
A Two-Level Signature Scheme for Stable Set Similarity Joins
Daniel Schmitt

University of Salzburg, Austria
danielulrich.schmitt@plus.ac.at

Daniel Kocher
University of Salzburg, Austria

dkocher@cs.sbg.ac.at

Nikolaus Augsten
University of Salzburg, Austria
nikolaus.augsten@plus.ac.at

Willi Mann
Celonis SE, Germany
w.mann@celonis.com

Alexander Miller
University of Salzburg, Austria

alexander.miller@cs.uni-salzburg.at

ABSTRACT

We study the set similarity join problem, which retrieves all pairs
of similar sets from two collections of sets for a given distance
function. Existing exact solutions employ a signature-based filter-
verification framework: If two sets are similar, they must have
at least one signature in common, otherwise they can be pruned
safely. We observe that the choice of the signature scheme has a
significant impact on the performance. Unfortunately, choosing a
good signature scheme is hard because the performance heavily
depends on the characteristics of the underlying dataset.

To address this problem, we propose a hybrid signature compo-
sition that leverages the most selective portion of each signature
scheme. Sets with an unselective primary signature are detected,
and the signatures are replaced with a more selective secondary
signature. We propose a generic framework called TwoL and a cost
model to balance the computational overhead and the selectivity of
the signature schemes.We implement our frameworkwith two com-
plementary signature schemes for Jaccard similarity and Hamming
distance, resulting in effective two-level hybrid indexes that join
datasets with diverse characteristics efficiently. TwoL consistently
outperforms state-of-the-art set similarity joins on a benchmark
with 13 datasets that cover a wide range of data characteristics.

PVLDB Reference Format:

Daniel Schmitt, Daniel Kocher, Nikolaus Augsten, Willi Mann,
and Alexander Miller. A Two-Level Signature Scheme for Stable Set
Similarity Joins. PVLDB, 16(11): 2686 - 2698, 2023.
doi:10.14778/3611479.3611480

1 INTRODUCTION

Similarity queries and joins based on set-valued objects have be-
come increasingly popular in various domains [14] with different
applications, for example, near-duplicate detection [26, 30], recom-
mender systems [3], and query refinement for search engines [2]. In
order to find all pairs of similar sets in two large collection of sets,
𝑅 and 𝑆 , different set similarity join algorithms have been proposed.
A distance function 𝑑 (., .) is used to assess whether two sets 𝑟 ∈ 𝑅
and 𝑠 ∈ 𝑆 are similar w.r.t. a user-defined threshold 𝜖 , i.e., the join
result contains all pairs (𝑟, 𝑠) ∈ 𝑅 × 𝑆 for which 𝑑 (𝑟, 𝑠) ≤ 𝜖 holds.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611480

Current set similarity join algorithms employ a signature-based
filter-verification framework to join two collections of sets, 𝑅 and
𝑆 . A signature scheme is used to represent each set by one or more
signatures: if two sets are similar, they must have at least one signa-
ture in common. Signatures are used in two ways: (i) The signatures
of the sets 𝑠 ∈ 𝑆 are indexed in an inverted list index. (ii) Probing
the signatures of a set 𝑟 ∈ 𝑅 against the index yields candidates. A
candidate 𝑠 shares at least one signature with 𝑟 . Verification elimi-
nates false positive candidates by computing the true similarity of
the probing set 𝑟 to each candidate 𝑠 .

Prior Work. The signatures proposed in literature show very
different performance depending on the characteristics of the joined
datasets and the required similarity threshold, and there is no single
signature that performs best in all settings. Relevant data charac-
teristics include, for example, the frequency distribution of the set
elements (called tokens), the number of distinct tokens in the sets
(the universe size), and the size of the individual sets in the collec-
tion. The overall performance of a signature does not only depend
on its selectivity but also on the overhead for indexing and probing.

The predominant signature schemes are either based (i) on a vari-
ation of the prefix filter [5] or use (ii) a partition-and-enumeration
framework [1]. (i) The prefix filter examines the first 𝜋 tokens of
each set w.r.t. a global token order. Each prefix token is a signature,
and sets without a common prefix token are pruned. Prefix-based
approaches [3, 8, 14, 26, 28, 30] typically perform well on datasets
with a large universe, sparsely populated set vector representations
(any vector 𝑥 ∈ {0, 1}𝑑 can be represented as a set {𝑖 | 𝑥𝑖 = 1}), and
a heavily skewed token distribution (i.e., enough infrequent tokens).
(ii) Partition-and-enumeration frameworks split each set into disjoint
partitions (by partitioning the universe) and enumerate all subsets
within Hamming distance 𝜖 ′ ≤ 𝜖 for each partition to form the
signatures; 𝜖 ′ is either fixed for all partitions or is computed using a
cost model. Partition-enumeration frameworks [1, 7, 16, 17, 22, 31]
incur a larger overhead than prefix-based techniques and require
more memory. However, on datasets with a smaller universe or
more uniformly distributed tokens, they may be much more selec-
tive and outperform prefix-based approaches.

Limitations. Choosing a good signature scheme is hard, and
unfavorable signatures may lead to slowdowns of more than an
order of magnitude or excessive memory footprints. A small uni-
verse or uniform token distributions render the prefix filter inef-
fective, resulting in expensive index lookups and many candidates.
Partition-and-enumeration techniques are ill-suited for datasets
that favor the prefix filter because the enumeration is expensive
(due to a large universe) and sparsely populated binary vectors
result in unselective partitions. Techniques to avoid unselective

2686

https://doi.org/10.14778/3611479.3611480
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611480

partitions [7, 22] incur high computational overhead and are of-
ten slower than the lightweight prefix filter [14]. Both approaches
perform poorly on datasets that show mixed characteristics.

A direct composition of two signature schemes requires candidate
pairs to share at least one signature in both schemes: The number of
candidates is reduced at the cost of more expensive computations.

Our Solution & Contributions. We propose the TwoL frame-
work (pronounced [tu:l]) for set similarity joins, which uses a novel
hybrid signature composition technique to integrate signatures that
are optimized for different dataset characteristics. TwoL employs
a hybrid index that maintains two levels, one for each signature
scheme. Our goal is to use the most selective signatures of each
scheme, i.e., the signatures that generate the smallest number of
candidates. If a primary signature at level 1 is not selective enough,
we transfer the corresponding index entry to level 2, i.e., the affected
sets are reindexed with the secondary signature scheme. TwoL uses
a cost model to decide if migrating an index entry is beneficial.
The cost model can be configured to interpolate between the two
signature schemes and their direct composition. Our new hybrid
signature composition gradually assumes properties of the primary
scheme, the secondary scheme, and their direct composition.

We further introduce two novel optimizations for the self-join
scenario that can be used independently of TwoL: (i) EPEL provides
a tighter length bound on candidate sets than the standard PEL [13]
filter. (ii) Index filtering avoids the creation of trivial singleton in-
verted lists, which substantially reduces the memory footprint of
selective signatures, e.g., up to 99% of the fcLSH [20] lists are trivial.

In summary, our contributions are the following:
• We propose the hybrid signature composition for set similar-

ity joins that enables “interpolation” between two signature
schemes: our composition gradually assumes the properties
of one of the two schemes and their direct composition.

• Our TwoL framework indexes hybrid compositions of two
complementary signature schemes. We implement TwoL
for the Jaccard similarity and the Hamming distance.

• A novel cost model allocates the two levels of our hybrid
index. The optimal index allocation is shown to be computa-
tionally infeasible and we propose two heuristic strategies.

• For self-joins, we introduce EPEL to tighten the position-
enhanced length filter, and index filtering that substantially
reduces the memory cost for indexing selective signatures.

• In our experiments on 13 datasets with a wide range of
characteristics, TwoL outperforms its competitors and is
less sensitive to dataset characteristics even for datasets
that do not favor one of the two selected signature schemes.

Outline.We discuss related work and preliminaries in Section 2
and 3, respectively. Section 4 generalizes prior set similarity tech-
niques as different signature compositions, Section 5 proposes a new
hybrid composition, and Section 6 discusses the index allocation
cost. We instantiate TwoL with concrete signatures in Section 7,
show experimental results in Section 8, and conclude in Section 9.

2 RELATEDWORK

Most set similarity join algorithms follow the filter-verification
framework: a filter generates candidates of possibly similar sets
that must be verified. The two dominant filter categories are the

prefix filter [5] and the partition-and-enumeration framework [1],
and both apply additional filtering conditions like the set size [1].

Prefix Filter. AllPairs [2] uses both prefix and length filter in a
main-memory setting. PPJoin(+) [30] extend AllPairs by utilizing
positional information and suffix filtering. GroupJoin [3] extends
PPJoin and groups sets with the same prefix during indexing and
candidate generation to filter multiple sets at once. Numerous varia-
tions of prefix-filter algorithms [2, 3, 13, 26, 30] have been proposed
and we refer to the survey by Mann et al. [14] for details. In their
empirical evaluation, GroupJoin is the most robust algorithm with
the smallest average and maximum gap factor compared to the
winner in a given setting. SizeAware [8] uses overlap similarity
and splits a dataset into small and large sets. Large sets are handled
with ScanCount [11]. For small sets, subsets of size 𝑐 (𝑐-subsets)
are used as signatures, but skipping and deduplication methods
avoid enumerating all signatures. For other similarity functions
like Jaccard, a prefix-filter based construction using AdaptJoin [26]
is used. Rong et al. [23] use multiple prefix indexes with different
token orderings to increase pruning effectiveness in a distributed
setting. Wang et al. [28] propose SkipJoin and use grouping in the
prefix index to build skippable blocks using the positional filter [30].
Additionally, given all similar sets for 𝑟 , and a set 𝑠 similar to 𝑟 ,
a cost model either decides to compute the candidates of 𝑠 from
scratch or to leverage the similarity of 𝑠 to 𝑟 . Algorithms in this
category typically perform well on heavily skewed datasets with a
large universe (i.e., enough infrequent tokens). The prefix filter was
also used in the context of top-𝑘 set similarity joins [29, 32], where
the goal is to find the 𝑘 pairs of sets with the highest similarity. Our
goal is to solve the threshold-based set similarity join problem.

Partition-and-Enumeration. Arasu et al. [1] introduce the partition-
and-enumeration framework. In a nutshell, algorithms in this frame-
work split each set (or vector) into disjoint partitions 𝑃1, . . . , 𝑃𝑛 and
enumerate all partitions within Hamming distance 𝜖𝑘 for each par-
tition 𝑃𝑘 , 1 ≤ 𝑘 ≤ 𝑛. Two sets that agree on a partition form a
candidate pair. Arasu et al. [1] use two tunable parameters for the
partition count and the number of enumeration signatures. Norouzi
et al. [16, 17] only enumerate on the query side and use a tight
filtering condition. Zhang et al. [31] use an efficient verification
algorithm for bit vectors and balance rare and common tokens us-
ing a dimension rearrangement method. In PartAlloc1, Deng et
al. [7] use a cost model to allocate 𝜖𝑘 ∈ {−1, 0, 1} efficiently. For the
Hamming distance, sets are partitioned in 𝜖 + 1 parts. Qin et al. [22]
generalize 𝜖𝑘 allocations and propose a cost model and an uneven
partitioning scheme. Liu et al. [12] generalize partitioning to allow
overlaps and use machine learning for candidate estimations. Qin
et al. [21] generalize the pigeonhole principle by considering chains
of partitions and extend pkwise [27] for set similarity search with
overlap constraint. Pagh’s CoveringLSH [18] constructs bitmaps
that cover all possible ways similar sets might differ and achieves
total recall, whereas other LSHmethods are approximations. fcLSH
by Pham et al. [20] increases CoveringLSH’s hashing performance
by using the Fast Hadamard Transform. Algorithms in this cate-
gory usually perform well on datasets with dense bitvectors of low
dimensionality, where the prefix filter is ineffective. For skewed

1PartAlloc is also known as Greedy+ or PTJoin.

2687

token distributions, however, the sophisticated filters and the large
memory footprint of these algorithms do not pay off.

Our hybrid signature composition is orthogonal to the develop-
ment of new signature schemes: New signatures can replace less
efficient ones in our hybrid composition and the TwoL framework.

Approximate Methods. Compared to exact set similarity join tech-
niques, algorithms based on Locality-Sensitive Hashing (LSH) [9] or
Mapping (LSM) [6] generally do not find all similar pairs, but allow
time-recall trade-offs. Recent advances include approximate candi-
date pruning [4], LSM families with better query times compared
to predecessors [6], and efficient implementations thereof [15]. In
this paper, we focus on exact set similarity joins.

3 PRELIMINARIES

The core of a set similarity join algorithm is the signature scheme
that is used to prune dissimilar pairs of sets. In this section, we de-
fine our problem of interest, formally introduce signature schemes,
revisit signature-based set similarity joins, and specify our goal.

Set Similarity Joins and Signature Schemes. For two collections
of sets 𝑅 and 𝑆 , a set similarity join reports all pairs of sets that are
similar w.r.t. some distance function. A set 𝑟 has 𝑛 unique tokens,
|𝑟 | = 𝑛 denotes the size of 𝑟 , sets in 𝑅 can differ in size, and the token
universe of 𝑅 is the set of all tokens over all sets in 𝑅. In this work,
we focus on the Hamming distance as a dissimilarity measure;
we discuss the extension to other distances in Section 7.6. The
Hamming distance of two sets 𝑟 and 𝑠 is the number of tokens that
only appear in one set, i.e., 𝑟 △ 𝑠 = |𝑟∪𝑠 |− |𝑟∩𝑠 |. Two sets are similar
if their Hamming distance is within a given distance threshold 𝜖 .
The set similarity join of 𝑅 and 𝑆 using the Hamming distance is
defined as 𝑅 ˜︁⊲⊳ 𝑆 = {(𝑟, 𝑠) ∈ 𝑅 × 𝑆 | 𝑟 △ 𝑠 ≤ 𝜖}. We study self joins,
i.e., 𝑅 = 𝑆 , but an extension to foreign joins is straightforward.

Arasu et al. [1] used the notion of signatures as a conceptual
framework to compare different set similarity join algorithms. A
signature can be interpreted as a hash value for a set, and existing
set similarity joins primarily differ in the way they generate signa-
tures, i.e., their signature scheme. For a set 𝑟 , a signature scheme
generates one or more signatures, and 𝑆𝑖𝑔𝑛(𝑟) denotes the finite
set of signatures of 𝑟 . Moreover, a signature scheme must guarantee
that any two similar sets 𝑟 and 𝑠 share at least one signature, i.e.,
𝑟 △ 𝑠 ≤ 𝜖 ⇒ 𝑆𝑖𝑔𝑛(𝑟) ∩ 𝑆𝑖𝑔𝑛(𝑠) ≠ ∅, where the distance threshold 𝜖
is a hidden parameter of 𝑆𝑖𝑔𝑛. Asymmetric schemes [7, 22, 30] con-
struct different signatures for sets that are stored in an index and
sets that are used to probe the index. We denote them as 𝑆𝑖𝑔𝑛𝐼 (𝑟)
and 𝑆𝑖𝑔𝑛𝑃 (𝑟), respectively. Superscripts 𝐼 and 𝑃 are omitted if they
are obvious from the context, the signature scheme is symmetric, or
an extension to asymmetric signature schemes is straightforward.

Algorithmic Framework. To avoid computing 𝑆𝑖𝑔𝑛𝐼 (𝑟)∩𝑆𝑖𝑔𝑛𝑃 (𝑠)
for all set pairs, an inverted list index 𝐿𝐼 is built on 𝑆𝑖𝑔𝑛𝐼 . List 𝐿𝐼𝑡
stores all sets 𝑟 with 𝑡 ∈ 𝑆𝑖𝑔𝑛𝐼 (𝑟) and 𝐿𝑃𝑡 denotes all sets containing
the probing signature 𝑡 . When set 𝑠 is probed, we generate all sig-
natures 𝑆𝑖𝑔𝑛𝑃 (𝑠) and look up the lists 𝐿𝐼𝑡 of all probing signatures
𝑡 ∈ 𝑆𝑖𝑔𝑛𝑃 (𝑠). All sets in these lists form a candidate pair with 𝑠
and undergo verification. We use the term signature for the signa-
ture itself and its lists. In self joins, sets are typically processed in
increasing size order. Algorithm 1 shows the corresp. framework.

Algorithm 1: Signature-based Framework
Input: Collection 𝑅, distance 𝜖
Result: All similar pairs in 𝑅 × 𝑅

1 𝐿𝐼 ← ∅,𝑀 ← ∅,𝐶 ← ∅ // inv. index, result, candidates

2 forall 𝑟 ∈ 𝑅 do // indexing

3 forall signatures 𝑡 ∈ 𝑆𝑖𝑔𝑛𝐼 (𝑟) do 𝐿𝐼𝑡 ← 𝐿𝐼𝑡 ∪ {𝑟 }
4 forall 𝑠 ∈ 𝑅 do // probing

5 forall signatures 𝑡 ∈ 𝑆𝑖𝑔𝑛𝑃 (𝑠) do 𝐶 ← 𝐶 ∪ {(𝑟, 𝑠) | 𝑟 ∈ 𝐿𝐼𝑡 }
6 forall candidate pairs (𝑟, 𝑠) ∈ 𝐶 do // verification

7 𝑀 ← 𝑀 ∪ (𝑟, 𝑠) if 𝑟 △ 𝑠 ≤ 𝜖
8 return𝑀

1𝑝 2𝑝 3𝑝 4𝑝 5𝑝 6𝑝 7𝑝 8𝑝
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
𝑠3 𝑠4 𝑠5 𝑠7 𝑠1 𝑠11 𝑠15 𝑠1

𝑠6 𝑠8 𝑠6 𝑠12 𝑠16 𝑠2

𝑠13 𝑠13 𝑠17 𝑠3

𝑠14 𝑠14 𝑠18
...

𝑠10

pu
re

pr
im

ar
y
in
de
x

0 0 1 1 6 6 6 45
1 1 2 3 5 5 5 30

𝑆𝐶𝑝 :

𝑆𝐶𝑠 :

(a) 𝑆𝑖𝑔𝑛𝑝

1𝑠 2𝑠 3𝑠 ... 18𝑠 19𝑠 20𝑠 21𝑠 22𝑠 23𝑠 24𝑠

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
𝑠1 𝑠2 𝑠3 . . . 𝑠18 𝑠12 𝑠16 𝑠13 𝑠17 𝑠1 𝑠6

𝑠14 𝑠18 𝑠2 𝑠7

𝑠3 𝑠8

𝑠4 𝑠9

𝑠5 𝑠10

𝑠11 𝑠15

p
u
r
e
s
e
c
o
n
d
a
r
y
i
n
d
e
x

TwoL index: + +

(b) 𝑆𝑖𝑔𝑛𝑠

Figure 1: Running example.

Example 3.1. Consider the self join of 𝑅 = {𝑠1, 𝑠2, . . . , 𝑠18}. We
probe set 𝑠3 in the inverted index of the symmetric signature 𝑆𝑖𝑔𝑛𝑝
in Figure 1(a). To avoid symmetric pairs (𝑠 𝑗 , 𝑠𝑖) and reflexive pairs
(𝑠𝑖 , 𝑠𝑖), we only consider candidate pairs (𝑠𝑖 , 𝑠 𝑗) with 𝑖 < 𝑗 . With
𝑆𝑖𝑔𝑛𝑝 (𝑠3) = {1𝑝 , 8𝑝 }, we get 0 non-reflexive, non-symmetric candi-
dates from list 1𝑝 and 9 candidate pairs from list 8𝑝 : (𝑠1, 𝑠3), (𝑠2, 𝑠3),
(𝑠3, 𝑠4), . . . , (𝑠3, 𝑠10). For signature 𝑆𝑖𝑔𝑛𝑠 shown in Figure 1(b), 𝑠3
with 𝑆𝑖𝑔𝑛𝑠 (𝑠3) = {3𝑠 , 23𝑠 } forms candidate pairs with 0 sets from list
3𝑠 and 5 sets from list 23𝑠 : (𝑠1, 𝑠3), (𝑠2, 𝑠3), (𝑠3, 𝑠4), (𝑠3, 𝑠5), (𝑠3, 𝑠11).

Objective. Our goal is to develop a new signature composition
technique that enables stable set similarity joins, i.e., joins that are
time and space efficient across a wide range of dataset characteris-
tics.

4 SIGNATURE COMPOSITION

Typically, set similarity join algorithms do not use a single “atomic”
signature scheme but combine multiple signature schemes to build
more selective signatures. In this section, we abstract from different
set similarity join techniques and formalize three signature compo-
sitions: (1) direct composition, (2) partition-based composition, and
(3) dependent composition. We omit proofs due to space constraints.

Direct Composition. Given two signature schemes 𝑆𝑖𝑔𝑛𝑝 and
𝑆𝑖𝑔𝑛𝑠 , their direct composition 𝑆𝑖𝑔𝑛𝑝×𝑆𝑖𝑔𝑛𝑠 is the Cartesian product
𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 (𝑟) = 𝑆𝑖𝑔𝑛𝑝 (𝑟) × 𝑆𝑖𝑔𝑛𝑠 (𝑟). Intuitively, a probing set
𝑟 must match both signatures 𝑆𝑖𝑔𝑛𝑝 and 𝑆𝑖𝑔𝑛𝑠 to be a candidate.
This generates fewer candidates as dissimilar sets are less likely to
match on both signatures, but requires additional computations. For
example, AllPairs [2] directly composes prefix and length filter.

2688

Lemma 4.1. The direct composition 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 of signature
schemes, 𝑆𝑖𝑔𝑛𝑝 and 𝑆𝑖𝑔𝑛𝑠 , is a signature scheme, i.e., 𝑟 △ 𝑠 ≤ 𝜖 ⇒
𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 (𝑠) ≠ ∅. The candidates of 𝑆𝑖𝑔𝑛𝑝 ×
𝑆𝑖𝑔𝑛𝑠 are a subset of the candidates generated by 𝑆𝑖𝑔𝑛𝑝 resp. 𝑆𝑖𝑔𝑛𝑠 .

Example 4.2. Consider the direct composition 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 de-
picted in Figure 1 and probing set 𝑠3: 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 (𝑠3) = {(1𝑝 , 3𝑠),
(1𝑝 , 23𝑠), (8𝑝 , 3𝑠), (8𝑝 , 23𝑠)}. Signature (8𝑝 , 23𝑠) generates four can-
didates: 𝑠1, 𝑠2, 𝑠4, 𝑠5. No other signature generates a candidate.

Partition-based Composition. This composition uses a partition
signature 𝑃𝑎𝑟𝑡 that partitions the token universe into 𝑛 disjoint
subsets 𝑃 = {𝑃1, . . . , 𝑃𝑛}: 𝑃𝑎𝑟𝑡 (𝑟) = {𝑟 ∩ 𝑃𝑘 | 𝑘 ∈ {1, . . . , 𝑛}}.
Given a signature scheme 𝑆𝑖𝑔𝑛𝑠 and a partition signature 𝑃𝑎𝑟𝑡 , the
partition-based composition is the direct image 𝑆𝑖𝑔𝑛𝑠 ◦ 𝑃𝑎𝑟𝑡 (𝑟) =
{(𝑘, 𝑡𝑠) | 𝑘 ∈ {1, . . . , 𝑛}, 𝑡𝑠 ∈ 𝑆𝑖𝑔𝑛𝑠 (𝑟 ∩𝑃𝑘)}. The hidden parameters
𝜖𝑘 for 𝑆𝑖𝑔𝑛𝑠 can differ for each partition 𝑃𝑘 as long as 𝜖 ≤

∑︁𝑛
𝑘=1 𝜖𝑘 +

𝑛−1. This composition typically decreases the signature generation
cost for schemes 𝑆𝑖𝑔𝑛𝑠 that are expensive to compute for large
sets or high 𝜖 , but does not generate fewer candidates in general.
PartAlloc [7] is an example for a partition-based composition.

Lemma 4.3. The partition-based composition 𝑆𝑖𝑔𝑛𝑠 ◦ 𝑃𝑎𝑟𝑡 of a
signature scheme 𝑆𝑖𝑔𝑛𝑠 and a partition scheme 𝑃𝑎𝑟𝑡 is a signature
scheme, i.e., 𝑟 △ 𝑠 ≤ 𝜖 ⇒ 𝑆𝑖𝑔𝑛𝑠 ◦ 𝑃𝑎𝑟𝑡 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑠 ◦ 𝑃𝑎𝑟𝑡 (𝑠) ≠ ∅.

Dependent Composition. A primary signature scheme 𝑆𝑖𝑔𝑛𝑝 forms
a dependent composition with a secondary signature scheme 𝑆𝑖𝑔𝑛𝑠
if 𝑆𝑖𝑔𝑛𝑠 (𝑟) depends on both 𝑟 and 𝑆𝑖𝑔𝑛𝑝 (𝑟). This composition is
often based on a direct composition 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 but leverages
signature-specific opportunities to reduce the number of required
signatures w.r.t. the direct composition. The correctness is not given
by construction and requires dedicated proofs. An example is the
position-enhanced length filter (PEL) [13], a composition of pre-
fix and positional filter, that leverages information of the primary
prefix signature to reduce the number of required length signatures.

5 HYBRID SIGNATURE COMPOSITION

Our goal is a stable signature scheme that performs well across a
wide range of different dataset characteristics. To this end, we intro-
duce a novel composition technique, hybrid signature composition,
that generalizes the direct composition and leverages the highly
selective portion of each of the composed signatures. Compared
to the dependent composition (cf. Section 4), the hybrid compo-
sition does not rely on specifics of the composed signatures and
generalizes to arbitrary signature schemes.

5.1 A Hybrid Signature Scheme

We propose the following hybrid signature scheme for a primary
signature scheme 𝑆𝑖𝑔𝑛𝑝 and a secondary signature scheme 𝑆𝑖𝑔𝑛𝑠 :

𝑆𝑖𝑔𝑛𝑝×ℎ𝑆𝑖𝑔𝑛𝑠 (𝑟) =
⋃︂

𝑡𝑝 ∈𝑆𝑖𝑔𝑛𝑝 (𝑟)

{︃
{(𝑡𝑝) } 𝐴 [𝑡𝑝] = 0
{(𝑘, 𝑡𝑠) | 𝑡𝑠 ∈ 𝑆𝑖𝑔𝑛𝑠 (𝑟) } 𝐴 [𝑡𝑝] = 𝑘

The hybrid signature scheme is configured by an allocation vector
𝐴 with one entry per primary signature 𝑡𝑝 ∈ 𝑆𝑖𝑔𝑛𝑝 (𝑟): If 𝐴[𝑡𝑝] is
zero, only the primary scheme is used; an integer 𝑘 > 0 indicates
the partition of the secondary scheme that is used for the sets with
signature 𝑡𝑝 . In our two-level hybrid index introduced below, a
separate secondary index is created for each partition 𝑘 .

Lemma 5.1. The hybrid composition 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 of two sig-
nature schemes, 𝑆𝑖𝑔𝑛𝑝 and 𝑆𝑖𝑔𝑛𝑠 , is a signature scheme:

𝑟 △ 𝑠 ≤ 𝜖 ⇒ 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 (𝑠) ≠ ∅

Proof. Assume 𝑟 △ 𝑠 ≤ 𝜖 . As 𝑆𝑖𝑔𝑛𝑝 and 𝑆𝑖𝑔𝑛𝑠 are signature
schemes, there exist 𝑡𝑝 and 𝑡𝑠 with 𝑡𝑝 ∈ 𝑆𝑖𝑔𝑛𝑝 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑝 (𝑠) and
𝑡𝑠 ∈ 𝑆𝑖𝑔𝑛𝑠 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑠 (𝑠). If 𝐴[𝑡𝑝] = 0, 𝑟 and 𝑠 share at least the
signature (𝑡𝑝) in 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 . If 𝐴[𝑡𝑝] = 𝑘 ≠ 0, 𝑟 and 𝑠 share at
least the signature (𝑘, 𝑡𝑠) in 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 . □

To illustrate the impact of the allocation vector 𝐴, we study
three special cases of 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 : (1) If 𝐴[𝑡𝑝] = 0 for all 𝑡𝑝 ,
then 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 (𝑟) = ∪𝑡𝑝 ∈𝑆𝑖𝑔𝑛𝑝 (𝑟) {(𝑡𝑝)} ≅ 𝑆𝑖𝑔𝑛𝑝 (𝑟), and we
recover 𝑆𝑖𝑔𝑛𝑝 . (2) If 𝐴[𝑡𝑝] = 1 for all 𝑡𝑝 , then 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 (𝑟) =
∪𝑡𝑠 ∈𝑆𝑖𝑔𝑛𝑠 (𝑟) {(1, 𝑡𝑠)} ≅ 𝑆𝑖𝑔𝑛𝑠 (𝑟), and we recover 𝑆𝑖𝑔𝑛𝑠 . (3) If all
values in 𝐴 are non-zero and 𝐴[𝑡𝑝] ≠ 𝐴[𝑡 ′𝑝] for any two primary
signatures 𝑡𝑝 ≠ 𝑡 ′𝑝 , then there is a one-to-one correspondence of
values 𝑘 = 𝐴[𝑡𝑝] and signatures 𝑡𝑝 . Hence, we can replace (𝑘, 𝑡𝑠)
with (𝑡𝑝 , 𝑡𝑠) and derive the direct composition: 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 (𝑟) =
∪𝑡𝑝 ∈𝑆𝑖𝑔𝑛𝑝 (𝑟),𝑡𝑠 ∈𝑆𝑖𝑔𝑛𝑠 (𝑟) {(𝑡𝑝 , 𝑡𝑠)} = 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 (𝑟).

By choosing 𝐴 carefully, we can interpolate between the three
signature schemes 𝑆𝑖𝑔𝑛𝑝 , 𝑆𝑖𝑔𝑛𝑠 , and 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 . This allows us
to use highly selective portions of 𝑆𝑖𝑔𝑛𝑝 and 𝑆𝑖𝑔𝑛𝑠 , and to fall back
to 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 only if neither signature is sufficiently selective.

5.2 A Two-Level Index for Hybrid Compositions

This section introduces our two-level hybrid index to efficiently
leverage the hybrid signature composition 𝑆𝑖𝑔𝑛𝑝 ×ℎ 𝑆𝑖𝑔𝑛𝑠 . To foster
the intuition, we interpret the hybrid composition as a two-level
index rather than an index with two different types of signatures,
(𝑡𝑝) and (𝑘, 𝑡𝑠). The first level is built using 𝑆𝑖𝑔𝑛𝑝 . An entry for a
primary signature 𝑡𝑝 either references an inverted list if𝐴[𝑡𝑝] = 0 or
the 𝑘-th secondary index if 𝐴[𝑡𝑝] = 𝑘 . With this interpretation, we
have a choice for each primary signature 𝑡𝑝 : (a) Retain the inverted
list 𝐿𝐼𝑝 as-is in the primary index (𝐴[𝑡𝑝] = 0), or (b) transfer all sets
in the inverted list 𝐿𝐼𝑝 to a secondary index; we can freely choose
to which secondary index the sets are transferred. Case (b) is also
referred to as reindexing.

Figure 2 depicts the steps to build a two-level index for input
collection 𝑅 in Figure 1 (allocation vector 𝐴 highlighted in gray).
Step I indexes𝑅 using 𝑆𝑖𝑔𝑛𝑝 to create the primary index; all entries
in 𝐴 are zero. In step II , a part of the primary index remains as-is
(𝐴[𝑡𝑝] = 0), whereas all sets in the lists of other primary signatures
are transferred to disjoint secondary indexes2 using 𝑆𝑖𝑔𝑛𝑠 . In our
example, signatures 1𝑝 to 4𝑝 remain in the primary index, and a
secondary index is built for each primary signature 5𝑝 to 8𝑝 . The last
four (non-zero) integers in 𝐴 refer to individual secondary indexes
(numbered 1-4). Step III finally merges multiple secondary indexes
to reduce the cost of building and probing additional indexes. In
Figure 2, we merge the secondary indexes of 5𝑝 and 8𝑝 (blue) as
well as 6𝑝 and 7𝑝 (red). 𝐴 is updated accordingly: 1 and 2 refer to
the blue and red secondary index, respectively. Steps II and III aim
to reduce the overall set similarity join costs (cf. Section 7).

2This is an intermediate, conceptual step without any physical index building.

2689

1𝑝 2𝑝 3𝑝 4𝑝 5𝑝 6𝑝 7𝑝 8𝑝
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
𝑠3 𝑠4 𝑠5 𝑠7 𝑠1 𝑠11 𝑠15 𝑠1

𝑠6 𝑠8 𝑠6 𝑠12 𝑠16 𝑠2

𝑠13 𝑠13 𝑠17 𝑠3

𝑠14 𝑠14 𝑠18
...

𝑠10

𝑅 = {𝑠1, 𝑠2, . . . , 𝑠18}

I

II

1𝑝 2𝑝 3𝑝 4𝑝
↓ ↓ ↓ ↓
𝑠3 𝑠4 𝑠5 𝑠7

𝑠6 𝑠8

... 21𝑠 23𝑠 24𝑠
↓ ↓ ↓ ↓
. . . 𝑠13 𝑠1 𝑠6

𝑠14

... 19𝑠 21𝑠 23𝑠
↓ ↓ ↓ ↓
. . . 𝑠12 𝑠13 𝑠11

𝑠14

... 20𝑠 22𝑠 24𝑠
↓ ↓ ↓ ↓
. . . 𝑠16 𝑠17 𝑠15

𝑠18

... 23𝑠 24𝑠
↓ ↓ ↓
. . . 𝑠1 𝑠6

𝑠2 𝑠7

𝑠3 𝑠8

𝑠4 𝑠9

𝑠5 𝑠10

1𝑝 2𝑝 3𝑝 4𝑝
↓ ↓ ↓ ↓
𝑠3 𝑠4 𝑠5 𝑠7

𝑠6 𝑠8

... 21𝑠 23𝑠 24𝑠
↓ ↓ ↓ ↓
. . . 𝑠13 𝑠1 𝑠6

𝑠14 𝑠2 𝑠7

𝑠3 𝑠8

𝑠4 𝑠9

𝑠5 𝑠10

... 19𝑠 20𝑠 21𝑠 22𝑠 23𝑠 24𝑠
↓ ↓ ↓ ↓ ↓ ↓ ↓
. . . 𝑠12 𝑠16 𝑠13 𝑠17 𝑠11 𝑠15

𝑠14 𝑠18

III

5𝑝 6𝑝 7𝑝 8𝑝

5𝑝 6𝑝 7𝑝 8𝑝

0 0 ... 0
1𝑝 2𝑝 ... 8𝑝

A:

0 0 0 0 1 2 3 4
1𝑝 2𝑝 3𝑝 4𝑝 5𝑝 6𝑝 7𝑝 8𝑝

A:

Secondary

Primary

0 0 0 0 1 2 2 1
1𝑝 2𝑝 3𝑝 4𝑝 5𝑝 6𝑝 7𝑝 8𝑝

A:

Figure 2: Overview of our two-level hybrid index for hybrid signature compositions.

5.3 TwoL: A Hybrid Composition Framework

The TwoL framework depicted in Algorithm 2 implements hybrid
compositions as a two-level index. The computation of the alloca-
tion vector 𝐴 is a black box in TwoL. Since our framework is still
signature-based, it resembles Algorithm 1. During indexing, a full
primary index is built using 𝑆𝑖𝑔𝑛𝑝 (lines 1-3). Then, the allocation
vector 𝐴 is computed (line 4) and signatures with non-zero alloca-
tion are transferred to a secondary index (lines 5-7). For probing
a primary signature 𝑡𝑝 , we either (a) ignore 𝑡𝑝 if the signature is
not in the domain of 𝐴 (implicity in lines 11-12), (b) look up the
signature (𝑡𝑝) (line 11), or (c) store its secondary index 𝐴[𝑡𝑝] for
later lookup (line 12). Multiple primary signatures may refer to
the same secondary index, thus we postpone and batch-lookup all
secondary indexes (line 14). Finally, candidates are verified (line 16).

6 MINIMUM INDEX COST ALLOCATION

This section defines a cost model for the allocation vector 𝐴 that
considers the four main cost factors of signature-based set similarity
joins: (1) signature generation, (2) indexing, (3) probing, and (4)
verification. We show that finding an optimal allocation vector 𝐴 is
computationally infeasible and propose effective heuristics.

Motivation. Depending on the signature scheme and dataset,
some primary signatures may appear more frequently than others
during indexing and probing. Frequent signatures are problematic
because the number of candidates is proportional to the size of the
Cartesian product 𝐿𝐼𝑡 ×𝐿𝑃𝑡 . In Figure 1(a), most candidates stem from
list 𝐿𝐼8𝑝 (= 𝐿

𝑃
8𝑝), whereas many lists generate only a few candidates.

Figure 3, which shows the number of candidates over prefix-based
signatures, illustrates this behavior for two real-world datasets.
At the cost of additional computational overhead, we can reduce
the number of candidates by combining or substituting unselec-
tive primary signatures with a more selective secondary signature

Algorithm 2: The TwoL Framework
Input: Collection 𝑅, distance 𝜖
Result: All similar pairs in 𝑅 × 𝑅

1 𝐿𝐼 ← ∅,𝑀 ← ∅,𝐶 ← ∅ // inv. index, result, candidates

2 forall 𝑟 ∈ 𝑅 do // first-level indexing; step I

3 forall 𝑡𝑝 ∈ 𝑆𝑖𝑔𝑛𝐼𝑝 (𝑟) do 𝐿𝐼(𝑡𝑝) ← 𝐿𝐼(𝑡𝑝) ∪ {𝑟 }

4 compute allocation vector 𝐴 // steps II and III

5 forall 𝑡𝑝 with 𝐴 [𝑡𝑝] = 𝑘 ≠ 0 do // sec.-lvl indexing

6 forall 𝑟 ∈ 𝐿𝐼(𝑡𝑝) ; 𝑡𝑠 ∈ 𝑆𝑖𝑔𝑛
𝐼
𝑠 (𝑟) do 𝐿𝐼(𝑘,𝑡𝑠) ← 𝐿𝐼(𝑘,𝑡𝑠) ∪ {𝑟 }

7 𝐿𝐼(𝑡𝑝) ← ∅

8 forall 𝑟 ∈ 𝑅 do

9 𝐾 ← ∅
10 forall 𝑡𝑝 ∈ 𝑆𝑖𝑔𝑛𝑃𝑝 (𝑟) do // first-level probing

11 if 𝐴 [𝑡𝑝] = 0 then 𝐶 ← 𝐶 ∪ {(𝑟, 𝑠) | 𝑠 ∈ 𝐿𝐼(𝑡𝑝) }
12 else 𝐾 ← 𝐾 ∪𝐴 [𝑡𝑝];
13 forall (𝑘, 𝑡𝑠) ∈ 𝐾 × 𝑆𝑖𝑔𝑛𝑃𝑠 (𝑟) do // sec.-lvl. prob.

14 𝐶 ← 𝐶 ∪ {(𝑟, 𝑠) | 𝑠 ∈ 𝐿𝐼(𝑘,𝑡𝑠) }

15 forall candidate pairs (𝑟, 𝑠) ∈ 𝐶 do // verification

16 𝑀 ← 𝑀 ∪ (𝑟, 𝑠) if 𝑟 △ 𝑠 ≤ 𝜖
17 return𝑀

scheme 𝑆𝑖𝑔𝑛𝑠 . Combination and substitution directly correspond to
an interpolation towards 𝑆𝑖𝑔𝑛𝑝 × 𝑆𝑖𝑔𝑛𝑠 and 𝑆𝑖𝑔𝑛𝑠 , respectively (cf.
Section 5.1). Figure 1(b) illustrates this for a signature scheme 𝑆𝑖𝑔𝑛𝑠
that generates many but rather selective signatures (i.e., short lists).

6.1 Problem Definition

Our goal is to transfer an inverted list from the primary index to a
secondary index such that the overall join costs are minimized. We
distinguish between primary and secondary index cost.

2690

0 0.2 0.4 0.6 0.8 1 1.2

·104

100

105

1010

Signatures (frequency order)

C
an

di
da

te
s

CELONIS1

0 2 4 6 8

·106

100

102

104

106

Signatures (frequency order)

C
an

di
da

te
s

LIVEJ

Figure 3: Candidate distribution over prefix-based signatures.

Primary Index Costs. The primary index costs include the costs
(1) to verify all its candidates, (2) to index the sets, (3) to generate
the probing signatures, and (4) to probe the index (cf. Table 1):

𝐶𝑝 = 𝐶
verify
𝑝 +𝐶 index

𝑝 +𝐶siggen
𝑝 +𝐶probe

𝑝

The verification costs are derived from the costs to verify a
single set3, 𝑐verify𝑝 , and the number of unique, unordered candidates:

𝑐
verify
𝑝

|︁|︁⋃︁
𝐴 [𝑡]=0{(𝑟, 𝑠) ∈ 𝐿𝐼𝑡 × 𝐿𝑃𝑡 }

|︁|︁. The probing costs depend on the
lengths of all scanned lists: 𝑙 scan𝑝 =

∑︁
𝐴 [𝑡]=0

|︁|︁{(𝑟, 𝑠) ∈ 𝐿𝐼𝑡 × 𝐿𝑃𝑡 }|︁|︁. Qin
et al. [22] show that optimizing the number of candidates using 𝐿𝐼𝑡
and 𝐿𝑃𝑡 is NP-hard. We estimate the ratio of deduplicated candidates
𝛼𝑝 and use the inverted list lengths to estimate both the number of
candidates and the probing costs in a similar manner:

𝐶
verify
𝑝 = 𝛼𝑝𝑐

verify
𝑝 𝑙 scan𝑝 𝐶

probe
𝑝 = 𝑐

probe
𝑝 𝑙 scan𝑝

Generating the indexing and probing signatures 𝑆𝑖𝑔𝑛𝐼𝑝 and 𝑆𝑖𝑔𝑛𝑃𝑝
is not part of the cost model. We generate these signatures to derive
𝐿𝐼𝑡 and 𝐿

𝑃
𝑡 , hence transferring a list does not reduce these costs.

Secondary Index Costs. The costs of secondary indexes resemble
the primary index costs, but differ w.r.t. the cost constants 𝑐𝑥𝑠 (cf.
Table 1). Moreover, 𝑅 is decomposed such that a single set may be
indexed (and probed) in multiple secondary indexes. To minimize
the number of replicated sets, we build at most𝐾 secondary indexes,
i.e., 𝐴[𝑡] ≤ 𝐾 . The secondary index costs consider the costs (1)
to verify the candidates, (2) to transfer the inverted lists and to
generate their signatures, (3) to generate the probing signatures,
and (4) to scan the inverted lists in the secondary index:

𝐶𝑠 = 𝐶
verify
𝑠 +𝐶 index

𝑠 +𝐶siggen
𝑠 +𝐶probe

𝑠

We estimate the deduplicated verification costs using 𝛼𝑠 and
the sum over all 𝐾 (possibly empty) secondary indexes. 𝑅𝐼

𝑘
=⋃︁

𝐴 [𝑡]=𝑘 𝐿
𝐼
𝑡 and 𝑅

𝑃
𝑘
=
⋃︁
𝐴 [𝑡]=𝑘 𝐿

𝑃
𝑡 denote the sets of all indexed and

probed sets for the 𝑘-th secondary index, respectively. A pair (𝑟, 𝑠)
is a candidate if 𝑆𝑖𝑔𝑛𝐼𝑠 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑃𝑠 (𝑟) ≠ ∅. With the accumulated
lengths 𝑙 scan𝑠 =

∑︁𝐾
𝑘=1

|︁|︁|︁{(𝑟, 𝑠) ∈ 𝑅𝐼
𝑘
× 𝑅𝑃

𝑘
| 𝑆𝑖𝑔𝑛𝐼𝑠 (𝑟) ∩ 𝑆𝑖𝑔𝑛𝑃𝑠 (𝑠) ≠ ∅}

|︁|︁|︁
of all scanned secondary index lists, we estimate the verification
costs and the probing costs over all secondary indexes:

𝐶
verify
𝑠 = 𝛼𝑠𝑐

verify
𝑠 𝑙 scan𝑠 𝐶

probe
𝑠 = 𝑐

probe
𝑠 𝑙 scan𝑠

Similarly, the indexing and signature generation costs are:

𝐶 index
𝑠 = 𝑐 index𝑠

∑︂𝐾

𝑘=1

|︁|︁|︁𝑅𝐼𝑘 |︁|︁|︁ 𝐶
siggen
𝑠 = 𝑐

siggen
𝑠

∑︂𝐾

𝑘=1

|︁|︁|︁𝑅𝑃𝑘 |︁|︁|︁
3For some techniques, e.g., the prefix filter, verification is cheaper as the prefix overlap
is computed during probing. Consequently, more easier-to-verify candidates may be
faster than verifying fewer hard-to-verify candidates.

Table 1: Costs for primary (𝐶𝑝) and secondary index (𝐶𝑠).

Notation Description

𝐶
verify
𝑝 ,𝐶verify

𝑠 Verification costs (to verify all candidates).
𝐶 index
𝑝 ,𝐶 index

𝑠 Indexing costs.
𝐶
siggen
𝑝 ,𝐶siggen

𝑠 Signature generation costs for probing.
𝐶
probe
𝑝 ,𝐶probe

𝑠 Probing costs (to probe the index).
𝑐𝑥𝑝 , 𝑐𝑥𝑠 Single set cost, 𝑥 ∈ {verify, index, siggen, probe}

Summarizing, we define the Minimum Index Cost Allocation
(MICA) problem as follows:

Definition 6.1. Minimum Index Cost Allocation (MICA) Problem.
Given a primary index with inverted lists 𝐿𝐼𝑡 and 𝐿

𝑃
𝑡 for the indexing

and probing signatures, respectively, a secondary signature scheme
𝑆𝑖𝑔𝑛𝐼𝑠 , 𝑆𝑖𝑔𝑛𝑃𝑠 , non-negative costs 𝑐

verify
𝑝 , 𝑐probe𝑝 , 𝑐verify𝑠 , 𝑐siggen𝑠 , 𝑐 index𝑠 ,

and 𝑐probe𝑠 , and a maximum number of secondary indexes𝐾 . Find an
𝑎-dimensional vector 𝐴 with (1) 𝐴[𝑡] = 0 if the signature 𝑡 remains
in the primary index and (2) 0 < 𝐴[𝑡] = 𝑖 ≤ 𝐾 if the elements in
the inverted list of 𝑡 are transferred to the 𝑖-th secondary index (i.e.,
reindexed), which minimizes:

𝐶
verify
𝑝 +𝐶probe

𝑝 +𝐶verify
𝑠 +𝐶siggen

𝑠 +𝐶 index
𝑠 +𝐶probe

𝑠

6.2 Optimal Index Allocation

Finding an optimal solution to the Minimum Index Cost Allocation
problem is NP-hard as shown in the next lemma.

Lemma 6.2. The MICA problem is NP-hard.

Proof Sketch. We show that the decision variant of the signa-
ture deletion problem is NP-hard, and consider a special case.

An instance
(︂
{𝐿𝐼𝑡 }, 𝑆𝑖𝑔𝑛𝐼𝑠 , 𝑆𝑖𝑔𝑛𝑃𝑠 , 𝑐

verify
𝑝 , 𝑐

verify
𝑠 , 𝑐 index𝑠 ,𝐶

)︂
is a true

instance if there exists an allocation𝐴 that uses at most 1 secondary
indexwhile having costs of less than𝐶 . All other costs are 0,𝐿𝐼𝑡 = 𝐿

𝑃
𝑡 ,

𝛼𝑝 = 𝛼𝑠 = 1, and 𝑆𝑖𝑔𝑛𝐼𝑠 (𝑟) = 𝑆𝑖𝑔𝑛𝑃𝑠 (𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . We reduce from
CLIQUE, where the goal is to decide if a graph 𝐺 = (𝑉 , 𝐸) has a
clique of size 𝑚, i.e., a complete subgraph of 𝐺 with size 𝑚. We
set {𝐿𝐼𝑡 } = 𝐸, 𝐶 =

∑︁
𝑡
|𝐿𝐼𝑡 |2−|𝐿𝐼𝑡 |

2 − 1
𝑚 , 𝑐verify𝑝 = 1, 𝑐verify𝑠 = 𝑚−2

𝑚−1 ,
and 𝑐 index𝑠 = 𝑚−2

2(𝑚−1) . As |𝐿
𝐼
𝑡 |2 − |𝐿𝐼𝑡 | = 2 for all 𝑡 and a given 𝐴, it

suffices to check if
∑︁
𝐴 [𝑡]=1 1 − 1

𝑚 ≥
𝑚−2
𝑚−1

|∪𝐴 [𝑡]=1𝐿𝐼𝑡 |2
2 . Consider the

subgraph that contains all edges with 𝐴[𝑡] = 1 and their nodes.
The left side,

∑︁
𝐴 [𝑡]=1 1, is (slightly less than) the number of edges

in the subgraph. Since | ∪𝐴 [𝑡]=1 𝐿𝐼𝑡 | is the number of nodes in the
subgraph, the right side computes the Turán number [25], i.e., the
max. number of edges any graph with 𝑛 = | ∪𝐴 [𝑡]=1 𝐿𝐼𝑡 | nodes and
without a clique of size 𝑚 can contain. If 𝐺 contains a clique of
size𝑚, then selecting these edges for the secondary index yields
𝑚2−𝑚

2 − 1
𝑚 ≥

𝑚−2
𝑚−1

𝑚2

2 , which is true for any𝑚 > 1. Conversely, if

an allocation 𝐴 with
∑︁
𝐴 [𝑡]=1 1 − 1

𝑚 ≥
𝑚−2
𝑚−1

|∪𝐴 [𝑡]=1𝐿𝐼𝑡 |2
2 exists, then

a clique of size𝑚 that forms 𝐴 must exist in the subgraph as this
subgraph has more edges than allowed by any graph of equal size
without a clique of size𝑚. CLIQUE can be reduced to a special case
of MICA, hence MICA is also NP-hard in the general case. □

2691

6.3 Heuristic Index Allocation

Because an optimal solution is infeasible, we propose heuristic
approaches to allocate our hybrid index.

Simple Decomposition. First, we want to identify rewarding sig-
natures (i.e., lists) based on a conservative estimation.

Definition 6.3. The standalone costs 𝑆𝐶𝑝 (𝐿𝐼𝑡 , 𝐿𝑃𝑡), 𝑆𝐶𝑠 (𝐿𝐼𝑡 , 𝐿𝑃𝑡) of
lists 𝐿𝐼𝑡 , 𝐿

𝑃
𝑡 of signature 𝑡 are the costs of an index that only contains

𝐿𝐼𝑡 and only probes 𝐿𝑃𝑡 with 𝐴[𝑡] = 0 and 𝐴[𝑡] = 1, respectively:

𝑆𝐶𝑝 (𝐿𝐼𝑡 , 𝐿𝑃𝑡) = (𝛼𝑝𝑐
verify
𝑝 + 𝑐probe𝑝)

|︁|︁|︁{(𝑟, 𝑠) ∈ 𝐿𝐼𝑡 × 𝐿𝑃𝑡 }|︁|︁|︁
𝑆𝐶𝑠 (𝐿𝐼𝑡 , 𝐿𝑃𝑡) = (𝛼𝑠𝑐

verify
𝑠 + 𝑐probe𝑠) ·

|︁|︁|︁{(𝑟, 𝑠) ∈ 𝐿𝐼𝑡 × 𝐿𝑃𝑡 | . . .}|︁|︁|︁
+ 𝑐 index𝑠 |𝐿𝐼𝑡 | + 𝑐

siggen
𝑠 |𝐿𝑃𝑡 |

Lemma 6.4. If 𝐾 ≥ 𝑎 and all lists 𝐿𝐼𝑡 , 𝐿𝑃𝑡 are pairwise disjoint, i.e.,
for all 𝑡 ≠ 𝑢, 𝐿𝐼𝑡 ∩ 𝐿𝐼𝑢 = ∅, 𝐿𝑃𝑡 ∩ 𝐿𝑃𝑢 = ∅, then we can solve the MICA
problem by minimizing the standalone costs for each pair (𝐿𝐼𝑡 , 𝐿𝑃𝑡).

By Lemma 6.4, we now only consider rewarding signatures 𝑡 with
𝑆𝐶𝑝 (𝐿𝐼𝑡 , 𝐿𝑃𝑡) > 𝑆𝐶𝑠 (𝐿𝐼𝑡 , 𝐿𝑃𝑡). The result is a simple decomposition
heuristic that partitions all signatures into disjoint sets of rewarding
and non-rewarding signatures to implement step II in Figure 2.

To reduce the cost model overhead, we do no consider cases
where non-rewarding signatures form a secondary index with a
negative cost change, e.g., large list overlaps and high 𝑐 index𝑠 , 𝑐siggen𝑠 .

Example 6.5. Consider the sets in Figure 1, and assume symmet-
ric primary and secondary signature schemes, 𝛼𝑝 = 𝛼𝑠 = 𝑐

verify
𝑝 =

𝑐
verify
𝑠 = 𝑐 index𝑠 = 1, and all other costs are 0. The standalone costs of
signature 8𝑝 are 𝑆𝐶𝑝 = 45 + 0 = 45 (= 10·9

2 candidates). Conversely,
𝑆𝐶𝑠 = 10 + 20 = 30 due to the transfer (10) and the verification
costs of lists 23𝑠 , 24𝑠 (10 + 10 = 20). Since 𝑆𝐶𝑝 > 𝑆𝐶𝑠 , (𝐿𝐼8𝑝 , 𝐿

𝑃
8𝑝)

is rewarding and we transfer it to the second index level. In con-
trast, the standalone costs of signature 4𝑝 are 𝑆𝐶𝑝 = 1 (number of
candidates is not reduced) and 𝑆𝐶𝑠 = 3 (transfer costs), thus 4𝑝 is
non-rewarding. The lists of 5𝑝 , 6𝑝 , 7𝑝 , and 8𝑝 are all rewarding,
and hence transferred to level 2. Figure 2 shows the partial primary
index (green) and the simple decomposition after step II .

Heuristical Index Merging. A simple decomposition may result in
many secondary indexes and high transfer and signature generation
costs (if inverted lists are not disjoint). To reduce these costs, we
can merge multiple secondary indexes. However, this may result in
higher candidate and probing costs due to more signature collisions.

Consider the standalone costs 𝑆𝐶𝑠 (𝑅𝐼𝑖 , 𝑅
𝑃
𝑖
) and 𝑆𝐶𝑠 (𝑅𝐼𝑗 , 𝑅

𝑃
𝑗
) of

the 𝑖-th and 𝑗-th secondary index, respectively. The overall costs
are reduced if 𝑆𝐶𝑠 (𝑅𝐼𝑖 , 𝑅

𝑃
𝑖
) + 𝑆𝐶𝑠 (𝑅𝐼𝑗 , 𝑅

𝑃
𝑗
) > 𝑆𝐶𝑠 (𝑅𝐼𝑖 ∪ 𝑅

𝐼
𝑗
, 𝑅𝑃
𝑗
∪ 𝑅𝑃

𝑗
).

The inclusion-exclusion principle shows that the cost change Δ is

Δ = (𝛼𝑠𝑐verify𝑠 + 𝑐probe𝑠)
(︂|︁|︁|︁{(𝑟, 𝑠) ∈ (𝑅𝐼𝑖 \ 𝑅𝐼𝑗) × (𝑅𝑃𝑗 \ 𝑅𝑃𝑖) | . . .}|︁|︁|︁
+
|︁|︁|︁{(𝑟, 𝑠) ∈ (𝑅𝐼𝑗 \ 𝑅𝐼𝑖) × (𝑅𝑃𝑖 \ 𝑅𝑃𝑗) | . . .}|︁|︁|︁

−
|︁|︁|︁{(𝑟, 𝑠) ∈ (𝑅𝐼𝑖 ∩ 𝑅𝐼𝑗) × (𝑅𝑃𝑖 ∩ 𝑅𝑃𝑗) | . . .}|︁|︁|︁)︂
−𝑐 index𝑠

|︁|︁|︁𝑅𝐼𝑖 ∩ 𝑅𝐼𝑗 |︁|︁|︁ − 𝑐siggen𝑠

|︁|︁|︁𝑅𝑃𝑖 ∩ 𝑅𝑃𝑗 |︁|︁|︁

If Δ ≤ 0, the Δ-check succeeds and the indexes are merged. With
the Δ-check, we construct a heuristic index merging technique,
MultiReassessment, that enhances a given simple decomposition 𝐿
(cf. Algorithm 3). We use two strategies: (1) We only merge indexes
if their Δ-check succeeds, i.e., the total cost never increases. (2) All
rewarding signatures of 𝐿 should be part of a secondary index, even
if only a single list forms the index. First, we order the rewarding
signatures in 𝐿 by descending standalone cost difference 𝑆𝐶𝑝 −𝑆𝐶𝑠 .
Δ-checks only succeed if two secondary indexes have a significant
overlap. This order emphasizes the list lengths (which determine
𝑆𝐶𝑝) and places them at the beginning to increase the probability of
overlaps. We unconditionally4 build an index on the first list. Then,
we merge all other lists that pass the Δ-check into this index while
we track skipped lists that failed the Δ-check. Finally, we build a
new index on the skipped lists. To reduce the costs of a Δ-check,
secondary signature collisions are estimated (cf. Section 7.7) on
samples. For sampling, we select 1% of the smaller list and build
random pairs with the larger list. Moreover, the number of Δ-checks
is bounded by the number of rewarding lists |𝐿 | and the number
of indexes 𝑘 built at the end of the loop. In the worst case, we
need O(𝑘 · |𝐿 |) Δ-checks. In practice, the number of built indexes
is low (≤12 in our experiments). Additionally, we can limit the
max. number of indexes and use the simple decomposition for the
remaining lists.

Example 6.6. Consider step II and III in Figure 2. MultiReassess-
ment starts by building an empty index 𝑘 = 1 (blue) and merging
𝐿𝐼8𝑝 into the index. For 𝐿𝐼7𝑝 , the Δ-check Δ = 5 − 0 ≰ 0 fails and

we track 𝐿𝐼7𝑝 . Also the Δ-check for 𝐿𝐼6𝑝 fails. For 𝐿𝐼5𝑝 , the Δ-check
Δ = −2 ≤ 0 succeeds and we build the indexes. We continue by
building a new empty index 𝑘 = 2 (red) and merging in 𝐿𝐼7𝑝 . Since

𝐿𝐼7𝑝 and 𝐿𝐼6𝑝 are disjoint and do not suffer from collision in the
secondary signatures, we merge them in because Δ = 0. The overall
costs are 0 + 0 + 1 + 1 + 33 + 10 = 45.

In addition to MultiReassessment, we also evaluate a baseline
called SingleSimple that merges all lists of the simple decomposition
into a single secondary index. We expect good performance for
datasets on which the secondary index severely outperforms the
primary index. However, short inverted lists still remain in the
primary index since a transfer does not pay off.

Example 6.7. SingleSimple indexes all rewarding inverted lists
into one secondary index with overall costs of 0+ 0+ 1+ 1+ 50 = 52.

6.4 Deletion under Memory Constraints

Different indexes typically differ in the number of indexing sig-
natures generated for each set. The number of unique signatures
is important for the memory usage of the index implementation
as every signature needs a lookup-table entry, and almost empty
lists incur a high overhead. Depending on the signature scheme,
this number (a) is a user-defined constant [22], (b) grows in the
size of the set’s prefix [2], (c) grows in the set size [7], or (d) grows
exponentially in the Hamming distance [18]. For datasets on which
memory-efficient indexes perform poorly and fast indexes do not
4𝑅𝐼

𝑘
,𝑅𝑃

𝑘
are empty when the𝑘-th index is built, hence Δ = 0 and the Δ-check succeeds.

2692

Algorithm 3: MultiReassessment
Input: All rewarding lists 𝐿 = {(𝐿𝐼𝑡 , 𝐿𝑃𝑡) | 𝑡 is rewarding}
Result: Allocation vector 𝐴

1 𝐴← 𝑎-dimensional vector, initialized to 0;𝑄 ← 𝐿; 𝑘 ← 0
2 while𝑄 ≠ ∅ do
3 𝑄′ ← ∅; 𝑘 ← 𝑘 + 1; 𝑅𝐼

𝑘
← ∅; 𝑅𝑃

𝑘
← ∅

4 forall (𝐿𝐼𝑡 , 𝐿𝑃𝑡) ∈ 𝑄 in descending order by 𝑆𝐶𝑝 − 𝑆𝐶𝑠 do

5 if Δ-check for 𝑅𝐼
𝑘
, 𝑅𝑃

𝑘
and 𝐿𝐼𝑡 , 𝐿

𝑃
𝑡 succeeds then

6 𝐴 [𝑡] ← 𝑘 ; 𝑅𝐼
𝑘
← 𝑅𝐼

𝑘
∪ 𝐿𝐼𝑡 ; 𝑅𝑃𝑘 ← 𝑅𝑃

𝑘
∪ 𝐿𝑃𝑡

7 else𝑄′ ← 𝑄′ ∪ (𝐿𝐼𝑡 , 𝐿𝑃𝑡)
8 𝑄 ← 𝑄′

9 return 𝐴

fit into main memory, we build a cheap primary index and transfer
only the inverted lists with the highest benefit to the expensive
secondary index. This allows for a time-space trade-off.

7 CONCRETE SIGNATURE SCHEMES

In this section, we representwell-knownfilters as signature schemes.
We focus on the schemes that we use in our concrete TwoL imple-
mentation. Additionally, we propose an extended position-enhanced
length filter, EPEL, and we adapt the CoveringLSH [9] signature
scheme to be efficient in practice by filtering singleton lists.

7.1 Length Filter

The length filter by Arasu et al. [1] compares the sizes of two sets 𝑟
and 𝑠 to prune the pair (𝑟, 𝑠) if their sizes differ too much. For the
Hamming distance, the signature scheme 𝐿𝑒𝑛 is defined as:

𝐿𝑒𝑛𝐼 (𝑟) = {|𝑟 |} 𝐿𝑒𝑛𝑃 (𝑟) = {𝑖 | 𝑙𝑚𝑖𝑛 ≤ 𝑖 ≤ 𝑙𝑚𝑎𝑥 }
where 𝑙𝑚𝑖𝑛 = |𝑟 | − 𝜖 and 𝑙𝑚𝑎𝑥 = |𝑟 | + 𝜖 . For self joins, the upper

bound 𝑙𝑚𝑎𝑥 is replaced with |𝑟 | to skip symmetric results.

7.2 Prefix Filter

The prefix filter by Chaudhuri et al. [5] considers the first 𝜋 tokens
as the signature of a set. The tokens of all sets are sorted w.r.t. a
global token order, and 𝜋 typically depends on the set size and the
distance function. Xiao et al. [30] reduce the size of the indexing
prefix 𝜋 𝐼 for self joins w.r.t. the probing prefix 𝜋𝑃 (=𝜋). For the
Hamming distance, the signature scheme 𝑃𝑟𝑒 is defined as:

𝑃𝑟𝑒𝐼 (𝑟) = {𝑟𝑖 | 𝑟 = (𝑟1, . . . , 𝑟 𝑗) and 1 ≤ 𝑖 ≤ 𝜖/2 + 1}

𝑃𝑟𝑒𝑃 (𝑟) = {𝑟𝑖 | 𝑟 = (𝑟1, . . . , 𝑟 𝑗) and 1 ≤ 𝑖 ≤ 𝜖 + 1}
AllPairs [2] is a state-of-the-art set similarity join algorithm [14]

that uses the direct composition of length filter and prefix filter
𝐿𝑒𝑛 × 𝑃𝑟𝑒 in a main-memory setting.

7.3 CoveringLSH

Locality-sensitive hashing (LSH) for Hamming space [9] uses a set
of hash functions 𝐻 of the type ℎ(𝑟) = 𝑟 ∧ 𝑎 where 𝑎 is a bitmask
and ∧ is the bitwise AND. Choosing the bitmasks randomly results
in false negatives if the bitmasks sample only tokens that differ
between similar sets. CoveringLSH [18] constructs a correlated set
of hash functions 𝐻 that ensures that there is at least one hash

function that maps two similar sets to the same hash value, i.e.,
there are no false negatives. Its signature scheme 𝑐𝐿𝑆𝐻 is the set of
all hash values 𝑐𝐿𝑆𝐻 (𝑟) = {ℎ(𝑟) | ℎ ∈ 𝐻 }. The correlated construc-
tion is not significantly slower than its uncorrelated counterpart;
Fast CoveringLSH [20] (denoted fcLSH) uses the Fast Hadamard
Transform to further reduce the signature computation time.

7.4 Extended PEL

The positional filter [30] states that 𝑟 and 𝑠 can only be similar if
the overlap in their first 𝑝𝑟 and 𝑝𝑠 tokens (excl. the current match)
is 𝑜 , and |𝑟 |+ |𝑠 |−𝜖2 ≤ 𝑜 + min{|𝑟 | − 𝑝𝑟 , |𝑠 | − 𝑝𝑠 }. If applied only to
the first match of 𝑟 and 𝑠 , 𝑜 = 0 can be assumed. The position-
enhanced length filter (PEL) [13] advances the length filter and is a
dependent composition on top of 𝑃𝑟𝑒 that uses the token position in
the probing set 𝑟 to find a tighter upper bound 𝑙𝑚𝑎𝑥 = min{|𝑟 |, |𝑟 | −
2𝑝𝑟 + 𝜖}. For self joins, however, the upper bound often remains
unchanged: 𝑙𝑚𝑎𝑥 = |𝑟 |. Hence, some algorithms [28] reverse the
probing order and only search for similar sets that are larger than
the probing set 𝑟 , i.e., 𝑙𝑚𝑖𝑛 = |𝑟 | and 𝑙𝑚𝑎𝑥 = |𝑟 | − 2𝑝𝑟 + 𝜖 . However,
reversing the order requires us to use 𝑃𝑟𝑒𝑃 for indexing and 𝑃𝑟𝑒𝐼
for probing. Since 𝑃𝑟𝑒𝑃 contains more signatures than 𝑃𝑟𝑒𝐼 , this
increases (a) the list lengths 𝐿𝐼𝑝 and the associated transfer costs,
and (b) the memory usage due to larger secondary indexes.

To this end, we propose an extended, two-sided variation of
PEL, named EPEL, that retains the processing order but has higher
pruning effectiveness than PEL. We keep the upper bound of PEL
𝑙𝑚𝑎𝑥 = min{|𝑟 |, |𝑟 | − 2𝑝𝑟 + 𝜖} and improve the lower bound. If the
position 𝑝𝑠 is known, a tighter lower bound 𝑙𝑚𝑖𝑛 = |𝑟 | + 2𝑝𝑠 − 𝜖 can
be derived exactly like the upper bound. For each list 𝐿𝐼𝑡 , we group
all indexed sets 𝑠 by 𝑝𝑠 and apply 𝑙𝑚𝑖𝑛 to each group. As datasets
are processed in increasing size of |𝑟 |, 𝑙𝑚𝑖𝑛 grows monotonically in
each group. Therefore, an index entry that is skipped once due to
𝑙𝑚𝑖𝑛 will be skipped by all further applications of the length filter.
During probing, we maintain a monotonically increasing offset to
the first set of every group that passed the length filter. After failing
𝑙𝑚𝑎𝑥 for the first time, the rest of the group can be skipped.

7.5 Self Join Optimizations

In the signature-based framework (cf. Algorithm 1), we index a set 𝑟
by computing all signatures of 𝑟 and inserting 𝑟 into the respective
inverted lists. In our experiments, we observe that between 90%
and 99% of all lists are of length 1 for fcLSH (depending on the
dataset). For a self join with symmetric signature scheme, singleton
lists are called trivial: Only the set that is the sole element of the list
will probe this list, thus we can disregard these reflexive pairs. In
practice, a trivial list incurs high overhead because dynamic arrays
(e.g., std::vector) typically consist of 3 pointers, i.e., a trivial list
needs at least 4 memory words (e.g., 32 bytes on a 64-bit machine).

Index Filtering. Our index structure enhances the state of the art
by only indexing signatures that appear more than once. This is
particularly important for memory-heavy approaches like fcLSH,
but also results in faster runtimes (no probing of trivial lists). For self
joins, we process the sets in inverse processing order (i.e., largest to
smallest). We build a Bloom filter over all signatures: If a signature
is new, it is added to the Bloom filter, otherwise we insert it into

2693

the index. Since we only skip indexing for the first occurrence
of a signature in inverse processing order, we only miss reflexive
result pairs (𝑟, 𝑟) during probing. Although index filtering does
not reduce fcLSH’s worst-case space complexity of𝑂 (𝑛(2𝜖+1 − 1)),
the memory usage decreases sharply in practice. Index filtering is
applicable to all self joins with symmetric signature schemes as
indexing and probing access the same lists for a given set.

7.6 Choice of Primary and Secondary Index

The TwoL framework (cf. Algorithm 2) must be instantiated with
concrete signatures and indexes. Our goal is to ensure that at least
one of the two indexes performs well on a dataset, i.e., the signature
schemes complement each other. Then, our hybrid index will handle
no dataset significantly worse than the better of the two indexes.

We select the dependent composition of 𝐸𝑃𝐸𝐿 with 𝑃𝑟𝑒 as our
primary signature scheme. The prefix filter is space-efficient and
performs well on many real-world datasets [14]. For some datasets
with small universes, however, many candidates are generated. To
this end, we choose 𝑐𝐿𝑆𝐻 (i.e., fcLSH) that works with dense bitvec-
tors instead of sets to complement the primary signature scheme.
TwoL (MR) and TwoL (SS) denote that we use MultiReassessment
and SingleSimple to compute the allocation vector 𝐴, respectively.

Other Distances & Signatures. TwoL generalizes to other signa-
ture schemes and distances. Assuming the Jaccard distance, we
choose a different secondary signature scheme that is complemen-
tary to AllPairs, e.g., PartAlloc , and use the equivalent Hamming
distance [30]. The costs for the cost model are automatically esti-
mated based on small samples (e.g., time to verify two sets). Our
hybrid composition then adapts based on the new cost model. No-
tably, we need to compute the cost model only once per distance
and signature, thus avoiding dataset-specific tuning.

7.7 Cost Estimation

We need an efficient way to estimate the costs for (a) the inverted
lists in the primary index and (b) the union of multiple lists in the
secondary index. As TwoL uses 𝐸𝑃𝐸𝐿, 𝑆𝑖𝑔𝑛𝐼𝑝 and 𝑆𝑖𝑔𝑛𝑃𝑝 include
the set’s prefix tokens. 𝑆𝑖𝑔𝑛𝐼𝑝 further includes 𝑝𝑠 and |𝑠 |, and 𝑆𝑖𝑔𝑛𝑃𝑝
includes all possible values of 𝑝𝑠 and 𝑙 ∈ {𝑙𝑚𝑖𝑛, . . . , 𝑙𝑚𝑎𝑥 }. We
estimate the length filter effectiveness for each list by sampling set
pairs from each list and counting how often it would prune a pair.

To build a secondary index, the cost model requires the number
of signature collisions in (step II) and between (step III) different
inverted lists. For both PartAlloc and fcLSH, we estimate the
number of collisions using the real Hamming distance of randomly
sampled pairs in the indexing and probing lists. In the case of fcLSH,
Corollary 1 in Pham et al. [20] states that for any set pair (𝑟, 𝑠) we
expect at most 2𝜖+1−(𝑟 △ 𝑠) hash collisions. For PartAlloc, we first
observe that two sets partitioned into 𝑘 parts have no common
partition if at least one of the 𝑟 △ 𝑠 mismatching tokens is mapped
to each partition. Stirling numbers of the second kind

{︁
𝑟 △ 𝑠
𝑘

}︁
corre-

spond to the number of possible non-empty partitions and there
are 𝑘! possible permutations of each partitioning. Assuming that
all tokens are uniformly assigned to partitions, the probability of a

collision of a pair (𝑟, 𝑠) is 1 − {
𝑟 △ 𝑠
𝑘
}𝑘!

𝑘𝑟 △ 𝑠 . As PartAlloc uses a more

sophisticated cost-based enumeration technique, the real proba-
bility is lower by a factor of 𝛼 . In our experiments, we estimate 𝛼
using sampling; depending on the dataset, 𝛼 ∈ [0.003, 0.05].

8 EXPERIMENTAL EVALUATION

Algorithms. We compare our solution, TwoL, against AllPairs,
GroupJoin, SizeAware, PartAlloc, fcLSH, and SkipJoin. Short
descriptions of the algorithms are provided in Section 2. For All-
Pairs and GroupJoin, we use the efficient reimplementations of
Mann et al. [14]. We reimplement PartAlloc with the greedy opti-
mizer. The source code of SizeAware was provided by the authors
and adapted to support Hamming distance joins; we use the fast ver-
ification algorithm by Mann et al. [14] for a fair comparison; prefix
extensions 𝑐 were chosen from 𝑐 ∈ {2, . . . , 10}; we only report the
minimum time over all choices of 𝑐 . TwoL uses 𝐸𝑃𝐸𝐿 with 𝑃𝑟𝑒 as
a primary signature, and 𝑐𝐿𝑆𝐻 and PartAlloc as secondary signa-
ture for the Hamming and the Jaccard distance, respectively. TwoL
(MR)/(SS) denote the MultiReassessment/SingleSimple strategy of
TwoL; we omit the strategy if they show similar performance.

Datasets. We evaluate all algorithms on 13 datasets (6 real-world;
7 synthetic), which cover a wide range of dataset characteristics.
Real-world The datasets CELONIS1 and CELONIS2 [10] are from
the process mining domain: A set contains the activity transitions
of a process. A set in the DBLP12 dataset [24] is a publication, and
a token is a 2-gram of the title. KOSARAK, LIVEJ, and ORKUT were
previously used to benchmark set similarity join algorithms. For
descriptions and preprocessing steps5, we refer to Mann et al. [14].
Synthetic Based on CELONIS1, we create synthetic datasets to
study TwoL’s behavior w.r.t. dimensionality and skew. We take
inspiration from Petersen et al. [19] and use the best fitting distri-
bution of Exponential, Gamma, Generalized Extreme Value, Log-
normal, and Yule-Simon as token frequency and Negative Bino-
mial as set size. In their study, Generalized Extreme Value and
Yule-Simon were the overall winners of continuous and discrete
distributions, respectively. For comparatively less skewed datasets
like CELONIS1, however, both distributions did not fit the dataset
well due to the models’ long tails. For CELONIS1, Log-normal was
the best fit. We fitted token frequency and set size models using
Maximum Likelihood Estimation for CELONIS1, called LNONIS1.

Then, we modified both token and set size distribution to gen-
erate synthetic datasets. LNONIS1-𝛼/-𝛽/-𝛾 keep the size distribu-
tion of LNONIS1 but interpolate between the token distributions
of CELONIS1 and ORKUT. NBIONIS1-𝛼/-𝛽/-𝛾 keep the token distribu-
tion of LNONIS1, but interpolate between the size distributions of
CELONIS1 and ORKUT. For NBIONIS1-𝛼/-𝛽/-𝛾 , 25% of the sets have a
max. size of 17, 13, 9, and 5, respectively. Table 3 shows the param-
eters for LNONIS1 and its variants. Figure 4 compares the original
and the modeled distributions (token frequency and set size).

Table 2 summarizes the characteristics and Figure 4 shows the
token frequencies of all datasets. KOSARAK/LIVEJ/ORKUT have large
token universes and are highly skewed, whereas DBLP12/CELONIS1/
CELONIS2 have a smaller token universe and are less skewed. We
show the results for CELONIS1, DBLP12, KOSARAK, and ORKUT; trends
for CELONIS2/LIVEJ are similar to CELONIS1/ORKUT, respectively.

5http://ssjoin.dbresearch.uni-salzburg.at/datasets.html

2694

Table 2: Characteristics of datasets.

Dataset Coll. Size Set Size Token Universeavg. max.

CELONIS1 8.2 · 106 20.3 91 1.2 · 104
CELONIS2 6.5 · 106 22.5 326 1.7 · 104

DBLP12 4.6 · 106 75.5 562 2.5 · 104
KOSARAK 6.1 · 105 11.9 2.5 · 103 4.1 · 104

LIVEJ 3.1 · 106 36.4 300 7.5 · 106
ORKUT 2.7 · 106 119.7 4.0 · 104 8.7 · 106

LNONIS1 8.2 · 106 20.3 55 4.2 · 104
LNONIS1-𝛼/𝛽/𝛾 8.2 · 106 20.3 55 1.3/3.6/11 · 105

NBIONIS1-𝛼/𝛽/𝛾 8.2 · 106 20.3 121/175/300 4.2 · 104

Table 3: Mean 𝜇, standard deviation 𝜎 , successful trials 𝑛,

and success probability 𝑝 of the fitted log-normal (token

frequency) and negative binomial distributions (set size).

LN-/NBIONIS1 LNONIS1- NBIONIS1-
𝛼 𝛽 𝛾 𝛼 𝛽 𝛾

𝜇 3.95 5.5 7 8.1 3.95
𝜎 1.71 2.1 2.4 2.7 1.71
𝑛 50.0 4.46 2.01 0.96
𝑝 0.711 0.18 0.09 0.045

10−9

10−6

10−3

R
el

.f
re

qu
en

cy

CELONIS1 CELONIS2
DBLP12 KOSARAK
LIVEJ ORKUT

100 101 102 103 104 105 106
10−9

10−6

10−3

Tokens ordered by frequency

R
el

.f
re

qu
en

cy

CELONIS1
LNONIS1

LNONIS1-α
LNONIS1-β
LNONIS1-γ

10 20 30 40 50 60 70 80

Set size

CELONIS1
LNONIS1

NBIONIS1-α
NBIONIS1-β
NBIONIS1-γ

Figure 4: Characteristics of real-world and synthetic datasets.

Environment & Parameters. All experiments have been conducted
on a 64-bit machine with 2 physical Intel Xeon E5-2603 v4 pro-
cessors and 6 cores each, no hyperthreading. Each core has a
256kiB L2 cache, each processor has a 15MiB shared L3 cache. Our
machine has 96GiB of main memory and runs Debian 10 Buster
(Linux 4.19). We use clang 7.0.1 with optimization level O3. Run-
time is measured with clock_gettime at process level (timeout:
15 · 103s); memory usage is the heap peak of Linux’ libmemusage
(with LD_PRELOAD). We ran single-core experiments with no ad-
ditional load on the system. We vary the distance 𝜖 ∈ {2, . . . , 5}
(Hamming) and 𝜖 ∈ {0.05, . . . , 0.2} (Jaccard) s.t. the join selectivity
is ≤15% of the cross product.

8.1 Runtime Efficiency

We measure the total runtime to find all pairs of similar sets, excl.
the time to load the dataset or perform typical preprocessing (to-
kenization, sorting, deduplication). The cost model overhead of
TwoL is low, ranging from 1% (ORKUT) to at most 5% (DBLP12) of
the total join time to find rewarding lists and perform Δ-checks (for
𝜖 = 5 and 𝜖 = 0.2, respectively). Figure 5 shows the results for vary-
ing 𝜖 . We focus on the Hamming distance, but discuss distinctive
results for Jaccard. TwoL (MR) and (SS) perform similarly although
TwoL (MR) may build multiple secondary indexes. For real-world
datasets, TwoL (MR) never builds more than 12 secondary indexes.

Our two-level signature scheme consistently outperforms all
competitors in almost all configurations for two reasons: (1) For
datasets with high secondary index usage, e.g., CELONIS1 (99%
transferred) and DBLP12 (91%), the primary index contains long
lists that lead to many candidates. In those cases, all prefix-based
algorithms (AllPairs, GroupJoin, SkipJoin, SizeAware) tend to
perform poorly. Heavyweight signatures like fcLSH, PartAlloc,
and TwoL’s secondary signature scheme pay off because they are
more selective (i.e., they consider multiple tokens). Interestingly,
TwoL also outperforms fcLSH because TwoL disregards trivial
lists (cf. Section 7.5). (2) For datasets with large universes and many
small sets (LIVEJ, KOSARAK, ORKUT), prefix-based algorithms per-
form well, and the secondary index is hardly ever used (≤4% of the
sets are transferred). For Jaccard, GroupJoin and AllPairs slightly
outperform TwoL because the computation of the cost model does
not amortize; but TwoL is still among the winning algorithms.

fcLSH and PartAlloc perform poorly on datasets with many
small sets. fcLSH effectively prunes sets that are far away from
the probing set. The max. Hamming distance of two sets 𝑟 and 𝑠 is
|𝑟 | + |𝑠 |. For KOSARAK, ≈55% of the sets are of size ≤5, resulting in
≥2−4 expected candidates for any pair of small sets and 𝜖 = 5, i.e., ≥
3.5·109 over all small pairs (cf. Section 7.7). Conversely, TwoL avoids
unfavorable transfers to its secondary signature fcLSH as it only
considers lists with lower secondary standalone costs (which does
not hold in this case). We observe a similar behavior for Jaccard.

SkipJoin uses a similar grouping idea as TwoL, but performs
poorly even on datasets that favor the prefix filter. The reasons
are twofold: (1) For Hamming, many small sets form result pairs
because only a small overlap is required. This renders answer-
level skipping (askip) ineffective: It is rarely used (<10−4% over all
configurations) while it still incurs the cost model overhead for
each pair in the large join result. (2) Index-level skipping (iskip)
is efficient if index entries are grouped based on token position
(rather than set size; cf. Table 4). Overall, SkipJoin shows the best
performance with disabled answer-level skipping (for small sets;
size <𝜖) and index-level skipping while keeping PEL with reversed
processing order in place (cf. Table 5). For TwoL, the indexing cost
outweighs the probing cost, justifying the need of our EPEL filter
that avoids reversing the processing order (cf. Section 7.4). In the
case of Jaccard and 𝜖 = 0.2, SkipJoin times out for DBLP12.

For Hamming, SizeAware outperforms the other prefix-based
algorithms on CELONIS1 and DBLP12. Longer 𝑐-extended prefixes
reduce the otherwise large number of candidates. For very small
sets without a 𝑐-extended prefix, SizeAware combines the prefix
filter and PEL with reversed processing order. Considering KOSARAK

2695

2 3 4 5
101

102

103

104

ϵ

C
PU

tim
e

[s]

2 3 4 5
101

102

103

ϵ 2 3 4 5
101

102

103

ϵ 2 3 4 5

101

102

103

ϵ 2 3 4 5

102

103

ϵ 2 3 4 5
101

102

103

ϵ

0.20.150.10.05
101

102

103

104

ϵ

C
PU

tim
e

[s]

CELONIS1
0.20.150.10.05

101

102

103

ϵ
CELONIS2

0.20.150.10.05
102

103

104

ϵ
DBLP12

0.20.150.10.05
10−1

100

101

ϵ
KOSARAK

0.20.150.10.05

101

ϵ
LIVEJ

0.20.150.10.05
100

101

102

ϵ
ORKUT

TwoL (SS) TwoL (MR) fcLSH PartAlloc AllPairs GroupJoin SkipJoin Sizeaware

H
A

M
M

IN
G

JA
C

C
A

R
D

Figure 5: Runtime over 𝜖 for real-world datasets.

2 3 4 5
0

10

20

ϵ

m
em

or
y

[G
iB

]

2 3 4 5
0

2

4

6

8

ϵ 2 3 4 5
0

10

20

30

ϵ 2 3 4 5
0

0.5

1

ϵ 2 3 4 5

5

10

ϵ 2 3 4 5
0

10

20

30

ϵ

0.05 0.1 0.15 0.2
0

5

10

15

20

ϵ

m
em

or
y

[G
iB

]

CELONIS1
0.05 0.1 0.15 0.2

0

5

10

ϵ
CELONIS2

0.05 0.1 0.15 0.2
0

10

20

30

ϵ
DBLP12

0.05 0.1 0.15 0.2
0.1

0.15

0.2

ϵ
KOSARAK

0.05 0.1 0.15 0.2
1

2

3

4

ϵ
LIVEJ

0.05 0.1 0.15 0.2
2

4

6

8

ϵ
ORKUT

H
A

M
M

IN
G

JA
C

C
A

R
D

Figure 6: Main memory over 𝜖 for real-world datasets.

1

10

100

re
l.

tim
e

LNONIS1
(4.2·104)

-α
(1.3·105)

-β
(3.6·105)

-γ
(1.1·106)

1

10

increasing dimensionality

re
l.

m
em

or
y

NBIONIS1
(17)

-α
(13)

-β
(9)

-γ
(5)

increasing 25% pct. set size

Figure 7: Relative runtime and memory w.r.t. TwoL (MR) for

different synthetic datasets; 𝜖 = 5.

and ORKUT, SizeAware performs best with long prefix extensions
when 99% and 92% of the respective total runtime was spent on
very small sets. This shows that PEL with reversed processing order
outperforms the length filter of AllPairs. For Jaccard, SizeAware
is the slowest prefix-based algorithm on KOSARAK and runs out of
memory for DBLP12 (𝜖 > 0.1).

Scalability. To study the scalability of our approach, we sample
20% to 80% of the records in CELONIS2 and ORKUT; Figure 8 shows
the results. All algorithms scale well w.r.t. increasing dataset sizes.
Only SizeAware has an outlier at 60% CELONIS2 due to consistently
treating all records as “large” for this configuration. Quintupling
the input size results in an increase in runtime by a factor of at
most 11.6× for TwoL, whereas all other algorithms suffer from an
increase by at least 20.5× on some dataset.

20% 40% 60% 80% 100%

100

101

102

103

C
PU

tim
e

[s]

CELONIS2
20% 40% 60% 80% 100%

ORKUT

Figure 8: Runtime over varying dataset sizes; 𝜖 = 4.

Concurrent Baseline. TwoL dynamically interpolates between
two signature schemes and their direct composition. As a baseline,
we execute 𝐸𝑃𝐸𝐿 with 𝑃𝑟𝑒 , 𝑐𝐿𝑆𝐻 , and their direct composition
concurrently on a single core, and terminate as soon as one of
the three executions finishes. For Hamming, TwoL (executed on
a single core) outperforms the concurrent baseline by a factor of
1.85× (CELONIS2) to 2.92× (DBLP12). Compared to TwoL, which
uses the memory-intensive secondary signature only if necessary,
the concurrent baseline requires between 4.2× (CELONIS2) and 43×
(LIVEJ) more memory.

8.2 Memory Efficiency

In Figure 6, we study the memory usage of all competing algorithms
for varying 𝜖 . For both Hamming and Jaccard, the memory usage of
TwoL depends on the balance of the two signature schemes. Prefix-
based algorithms are typically lightweight and require only a small
number of index entries for each set. For datasets dominated by
the primary signature scheme (KOSARAK and ORKUT), TwoL approx-
imately matches the memory footprint of AllPairs, GroupJoin,
and SkipJoin. SizeAware needs additional memory for storing

2696

𝑐-subsets. For Hamming, SizeAware requires even more memory
than fcLSH on CELONIS1, CELONIS2, and ORKUT (𝜖 <4). TwoL con-
sumes significantly less memory as only a fraction of the sets are
indexed with fcLSH. For Jaccard, SizeAware runs out of memory
on DBLP12 (𝜖 > 0.1); TwoL nearly follows PartAlloc’s memory
footprint as dominating secondary signature scheme for CELONIS1,
CELONIS2, and DBLP12. The number of PartAlloc’s enumeration
signatures depends on the avg. set size and results in high memory
usage for DBLP12 and ORKUT.

Index Filtering. In the case of Hamming, we observe a signifi-
cantly lower memory footprint for TwoL compared to fcLSH (cf.
Figure 6). Using index filtering in TwoL’s secondary signature
scheme is beneficial for two reasons: (1) The high overhead of cre-
ating trivial lists is avoided. (2) For self joins, the last entry of each
list (trivial result) is avoided. Table 6 shows the effectiveness of
index filtering in terms of avoided list creations and list entries.

8.3 Synthetic Datasets

We study the impact of varying dimensionality and set size on
both runtime performance and memory usage. Figure 7 shows
the relative runtime performance and memory usage compared to
TwoL (MR) for increasing dimensionality (LNONIS1 and its variants)
and decreasing 25% percentile set size (NBIONIS1 and its variants).
We notice two trends: (1) The runtime of prefix-based approaches
decreases with increasing dimensionality. The performance of the
prefix filter depends on the number of uncommon tokens. Uncom-
mon tokens in the prefix result in fewer pairs of sets with overlap-
ping prefixes and therefore fewer candidates. Figure 4 shows that
the number of uncommon tokens increases for increasing dimen-
sionality. (2) The runtime of fcLSH and PartAlloc increases with
an increasing number of small sets. For the partition-based algo-
rithm PartAlloc, partitioning small sets results in partitions with
few or no tokens. These partitions are unselective and increase the
number of candidates. The LSH-based algorithm fcLSH depends
on the principle that set pairs with low distance often collide, and
set pairs with high distance rarely have a hash value in common.
Since the Hamming distance is bounded from above by the sum of
the set sizes, small sets usually result in more collisions than large
sets. Therefore, we observe a performance degradation when the
number of small sets increases.

For LNONIS1 and its variants, TwoL gradually replaces its mostly
fcLSH-based index (LNONIS1) with a mostly prefix-based index
(−𝛾) with increasing dimensionality. This effect is also visible in the
memory usage as TwoL’s relative memory usage decreases with in-
creasing dimensionality. For NBIONIS1 and its variants, TwoL (MR)
replaces its mostly fcLSH-based index (NBIONIS1) with an index
largely based on the direct composition of prefix filter and fcLSH.
NBIONIS1−𝛾 with its small universe size and many small sets com-
bines the “worst-case” scenarios of both prefix filter and fcLSH. As
neither signature has high pruning power on its own, the direct
composition is used to prune candidates more effectively. TwoL (SS)
with its strategy of merging all secondary indexes into one index
performs worse than TwoL (MR) because it cannot combine signa-
tures. Over all settings, TwoL (MR) is the best or among the best
performing algorithms and does not exhibit the shortcomings of
techniques based only on a single signature.

Table 4: Average number of entries per block, 𝜖 = 5.

LIVEJ KOSARAK ORKUT

SkipJoin (block by size) 1.6 5.0 1.2
TwoL (block by position) 1.8 23.3 1.6

Table 5: Effect of iskip and askip on SkipJoin runtime, 𝜖 = 5.

LIVEJ KOSARAK ORKUT

SkipJoin 3144 1195 1967
disabled askip for small sets 848 584 410

disabled iskip and askip 586 463 250

Table 6: Index filtering effectiveness, 𝜖 = 5.

Dataset List entries avoided List creations avoided

CELONIS1 79% 89%
CELONIS2 83% 94%
DBLP12 >99% >99%

9 CONCLUSION

In this paper, we have studied the set similarity join problem. We
could show that current solutions use signature schemes optimized
for specific dataset characteristics. If the assumptions on the dataset
characteristics do not hold, the performance of these approaches is
unsatisfactory. To address this problem, we introduced the hybrid
signature composition that allows for interpolation between differ-
ent signature schemes and their direct composition, i.e., we use the
highly selective portion of each signature scheme. We designed the
TwoL framework that implements the hybrid signature composi-
tion using a hybrid index. In order to optimize the cost of the hybrid
index, we developed a cost model and proposed heuristic index al-
location strategies. For a concrete implementation of the TwoL
framework, we chose two complementary signature schemes and
enhanced them for their application in TwoL: 𝐸𝑃𝐸𝐿 with 𝑃𝑟𝑒 as the
primary signature scheme, and fcLSH and PartAlloc as secondary
signature schemes for Hamming and Jaccard distance, respectively.
Experimental results showed that TwoL outperforms its competi-
tors on real-world datasets in most settings and is less sensitive to
dataset characteristics. Experiments on synthetic datasets further
demonstrated the ability of TwoL to perform well on datasets with
mixed characteristics; on these datasets, schemes based on a single
signature fail as none of the signature schemes is favored.

ACKNOWLEDGMENTS

This research was funded in whole, or in part, by the Austrian
Science Fund (FWF) P 34962. For the purpose of open access, the
authors have applied a CCBY public copyright license to anyAuthor
Accepted Manuscript version arising from this submission.

REFERENCES

[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient exact set-
similarity joins. In Proceedings of the 32nd international conference on Very large
data bases. 918–929.

2697

[2] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
all pairs similarity search. In Proceedings of the 16th international conference on
World Wide Web. 131–140.

[3] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-textual similarity
joins. Proceedings of the VLDB Endowment 6, 1 (2012), 1–12.

[4] Aniket Chakrabarti, Venu Satuluri, Atreya Srivathsan, and Srinivasan
Parthasarathy. 2015. A bayesian perspective on locality sensitive hashing with
extensions for kernel methods. ACM Transactions on Knowledge Discovery from
Data (TKDD) 10, 2 (2015), 1–32.

[5] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A primitive
operator for similarity joins in data cleaning. In 22nd International Conference on
Data Engineering (ICDE’06). IEEE, 5–5.

[6] Tobias Christiani and Rasmus Pagh. 2017. Set similarity search beyond minhash.
In Proceedings of the 49th annual ACM SIGACT symposium on theory of computing.
1094–1107.

[7] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. 2015. An efficient partition
based method for exact set similarity joins. Proceedings of the VLDB Endowment
9, 4 (2015), 360–371.

[8] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap set similarity joins with
theoretical guarantees. In Proceedings of the 2018 International Conference on
Management of Data. 905–920.

[9] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[10] Daniel Kocher, Nikolaus Augsten, and Willi Mann. 2021. Scaling Density-Based
Clustering to Large Collections of Sets. In Proceedings of the 24th International
Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March
23 - 26, 2021, Yannis Velegrakis, Demetris Zeinalipour-Yazti, Panos K. Chrysanthis,
and Francesco Guerra (Eds.). OpenProceedings.org, 109–120. https://doi.org/10.
5441/002/edbt.2021.11

[11] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient merging and filtering algo-
rithms for approximate string searches. In 2008 IEEE 24th International Conference
on Data Engineering. IEEE, 257–266.

[12] Qiyu Liu, Yanyan Shen, and Lei Chen. 2022. HAP: An Efficient Hamming Space
Index Based on Augmented Pigeonhole Principle. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 917–930. https:
//doi.org/10.1145/3514221.3517880

[13] Willi Mann and Nikolaus Augsten. 2014. PEL: Position-Enhanced Length Filter
for Set Similarity Joins. In Grundlagen von Datenbanken. Vol. 1313. 89–94.

[14] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An empirical
evaluation of set similarity join techniques. Proceedings of the VLDB Endowment
9, 9 (2016), 636–647.

[15] Samuel McCauley, Jesper W Mikkelsen, and Rasmus Pagh. 2018. Set similarity
search for skewed data. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 63–74.

[16] MohammadNorouzi, Ali Punjani, and David J Fleet. 2012. Fast search in hamming
space with multi-index hashing. In 2012 IEEE conference on computer vision and
pattern recognition. IEEE, 3108–3115.

[17] Mohammad Norouzi, Ali Punjani, and David J Fleet. 2013. Fast exact search in
hamming space with multi-index hashing. IEEE transactions on pattern analysis
and machine intelligence 36, 6 (2013), 1107–1119.

[18] Rasmus Pagh. 2016. Locality-sensitive hashingwithout false negatives. In Proceed-
ings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms.
SIAM, 1–9.

[19] Casper Petersen, Jakob Grue Simonsen, and Christina Lioma. 2016. Power law
distributions in information retrieval. ACM Transactions on Information Systems
(TOIS) 34, 2 (2016), 1–37.

[20] Ninh Pham and Rasmus Pagh. 2016. Scalability and total recall with fast Cover-
ingLSH. In Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. 1109–1118.

[21] Jianbin Qin and Chuan Xiao. 2018. Pigeonring: A Principle for Faster Thresholded
Similarity Search. Proc. VLDB Endow. 12, 1 (2018), 28–42. https://doi.org/10.
14778/3275536.3275539

[22] Jianbin Qin, Chuan Xiao, Yaoshu Wang, Wei Wang, Xuemin Lin, Yoshiharu
Ishikawa, and Guoren Wang. 2019. Generalizing the pigeonhole principle for
similarity search in Hamming space. IEEE Transactions on Knowledge and Data
Engineering (2019).

[23] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and An-
thony KH Tung. 2012. Efficient and scalable processing of string similarity join.
IEEE Transactions on Knowledge and Data Engineering 25, 10 (2012), 2217–2230.

[24] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: Extraction andMining of Academic Social Networks. In KDD’08. 990–998.

[25] Paul Turán. 1941. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok
48, 436-452 (1941), 61.

[26] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix
filtering? An adaptive framework for similarity join and search. In Proceedings of
the 2012 ACM SIGMOD international conference on management of data. 85–96.

[27] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and Yoshiharu
Ishikawa. 2016. Local Similarity Search for Unstructured Text. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia
Koutrika, and Sam Madden (Eds.). ACM, 1991–2005. https://doi.org/10.1145/
2882903.2915211

[28] XuboWang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2019. Leveraging
set relations in exact and dynamic set similarity join. The VLDB Journal 28, 2
(2019), 267–292.

[29] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. 2009. Top-k set
similarity joins. In 2009 IEEE 25th International Conference on Data Engineering.
IEEE, 916–927.

[30] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.
Efficient similarity joins for near-duplicate detection. ACM Transactions on
Database Systems (TODS) 36, 3 (2011), 1–41.

[31] Xiaoyang Zhang, Jianbin Qin, Wei Wang, Yifang Sun, and Jiaheng Lu. 2013.
Hmsearch: An efficient hamming distance query processing algorithm. In Pro-
ceedings of the 25th international conference on scientific and statistical database
management. 1–12.

[32] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:
Overlap set similarity search for finding joinable tables in data lakes. In Proceed-
ings of the 2019 International Conference on Management of Data. 847–864.

2698

https://doi.org/10.5441/002/edbt.2021.11
https://doi.org/10.5441/002/edbt.2021.11
https://doi.org/10.1145/3514221.3517880
https://doi.org/10.1145/3514221.3517880
https://doi.org/10.14778/3275536.3275539
https://doi.org/10.14778/3275536.3275539
https://doi.org/10.1145/2882903.2915211
https://doi.org/10.1145/2882903.2915211

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Signature Composition
	5 Hybrid Signature Composition
	5.1 A Hybrid Signature Scheme
	5.2 A Two-Level Index for Hybrid Compositions
	5.3 TwoL: A Hybrid Composition Framework

	6 Minimum Index Cost Allocation
	6.1 Problem Definition
	6.2 Optimal Index Allocation
	6.3 Heuristic Index Allocation
	6.4 Deletion under Memory Constraints

	7 Concrete Signature Schemes
	7.1 Length Filter
	7.2 Prefix Filter
	7.3 CoveringLSH
	7.4 Extended PEL
	7.5 Self Join Optimizations
	7.6 Choice of Primary and Secondary Index
	7.7 Cost Estimation

	8 Experimental Evaluation
	8.1 Runtime Efficiency
	8.2 Memory Efficiency
	8.3 Synthetic Datasets

	9 Conclusion
	Acknowledgments
	References

