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ABSTRACT
The requirement for specialization in data management systems
has evolved faster than our software development practices. Af-
ter decades of organic growth, this situation has created a siloed
landscape composed of hundreds of products developed and main-
tained as monoliths, with limited reuse between systems. This frag-
mentation has resulted in developers often reinventing the wheel,
increased maintenance costs, and slowed down innovation. It has
also affected the end users, who are often required to learn the
idiosyncrasies of dozens of incompatible SQL and non-SQL API
dialects, and settle for systems with incomplete functionality and
inconsistent semantics. In this vision paper, considering the recent
popularity of open source projects aimed at standardizing differ-
ent aspects of the data stack, we advocate for a paradigm shift in
how data management systems are designed. We believe that by
decomposing these into a modular stack of reusable components,
development can be streamlined while creating a more consistent
experience for users. Towards that goal, we describe the state-of-
the-art, principal open source technologies, and highlight open
questions and areas where additional research is needed. We hope
this work will foster collaboration, motivate further research, and
promote a more composable future for data management.
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1 INTRODUCTION
The increasing workload diversity in modern data use cases has led
to the proliferation of specialized data management systems, each
targeted to a somewhat narrow class of workloads. Based on the
“one size does not fit all” engine specialization tenet, hundreds of
database system offerings were developed in the last few decades
and are today available in the industry. While workloads, require-
ments, and environmental trends have dramatically evolved since
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the first databases were developed, our software development prac-
tices have not; data management systems continue to be, by and
large, developed and distributed as vertically integrated monoliths.

While modern specialized data systems may seem distinct at first,
at the core, they are all composed of a similar set of logical compo-
nents: (a) a language frontend, responsible for interpreting user
input into an internal format; (b) an intermediate representation
(IR), usually in the form of a logical and/or physical query plan;
(c) a query optimizer, responsible for transforming the IR into
a more efficient IR ready for execution; (d) an execution engine,
able to locally execute query fragments (also sometimes referred
to as the eval engine); and (e) an execution runtime, responsible
for providing the (often distributed) environment in which query
fragments can be executed. Beyond having the same logical compo-
nents, the data structures and algorithms used to implement these
layers are also largely consistent across systems. For example, there
is nothing fundamentally different between the SQL frontend of
an operational database system and that of a data warehouse; or
between the expression evaluation engines of a traditional colum-
nar DBMS and that of a stream processing engine; or between the
string, date, array, or json manipulation functions across database
systems.

However, this fragmentation and consequent lack of reuse across
systems has slowed us down. It has forced developers to reinvent
the wheel, duplicating work and hurting our ability to quickly adapt
systems as requirements evolve. Our development model still leads
to siloed systems, high maintenance costs, and wasted engineering
cycles, suggesting we can be more efficient as an engineering com-
munity. More importantly, the byproducts of this fragmentation
— incompatible SQL and non-SQL APIs, disparate functionality,
distinct function packages, and inconsistent semantics across the
board — impact the productivity of end users who are commonly
required to interact with multiple distinct data systems to finish a
particular task, each with their own quirks.

We believe it is time for a paradigm shift. We envision that
by decomposing data management systems into a more modular
stack of reusable components, the development of new engines can
be streamlined, while reducing maintenance costs and ultimately
providing a more consistent user experience. By clearly outlining
APIs and encapsulating responsibilities, data management software
could more easily be adapted, for example, to leverage novel devices
and accelerators, as the underlying hardware evolves. By relying on
amodular stack that reuses execution engine and language frontend,
data systems code could provide a more consistent experience and
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semantics to users, from transactional to analytic systems, from
stream processing to machine learning workloads.

Why now? In the last decade, the ubiquity of clouds and disag-
gregation of computation from storage has caused amajor inflection
in the design of data management systems. As vendors increased
the emphasis on the delivery of services rather than on proprietary
software, open source big data technologies and open standards
such as Apache Arrow, Orc, Parquet, Hudi, and Iceberg emerged,
and were rapidly popularized. Recently, projects like Velox, Sub-
strait, and Ibis quickly gained adoption across the industry, allowing
modern data stacks to be assembled by only reusing available parts.
Given these trends, we foresee that composability is soon to cause
another major disruption to how data management systems are
designed. We foresee that monolithic systems will become obsolete,
and give space to a new composable era for data management.

In this vision paper, based on the authors’ experience as founders
and developers of many of the aforementioned projects [6] [27]
[29] and on componentizing some of the largest data systems in
the world [4], we make the following contributions:

• We highlight the importance of composability in data man-
agement systems and argue that now is the right moment
for a paradigm shift.

• We summarize previous work that describe individual pro-
jects in the composability space, their significance so far,
and the investments required going forward.

• We extend the state-of-the-art by presenting a novel ref-
erence composable architecture, and discussing the parts
of this stack that have received less attention but are key
to component composability and reusability, highlighting
open questions and areas that require additional research.

2 COMPOSABILITY IN DATA MANAGEMENT
Decomposing software complexity into smaller subsets of relatively
independent components is a well-known software design tech-
nique. The state-of-the-art dictates that components should be deep,
encapsulating as much complexity as possible, and that their APIs
should be narrow, minimizing dependencies across components
and preventing implementation details from leaking through the
API. We believe that increasing the degree of composability in
data management systems, by developing and adopting reusable
components, provides the benefits discussed below.

Engineering efficiency. By reducing the duplication of work,
more engineers could work on fewer systems and components. This
saves us from re-inventing the wheel, consolidates domain-specific
knowledge into fewer specialized teams, and ultimately enables
engineering organizations to be more efficient and move faster.

Faster innovation. For large organizations, having fewer code-
bases reduces operational burden, and allows engineering teams to
focus on new features, optimizations, and other enhancements. For
small companies, it decreases their time-to-market, considering that
many components do not need to be re-developed [17], leveling the
field and allowing them to compete with larger database vendors.

Coevolution. Data system diversity disincentivizes hardware
vendors from investing in hardware support for data processing.
Unifying the physical execution layer, for example, could enable
a more synergistic relationship with the semiconductor industry

through the manufacture of custom chips that are more efficient
for database workloads. This would enable database software and
hardware to evolve closer together.

Better user experience. By reusing the same components, from
language to execution, users can expect consistent semantics across
data systems, in addition to a more even set of available features.
This reduces the user’s learning curve and cognitive burden, in-
creasing their productivity.

Despite the benefits, developing components in a way that they
can be shared and reused across different projects is a challenging
task. Based on the authors’ own experience and observations, some
of the frequent reasons for lack of reuse are:

Learning curve. Libraries and frameworks are complicated
and take time to learn. Even when developed using the same pro-
gramming language, many libraries use inconsistent nomenclature,
coding standards, tooling, build systems, processes, and provide
inconsistent APIs which are not interoperable with each other.

Developer bias. Developers are often passionate about writing
their own code, and commonly find reading documentation and
reviewing someone else’s code to be a tedious process.

Time-to-market fallacy. It is also common for developers to
believe that a quick prototype containing a subset of functionality
decreases the time-to-market for their products. In cases where
this holds true, it frequently understates the high cost of stabilizing
(hardening) the software, and the long-tail of features required to
turn the prototype into a real product. Ultimately, time-to-market
does not simply depend on writing the code, but on stabilizing
it against a real workload. This usually results in products with
incomplete and inconsistent features, hard to maintain (once the
engineers who wrote the prototype move to a different project),
and generalized tech debt.

Close fit. In many cases, a component that provides the re-
quired functionality exists, but is written in the wrong program-
ming language, has too many dependencies, is too hard to use, or is
distributed under an incompatible license. In other situations, the
third-party component would have to be modified, but the project
maintainers are not receptive to the changes. In summary, a com-
ponent is reusable only if it does not have to be modified in any
significant way outside of using its extensibility APIs.

Lack of incentives. Developers are usually not compelled to
write reusable components because there are few incentives to do
so. From an individual developer’s perspective, it takes more effort
to develop a modular system than to develop a monolith, and it
is more difficult to build a business model for a data management
system component than it is for an end-to-end system. In the short-
term, it is usually easier for a particular group to develop their own
system and internal components (local optimum), than to share
with other groups, reuse, and collaborate (global optimum).

Although providing an ultimate solution for the issues described
above is outside of the scope for this work, we believe the path
forward is to focus on the following principles: (a) define and agree
on a standard set of logical components across data management
systems, (b) define stable (yet extensible) APIs for communication
between these components, (c) provide canonical implementations
for these components and APIs which are efficient and consistent,
and (d) provide extensibility APIs in every layer of the stack to
allow developers to implement specialized behavior.
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3 A MODULAR DATA STACK
First and foremost, the new modular data stack emerging in the
open source community provides a stronger separation between lan-
guage and execution, in such a way that the execution is language-
independent, and takes a well-defined and system-agnostic interme-
diate representation (IR) as input. IRs are generated by a language
component, which is responsible for parsing and analyzing user
queries, and serve as input for a query optimizer. Query optimizers
are built using a universal (but extensible) framework, and ulti-
mately generate IR fragments which are ready for execution. Figure
1 illustrates the outline of this data stack.

Figure 1: Open source modular data stack outline.

Fragments are executed using an execution engine that provides
general and efficient storage primitives, including data layout for-
mats (columnar and row-wise) and data access methods. Lastly, the
execution of these self-contained fragments is orchestrated by an
execution runtime, responsible for deployment, stats collections,
monitoring, failure handling, resource management, and distributed
orchestration of the entire computation.

Based on this outline, we make two claims:

(1) This model is general enough, and allows every existing
data management system to be mapped to it, from OLTP
to OLAP systems, stream processing, log analytics, ML pre-
processing and more. In a few real-life systems some of
these components might be missing, like ML preprocessing
libraries commonly lacking an optimizer, or single-node
systems lacking a full-fledged execution runtime, but the
premise still holds.

(2) These components are predominantly consistent across spe-
cialized data management systems, and the areas where
they specialize/diverge are the exception rather than the
norm. For instance, stream processing systems require spe-
cialized logic to handle checkpoints/barriers and water-
marks, but the rest of the engine is equivalent to an OLAP
execution engine.

In the remainder of this Section, we detail each of these compo-
nents (language, IR, optimizer, execution, and runtime), explore the
state-of-the-art, describe existing leading projects and how they fit
into this framework, and raise open questions hoping to motivate
further research in this topic.

3.1 Language Frontend
Despite the current fragmentation, language frontend is the most
straightforward layer in the stack to be made composable due to its
simple API: translate user input into an IR. In fact, Google’s Goog-
leSQL (open sourced as ZetaSQL [30]) and more recently Meta’s
CoreSQL [4] are two successful projects aimed at consolidating
language frontends across multiple data systems in large organiza-
tions, through the use of a unified C++ parser and analyzer library.
PostgresSQL’s parser can also be used as a standalone library, and
is already leveraged by modern systems like DuckDB [22].

At the core, these libraries are all similar: they provide a C/C++
parser and analyzer library that is able to translate a SQL statement
(or other DSLs) into an IR, usually doing so by leveraging grammar
and tokenization libraries such as Flex, Bison or Antlr. This process
commonly requires APIs for table, column, and function signature
resolution (for type binding) to be implemented. In addition to
simple tokenization, parsing, and type binding capabilities, we
believe a state-of-art language frontend library should also provide
support for the features below, which are increasingly relevant:

• Semantic Types:Modern language frontends should allow
users to provide additional meaning to their data through
the use of richer semantic types. These user-defined types do
not affect how data is stored or processed (i.e., are invisible
to the IR or execution layer), but improve the capabilities of
static type-checking. For example, comparisons of two inte-
gers representing different concepts (UserID and DeviceID)
can be statically avoided during type checking. Similarly,
the handling of data in different units (e.g, TimestampMs
and TimestampSec) can also be transparently prevented or
normalized.

• Type Checked Macros: SQL queries that are hundreds of
lines long are common in modern data warehouses. SQL
macros provide a static way to both improve the abstrac-
tion level of large queries and enable code reuse. Stored
procedures and prepared statements partially fill this role,
but defining and using them requires both special syntax
and execution layer support.

• IDE Interoperability: When the frontend is a standalone
library, it can provide additional APIs to allow IDE devel-
opers to build a richer set of SQL authoring features, such
as improved syntax highlighting, token predictions, static
type checking, and autocompletion support, all in a consis-
tent manner by leveraging the exact same parsing/analyzer
library used by the data management system underneath.

Non-SQL APIs.While SQL’s declarative nature is convenient
for humans, it can be cumbersome to imperative programs. This
need gave birth to a series of dataframe-like APIs and other DSLs,
offering a more programmatic way to express the same type of com-
putation without requiring error-prone concatenations of pieces of
SQL statements. This diversity resulted in a fragmented language
landscape, where some systems provide dataframe APIs [16] [20]
[9] (common in data science applications), and many provide SQL
APIs (traditional DBMSs) [8] [7]. In fact, some open source projects
such as Ibis [21] were created to bridge this very gap and translate
dataframe APIs into SQL for execution in traditional data manage-
ment systems. We believe cross-language translation to be a poor
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architecture to address language fragmentation (see “challenges”
in Section 3.2).

Extending on the model popularized by Spark [25], where both
SQL (SparkSQL) and non-SQL (DataFrames, Datasets, and PySpark)
APIs generate the same IR, we believe that, more generally, lan-
guage will meet execution through a unified IR. Different language
frontend libraries can be provided to interface with specialized
DSLs, but should ultimately generate an IR that can be universally
and consistently executed. For instance, these two inputs should
provide an equivalent IR and be indistinguishable from an execution
standpoint:

SELECT a, b, c FROM tableWHERE a = 1;

Table.where("a=1").select("a,b,c");

As non-SQL APIs find increased adoption, we also believe that
higher-level APIs, platforms, and frameworks used by database
application developers (such as ORM) will evolve, due to two main
reasons. First, traditional frameworks were originally designed
assuming SQL to be the only API provided by data management
systems, while modern non-SQL imperative languages are more
flexible and offer a wider range of capabilities. Second, as language
gets componentized and decoupled from execution, application
frameworks could evolve into an entirely new language component.
Similar to other language libraries, it could communicate directly
with the underlying database system via a structured IR, bypassing
any (potentially narrower) intermediate language APIs. However,
the details of this evolution is still an open question.

Language Unification. We believe language frontend modular-
ization to also pave the way for language unification, or supporting
a single unified SQL dialect, and a single unified dataframe dialect
across data management systems. Language unification removes
the cognitive burden inherent to switching between incompatible
language dialects, decreases vendor lock-in, and enables applica-
tions to be made more portable. Although language unification can
only be realized with proper IR and execution support (discussed
in Sections 3.2 and 3.3), efforts like GoogleSQL at Google [30] and
CoreSQL at Meta [4] have set a feasibility precedent.

3.2 Intermediate Representation
Intermediate representation (IR) is a term commonly used in the
field of compilers to describe any structured representation of a
program that carries enough information to allow it to be accurately
executed, usually serving as the common interface between its com-
ponents [5]. In data management systems, IRs provide a structured
representation of a query and serve as the bridge between language
and execution.

Data management systems have historically defined their own
internal and individual IRs (logical and/or physical plans), because
decoupling language and execution was never a goal. Though IRs
in current data systems are tightly coupled with their internals, in
practice they are only different representations of the same data
processing primitives. They all represent expression trees, contain-
ing function calls, table references, and literals, and traditional SQL
operations such as filtering, projections, ordering, joining, aggre-
gations, windowing, shuffling/repartitioning, unnesting, and more,
with little variation beyond that.

Substrait [27] is a recent pioneering effort at providing a unified
and cross-language IR specification. Substrait provides a standard-
ized IR for data management systems, with the purpose of creating a
lingua franca to describe computation. The standard describes com-
mon functionality found in data management systems, establishing
a clear delineation between specifications that must be respected
and the ones that can be optionally ignored, hence accommodating
systems with different physical capabilities. Substrait also allows
systems to privately or publicly extend the representation to sup-
port custom/specialized operations.

Challenges. IR unification (through Substrait or otherwise) is a
leap forward in data management systems architecture, as it enables
language and execution to be fully decoupled, componentized, and
made interoperable. However, a few challenges arise as we work
towards making this unification practical in real-life data systems.

First, in order to allow data systems to execute IRs generated by
foreign components, IRs will need to become part of the system’s
external API. This results in less flexibility while evolving the IR rep-
resentation, since any IR changes need to be backwards compatible
and properly versioned. But more importantly: taking a full-fledged
IR as input will, by definition, increase the input domain of a data
system. The cross-language character of an IR also implies that the
computations an IR can represent go beyond computations which
are expressible through SQL APIs - and might result in revealing
dormant bugs or other limitations. Some recent efforts try to avoid
this situation by serializing IRs into a SQL statement (described
in Section 3.1). We believe this to result in a poor architecture, as
it loses the additional expressiveness, flexibility, and preciseness
provided by an IR by funneling it through a narrower API (SQL),
which is subject to dialect peculiarities.

Second, current IRs are not yet descriptive enough to ensure
runtime semantic equivalence. For instance, a system could silently
ignore integer overflows while others might throw exceptions; or
one can provide 0-index array semantics while others could be
1-index based [23] [26]. While these system characteristics are
captured in a Substrait IR, we believe representing every nuance of
existing systems will prove to be challenging - and yet, necessary
to ensure correct and equivalent execution across systems.

Lastly, the set of functions available today in different systems are
fully disparate. In cases where systems provide functions that look
similar, they rarely provide the exact same, bug-by-bug, semantic.
In order to ensure correct execution, functions need to be globally
identifiable by a URI that controls not only their name, but also the
base implementation they refer to, and some notion of versioning
(e.g.𝑚𝑎𝑝_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 () from SparkSQL, version 124). Executing an IR
referencing this function in a system other than SparkSQL, for
instance, should fail. In practice, this prevents different execution
engines from being interoperable at an IR level. We believe the path
forward to be, in the future, to bypass dialect and function packages
incompatibilities through language and execution unification.

3.3 Query Optimization
Query optimization is a very diverse and well-studied field [14].
While the majority of the industry query optimizers are tailored to
the target database system, there has been a significant body of work
related to building extensible and composable query optimizers. The
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goal of extensibility in query optimization is to provide abstractions
and integration hooks to allow replacing or adding new features
in order to support new use-cases. On the other hand, the goal
of composability is to make it easier to port the optimizer into a
different system than the one where it was initially built for.

Orca [24] and Apache Calcite [1] are the most known attempts
in the area of composable and reusable optimizers. Orca provides
a clear separation between the optimizer and execution engine by
using an XML-based language to exchange information between
the two.While Orca is designed to be modular and extensible, it was
reportedly non-trivial to integrate it with non-PostgreSQL systems
[12]. Apache Calcite has been successfully integrated into several
open source projects like Apache Hive and Apache Phoenix, stream
processing engines like Apache Flink and Apache Samza, and com-
mercial systems like Qubole. In addition to the optimizer, Apache
Calcite provides a full language frontend and IR, in such a way that
users can either provide a SQL statement or Calcite’s own struc-
tured IR as input. The overhead incurred by translating between
IRs (from the underlying target system to Calcite and vice-versa)
and the fact that it is written in Java, makes it challenging to embed
Calcite into non-Java systems where support for efficient short run-
ning queries is important. Bridging programming language gaps
into a lighter-weigh library and basing it on a unified IR, such as
Substrait, would satisfy most of the criterion of a composable query
optimizer, and potentially further increase its adoption.

3.4 Execution Engine
Execution is the layer responsible for taking a query fragment as
input (represented by an IR), and executing it leveraging the lo-
cal resources provided by the execution runtime (see Section 3.5).
Execution for a particular query fragment usually starts with a
table/index scan or exchange (shuffle) as input, and after processing
the incoming data, ends with another exchange or table write. Com-
mon data processing primitives range from expression evaluation,
filtering, ordering, joining, unnesting, and other operators required
to implement SQL semantics.

Though the vast majority of operations applied to the data in
current data management systems follow a few simple basic SQL
operations (apart from possible engine-specific extensions), today,
no two systems share the same execution codebase. Execution is
a highly fragmented domain, posing challenges to large organiza-
tions which are required to individually maintain dozens of siloed
and specialized codebases due to user workload diversity [4]. It also
impacts users, considering that the set of SQL functions available
are often engine/dialect-specific, and that the code fragmentation
leads to subtle semantic differences across systems. For instance,
an informal survey conducted at Meta identified at least 12 differ-
ent implementations of the simple string manipulation function
𝑠𝑢𝑏𝑠𝑡𝑟 (), presenting different parameter semantics (0- vs. 1-based
indices), null handling, and exception behavior [18].

In theory, a composable execution engine merely needs to pro-
vide ways to locally execute an IR, providing extensibility APIs
where different data access methods and storage formats can be
plugged in, in addition to APIs to allow for exchange boundary
specialization. To become dialect-agnostic, this library also needs

to provide extensibility APIs to allow for engine-specific and user-
defined data types, functions (scalar, aggregates, window, and tab-
ular), and operators. Even though composing at the IR level gives
developers the highest degree of flexibility when implementing
execution primitives, it still leads to the duplication of a substantial
amount of components. For example, all execution engines need
to define the dataset memory layout (based on Apache Arrow or
otherwise), local resource management (memory pools and arenas,
SSD and memory caching, CPU and thread pool allocations), and
encoding/decoding of popular file formats.

Therefore, we expect composability in execution to happen on
a more granular level, where a unified library will provide the
common execution framework (a common local execution bus),
and allow developers to extend and customize it. While the exact
places where APIs and extensibility points should be created are
open questions, we believe two overarching principles should hold.
First, the composable and monolithic versions of a system should
be equivalent in terms of performance. As described in [18], this
can be achieved by drawing API boundaries outside of hot code
paths (for example, making API calls per query or per batch, but not
per record), so that the cost associated with crossing component
boundaries is amortized and made negligible. And second, APIs
need to be designed (and evolved) in a way such that innovation is
not hindered.

A motivating factor for such an architecture is the rise of hard-
ware accelerators as a way to circumvent the end of Moore’s law.
As GPUs, FPGAs, TPUs, and other ASIC accelerators become com-
monplace, extending different execution engines to accommodate
every available accelerator becomes impractical, duplicates efforts,
and ultimately wastes engineering resources. Similarly, building
full-fledged execution engines based on specific accelerators perpet-
uates fragmentation [3] [15] [11]. We believe a unified execution
engine will pave the way for accelerators to become pervasive in
data management through operator specialization. For example,
using this model, one could build a general GPU-accelerated ex-
ecution engine by simply specializing the most frequently used
operators for a workload (say, table scan and hash joins), and reuse
the remaining CPU-based components provided by the unified li-
brary. Furthermore, having such a framework integrated into major
data systems in the industry provides a compelling platform for
hardware vendors, since a single integration would provide ac-
cess to a number of different workloads/markets. We expect this
model to both increase collaboration between hardware and data
management practitioners, and provide incentives to further the
development of database-specific hardware primitives.

Velox [18] is one project aimed at filling this gap. Velox is the
first large-scale open source project aimed at providing a unified ex-
ecution engine for data management systems. It provides reusable,
extensible, and dialect-agnostic data processing components, and is
currently integrated with more than a dozen data management sys-
tem within Meta and elsewhere, including analytical query engines
like Presto and Spark, stream processing platforms, data warehouse
ingestion infrastructure, machine learning systems for data pre-
processing and feature engineering, and many more. Velox demon-
strates that it is possible not just to componentize execution, but also
to unify it across stacks. While hardware acceleration experiments
in Velox are still in early stages, the rapidly growing interest from
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both hardware vendors and data management system developers
provides a validation of this model.

Furthermore, Velox’s dialect-agnostic architecture means that
it is possible to extend/customize it to implement different SQL
dialects. While it allows for a drop-in execution engine replacement
(by following the same semantic as the system being replaced), it
also allows for SQL dialects to be unified across data management
systems. Alongside language and IR unification, Velox allowed
Meta to unify SQL dialects (CoreSQL) across analytical systems
for interactive and batch execution, stream processing, and data
preprocessing, reducing the burden on users and providing a more
consistent experience across specialized data systems.

3.5 Execution Runtime
The execution runtime provides the environment needed by the ex-
ecution engine to perform the computation. It is responsible for (a)
the scheduling and allocation of resources, and (b) the containeriza-
tion and proper isolation between tasks (due to parallel execution
and/or multi-tenancy). In distributed settings, it also provides the
distributed computation model and inter-node communication (e.g.,
shuffles). Below, we focus on distributed environments as they are
more challenging and provide more opportunities for composability
and reuse.

The distributed computation model has significantly evolved
over the last few decades, ranging fromMapReduce (and its Hadoop
open source implementation) to frameworks that allow the com-
putation of DAGs, such as Apache Spark/RDDs and Apache Tez.
Recently, frameworks like Ray and Dask push the computation flex-
ibility even further and allow arbitrary functions to be executed at
every worker, offering tighter integration with the Python ecosys-
tem and targeting data science and machine learning workloads.
At the same time, systems like Apache Flink and Spark Streaming
have been widely employed to support streaming applications.

Although only a few of these systems have become truly widely
used, there is currently no standardization to the level of abstrac-
tion that strikes the best balance between ease of programming
and tight control of execution. Nonetheless, we have witnessed
an interesting development towards composability in recent years:
many of these systems have decoupled their execution runtime
from their original execution engine (typically written in Java) and
are using high-performance vectorized execution engines (typi-
cally in C++). Examples include Databrick’s Photon [2] and Apache
Gluten [10], which combine Spark’s execution runtime with Velox
or Databrick’s proprietary C++ engine.

Schedulers responsible for negotiating cluster resources, on
the other hand, have a somewhat narrower API. In fact, Apache
YARN [28], the resource manager created and then decoupled from
Hadoop, can today be used with most runtimes, including Spark
and Tez. Though there is no standardization related to task isola-
tion and inter-task communication, there are usually two design
choices: (a) tasks are either isolated (using cgroups or other types
of containers) or allowed to share the same process space, and (b)
shuffles are either stream-based or persisted to a local or remote
filesystem. We believe the advent of serverless computing and the
worker-as-a-service paradigm will present further opportunities,
though their applicability to data management is currently being
assessed [19].

To sum up, it is still an open question if runtimes could con-
verge and provide more configurable modes for data management,
but we believe one principle should hold true: runtimes should
not be coupled with data management systems, and preferably be
interchangeable through a standard API.

4 CALL FOR ACTION
With this work, we hope to incentivize developers to follow a
different mindset when developing data management systems. First,
we encourage developers to consider the described logical stack, and
ask themselves: which parts of this stack am I planning to specialize?
We foresee that in the future, as components become higher quality
and more extensible, the answer, in many cases, will converge
to none. In these cases, a full data management system could be
built by merely assembling parts. Despite sounding idealistic, a
reasonably functional stack can be built today by solely leveraging
open source projects like Ibis (language), Substrait (IR), Calcite
(optimizer), Velox (execution), and a distributed runtime such as
Spark, Ray, or a serverless architecture.

Second, in cases where some form of specialized behavior is re-
quired, we encourage developers to ask themselves: could this new
functionality be implemented through a well-defined extensibility
API? For instance, if a new system is to provide specialized geospa-
tial capabilities, it could be implemented using Velox’s operator
extensibility API. Alternatively, if the hypothetical proposition is a
better query optimizer, one could fully replace the optimizer layer
by a custom implementation, as long as the APIs are maintained,
and keep the remaining layers of the stack intact.

Finally, for cases where the specialization cannot be implemented
using the current stack and extensibility APIs, we encourage de-
velopers and researchers alike to ask themselves: how could we
improve the current APIs to make them more general? As a recent ex-
ample, Velox had specialized its columnar layout to allow for more
efficient manipulation of strings and complex types in addition to
more flexible encoding types [18], and later collaborated with the
Arrow community to extend the columnar standard (the API) [13].

5 CONCLUSION
The rapid evolution of user workloads has driven the development
of hundreds of specialized data management systems. Despite shar-
ing many of the same architectural decisions, data structures, and
internal data processing techniques, today, the degree of reuse
between these systems is unsettlingly limited. This leads to duplica-
tion of work, high maintenance costs, decelerates innovation, and
ultimately affects users who are required to interact with numerous
systems with incompatible SQL and non-SQL APIs, incomplete
feature sets, and generally inconsistent semantics.

In this vision paper, we advocated for a paradigm shift on how
these systems are designed and developed. We presented the differ-
ent components of a reference architecture, their APIs, and respon-
sibilities, and discussed how recent popular open source projects fit
this model. We believe that by componentizing data management
systems, the pace of innovation can be accelerated. We believe
composable is the future of data management, and hope more indi-
viduals and organizations will join us in this effort.
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