑛𝑑 ← P
4 𝑁 ← (|𝑟 |2 − |𝑟 |) × (1 − 𝜖)
5 Inverse(1, {⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩}, P, 𝑁 , Σ)
6 return Σ

7

8 Procedure Inverse(𝑖,Ψ, P𝑎𝑑𝑑 , 𝑁 , Σ)
9 if 𝑁 ≤ 0 then
10 Σ← Σ ∪ {𝜓 | ⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩ ∈ Ψ, ∄𝜙 ∈ Σ such that 𝜙 ⊆ 𝜓 }
11 return
12 if 𝑖 > |𝑒𝑣𝑖𝑟 |

⋁︁
Ψ = ∅ ⋁︁ P𝑎𝑑𝑑 = ∅ then return

13 𝑒 ← 𝑒𝑣𝑖𝑟 [𝑖]
14 Ψ− ← {⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩ ∈ Ψ |𝜓 ⊆ 𝑒 }
15 Ψ← Ψ \ Ψ−

/* not to cover the evidence 𝑒 */

16 P𝑎𝑑𝑑 ← P𝑎𝑑𝑑 ∩ 𝑒
17 if CanCover(𝑖 + 1, P𝑎𝑑𝑑 , 𝑁) then
18 foreach ⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩ ∈ Ψ− do
19 𝑐𝑎𝑛𝑑 ← 𝑐𝑎𝑛𝑑 ∩ 𝑒
20 if 𝑐𝑎𝑛𝑑 = ∅ then // no more predicates to use
21 Ψ− ← Ψ− \ {⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩}
22 if ∄𝜙 ∈ Σ: 𝜙 ⊆ 𝜓

⋀︁
CanCover(𝑖 + 1,𝜓, 𝑁) then

23 Σ← Σ ∪ {𝜓 }
24 Inverse(𝑖 + 1,Ψ−, P𝑎𝑑𝑑 , 𝑁 , Σ)
25 recover the changes done in lines 16, 19 and 21

/* to cover the evidence 𝑒 */

26 foreach ⟨𝜓, 𝑐𝑎𝑛𝑑 ⟩ ∈ Ψ− do
27 𝑎𝑑𝑑𝑎𝑏𝑙𝑒 ← 𝑐𝑎𝑛𝑑 ∩ (P \ 𝑒)
28 foreach 𝑝 ∈ 𝑎𝑑𝑑𝑎𝑏𝑙𝑒 do
29 𝜓 ′ ← 𝜓 ∪ {𝑝 }, 𝑐𝑎𝑛𝑑 ′ ← {𝑝′ ∈ 𝑐𝑎𝑛𝑑 |𝑝′ ≁ 𝑝 }
30 if 𝑐𝑎𝑛𝑑 ′ ≠ ∅ then
31 if ∄⟨𝜙, 𝑐𝑎𝑛𝑑 ⟩ ∈ Ψ such that 𝜙 ⊆ 𝜓 ′ then
32 Ψ← Ψ ∪ {⟨𝜓 ′, 𝑐𝑎𝑛𝑑 ′ ⟩}
33 else if ∄𝜙 ∈ Σ : 𝜙 ⊆ 𝜓 ′

⋀︁
CanCover(𝑖,𝜓 ′, 𝑁) then

34 Σ← Σ ∪ {𝜓 ′ }
35 𝑁 ← 𝑁 − 𝑐𝑛𝑡 (𝑒)
36 Inverse(𝑖 + 1,Ψ, P𝑎𝑑𝑑 , 𝑁 , Σ)
37 recover the changes done in lines 32 and 35
38

39 Function CanCover(𝑙, 𝜙, 𝑁)
40 𝑚𝑎𝑥𝐶𝑜𝑣𝑒𝑟 ← 0
41 for 𝑖 ← 𝑙 to |𝑒𝑣𝑖𝑟 | do
42 if 𝜙 ⊈ 𝑒𝑣𝑖𝑟 [𝑖] then
43 𝑚𝑎𝑥𝐶𝑜𝑣𝑒𝑟 ←𝑚𝑎𝑥𝐶𝑜𝑣𝑒𝑟 + 𝑐𝑛𝑡 (𝑒𝑣𝑖𝑟 [𝑖])
44 if𝑚𝑎𝑥𝐶𝑜𝑣𝑒𝑟 ≥ 𝑁 then return True else return False

16). Function CanCover is called to check whether this branch can
lead to valid DCs (line 17). Specifically, CanCover computes the
accumulated count of the remaining evidences that can be covered
by the remaining predicates in P𝑎𝑑𝑑 , i.e., the upper bound of the
accumulated count. The branch fails and is pruned if the value
cannot reach 𝑁 . Otherwise, DCs from Ψ− are further processed; it
suffices to consider Ψ− in the branch where 𝑒 is not covered. Some

275

DCs may have an empty set of candidate predicates after the set is
adjusted (lines 19-20). Such DCs cannot be further refined (line 21),
but they can possibly already be valid approximate DCs. Function
CanCover is called for such DCs, and they are put into Σ if they are
valid and minimal (lines 22-23). To do so, CanCover computes the
accumulated count of the remaining evidences that can be covered
by each such DC. At the end of this branch, Inverse is recursively
called with the next evidence, adjusted Ψ− and P𝑎𝑑𝑑 (line 24).

In the branch where 𝑒 is covered, the set addable of predicates
that can be used to cover 𝑒 is collected for each 𝜓 from Ψ− (line
27). Using a predicate from addable each time, a new candidate DC
𝜓 ′ is formed, and the set cand′ is obtained by removing the related
predicates from cand (line 29). Recall 𝑝 ∼ 𝑝′ if they are predicates
with different operators on the same attribute pair and it is safe
to neglect DCs with both 𝑝, 𝑝′ in DC discovery (Section 3.1). The
candidate DCs are put into Ψ if they are minimal in terms of Ψ and
there are still candidate predicates for them (lines 30-32). The DCs
with no more candidate predicates are put into Σ if they are already
minimal valid approximate DCs (lines 33-34), and are discarded
otherwise. After generating all candidate DCs that cover 𝑒 , 𝑁 is
reduced by 𝑐𝑛𝑡 (𝑒) and Inverse is recursively called (lines 35-36).
Example 9: In Figure 1, P = {𝑝1, 𝑝2, 𝑝3} and 𝑒𝑣𝑖𝑟 = {𝑝1𝑝2(2), 𝑝2𝑝3(2),
𝑝1𝑝3(1)} with the count of each evidence in the bracket. The number
of tuple pairs is 2+2+1 = 5, 𝜖 = 0.4, and hence 𝑁 = 5×(1-0.4) = 3.

We show the running of Procedure Inverse with the parameters,
in a tree structure. One predicate from 𝑒𝑣𝑖𝑟 is processed at each
layer, and two branches are generated from each intermediate node,
to cover or not to cover the next evidence. A leaf node is reached
when all evidences are processed or all the descendants are pruned.

Consider the node at layer 2 where evidence 𝑝1𝑝2 is not covered.
Only predicates 𝑝1 and 𝑝2 can be used afterwards, to refine the
empty DC (with no predicates). (a) On its left branch where 𝑝2𝑝3
is also not covered, only the predicate 𝑝2 can be used afterwards.
The calling of Function CanCover terminates the branch, since the
requirement 𝑁 = 3 cannot be met with the only remaining evidence
𝑝1𝑝3. (b) On its right branch where 𝑝2𝑝3 is covered, the predicate
𝑝1 is used to generate a new DC ¬(𝑝1) to replace the empty DC, and
only the predicate 𝑝2 can be used afterwards. If the evidence 𝑝1𝑝3
is covered at the next layer, then a minimal and valid approximate
DC ¬(𝑝1 ∧ 𝑝2) is obtained. It covers evidences 𝑝2𝑝3 and 𝑝1𝑝3.

Consider the right-most branch where both 𝑝1𝑝2 and 𝑝2𝑝3 are
covered. Aminimal and valid approximateDC¬(𝑝1∧𝑝3) is obtained.
This branch corresponds to the evidence inversion for exact DCs, but
can terminate before covering all the evidences.

Finally, Σ = {¬(𝑝1 ∧ 𝑝2), ¬(𝑝2 ∧ 𝑝3), ¬(𝑝1 ∧ 𝑝3)}. The DCs are
obtained at different nodes, as shown in Figure 1. □

Proposition 2: Algorithm AEI discovers the complete set Σ of
minimal and valid approximate DCs, with the given evidence set
𝑒𝑣𝑖𝑟 , predicate space P and error threshold 𝜖 .
Proof sketch: Validity. All DCs in Σ are valid, since the validity is
checked for every DC before the DC is added into Σ.
Minimality. All DCs in Σ pass the minimality check (lines 10, 22, 33).
It suffices to check the minimality of 𝜙 by considering all DCs that
are added into Σ before 𝜙 . AEI adopts a DFS strategy to enumerate
all combinations of the ways to cover or not to cover each evidence
from 𝑒𝑣𝑖𝑟 , and for each evidence 𝑒 , the branchwhere 𝑒 is not covered

cover not cover

2 3

add
P

i N

2
{ }p

add
P

1i 3N

1 2
, }{ p p

1 2
{ }p p

2i 1N

add
P

1 2
{ , }p p

1 2
{ }p p

3 1

add
P

i N

1
{ }p

3i 0N

add
P

1 2
{ },p p

1 2
{ }p p

1i 1N

add
P

3 1 2
{ , }p p p

1 2 3
{ }p p p

2i 1N

add
P

3 2
{ , }p p

2 3
{ }p p

2i 0

add
P

N

1 3 2
{ , }p p p

1 2 3
{ }p p p

3 1

add
P

i N

2
{ }p

3i 0N

add
P

2 3
{ },p p

2 3
{ }p p

1 2 3
,{ }p p p

1 2 3
{ }p p padd

P

Rooti 3N

not cover cover

not cover cover

not cover cover

not cover cover

CanCover returns False (line 17)
valid ADC with empty
valid ADC when

,

Figure 1: Example 9 for Algorithm 4

is visited before the branch where 𝑒 is covered. This guarantees for
any two candidates𝜓 and 𝜙 , 𝜙 has at least one predicate not in𝜓 if
𝜙 is generated after 𝜓 in the DFS. Hence, the DCs generated after
𝜙 does not affect the minimality of 𝜙 . Note this also applies to the
candidate DCs that are generated based on the same DC (line 29),
since a different predicate is used for a candidate each time.
Completeness. AEI uses two branches to cover or not to cover each
evidence in 𝑒𝑣𝑖𝑟 . By considering all evidences in 𝑒𝑣𝑖𝑟 one by one, it
enumerates all combinations of the ways to cover or not to cover
each evidence. In each branch, the technique of evidence inversion
is used to refine candidate DCs. In the branch where an evidence
𝑒 is not covered, AEI only deals with DCs in Ψ− (line 24), i.e., the
DCs that do not cover 𝑒 . This does not affect the completeness. All
the other DCs, i.e., the DCs that cover 𝑒 , and the new candidate DCs
generated based on DCs fromΨ− , are processed in the branch where
𝑒 is covered (line 36). Moreover, note AEI only prunes candidates
that cannot be valid or minimal during the traversal. □

Remarks. (1) The complexity of AEI is irrelevant of |𝑟 |. The worst-
case complexity of AEI can be measured by the search space, i.e.,
the total number of candidate DCs, and is hence exponential in
the number |P | of predicates. AEI uses branches to enumerate all
combinations of the ways to cover or not to cover each evidence
from 𝑒𝑣𝑖𝑟 . The last branch where all evidences are covered cor-
responds to the original evidence inversion for exact DCs [5], but
the branch may terminate earlier (recall Example 9). In the branch
where an evidence 𝑒 is not covered, only predicates from 𝑒 and DCs
that do not cover 𝑒 are considered afterwards, which reduces the
search space. (2) The running time of AEI (and the enumeration
methods of [7, 31, 35]) depends on the actual search space, i.e., the
candidate DCs that are really generated and verified during the
traversal. The strategy of AEI is to enumerate evidences and use
each evidence to refine candidate DCs, as opposed to the strategy
adopted in [7, 31, 35] that enumerates combinations of predicates
to cover evidences. Although the two strategies lead to the same set

276

Table 4: Datasets and Execution Statistics (time in seconds, and 𝑇𝐿 denotes 24+ hours)

Dataset Properties Error Threshold (𝜖 = 0.1) Error Threshold (𝜖 = 0.01) Error Threshold (𝜖 = 0.001)
dataset |𝑟 | |𝑅 | | P | |𝑒𝑣𝑖𝑟 | FastADC DCFinder ADCMiner |Σ | FastADC DCFinder ADCMiner |Σ | FastADC DCFinder ADCMiner |Σ |
Airport 55,113 11 32 904 9.5 90.8 91.2 44 9.5 92.1 91.8 122 9.3 91.3 90.6 237
Hospital 114,920 15 30 601 31.4 232.2 232.1 33 32.9 234.8 234.2 55 32.1 238.3 237.7 122
Inspection 229,209 15 40 5,939 447.8 1,280 1,321 148 449.1 1,302 1,326 128 448.2 1,343 1,371 251
NCVoter 675,000 15 38 1,541 2,743 22,235 22,238 814 2,753 22,246 22,243 1,477 2,745 22,114 22,108 620

Tax 500,000 15 62 11,007 1,165 11,494 14,269 10,237 1,174 13,770 14,270 13,484 1,197 16,144 13,781 36,151
SPStock 122,496 7 70 3,023 182.2 689.3 647.2 97 183.5 690.2 668.3 440 191.6 1,018.1 614.4 3,041
Food 200,000 16 56 1,436 333.1 3,085 2,772 100 336.2 3,926 2,792 169 332.9 5,010 2,856 179
Atom 147,067 10 62 614 102.3 908.9 850.2 260 103.4 984.7 853.8 824 102.1 1,237.8 882.9 1,031

Classification 70,859 10 134 6,376 65.4 250 +𝑇𝐿 250 +𝑇𝐿 5,801 194.4 250 +𝑇𝐿 250 +𝑇𝐿 21,987 782.4 250 +𝑇𝐿 250 +𝑇𝐿 74,754

of DCs finally, their actual search spaces can be quite different. Our
experimental evaluations in Section 6 verify that AEI significantly
outperforms previous approaches [7, 31, 35].

Approximate set cover enumeration. Discovering approximate
DCs based on the evidence set is a special case of enumerating ap-
proximate set covers [31], with 𝑒𝑣𝑖𝑟 as the subset family defined on
the set P of elements (each evidence corresponds to a subset). AEI
can be employed to solve the general approximate set cover enumer-
ation problem with two modifications. (a) For a subset {𝑝1, . . . , 𝑝𝑚 },
use one of 𝑝𝑖 (𝑖 ∈ [1,𝑚]) rather than 𝑝𝑖 to cover the subset. (b)
Remove only element 𝑝𝑖 (but not any other elements) from the set
of available elements after using 𝑝𝑖 , since all elements from P are
independent of each other in the general setting.

6 EXPERIMENTAL EVALUATIONS
In this section, we conduct an experimental evaluation to verify
our approximate DC discovery algorithm, and to provide detailed
analyses of our techniques to build the evidence set and discover
approximate DCs based on evidence set.

6.1 Experimental settings

Datasets. We use 9 real-life and synthetic datasets, and most of
them are also evaluated in previous works [5, 7, 31, 35]. The charac-
teristics of them are given in Table 4. For each dataset, we give the
number |𝑟 | of tuples, the number |𝑅 | of attributes, and the number
|P | of predicates. The predicate space P is determined by following
the rules given in Section 3.2.

Algorithms. All the algorithms are implemented in Java. (1) We
compare our approximate DC discovery method, referred to as
FastADC, withDCFinder [35] andADCMiner [31], the two state-of-
the-art approximate DC discovery methods. (2) We also evaluate our
techniques for the two phases of DC discovery, respectively. (a) We
compare our method to build the evidence set (Section 4), referred to
as ClueToEvi, with the known fastest method [35], called EviBuild.
Note EviBuild is also used in [31]. (b) We compare our method to
discover approximate DCs from the evidence set (Section 5), referred
to as AEI, with SearchMC used in [7, 34, 35], and ADCEnum used in
[31]. The source code ofDCFinder is online2. We use EviBuild from

2https://github.com/HPI-Information-Systems/metanome-algorithms/tree/master
/dcfinder (last accessed 2022/10/11).

DCFinder and develop a best-effort implementation of ADCEnum,
as the first and second phase of ADCMiner respectively.

Running environment. Unless otherwise stated, all the experi-
ments are run on a machine with an Intel Xeon E-2224 3.4G CPU
(4 physical cores), 64GB of memory and CentOS. By default, we set
the number of threads as 4 for both ClueToEvi and EviBuild, and
the shard size 𝜔 = 350 (tuples) for ClueToEvi. Note ClueToEvi and
EviBuild (the first phase of DC discovery) leverage parallelism, but
AEI, SearchMC and ADCEnum (the second phase) do not.

The qualitative evaluations of DC discovery methods are well
studied in [7, 31, 35], concerning (a) the expressiveness of DCs com-
pared with other dependencies, (b) the effectiveness of approximate
DC discovery in recalling DCs from dirty data, (c) the effectiveness
of ranking functions for helping users select useful DCs, and (d)
the effect of the threshold 𝜖 . The findings apply to this work, since
the correctness of FastADC is verified by checking the equivalence
of its result and that of DCFinder (ADCMiner). In the sequel, we
compare our methods with previous ones in the running time. Each
experiment is run 3 times and the average is reported.

6.2 Experimental results of DC discovery
In this subsection, we experimentally study the methods for ap-
proximate DC discovery.

Exp-1: FastADC against DCFinder and ADCMiner. We report
running times of all the methods in Table 4, with the error threshold
𝜖 = 0.1, 0.01 and 0.001, respectively. All the times are shown in
seconds. To provide insight into the results, we give the number
|𝑒𝑣𝑖𝑟 | of elements of 𝑒𝑣𝑖𝑟 , i.e., the number of distinct evidences. Note
𝑒𝑣𝑖𝑟 is determined by 𝑟 and P, but is irrelevant of 𝜖 . We also show
the number |Σ| of discovered DCs, which depends on 𝑒𝑣𝑖𝑟 , P and 𝜖 .

We see the following. (a) FastADC is much faster thanDCFinder
and ADCMiner on all the tested datasets with all the settings of
𝜖 . Excluding dataset Classification, FastADC is on average 8.2 (resp.
7.5) times and up to 15.1 (resp. 12.1) times faster than DCFinder
(resp. ADCMiner). Note DCFinder and ADCMiner cannot process
Classification within the time limit of 24 hours (250 seconds for the
first phase, but more than 24 hours for the second phase). (b) The
parameter 𝜖 does not affect the evidence set construction. When
the time of the first phase governs the overall time of DC discovery,
the times of all the methods usually vary slightly as 𝜖 varies. This is
especially evident for FastADC, since AEI takes less than 1 second
on many datasets. However, the time of DC discovery can vary

277

1

10

100

1000

10000

Ti
m
e
(s
)

ClueToEvi
EviBuild

Airport Hospital Tax SPStock Food Inspection NCVoter Atom Classification

(a) ClueToEvi against EviBuild

10
100

1000
10000

100000
1000000

1E7

Ti
m
e
(m
s)

AEI
SearchMC
ADCEnum

TL TL

Airport Hospital Tax SPStock Food Inspection NCVoter Atom Classification

(b) AEI against ADCEnum and SearchMC

20 40 60 80 100
0

100
200
300
400
500

Ti
m
e
(s
)

Number of tuples (*1000)

FastADC
DCFinder
ADCMiner

NCVoter

(c) NCVoter: varying |𝑟 |

20 40 60 80 100
0
50
100
150
200
250
300

Ti
m
e
(s
)

Number of tuples (*1000)

FastADC
DCFinder
ADCMiner

Inspection

(d) Inspection: varying |𝑟 |

38 44 50 56 62
0

500

1000

1500

2000

2500

Ti
m
e
(s
)

Number of predicates

FastADC
DCFinder
ADCMiner

Tax

(e) Tax: varying | P |

38 44 50 56 62
0

200

400

600

800

1000

Ti
m
e
(s
)

Number of predicates

FastADC
DCFinder
ADCMiner

Atom

(f) Atom: varying | P |

Figure 2: FastADC against DCFinder and ADCMiner

considerably as 𝜖 varies, when the second phase takes a long time.
This is because the time of the second phase is very sensitive to 𝜖
on some datasets. (c) The difference between the running times of
DCFinder and ADCMiner is usually small, but on some datasets,
e.g., Food and Tax, there are huge gaps between the times of the two
methods. Since bothDCFinder and ADCMiner use EviBuild for evi-
dence set construction, the gap between their running times is fully
determined by the difference between SearchMC and ADCEnum.

We contend that FastADC is a much more efficient solution to
approximate DC discovery, compared with previous ones.

Exp-2: Time decomposition. In the same setting as Exp-1, for
each method we show the time for evidence set construction in
Figure 2a, and the time for DC discovery from the evidence set
with 𝜖 = 0.01 in Figure 2b, respectively. This enables us to compare
ClueToEviwith EviBuild (resp.AEIwithADCEnum and SearchMC)
in detail. The time for building Plis is omitted, which is trivial and
almost the same for all the methods.

The results tell us the following. (a) FastADC consistently beats
DCFinder and ADCMiner in both phases. Specifically, ClueToEvi is
on average 7.5 times and up to 10.1 times faster than EviBuild. AEI
is at least 8.9 times and up to 1,237 times faster than SearchMC,
and at least 5.4 times and up to 147 times faster than ADCEnum.
Similar results are seen with 𝜖 = 0.1 and 0.001. (b) Although the
first phase of approximate DC discovery takes more time than the
second phase on most datasets (the times for the first phase are
given in seconds, and those for the second phase are shown in
milliseconds), the second phase of DCFinder and ADCMiner can
take a (very) long time on some datasets, e.g., more than 24 hours
on Classification and more than 30 minutes on Tax. AEI is crucial for
the performance of FastADC on these datasets.

Exp-3: The scalability of algorithms.We study the scalability
of FastADC and the compared methods by varying parameters.
The parameters |𝑟 | and |P | determine |𝑒𝑣𝑖𝑟 |, and hence affect the
times of the first and second phases of DC discovery, while the

parameter 𝜖 only affects the second phase. We set 𝜖 = 0.01 in this
set of experiments, and defer the study of 𝜖 to Exp-8.
(1) We first study the impact of |𝑟 |. By varying |𝑟 | from 20K to 100K
on NCVoter, we report the results in Figure 2c. We see the following.
(a) FastADC is on average 7.1 (resp. 6.6) and up to 7.4 (resp. 7.3)
times faster than DCFinder (resp. ADCMiner). (b) FastADC takes
3 to 58 seconds, while DCFinder (resp. ADCMiner) takes 21 to 430
seconds (resp. 15 to 425 seconds), as |𝑟 | varies from 20K to 100K.
The speedup ratio of FastADC increases with the increase of |𝑟 |,
which implies FastADC scales better with |𝑟 |.

We vary |𝑟 | from 20K to 100K on Inspection and show the results
in Figure 2d. The results are similar to those found on NCVoter.
Specifically, FastADC is on average 3.7 (resp. 4.3) times faster than
DCFinder (resp. ADCMiner). The advantage of FastADC becomes
more evident with the increase of |𝑟 |.
(2) We then study the impact of |P |. To vary |P |, we vary |𝑅 | and
regenerate the predicate space P. Using the first 100K tuples of Tax,
we report the results in Figure 2e. As |P | varies from 38 to 62, all the
methods take more time; this is because the number of discovered
DCs sharply increases from 460 to 18,102 (not shown). The second
phase becomes costly for large |Σ|. Specifically, as |P | varies from 38
to 62,AEI takes 0.2 to 42 seconds, as opposed to 2 to 1,868 seconds by
ADCEnum and 1 to 2,102 seconds by SearchMC. The increase of |P |
also leads to more time for evidence set construction. Specifically,
as |P | varies from 38 to 62, ClueToEvi takes 39 to 46 seconds, as
opposed to 263 to 400 seconds by EviBuild. |P | has a much stronger
impact on the second phase of DC discovery than the first phase, as
expected. The search space of DC discovery is exponential in |P |,
and hence the time of the second phase is usually very sensitive to
|P |. The advantage of AEI becomes more evident with the increase
of |P |. This favors the comparison of FastADC against DCFinder
and ADCMiner, since the second phase rather than the first phase
governs the overall time of DC discovery on Tax with 100K tuples.

Using Atom, we vary |P | and report the results in Figure 2f.
(a) As |P | varies from 38 to 62, AEI takes 0.042 to 1.1 seconds, as

278

Table 5: Comparison of Approximate Dependency Discovery Methods (𝜖 = 0.01)

Dataset PYRO (UCC/FD) [28] DisAOD (OD) [20] FastADC (DC) Examples of discovered DCs
Time (second) |Σ | Time (second) |Σ | Time (second) |Σ |

Airport 1.2 30 3.8 1 9.5 122 ∀𝑡, 𝑠 ∈ 𝑟 , ¬(t.type = s.type ∧ t.gps_code = s.gps_code ∧
t.gps_code ≠ s.local_code)

Inspection 3.7 17 14.4 0 449.1 128 ∀𝑡, 𝑠 ∈ 𝑟 , ¬(t.dbaname = s.akaname ∧ t.address = s.address ∧
t.facilitytype ≠ s.facilitytype)

Tax 5.0 41 209.4 1,347 1,174 13,484 ∀𝑡, 𝑠 ∈ 𝑟 , ¬(t.state = s.state ∧ t.singleexemp < s.childexemp ∧
t.childexemp > s.childexemp)

opposed to 0.06 to 2 seconds by ADCEnum and 0.11 to 133 seconds
by SearchMC (not shown). The ratios of the increases in the times
are high, but the times of AEI and ADCEnum are still trivial. (b)
The first phase takes far more time than the second phase on Atom.
Specifically, as |P | varies from 38 to 62, ClueToEvi takes 41 to 102
seconds, as opposed to 287 to 852 seconds by EviBuild. We see
ClueToEvi scales better with |P | than EviBuild.

Exp-4: Comparison of approximate dependency discoveries.
We compare FastADC with PYRO [28] and DisAOD [20], the state-
of-the-art methods for discovering approximate UCCs/FDs and lexi-
cographical ODs3. We show the running time and the number |Σ| of
discovered dependencies of each method in Table 5. FastADC takes
more time than PYRO and DisAOD, as expected. Recall FastADC
(resp. PYRO) has a search space exponential in |P | (resp. |𝑅 |), and
|P | is much larger than |𝑅 | (shown in Table 4). The worst-case
complexity of DisAOD is factorial in |𝑅 |, but the number of valid
approximate ODs is usually much smaller than that of DCs, which
in practice facilitates the pruning of search space. In Table 5 we
show some meaningful discovered DCs [7, 31, 35] that are beyond
the expressiveness of FDs and ODs. DCs can indeed specify intricate
attribute relationships by using combinations of predicates (pos-
sibly across attributes). These discovered DCs can be used in data
cleaning and query optimization, as explained in [7, 31, 35].

6.3 In-depth evaluations
In this subsection, we conduct more detailed experiments to evalu-
ate the methods for the two phases.

Exp-5: The choice of shard size 𝜔 . We experimentally study
the choice of parameter 𝜔 , which sets the shard size (Section 4.3).
Intuitively, a too small𝜔 may lead to too many shards and hence in-
crease the overhead of maintaining threads and switching between
threads. In contrast, a too large 𝜔 hinders parallelism and may neg-
atively affect the cache hit ratio of clues. This is because each clue
may be corrected several times in BuildClue (BuildPartialClue),
and a too large shard is likely to cause clues to be removed from
the cache during the processing within a thread.

By varying 𝜔 , we run ClueToEvi on all the datasets; 20K tuples
are used for Tax and NCVoter. The results are reported in Figure 3a.
We see the trends are similar for all the datasets. The time first
decreases and then increases as 𝜔 increases, and the turning point
is roughly within 200 to 500 tuples each shard. It is desirable to have
similar turning points for all the datasets, and to find 𝜔 within a
relatively large range can deliver similar good performance, which
3The codes are online at https://github.com/HPI-Information-Systems/pyro and
https://github.com/chenjixuan20/AOD (last accessed 2022/10/11).

facilitates the choice of 𝜔 . The experimental results justify our
default setting of 𝜔 (𝜔 = 350).

Exp-6: The benefit of clue set.We set the number of threads as 1
in this set of experiments, which enables us to compare ClueToEvi
and EviBuild without parallelism. ClueToEvi still leverages instance
sharding technique and EviBuild uses tuple pair partition.

We test all the datasets from Table 4, and use 100K tuples for Tax
and NCVoter. Reducing the number of tuples favors EviBuild, since
ClueToEvi scales better with |𝑟 | than EviBuild (Exp-3). We report
the results in Figure 3b. ClueToEvi is on average 6.8 times and up
to 8.6 times faster than EviBuild. The results justify the benefit
of clue set. The efficiency of clue set construction is high, and is
further enhanced with sharding technique. The transformation cost
is trivial since |𝑐𝑙𝑢𝑒𝑟 | ≪ |𝑟 |2, as shown in Table 4.

Exp-7: Speedup ratios w.r.t. the number of threads.We study
two kinds of speedup ratio of ClueToEvi, by varying the number
of threads. This set of experiments is run on a machine with two
Intel Xeon E5-2620 V2 2.1G CPU (6 physical cores each CPU, with
hyper-threading disabled) and 64GB of memory. It supports up to
12 threads in parallel, providing more insights into multithreaded
parallelism. We use all the tuples of Airport, Hospital, SPStock and
Atom, and 100K tuples of the others.
(1) In Figure 3c, we show the speed up ratio of ClueToEvi w.r.t.
ClueToEvi without parallelism, i.e., the ratio of the time taken by
ClueToEvi with 1 thread to that by ClueToEvi with 𝑘 threads, by
varying 𝑘 . ClueToEvi can well leverage the available threads, and
hence almost scales linearly with the number of threads. Specifically,
the average speed up ratio of ClueToEvi with 12 threads is 9.6.
(2) In Figure 3d, we show the speedup ratio of ClueToEvi w.r.t.
EviBuild, i.e., the ratio of the time taken by EviBuild to that by
ClueToEvi. In almost all cases, the speedup ratio increases as the
number of threads increases; ClueToEvi scales better with the num-
ber of threads than EviBuild. Specifically, as the number of threads
varies from 1 to 12, on average ClueToEvi extends the lead by 16.7%,
based on its advantage over EviBuild with 1 thread.

Exp-8: The impact of 𝜖. In this set of experiments, we study the
impact of error threshold 𝜖 in AEI, SearchMC and ADCEnum.
(1) In Figure 4a, we vary 𝜖 on dataset Airport. (a) AEI consistently
outperforms SearchMC and ADCEnum. AEI is on average 9 times
and 6.6 times faster than SearchMC andADCEnum, respectively. (b)
As 𝜖 decreases, all the methods usually take more time. Intuitively,
a small 𝜖 implies more evidences need to be covered, and hence,
DCs with more predicates. This negatively affects the efficiency of
enumeration methods, in most cases.

279

10 100 200 350 500 1000 10000
0

200
400
600
800
1000
1200

Ti
m
e
(s
)

Airport Hospital Atom
SPStock Ncvoter Tax
Food Inspection Classification

(a) Shard size 𝜔

1

10

100

1000

10000

Ti
m
e
(s
)

ClueToEvi
EviBuild

Airport Hospital Tax SPStock Food Inspection NCVoter Atom Classification

(b) ClueToEvi against EviBuild without parallelism

0 1 2 4 6 8 10 12
0

2

4

6

8

10

12

Sp
ee
du
p
ra
tio

Number of threads

Airport Hospital SPStock
Atom Tax NCVoter
Food Inspection Classification

(c) The speedup ratio of ClueToEvi w.r.t. ClueToEvi without parallelism

0 1 2 4 6 8 10 12
2

4

6

8

10

12

14

Sp
ee
du
p
ra
tio

Number of threads

Airport Hospital SPStock Atom Tax
NCVoter Food Inspection Classification

(d) The speedup ratio of ClueToEvi w.r.t. EviBuild

Figure 3: Shard size 𝜔 , ClueToEvi against EviBuild without parallelism, and speedup ratios of ClueToEvi

0.1 0.05 0.01 0.005 0.001
0

200
400
600
800
1000
1200
1400

Error threshold

Ti
m
e
(m
s)

AEI
SearchMC
ADCEnum

(a) Airport: varying 𝜖

0.1 0.01 0.001 0.0005 0.0001
100

1000

10000

100000

1000000

Error threshold

Ti
m
e
(m
s) AEI

SearchMC
ADCEnum

(b) Atom: varying 𝜖

Figure 4: AEI, SearchMC and ADCEnum w.r.t. 𝜖

10

100

1000

10000

100000

1000000

Ti
ne
(m
s)

AEI*
ADCEnum*

win100 bms_20 SDFP23 win200 matching32 TH40 SDTH42 lose400 lose800

Figure 5: Approximate set cover enumeration

(2) We vary 𝜖 on dataset Atom in Figure 4b. (a) AEI is much faster
than SearchMC and ADCEnum, up to orders of magnitude. (b) The
times of all the methods increase as 𝜖 decreases. This is mainly
because the number of discovered DCs significantly increases (not
shown), as 𝜖 decreases from 10−1 to 10−4.

Note a smaller 𝜖 does not necessarily lead to a larger |Σ|. As
shown in Table 4, |Σ| decreases on NCVoter when 𝜖 varies from 0.01
to 0.001. We find many DCs valid for 𝜖 = 0.01 become invalid for 𝜖
= 0.001, and most of them fail to produce new valid DCs with all
the available predicates. Also note on some datasets the behaviors
of different methods may vary in response to the changes of 𝜖 , due
to their different traversal strategies and pruning techniques. In

Table 4, AEI and SearchMC take more time but ADCEnum takes
less time, as 𝜖 varies from 0.01 to 0.001 on Tax and SPStock.

Exp-9: Approximate set cover enumeration. We adapt AEI and
ADCEnum to solve the general approximate set cover enumeration
problem [31], as described in Section 5. We use the benchmark
datasets of [32]. The datasets of [32] do not carry weights, while
the computation of approximate set covers concerns the weights of
subsets. In this set of experiments, we assign weights to subsets by
following the normal distribution. The results of the two methods
(denoted by AEI∗ and ADCEnum∗) are reported in Figure 5. AEI∗
is far more efficient than ADCEnum∗; AEI∗ is on average 15.6 and
up to 100.5 times faster than ADCEnum∗ on the tested datasets.

7 CONCLUSION
We have investigated discovering approximate DCs. We have im-
proved the evidence set construction by first building the clue set
and then transforming the clue set to the evidence set, and studied
parallel clue set construction. We have developed a novel method to
discover approximate DCs from the evidence set. Extensive experi-
ments have been conducted to verify the efficiency of our methods.

It is very necessary to further improve the precision of DC dis-
covery so as to better leverage the discovered constraints. As shown
in [51], user interactions are usually required to select meaningful
business rules from the discovered dependencies. We intend to de-
velop practical discovery systems that effectively leverage minimal
user interactions. Another topic is to further study inference rules
of (approximate) DCs, to enable pruning of DCs in the output.

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China
2018YFB1403200 and NSFC 62172102, 61572135, 61925203.

We are really grateful to anonymous reviewers for their valuable
comments and suggestions.

280

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A

Tutorial. In SIGMOD 2017. 1747–1751.
[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.

2018. Data Profiling. Morgan & Claypool Publishers.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.
[4] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten

Papenbrock, and Martin Schirneck. 2020. Hitting Set Enumeration with Partial
Information for Unique Column Combination Discovery. Proc. VLDB Endow. 13,
11 (2020), 2270–2283.

[5] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial
Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.

[6] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. Cliff Leung, Linqi Liu, Xiaoyan Qian, and
K. Bernhard Schiefer. 1999. Implementation of Two Semantic Query Optimization
Techniques in DB2 Universal Database. In VLDB. 687–698.

[7] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498–1509.

[8] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE. 458–469.

[9] Cristian Consonni, Paolo Sottovia, Alberto Montresor, and Yannis Velegrakis.
2019. Discovering Order Dependencies through Order Compatibility. In EDBT.
409–420.

[10] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F.
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning
system. In SIGMOD. 541–552.

[11] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers.

[12] Andrew Gainer-Dewar and Paola Vera-Licona. 2017. The Minimal Hitting Set
Generation Problem: Algorithms and Computation. SIAM J. Discret. Math. 31, 1
(2017), 63–100.

[13] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. 2019. Secure Multi-Party
Functional Dependency Discovery. PVLDB 13, 2 (2019), 184–196.

[14] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.
Cleaning data with Llunatic. VLDB J. 29, 4 (2020), 867–892.

[15] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning Denial Constraint Violations through Relaxation. In SIGMOD. 805–815.

[16] Amir Gilad, Daniel Deutch, and Sudeepa Roy. 2020. On Multiple Semantics for
Declarative Database Repairs. In SIGMOD. 817–831.

[17] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and
Felix Naumann. 2013. Scalable Discovery of Unique Column Combinations.
PVLDB 7, 4 (2013), 301–312.

[18] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.
[19] Joseph F. JáJá. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.
[20] Yifeng Jin, Zijing Tan, Weijun Zeng, and Shuai Ma. 2021. Approximate Order

Dependency Discovery. In ICDE. 25–36.
[21] Yifeng Jin, Lin Zhu, and Zijing Tan. 2020. Efficient Bidirectional Order Depen-

dency Discovery. In ICDE. 61–72.
[22] Reza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, and

Jaroslaw Szlichta. 2021. Efficient Discovery of Approximate Order Dependencies.
In EDBT. 427–432.

[23] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,
Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. BigDans-
ing: A System for Big Data Cleansing. In SIGMOD. 1215–1230.

[24] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2015. Lightning Fast
and Space Efficient Inequality Joins. PVLDB 8, 13 (2015), 2074–2085.

[25] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2017. Fast and scalable
inequality joins. VLDB J. 26, 1 (2017), 125–150.

[26] Jyrki Kivinen and Heikki Mannila. 1992. Approximate Dependency Inference
from Relations. In ICDT. 86–98.

[27] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data dependen-
cies for query optimization: a survey. VLDB J. 31, 1 (2022), 1–22.

[28] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. PVLDB 11, 7 (2018), 759–772.

[29] Philipp Langer and Felix Naumann. 2016. Efficient order dependency detection.
VLDB J. 25, 2 (2016), 223–241.

[30] Li Lin and Yunfei Jiang. 2003. The computation of hitting sets: Review and new
algorithms. Inf. Process. Lett. 86, 4 (2003), 177–184.

[31] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695.

[32] Keisuke Murakami and Takeaki Uno. 2014. Efficient algorithms for dualizing
large-scale hypergraphs. Discret. Appl. Math. 170 (2014), 83–94.

[33] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Func-
tional Dependency Discovery. In SIGMOD. 821–833.

[34] Eduardo H. M. Pena and Eduardo Cunha de Almeida. 2018. BFASTDC: A Bitwise
Algorithm for Mining Denial Constraints. In DEXA. 53–68.

[35] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.
Discovery of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019),
266–278.

[36] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2022. Fast
Detection of Denial Constraint Violations. PVLDB 15, 4 (2022), 859–871.

[37] Eduardo H. M. Pena, Edson Ramiro Lucas Filho, Eduardo Cunha de Almeida,
and Felix Naumann. 2020. Efficient Detection of Data Dependency Violations. In
CIKM. 1235–1244.

[38] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190–1201.

[39] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. 2019. Distributed Discovery of
Functional Dependencies. In ICDE. 1590–1593.

[40] Hemant Saxena, Lukasz Golab, and Ihab F. Ilyas. 2019. Distributed Implementa-
tions of Dependency Discovery Algorithms. Proc. VLDB Endow. 12, 11 (2019),
1624–1636.

[41] Philipp Schirmer, Thorsten Papenbrock, Ioannis K. Koumarelas, and Felix Nau-
mann. 2020. Efficient Discovery of Matching Dependencies. ACMTrans. Database
Syst. 45, 3 (2020), 13:1–13:33.

[42] Sebastian Schmidl and Thorsten Papenbrock. 2022. Efficient distributed discovery
of bidirectional order dependencies. VLDB J. 31, 1 (2022), 49–74.

[43] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. 1996. Fundamental
Techniques for Order Optimization. In SIGMOD. 57–67.

[44] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Sri-
vastava. 2017. Effective and Complete Discovery of Order Dependencies via
Set-based Axiomatization. PVLDB 10, 7 (2017), 721–732.

[45] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivas-
tava. 2018. Effective and complete discovery of bidirectional order dependencies
via set-based axioms. VLDB J. 27, 4 (2018), 573–591.

[46] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of Order
Dependencies. PVLDB 5, 11 (2012), 1220–1231.

[47] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, Wenbin Ma, Weinan Qiu, and
Calisto Zuzarte. 2014. Business-Intelligence Queries with Order Dependencies
in DB2. In EDBT. 750–761.

[48] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2013. Expres-
siveness and Complexity of Order Dependencies. PVLDB 6, 14 (2013), 1858–1869.

[49] Zijing Tan, Ai Ran, Shuai Ma, and Sheng Qin. 2020. Fast Incremental Discovery
of Pointwise Order Dependencies. PVLDB 13, 10 (2020), 1669–1681.

[50] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the
discovery of embedded functional dependencies. VLDB J. 30, 6 (2021), 1069–
1093.

[51] Ziheng Wei and Sebastian Link. 2018. DataProf: Semantic Profiling for Iterative
Data Cleansing and Business Rule Acquisition. In SIGMOD. 1793–1796.

[52] Ziheng Wei and Sebastian Link. 2019. Discovery and Ranking of Functional
Dependencies. In ICDE. 1526–1537.

[53] C. Xavier and S. Sitharama Iyengar. 1998. Introduction to parallel algorithms.
Wiley.

281

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Basic definitions
	3.2 Framework of approximate DC discovery

	4 Build Evidence Set
	4.1 Auxiliary structure
	4.2 From clue set to evidence set
	4.3 Parallel computation with multiple threads

	5 Discover Approximate DCs Based on Evidence Set
	6 Experimental Evaluations
	6.1 Experimental settings
	6.2 Experimental results of DC discovery
	6.3 In-depth evaluations

	7 Conclusion
	Acknowledgments
	References

